Advanced fermentation and cell technology, 2 volume set byong h. lee - Download the ebook and start

Page 1


https://ebookmass.com/product/advanced-fermentation-andcell-technology-2-volume-set-byong-h-lee/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Principles and Practice of Sleep Medicine - 2 Volume Set 7th Edition Meir H. Kryger Md. Frcpc

https://ebookmass.com/product/principles-and-practice-of-sleepmedicine-2-volume-set-7th-edition-meir-h-kryger-md-frcpc/

ebookmass.com

Auerbachu2019s Wilderness Medicine, 2-Volume Set 7th Edition

https://ebookmass.com/product/auerbachs-wilderness-medicine-2-volumeset-7th-edition/

ebookmass.com

Youmans and Winn Neurological Surgery: 4 - Volume Set, 8th Edition H. Richard Winn

https://ebookmass.com/product/youmans-and-winn-neurologicalsurgery-4-volume-set-8th-edition-h-richard-winn/

ebookmass.com

Thoracic Anesthesia Procedures Alan Kaye

https://ebookmass.com/product/thoracic-anesthesia-procedures-alankaye/

ebookmass.com

Die vier Elemente Joachim Funke

https://ebookmass.com/product/die-vier-elemente-joachim-funke/

ebookmass.com

The Justification of War and International Order Lothar Brock

https://ebookmass.com/product/the-justification-of-war-andinternational-order-lothar-brock/

ebookmass.com

Lou Prophet 12,13 Double: To Hell on a Fast Horse Peter Brandvold

https://ebookmass.com/product/lou-prophet-1213-double-to-hell-on-afast-horse-peter-brandvold/

ebookmass.com

Charming Texas Cowboy (Big Chance Dog Rescue) Teri Anne Stanley

https://ebookmass.com/product/charming-texas-cowboy-big-chance-dogrescue-teri-anne-stanley/

ebookmass.com

CISSP Cert Guide, Fourth Edition Robin Abernathy && Darren R. Hayes

https://ebookmass.com/product/cissp-cert-guide-fourth-edition-robinabernathy-darren-r-hayes/

ebookmass.com

Saving Animals, Saving Ourselves: Why Animals Matter for Pandemics, Climate Change, and Other Catastrophes Jeff Sebo

https://ebookmass.com/product/saving-animals-saving-ourselves-whyanimals-matter-for-pandemics-climate-change-and-other-catastrophesjeff-sebo/

ebookmass.com

AdvancedFermentation andCellTechnology

AdvancedFermentation andCellTechnology

Volume1

SportBiomics,CA,USAandHeilenexPharmaInc.,Toronto,Canada

KangwonNationalUniversity,Chuncheon,SouthKorea

JiangnanUniversity,Wuxi,China

McGillUniversityandAAFC,Quebec,Canada

AdvancedFermentation andCellTechnology

Volume2

SportBiomics,CA,USAandHeilenexPharmaInc.,Toronto,Canada

KangwonNationalUniversity,Chuncheon,SouthKorea

JiangnanUniversity,Wuxi,China

McGillUniversityandAAFC,Quebec,Canada

Thiseditionfirstpublished2022

©2022JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfrom thistitleisavailableat http://www.wiley.com/go/permissions

TherightofByongH.Leetobeidentifiedastheauthorofthisworkhasbeenassertedinaccordance withlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusat www.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Some contentthatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthis workandspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefactthatan organization,website,orproductisreferredtointhisworkasacitationand/orpotentialsourceof furtherinformationdoesnotmeanthatthepublisherandauthorsendorsetheinformationor servicestheorganization,website,orproductmayprovideorrecommendationsitmaymake.This workissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessional services.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.You shouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethatwebsites listedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhen itisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages.

LibraryofCongressCataloging-in-PublicationData

Names:Lee,ByongH.,author.

Title:Advancedfermentationandcelltechnology/ByongH.Lee, SportBiomics,CA,USAandHeilenexPharmaInc.,Toronto,Canada,KangwonNational University,Chuncheon,SouthKorea,JiangnanUniversity,Wuxi,China,McGillUniversityand AAFC,Quebec,Canada.

Description:Hoboken,NJ,USA:Wiley-Blackwell,2022.|Includes bibliographicalreferencesandindex.

Identifiers:LCCN2020026477(print)|LCCN2020026478(ebook)|ISBN 9781119042761(cloth)|ISBN9781119042785(adobepdf)|ISBN 9781119042778(epub)

Subjects:LCSH:Fermentation.|Industrialmicrobiology.

Classification:LCCTP505.L442021(print)|LCCTP505(ebook)|DDC 660/.28449–dc23

LCrecordavailableathttps://lccn.loc.gov/2020026477

LCebookrecordavailableathttps://lccn.loc.gov/2020026478

CoverDesign:Wiley

CoverImages:TubularbioreactorsfilledgreenalgaefixingCO2©SantiagoUrquijo/GettyImages, CulturesgrowingonPetridishes©WLADIMIRBULGAR/SCIENCEPHOTOLIBRARY/Getty Images,CARTcellimmunotherapy,illustration©KEITHCHAMBERS/SCIENCEPHOTO LIBRARY/GettyImages,BisonorAurochsinwinterseasonintheirhabitat©danm/Getty Images,CoronaVirusCopySpace©BlackJack3D/GettyImages,illustration3dDNASpinFuturistic digitalbackground,AbstractbackgroundforScienceandtechnology©Jackyenjoyphotography/ GettyImages

Setin9/11ptandTimesTenLTStdbyStraive,Chennai,India

OverviewonMarketSizeofBioproductsandFundamentalsofCellTechnologyxiii

PartI1 1MicrobialCellTechnology1

1.1Basicbacterialgrowthandmodeoffermentation1

1.2Basicfungalgrowth22

1.3Classicalstrainimprovementsandtools26

1.3.1Naturalselectionandmutation26

1.3.2Recombination30

1.4Modernstrainimprovementandtools32

1.4.1Genomeshuffling33

1.4.2RecombinantDNAtechnology34

Summary 58

1.4.3RNAinterference(RNAi)andCRISPR/Castechnologyforgenomeediting59

Summary 72

1.4.4Molecularthermodynamicsanddown-streamprocessesonbioproducts72

Summary 83

1.4.5Proteinengineering84

Summary 91

1.4.6Genomics,proteomics,metagenomics,andbioinformatics91

Summary 99

1.4.7Systems/syntheticbiologyandmetabolicengineering100

Summary 106

1.4.8Quorumsensingandquenching106

Summary 110

1.5Bioengineeringandscale-upprocess111

1.5.1Microbialandprocessengineeringfactorsaffectingperformanceandeconomics114

1.5.2Fermenterandbioreactorsystems114

1.5.3Masstransferconcept116

1.5.4Heattransferconcept120

1.5.5Massandheattransferpractice123

1.5.6Scale-upandscale-downoffermentations137

1.5.7Scale-upchallenges146

Summary 150

1.6Newbioprocessesoffermentation150

1.6.1Growth-arrestedbioprocesses150

1.6.2Integratedbioprocesses154

1.6.3Consolidatedbioprocessing(CBP)158 Summary 160 Bibliography 161

2ApplicationsofMicrobialFermentationtoFoodProducts,Chemicalsand Pharmaceuticals173

2.1Fermenteddairyproducts173

2.1.1Basicknowledgeofmanufactureofdairyproducts177

2.1.2Geneticengineeringoflacticacidbacteria186 Summary 197 Bibliography 197

2.2Fermentedmeatandfishproducts199

2.2.1Fermentedmeatproducts199

2.2.2Fermentedfishproducts204 Summary 207 Bibliography 208

2.3Fermentedvegetableandcerealproducts209

2.3.1Fermentedvegetableproducts209

2.3.2Fermentedcerealproducts214

2.4.1Aceticacid221

2.4.2Citricacid224

2.4.3Lacticacid225

2.4.4Malicacid227

2.4.5Fumaricacid228

2.5Fermentation-derivedfoodandfeedingredients231

2.5.3Vitaminsandpigments264

2.5.4Microbialpolysaccharidesandbiopolymers276

2.6Bacteriocinsandbacteriophages296

2.8Biomass(SCP)andmushrooms332

2.8.1Biomass(SCP)332 2.8.2Mushrooms343

2.12Pharmaceuticals,growthpromoters,andbiopesticides467

3.1Animalcellculture579

3.1.1Introduction579

3.1.2TechniquesofRNAiandCRISPR580

3.1.3Animalcelllines580

3.1.4Upstreamanddownstreambioprocessing590

3.1.5Straindevelopmentofanimalcellcultures593

3.1.6Applicationsofanimalcellcultures595

3.2Transgenicanimalbioreactors661

3.2.1Introductionandtechniques661

3.2.2Applicationsoftransgenicanimals664

PartIV687

4.1Introduction 687

4.2Planttissueculture689

4.3Applicationsofplanttissueculture697

4.3.1Traditionalplantbreeding(non-recombinantDNAtechniques)698

4.3.2Generalmediaforplanttissueculture739

4.3.3Bioreactortypesofplantcellcultures741

4.3.4ModernplantbreedingorBiotech/GMcrops(recombinantDNAtechniques)759

5SafetyIssuesofNewBiotechnologiesonMicrobial,Animal,andPlantCells801

5.1Introduction 801

5.2Safetyevaluationofnovelfoodsandcellcultureproducts802

5.2.1Geneticallymodifiedmicroorganismsandtheirproducts804

5.2.2Geneticallymodifiedanimalcellcultures,animals,fishesandtheirproducts807

5.2.3Geneticallymodifiedplantsandtheirproducts820

Preface

ThetermfermentationderivedfromtheLatinverb fevere (boil)usedbyhumansforthe productionoffoodandbeveragessincetheNeolithicageistheoldestofallbiotechnologicalprocesses.Thefermentationprocessusedintheproductionofantibiotics,alcohol,bread,vinegarandotherfoodorindustrialproductsdiffersfromrespirationinthat organicsubstancesratherthanmolecularoxygenareusedaselectronacceptors.Aftersuccessfulmicrobialfermentationprocessesonmicrobialcells(biomass),microbialenzymes, microbialmetabolitesincludingantibiotics,andotherfermentedfoods,currentlymore than3500differentfermentedfoodsareconsumedbyhumansworldwide.Thepotential offermentationtechniqueswasdramaticallyincreasedinthelate1960sand1970sthrough achievementsinmoleculargenetics,cellfusion,andenzymetechnology.However,additionalcompletelynovel,powerfultechniquessuchasgeneticengineeringviarecombinant DNAtechnologyin1973andhybridomatechnology(monoclonalantibody)in1975were responsibleforthecurrentbiotechnologyboom.

Ingeneticengineering,aknowngeneisinsertedintoamicrobial,animal,orplantcellin ordertoachieveadesiredtraitfortheoverproductionoftargetcompounds,butmicroorganismshaveplayedamajorroleinthedevelopmentofbiotechnology.Thisisduetothe rapidgrowthofmicrobes,cheapgrowthmedia,massivediversityinthemetabolitetypes andeasyofgeneticmanipulation.However,masscultureofanimalcelllinesisalsoimportanttomanufactureviralvaccinesandothertherapeuticrecombinantproductssuchas enzymes,hormones,immunologicals(monoclonalantibodies,interleukins,lymphokines, etc),andanticanceragents.Mammaliancellscultivatedinbioreactorshavesurpassed microbialsystemsforproducingtherapeuticrecombinantproteinsbecauseoftheir capacityforproperproteinfolding,assemblyandpost-translationalmodification.Major therapeuticrecombinantproteinsaresuccessfullycommercialized,butexpensiveanimal freemedia,costofproductioninlargescalewithlowyield(thetens-of-milligrams/liter), microbialcontamination,andgeneregulationaretheimportantissuestoberesolved. Othercellcultureresearchisalsounderwaytoproducesuchcomplextherapeuticproteins ininsectcell(baculovirus)orinhigherplants.Molecularbiopharmingusingtransgenic animalssuchasgoatandpigforrDNAproteinshavealsosuccessfullycommercialized.

Fermentationtechnologyfortheproductionofcompoundsthatfindapplicationinfood, biochemical,biomaterial,bioenergy,pharmaceuticalsectorsencompassesabroadfield,not onlyincluding(1)conventionalmicrobialandenzymesystems,(2)geneticandmetabolic engineering,alongwithsystemsbiology/syntheticbiology,andgenomeediting,butalso including(3)mammaliancellandplantcellsystems.Despitealonghistoryoffermentation processesforgenerations,therequirementforsustainableproductionofbioenergyandbiomaterialsisalsodemandinginnovationanddevelopmentofnovelfermentationconcepts. Continuedintroductionofnewtechnologyincellculturesystemsdemandsinnovationin newbioreactorprocessdevelopmentandscaleupprocessesforcellfactorypotential.

Thisbookreflectsthistransitionfromtraditionalfermentationtechnologytonewcell fermentationtechnology,thatprovidesequalemphasisonmicrobial,mammalianaswellas plantcelltechnologiesfornewandimprovedprocessesandproductsintoday’sbiochemical processindustry.

Currentlytwofermentationtextbooksavailableonthemarket(1999)areoutdatedand donotdealwithcurrentprogressinfermentationandcellculturetechnologiesandcommercialrecombinantbioproducts.Mostothereditedvolumesaretheworkofmultiple contributorsandnormaldidacticcriteriaforexplanationofevolvingnewtechniquesand applicationsarelacking.Experienceinteachingthissubjecthasmadeclearthatthebasic conceptsandessentialfeatureshavenotbeencoveredinatypicalsciencecurriculum.The primaryobjectiveofwritingthisbookistorelatethefoodfermentationandcellculture biopharmaceuticalactivesusingdifferentexpressionhosts.Productdiversitymakesfermentationtechnologyamulti-disciplinaryexpertiseassociatedwithmicrobiology,organic chemistry,biochemistry,andmolecularbiology.Remarkableadvancesintheseareaswill helptoliftpeopleoutofwretchedandempowerthemwithnewknowledge.Thesubject matterisdividedintoPartV,includingmicrobiology,biotechnology,molecularbiology, biochemicalengineering,andglobalmarketsizeofbioproducts,andtheirapplications.

PartIcoversmicrobialcelltechnologyandculturetools(includingclassicalstrain improvementsandtools)andmodernstrainimprovementandtools(genomeshuffling, recombinantDNAtechnology,RNAinterference(RNAi)andCRISPR)/Castechnologyforgenomeediting;alsoincludesmolecularthermodynamicsforbiotechnology, proteinengineering,genomics,proteomicsandbioinformatics,systems/syntheticbiologyandmetabolicengineering,quorumsensingandquenching.Otherbioengineering andscale-upprocessesandnewbioprocessesoffermentationsuchasgrowth-arrested bioprocess,integratedbioprocess,andconsolidatedbioprocessing(CBP)areincluded.

PartIIdealsapplicationsofmicrobialfermentationtofoodproducts(dairy,meat/fishes, vegetable/cereals),organicacids,foodingredients,chemicals,andpharmaceuticals.Food products/ingredientsincludedflavorsandaminoacids,sweeteners,vitaminsandpigments,microbialpolysaccharides/biopolymers,bacteriocinsandbacteriophages,enzymes, biomass(SCP)/mushrooms,functionalfoodsandnutraceuticalssuchasprobioticsand prebiotics,andmicrobiome.Othersincludedalcoholicbeveragesandotherfermentation chemicals(bioethanol,biobutanol/biobutandiol,biodiesel,biomethane,biohydrogen).In finalsection,pharmaceuticalssuchasantibiotics,antibioticgrowthpromoters,antitumor drugs,steroids/statins,andbiopesticidesincluded.

PartIIIcovers(i)animalcelltechnologyincludinganimalcellculture,bioprocessing, straindevelopment,applications(monoclonalantibodies,differentvaccines(DNAvaccines,ediblevaccines,zikavaccines,hepatitisvaccines,HIVvaccines,COVID19vaccines), and(ii)transgenicanimalbioreactors,andapplicationsinanimalsandfishes,etc.PartIVon plantcelltechnologycoveredplanttissueandcellcultureandapplications,bioreactortypes (seed-basedbioreactor,plantcellsuspensionbioreactor,hairyrootbioreactor,chloroplast bioreactors)andmodernplantbreedingorbiotech/GMcropsandtheirapplications.

Finally,PartVdealswithsafetyissuesofnewbiotechnologiesonmicrobial,animal,and plantcells.

Thisbookaimstogivereaders,generalsciencestudents,researchers,andindustrial practitionersaswellasinstructors,anoverviewoftheessentialfeaturesofadvancedfermentationandcellculturetechnology.Iwouldliketothankmystudents,post-docs,and formercolleaguesatMcGillUniversity(Canada),JiangnanUniversity(China)andKangwonNationalUniversity(Korea),who,forthepast37years,havehelpedandsuggested meinteachingthissubjectcourse.

Amongtheoverhundresofmyformergraduatestudentsandpost-docs,Iwouldliketo dedicatethisbookspecificallytomybelovedformerstudents,Dr.YoungJ.ChoiandDr. MarcioBeleminMontreal,whombothpassedawaysuddenly.

Lastbutnotleast,ImustthankmywifeYoungforherloveandencouragement,together withthepatienceofmysons,Edwardandhisfamily(wifeMaria,sonMaxim)inToronto andDavidandhisfamily(wifeRonit,daughterRomy)inSantaMonica,Californiaduring thepreparationofthisvolume.

September,2021

ByongH.Lee Toronto,Canada

OverviewonMarketSizeof Bioproductsand FundamentalsofCell Technology

Biotechnologyandglobalmarketsizeofbioproducts

Theterm“biotechnology”wasfirstusedbyKarlErekyin1919,meaningtheproductionof productsfromrawmaterialswiththeaidoflivingcellssuchasmicrobe,animal,andplant infermentersorbioreactorsthroughprocessoptimization.

Biotechnologyisabroaddisciplineusingalllivingcells,orpartsofthistodevelop products,andservicestomeettheneedsofhumans.Newtoolsandproductsdevelopedby biotechnologyhavebeenusefulinresearch,agriculture,industry,andtheclinic.Industrial biotechnologyexperienceinfermentationtechnologystartedinthefieldofsingle-cell proteinproductionandthenmovedontothedevelopmentsoffermentationtechnologies producingantibiotics,aminoacids,antitumoragents,statins,vitamins,steroids,and majorityoffermentedfoods.Asaresultofthisprocessdevelopmentactivity,microbial cellculturetechnologyhasbecomeoneoftheleadingsuppliersoftop-qualityfermentationtechnologies.Thisdomainmarketiscontinuouslyexpandinginallcontinents,with confidentialcooperationinvolvingsmallandmultinationalcompanies.Microbialcell fermentationtechnologyhasbeenalong-favoredorganicprocessbecauseofitssimplicity ofreaction,highspecificity,lowcosts,andflexibilityofapplication.Majorityindustries havecomplementedtheessentialprincipleoffermentationwithadvancesintechniques andbiotechnologytoincreaseitsapplicationtotheassemblyofaspreadofbiochemicals, biomolecules,andbiofuels.

Table1showsthefermentationbiotechnologymilestonesandsomerecombinantproteins.

Thefermentation’sapplicationareasarebroadfromfoodstuffslikewine,cheese, bread,andbeer,intohigh-valuechemicals,pharmaceuticalproducts,andfood-related chemicals.Amongmanymorethan100recombinantproteinsknown(Sandez-Garcia etal.,2016),onlyfewarelistedinthistable.Further,risinghydrocarboncostsand depletingfuelreserveshavealsocreatedastrongcaseforaffordableandeasyfermentationprocessesformanufacturingbiofuelchemicals.Microbialcellfactoriesforthe productionofbio-basedchemicalshavebeenusefulfordiverseindustrialapplications andforachievingasustainablefuture,buttheoverexpressionofheterologousenzymesin

Table1 Fermentationbiotechnologymilestonesandsomerecombinantproteins

DateMilestone

Oldbiotechnology

Before6000

B.C.

Before14th century

Breadleavening,alcoholicdrinks,andfruitvinegars

Beerandwine,vinegarbytheOrleansprocess

1650CultivationofFrenchmushrooms

1680AntonvanLeeuwenhoekfirstobservationofyeastcells 1857–1876LouisPasteurfirstdiscoveryofmicroorganismscausingfermentation 1881Lacticacidproductionbymicrobe

1885ArtificialgrowingofmushroomsintheUSA)

19thcenturyProductionofethanol,acetate,butanol,acetone,andcitrate,glycerol,baker’syeast,and sewagetreatment

1940sMasscultivationofmicrobesforantibiotics(penicillin,streptomycin,chlorotetracycline), bioingredients(aminoacids,enzymes,vitamins,polysaccharides),steroids,andvaccines

1953DiscoveryofDNAbyWatsonandCrick

1957L-GlutamateproductionbyKinoshitaetal.

1955–60Citricacidproductionbysubmergedfermentation

NewBiotechnology

1970–1972Transformationof E. coli byplasmidDNA

1973FirstdiscoveryofrestrictionenzymesandDNAligasesbyCohenandChang

1974Firstexpressionofheterologousgenein E.coli

1975InventionofhybridomatechniqueformonoclonalantibodiesbyCésarMilsteinand GeorgesJ.F.Köhler

1978Firstdiscoveryofrecombinantprotein,somatostatin

1980Cohen/BoyerpatentonrecombinantDNAtechnology;Genentechestablished

1982Recombinanthumaninsulin(Humulin®)by E.coli

1983Heterologousplantgeneexpression;PolymeraseChainReaction(PCR)byKaryMullis/Cetus (Nobelprize)

1985Recombinanthumangrowthhormone(Protropin®)by E.coli

1986Recombinantvaccine,RecombivaxHB(hepatitisBvaccineby S.cerevisiae Recombinantgamma interferon,RoferonA® by E.coli

1987Recombinanttryptophan,recombinanttissueplasminogenactivator,Activase®)byCHO*

1989Recombinantinterleukin-2,Proleukin® by E.coli,Recombinant γ-interferon,Immuneron® by E.coli

1989–1991Recombinantchymosin(Gist-Brocades,Genencor,andPfizer)by E.coli and Aspergillus oryzae

RecombinantproductionofvitaminC(ascorbicacid)byGenencorInternational,lacticacid bacteriaresistanttobacteriophage

1990Maltase-enhancedbaker’syeast(Gist-Brocades)

1992RecombinantbloodclottingfactorVIII(Recombinate® byGeneticInstitute/Baxter; Kogenate® byBayer,Defacto® (Wyeth)usinganimalcelllines;Lipase(Unilever), Amylase(Novomil®)

1993Site-directedmutagenesisbyMichaelSmithatUBC(Nobelprize)

1994GeneticallymodifiedFlavrSavrtomato(Calgene,discontinuedin1997),recombinant bovinesomatotropin,BST(EliLilly;Monsanto),engineeredbrewingyeast(Carlsberg ResearchCentre),andacetolactatedecarboxylase(Maturex) 2003–2013Epogen(erythropoietin,EPO)bymammaliancells(Amgen),Neupogen(granulocyte colony-stimulatingfactor,G-CSF)by E.coli (Amgen),Fabrazyme(human alpha-galactosidase,Genzyme)byCHO1996–2015

Over47herbicide-resistant(HT)andinsect-resistant(BT)cropsonmarket2018 GoldenRice(aprovitamin)approvedbyUSFDA;GMAtlanticsalmondevelopedby AquaBountyTechnologiesonmarketinCanadaandUSA(FDAapproved)

∗ CHO:ChineseHamsterovaries.

Source:Lee,2015.

Microbial cells

– Fermented foods (beer, yogurt, soy, etc)

– Bioingredients (enzyme, amino acid, gum, vitamin, etc)

– Pharma products (antibiotics, steriods, recombinant proteins, etc)

Cell Culture Technology

Animal cells

– Animal breeding – Transgenic animals – Animal (mammalian) cell culture

Plant cells

– Crop breeding – Transgenic plants – Plant cell culture

Figure1 Conceptofcellculturetechnologyderivedfrommicrobes,animals,andplants. Source:Nader Khouri/GettyImages;ToniBarros/ https://en.wikipedia.org/wiki/Dolly_(sheep)#/media/File:Dolly_face_ closeup.jpg /CCBY-SA2.0;Dreamstime;Shutterstock.com;Flickr,Inc.;ThomasNorthcut/GettyImages; maksymyemelyanov/123RF.(Seeinsertforcolorrepresentationofthisfigure.) recombinantstrainsoftenleadstometabolicimbalance,resultingingrowthretardation andsuboptimalproductionofthetargetcompounds(Luetal.,2018).Thus,itisessential toaddressmetabolicimbalancescausedbyengineeredpathwaysinmicrobialhosts.For establishingavibrantbio-basedeconomy,multivariatemodular metabolicengineering, modularco-cultureengineering,systemsbiology,andintegrativegenome-scalemetabolic modelingcanbeexploitedtoexpeditestrainoptimizationandimprovetheproduction yieldofmanyhigh-valuebio-basedchemicals.

Figure1showsconceptofcellculturetechnologyderivedfrommicrobes,animals,and plants.Intransgenic(geneticengineering)technologyeitherincellsofmicrobes,animals, orplants,aknowngeneforadesiredtraitisinsertedintothembyrecombinantDNAtechniquesorgenomeeditingby CRISPER/Cas9 techniques.Despiteofthepotentialuseofall livingforms,amajorplayerinthedevelopmentoffermentationbiotechnologyismicroorganisms,becauseoftheeaseofmassgrowth,therapidgrowthincheapwastematerialsas media,andthemassivediversityofmetabolictypes,whichinturngivesdiversepotential productsandtheeaseofgeneticmanipulationtoimprovestrainsfornewproducts.

Itisestimatedthattheglobaleconomicvalueofindustrialbiotechnology,renewablechemicalsandpolymers,biofuels,enzymes,andbio-basedmaterialsisabout US$355.28billion,amongwhichUSgenerates58%ofthevalue,ormorethan US$205billion(www.bio.org/worldcongres).Theproductionofbio-basedchemicalsalonecanyieldanannualrevenueofUS$10–15billionintheglobalchemical industryby2020(www.iwbio.de/fileadmin/Publikationen/IWBio-Publikationen/WEF_ Biorefineries_Report_2010.pdf).

Fermentation’sapplicationareasarebroadfromfoodstuffslikewine,cheese,bread, andbeer,intohigh-valuechemicals,pharmaceuticalproducts,andfood-relatedchemicals. Amongmanymorethan100recombinantproteins(Sandez-Garciaetal.,2016),onlyfew arelistedinthistable.Further,risinghydrocarboncostsanddepletingfuelreserveshave alsocreatedastrongcaseforaffordableandeasyfermentationprocessesformanufacturing biofuelchemicals.Microbialcellfactoriesfortheproductionofbio-basedchemicalshave beenusefulfordiverseindustrialapplicationsandforachievingasustainablefuture,butthe overexpressionofheterologousenzymesinrecombinantstrainsoftenleadstometabolic imbalance,resultingingrowthretardationandsuboptimalproductionofthetargetcompounds(Luetal.,2018).Thus,itisessentialtoaddressmetabolicimbalancescausedby engineeredpathwaysinmicrobialhosts.Forestablishingavibrantbio-basedeconomy, multivariatemodularmetabolicengineering,modularco-cultureengineering,systemsbiology,andintegrativegenome-scalemetabolicmodelingcanbeexploitedtoexpeditestrain optimizationandimprovetheproductionyieldofmanyhigh-valuebio-basedchemicals. GeneticallymodifiedbacteriasuchastheGram-negative Escherichiacoli (E. coli)areused toproducelargeamountsofproteinsforindustrialuse,butbecauseofthehighcostof extractionandpurification,onlyhighvalueproductshavebeenproducedatanindustrial scale.Althoughtherecentlydevelopedsecretaryexpressionsystemof E.coli usingsignalpeptideoptimization,periplasmicleakage,andchaperonesco-expressionarereported (Zhouetal.,2017),the E.coli speciesexhibitssomelimitationsastheheterologousproteinsaretypicallyexpressedintracellularly,whichresultsinproblemswithformationof inclusionbodiesandincorrectproteinfolding.Thus, Bacillussubtilis hasbecomeanindustrialworkhorseforrecombinantproteinproductionduetoaneasycultivation,theproducts ofgenerallyrecognizedassafe(GRAS),easeofgeneticmanipulation,well-characterized expressionsystems,absenceofsignificantcodonbias,andexceptionalabilitytosecrete heterologousproteinsallowingcost-effectivedownstreamprocessing(Eivindetal.,2018). However,manyrecombinantproteinsrequireproteinmodifications,suchasglycosylation thatareavailableonlyineukaryoticcellsinthatthissometimesleadstotheuseofyeast, insectcells,andmammaliancellculturesystems.Somemedicinaluseofrecombinantbacteria(E.coli) oryeasts(Saccharomycescerevisae,Pichiapastoris)wastoproducetheprotein insulintotreatdiabetes,clottingfactorstotreathemophilia,humangrowthhormoneto treatvariousformsofdwarfism,interferontotreatsomecancers,erythropoietinforanemic patients,andtissueplasminogenactivatorwhichdissolvesbloodclots.

Outsideofmedicinetheyhavebeenusedtoproducerecombinantchymosin(cheese coagulatingenzyme),lipase,biofuels,andbioremediation,etc.Besides,withgreaterunderstandingoftherolethatthemicrobiomeplaysinhumanhealth,thereisthepotentialto treatdiseasesbygeneticallyalteringthebacteriatothemselvesbetherapeuticagentsinour review(Dalirietal.,2018).Themainideasincludealteringgutbacteriatodestroyharmfulbacteriaorusingbacteriatoreplaceorincreasedeficientenzymesorproteins.One researchfocusistomodify Lactobacillus bacteriathatnaturallyprovidesomeprotection againstHIV,withgenesthatwillfurtherenhancethisprotection.However,themicrobiome couldalsoraisesafetyconcernsasinteractionsbetweenbacteriaandthehumanbodyare lesswellunderstoodthanwithtraditionaldrugs.Thereareconcernsthathorizontalgene transfertootherbacteriacouldhaveunknowneffects.Asof2018therearemanyclinical trialsunderwaytestingtheefficacyandsafetyofthesetreatments(Reardon,2018).

Besidesmicrobialfermentedfoods,foroveracentury,bacteriahavealsobeenusedin agriculturalcropsinwhich Rhizobia (andmorerecently Azospirillum)havebeeninoculatedtoincreasetheirproductionortoallowthemtobegrownoutsidetheiroriginal habitat.Itiswellknownthatapplicationof Bacillusthuringiensis (Bt)andotherbacteria canhelpprotectcropsfrominsectinfestationandplantdiseases.Withadvancesingenetic

engineering,thesebacteriahavebeenmanipulatedforincreasedefficiencyandexpanded hostrangeaswellastracingthespreadofthebacteriabymarkers. Pseudomonas strains ofbacteriacausingfrostdamagebynucleatingwaterintoicecrystalsaroundthemselves ledtothedevelopmentofice-minusbacteria,thathavetheice-forminggenesremoved. Whenappliedtocropstheycancompetewiththeice-plusbacteriaandconfersomefrost resistance(Yetisenetal.,2015).Otherapplicationsofgeneticallymodifiedbacteriainclude bioremediation,wherethebacteriaareusedtoconvertpollutantsintoalesstoxicformsuch asremovalofpetroleumhydrocarbonpollutantsbyincreasingthelevelsoftheenzymes usedtodegradeatoxinortomakethebacteriamorestableunderenvironmentalconditions(Fuentesetal.,2014;Yuniati,2018).

However,masscultureofanimalcelllinesisfundamentaltothemanufactureofviral vaccinesandmanybiologicalproductsproducedbyrecombinantDNAtechnologyinanimalcellculturesincludeenzymes,synthetichormones,immunobiologicalssuchasmonoclonalantibodies,interleukins,lymphokines,andanticanceragents.

Manysimplerproteinscanbeproducedbyengineeredbacterialcellcultures,but protein glycosylation (post-translationalmodification,PTM)isonlymadeinanimalcells.Asthe productioncostof mammaliancellcultures ishigh,however,other insectcells or higher plants using singleembryoniccell and somaticembryos areusingasasourcefordirectgene transferthrough particlebombardment,and transitgeneexpression.Mammaliancell-line productsproducedfrom CHO, BHK, NSO, meylomacells, C127, HEK293)accountfor over 70%ofcurrentlyapprovedbiotherapeuticproductsincludingmonoclonalantibodies.

Biopharmaceuticalsmaythusbeproducedfromengineeredmicrobialcellssuch E.coli oryeast,mammaliancellculture,plantcell/tissueculture,andmossplantsinvariousbioreactorsorphoto-bioreactors.Themainissuesofmammaliancellculturearecostofproductionandmicrobialcontaminationbybacteria,viruses,mycoplasma,orviruses.Potential safetyandethicalissuesincludeinengineeredwholeplantsandanimals,whichrepresent asignificantinvestorriskandrisksoverconsumeracceptance.

Majorkindsofrecombinanttherapeuticproteins(biopharmaceuticals)include:blood factors(FactorVIIIandFactorIX),thrombolyticagents(tissueplasminogenactivator), hormones(insulin,glucagon,growthhormone,gonadotrophins,hematopoieticgrowth factors(erythropoietin,colonystimulatingfactors),interferons(interferons-α,-β,-γ), interleukin-basedproducts(interleukin-2),vaccines(hepatitisBsurfaceantigen),monoclonalantibodies(various),andadditionalproducts(tumornecrosisfactor,therapeutic enzymes).

Theimportantanimalcellcultureproductsasmonoclonalantibodiesareproducedbyfusingnormalcellswithanimmortalizedtumorcellline.Recentadvances intherapeuticproteindrugdevelopmentareavailablefrom:www.researchgate.net/ publication/313463806_Recent_advances_in_therapeutic_protein_ drug_development.

Manyothertransgenicanimalshavealsobeenusedtosecretehumanproteins secretedinthemilkoftransgeniclivestock.Since1985,severalanimals,includingcow, goat,pig,horse,cat,rabbits,chickens,andmostrecentlydogaswellasfishes,have beencloned,butthemostresearchhasbeenoncattle.Manyapplicationsofanimal biotechnologiesarecontroversialforenvironmental,health,animalwelfare,andsocial reasons.Forexample,onlyasmallpercentageofcloningattemptsproduceliveoff-spring andmanyanimalclonesareunhealthy.Human-animalchimerasraisesafetyconcerns aboutwhethernewdiseasescouldbetransmittedtohumans,legalissuesaboutwhether suchcreaturescanbepatentedandowned,andthetroublingpossibilitythatthey coulddisplayhuman-likebehavioralcharacteristics(www.geneticsandsociety.org/topics/ animal-biotechnologies).

Molecularpharming isbasedonthreeperceivedadvantages:thelowcostsofgrowinganimalsorplants,theimmensescalabilityofagriculturalproduction,andtheinherent safetyofanimalsorplantsashostsforproducingpharmaceuticals.Thiscanproducearange ofproteinsproducedfromclonedanimals.Themainpotentialbenefitsofclonedanimals includetheproductionoffood,pharmaceuticals(“pharming”),theprovisionoforgansfor xenotransplantationintohumans,andthedevelopmentofmodelsofhumandiseases.The benefitstoagricultureincluderesistancetodisease,alteringthecarcasscompositionsuch thatitishealthiertoconsume,improvingthepig’sresistancetoheatstress,andprotecting theenvironment.Additionaltypesofgeneticmodificationswilllikelyprovideanimalswith characteristicsthatwillbenefithumansincurrentlyunimaginedways.

Althoughthemajorityof geneticallyengineeredanimals arestillintheresearchphase, someGManimalsandfishesalreadyonsaleincludeclonedpetcats,GMornamental fish,GMsalmon,clonedhorses,andatleastonerodeobull.TheGMcowsbybiotech companySABBiotherapeuticsproducedhumanantibodies,thatfightpathogens,that mayonedaytreatinfectiousdiseaseslikeEbola,influenza,andZikaandtheirpotential toaddressglobaloutbreaks.TheUSFoodandDrugAdministrationalsoapproveda GMchickenthatmakesadruginitseggstotreat“lysosomalacidlipasedeficiency”–araregeneticconditionthatpreventsthebodyfrombreakingdownfattymoleculesinside cells.In2014,theFDAapprovedadrugcollectedfromthemilkoflab-maderabbits totreathereditaryangioedema,ageneticdiseasethatcausesbodyswellingandcan befatal.In2009,theFDAapprovedaGMgoatthatcanmakeadruginitsmilkthat preventsfatalbloodclots(www.theverge.com/2016/12/3/13819482/genetically-engineeredanimals-drugs-sab-cows-pharming-future).

DespitethebanonclonedanimalsadoptedbytheEU,theclonedlivestockswouldbe usedasparentsofslaughterpigs,beefcattle,andpossiblyalsomilk-producingdairycows inChina,Canada,USA,andelsewhere.By2020,theUSFDAruledthatfoodproducts derivedfromclonedanimals(cattle,swine,goats,andtheoffspringofclonesofanyspecies traditionallyconsumedasfood)aresafeenoughandthatlabelingisnotrequiredbecause foodproductsfromclonedanimalsarenotmateriallydifferent(www.fda.gov/animalveterinary/animal-cloning/primer-cloning-and-its-use-livestockoperations).

Humanantithrombin,ATryn(brandname)byrEVOBiologics(formerGTCBiotherapeutics)in2006wasfirstmedicineproducedfromthemilkofgeneticallymodifiedgoats bymicroinjectionofhumanantithrombingenesintothecellnucleusoftheirembryos.

Agoatthatproducesspider’swebprotein,stronger(7–10times)andmoreflexiblethan steel(BioSteel)wassuccessfullyproducedbyaQuebecbasedCanadiancompany,Nixia Biotechnologies,andlaterbytheRandyLewislaboftheUniversityofWyomingandUtah StateUniversity(Service,2002).Thiscompanyalsohadcreatedlinesofgoatstoproduce recombinantversionsofeithertheMaSpI(MajorampullatespidroinI)ordraglineI(forits superiorelasticity,flexibilityandstrength)from Nephilaclavipes,thegoldenorbweaver) orMaSpII(Majorampullatespidroin2ordragline2from Nephilaclavipes)draglineproteinsintheirmilk.Whenthefemalegoatlactates,themilkcontainingtherecombinant DNAsilkwastobeharvestedandsubjectedtochromatographictechniquestopurifythe recombinantsilkproteins.Thepurifiedsilkproteinscanbedried,dissolvedusingsolvents (DOPEformation)andtransformedintomicrofibersusingwet-spinningfiberproduction methods.Thespunfiberstendtohavetenacitiesintherangeof2–3grams/denierandelongationrangeof25–45%.The“Biosteelbiopolymer”hadbeentransformedintonanofibers andnanomeshesusingtheelectrospinningtechnique.

Nexiaistheonlycompanywhichhassuccessfullyproducedfibersfromspidersilk expressedingoat’smilk.TheLewislabhasproducedfibersfromrecombinantspider

silkproteinandsyntheticspidersilkproteinsandgeneticchimerasproducedinboth recombinant E.coli andthemilkofrecombinantgoats,however,noonehasbeenable toproducethesilkincommercialquantitiesthusfar.Thecompanywasfoundedin 1993byDr.JeffreyTurnerandPaulBallardthatwassoldin2005toPharmathene.In 2018,twotransgenicgoatsweresoldtotheCanadaAgricultureMuseumafterNexia Biotechnologieswentbankrupt(https://en.wikipedia.org/wiki/BioSteel).Researchhas sincecontinuedbyRandyLewis,aprofessorformerlyattheUniversityofWyomingand nowatUtahStateUniversity,wherehewasalsoabletosuccessfullybreedspidergoats tocreateartificialsilk.Therearenowabout30spidergoatsatauniversity-runfarm. Applicationsofartificialspidersilkbiopolymersincludeusingitforthecoatingofall kindsofimplantsandmedicalproductsaswellasforartificialligamentsandtendonsdue toitselastictendencies,andalsosinceitisanaturalproductwhichwillsynthesizewell withthebody.Furthermore,artificialsilkbiopolymerscanbeapplicatedinpersonalcare productsaswellasintextileproducts.

AquaBountyTechnologiesoriginallydevelopedinCanadaandlaterbasedinMassachusetts(US)havesoldabout4.5tonsofGMsalmonfilletsinCanada.Theengineered AtlanticsalmonsdevelopedbyAquaBountyareproducedbycloningagrowthhormone genefromchinooksalmonandasecondaddedgenefromtheoceanpoutaccelerates growthbykeepingthehormonegeneonpermanently.AquaBountysaysthesalmongrow twiceasfastastypicalsalmonandconsume20–25%lessfoodpergramofnewflesh (http://aquabounty.com/about).However,thefirstGMfishtogoonsaleintheworldhas facedfierceoppositionfromenvironmentalgroups,whichfearthatiftheyescapefromthe tankswheretheyarerearedonPrinceEdwardIslandineasternCanada,theywillupset naturalecosystemsbybreedingwithnativesalmon.IntheUS,thesalmonwasclearedfor saleinlate2015,butitsmarketdebuthasbeenstalledbyargumentsoverhowitshouldbe labelled.NowthesalmonisbeingsoldinCanada,otherspeciesmayeventuallyfollowit ontothemarket.

Thegeneticallymodifiedpig(Enviropig™)developedbyUniversityofGuelphin Canadaistoexcretelessphosphorusinitsfeces.Itwillproducetheenzymephytasein itssalivaryglandstoenablemoreeffectivedigestionofphytate,theformofphosphorus foundinpigfeedingredientslikecornandsoybeans.

AnornamentalfishthatglowsinthedarkwascreatedbycloningjellyfishDNAintoa zebrafishandisonthemarket.However,GMfishmayescapeandcausegeneticdamage byhybridizingwithnativespecies.Sometropicalexoticfishsuchaspiranhasmaycause majorproblems.ThedetailswillbecoveredinthesectionofAnimalCellTechnology.

Recently,advanceshavealsobeenmadeintheproductionofforeignproteinsintransgenicplantsasalternativetomicrobialfermentationormammaliancellculture.Many therapeuticproteins,includingantibodies,bloodproducts,vaccines,hormones,cytokines, othertherapeuticagents,andenzymesarebeingproducedintransgenicplants.Theproper selectionofhostplantandgeneexpressionsysteminafoodcroporanon-foodcrop canactasbioreactorstoproducerecombinantproteinsinlargerquantitiesthanthose ofmammaliancellsystems.Plantsystemshavetheadvantagesinlarge-scaleproduction ofrecombinantproteinswithoutcontaminatinghumanpathogens.Althoughinthelast twodecades,approximately95biopharmaceuticalproductsincludingcytokines,enzymes, hormones,monoclonalantibodies,andvaccineshavebeenapprovedforthetreatmentof varioushumandiseases,noneofthecommercialproductsarecurrentlyproducedinplants, mainlyduetothelowyieldandexpensivepurificationcosts.However,plant-basedDNA vaccineshavepotentialevenforCOVID-19(Rosales-Mendozaetal.,2020).

GeneticmodificationofplantsinvolvesaddingaspecificstretchofDNAintotheplant’s genome,givingitnewordifferentcharacteristics.Thiscouldincludechangingthewaythe

plantgrowsormakingitresistanttoaparticulardisease.ThenewDNAbecomespartof theGMplant’sgenomewhichtheseedsproducedbytheseplantswillcontain.Thedetails oftransgenicplantswillbecoveredinPartIV.

Mostbiopharmaceuticalproductsarecurrentlymanufacturedcommerciallythrough variousfermentationprocessesbygeneticallyengineeredmicroorganisms(e.g., E.coli, yeast,fungi).Somehighlysuccessfuldrugsobtainedthroughfermentationroutesare: humaninsulin,streptokinase,erythropoietin,hepatitisBvaccine,humangrowthhormones, interleukin,granulocyte-colonystimulatingfactor(GC-SF),granulocyte-macrophage colonystimulatingfactor(GM-CSF),interferons(α, β, γ),andmanyrecombinantproteins. Thethreedomainsofmicrobes,animals,andplantsarenotonlyinvolvedinproductionof biopharmaceuticals,butalsohavetheirapplicationsinfoods(Figure1).Althoughpublic supportfornewbiotechnologyishighfornewdrugs(e.g.,insulin,interferon,hormone, etc.),diagnostics(cancerdetectionkits),foodenzymes(e.g.,recombinantrennetandother enzymes),andvaccines,publicperceptionsareagainstGMfoodsonthewhole,because oftheirsafetyissueandbecausefoodsareanissuethataffecteveryone,aseveryoneeats, aswillbecoveredinPartV.

Besidestheconceptofwholecellculturetechnologyderivedfrommicrobes,animals, andplantsinFigure1,anovel cellularagriculture (CA)terminologywasfirstusedin 2015.Providingfoodandhealthydietsforgrowingpopulation,tacklingdeforestationand climatechange,andreducingnegativeenvironmentalimpactsofconventionalagriculture constitutethegrandchallengesofcurrenttimes.By2050,theglobalpopulationwill reachto9.8billion,demandofourfoodsupplieswillbe60%higherthanitistoday. Atthesametime,climatechange,urbanization,andsoilerosionwilldecreaseofthe availabilityofarablelandandcropsaccountforonlyabout2%ofallplantbiomass includingnon-foodcrop(dx.doi.org/10.1038/nature25138).Deforestationisalsoadirect consequenceofanimalagricultureasmoreandmorefarmlandisrequiredtogrow cropsforanimalfeed.CAwillreducedeforestationastheproductionpracticesare decoupledfromlanduse.Althoughtheworldcurrentlyproducesmorethanenoughfood tofeedeveryone,815millionpeople(roughly11%oftheglobalpopulation)wereina stateofhungerin2016(www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_ to_Feed_the_World_in_2050.pdf).Notonlyisprovidingsufficientfoodimportant,but thelow-qualitydietscausingmicronutrientdeficienciesandobesityarealsocurrently problems(dx.doi.org/10.1016/SO140-6736(18)31788-4).

ThisCAfieldisnotnew,asmicrobialcellproductionoffoodprotein(single-cellprotein), bioplastics(e.g.,biofilm,headset,etc.),leather-likemyceliumbiomaterials,recombinant rennet,spidersilkprotein,bacterialcellulose,andsoon,arealreadycommercialized(see PartII). Invitro animalcellculturesarewellestablishedandover32therapeuticproteins includinghumaninsulinarecommercialized(seePartIII).Also, invitro plantcellculture hasalreadybeenusedtoproducevarioussecondarymetabolitesandingredientsofpharmaceutical(e.g.paclitaxel,vinbrastineforanticancerdrugs,etc.),cosmetics(pigments), andfoods,etc.(seePartIV).However,recentCAterminologyincludemorefordevelopingagriculturalproducts,suchascell-basedanimalproducts,bycellculturesthanliving farmanimals(StephensandEllis,2020).

Thisincludes invitro orculturedmeat,andanimalproductslikemilk,leather,eggs, gelatinandsilkthrough tissueengineering and recombinantDNAfermentation-based industrialbiotechnologyprocessforfoodandmaterials(Rischeretal.,2020).

Inrecentyears,anumberofcellularanimalagriculturecompaniesandnon-profitorganizationshaveemergedduetothistechnologicaladvancesandincreasingconcernoverthe animalwelfareandrights,environmental,andpublichealthproblemsassociatedwithconventionalanimalagriculture.Someexamplesare:(i)intheUS,lab-grownMemphisMeats,

Bluefintuna-basedFinlessFoods,fermentation-basedGeltor(gelatin),ClaraFoods(egg white),PerfectDayandNewCulture(animal-freedairyproducts),ModernMeadow(fermentingcollagenforleather),(ii)inUK,lab-grownhamburgerwhichwascookedand tasted,(iii)inNetherlands,MosaMeatandMeatable,(iv)inIsrael,FutureMeatTechnol andAlephFarms,(v)inCanada,AppletonMeats,Biosteel(spiderwebsilk),(vi)inJapan, Integricultureandspidersilk,and(vii),inSingapore,ShiokMeats.Althoughcell-based meatmaybeidenticaltoconventionalmeat,CAtechnologyishardtodevelopbecause ofstructuralcomplexity.Moreover,thetexturethattastesmeatwillbehardtomimic. Biotech-derivedingredientssuchastofuandmorerecentlyfungalproteinQuornarewell known,butcell-basedmeatwhichwilltastelikeanimalmeat,withthesamenutritional value,requiresexpensiveserumtogrowcellsandscaleup,andsafetyissueareformidable challengestoovercome

Despitethemanydifficultchallengesahead,CAwillbeamajorpartofthesolution forthreeofhumanity’sgreatestchallenges:feeding10billionpeopleby2050,mitigatingclimatechange,andmitigatingthethreatofantibiotic-resistantandzoonoticdiseases (www.futurefields.io/post/cellular-agriculture-in-canada).

Figure2showsaschemeofmicrobialbioproductsandglobalsales(%)ofmicrobialproductsexceptforfermentedfoodsandalcoholbeverages.Globalsales(%) ofbioproductsexcludingfermentedfood/beveragesandbiorefineryproductscanbe shown,amongwhichantibiotics(42%)andbiopharmaceuticals(25%+ 17%)arethe majorbioproducts.TheglobalmarketforbioproductsisexpectedtogrowtoUS$700.7 billionby2018,withafive-yearcompoundannualgrowthrate(CAGR)of5.5%.The non-energeticmarket,whichincludeschemicals,pharmaceuticals,andmaterials,isthe fastest-growingsegmentoverallatatremendous14.9%CAGR,reachingUS$472.8 billionby2018,upfromUS$236.3billionin2013(www.bccresearch.com).Theglobal marketforbiorefineryproductsaloneisexpectedtoclinchUS$714.6billionby2021from US$466.6billionin2016atawhoppingCAGRof8.9%(https://tradeessential.com/events/ biorefinery-bio-based-chemical-2).

Intheglobalfermentedingredientsmarket,aminoacidhashadasignificantmarket shareduetothegrowingdemandforaminoacidsbyfoodandbeverageandanimalfeed additiveindustriesfromthelastfewyears.Thegrowingpreferenceforfermentedingredientsbyseveralpersonalcareproductmanufacturesintheirproductsledtothegrowth indemandoffermentedingredientsinpersonalcareindustry(www.marketwatch.com/ press-release/the-global-fermented-ingredients-market-to-2023-driven-by-the-growingdemand-of-fermented-ingredients-to-prompt-the-process-of-fermentation--researchandmarketscom-2018-09-26).Vitaminsarealsoexpectedtowitnesssubstantialgrowthaskeyfermentedingredientsinthefood&beveragesector,especially duetotheirincreasingapplicationinprobioticdrinkssuchaskefir.Globalmarkets ofbiorefineryproductsarealsohighwithdata,from2010to2013,andprojectionsof CAGRsthrough2018.Biorefineryproductsbrokendownbyproductdemandinclude energetic(ethanol,biodiesel,electricity/heat),non-energetic(chemicals,materials, herbal/botanicals),andbyothersegments,suchasfuel(transport,mechanical,etc.), energy(heat,electricity),material(plastics,resins),chemical(alcohols,solvents,acids, surfactants,etc.),andherbal/botanical(drugs,bodycare,aroma,etc.).Forecastsfor biomassconversionprocessesandequipmenttoproducefuels,power,andchemicals frombiomassareincludedintheprospectsforbiorefineriesbuiltondifferentplatforms,suchasthe“sugarplatform,”basedonfermentationofsugarsextractedfrom biomassfeedstocks,versusthe“syngasplatform,”basedonthermochemicalconversion processes.Thenon-energeticbioproductsmarketwillreachUS$477.0billionby2021 fromUS$281.7billionin2016ataCAGRof11.1%,from2016to2021.Theenergetic

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.