https://ebookmass.com/product/advanced-algorithms-for-
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Nonlinear Ocean Dynamics: Synthetic Aperture Radar 1st Edition Maged Marghany
https://ebookmass.com/product/nonlinear-ocean-dynamics-syntheticaperture-radar-1st-edition-maged-marghany/
ebookmass.com
Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms 2nd Edition Caner Ozdemir
https://ebookmass.com/product/inverse-synthetic-aperture-radarimaging-with-matlab-algorithms-2nd-edition-caner-ozdemir/
ebookmass.com
Introduction to Synthetic Aperture Radar: Concepts and Practice E. David Jansing
https://ebookmass.com/product/introduction-to-synthetic-apertureradar-concepts-and-practice-e-david-jansing/
ebookmass.com
(eBook PDF) Using MIS 11th Edition by David M. Kroenke
https://ebookmass.com/product/ebook-pdf-using-mis-11th-edition-bydavid-m-kroenke/
ebookmass.com
Complex Function Theory Takeo Fujiwara
https://ebookmass.com/product/complex-function-theory-takeo-fujiwara/
ebookmass.com
CURRENT Practice Guidelines in Primary Care 2020 Joseph S. Esherick
https://ebookmass.com/product/current-practice-guidelines-in-primarycare-2020-joseph-s-esherick/
ebookmass.com
Paradox Lost: Logical Solutions to Ten Puzzles of Philosophy 1st Edition Michael Huemer
https://ebookmass.com/product/paradox-lost-logical-solutions-to-tenpuzzles-of-philosophy-1st-edition-michael-huemer/
ebookmass.com
Finite Mathematics, 8e 8th Edition Stefan Waner
https://ebookmass.com/product/finite-mathematics-8e-8th-editionstefan-waner/
ebookmass.com
Spectroscopic Techniques for Polymer Characterization: Methods, Instrumentation, Applications Yukihiro Ozaki
https://ebookmass.com/product/spectroscopic-techniques-for-polymercharacterization-methods-instrumentation-applications-yukihiro-ozaki/
ebookmass.com
https://ebookmass.com/product/etextbook-978-1305638709-introductionto-general-organic-and-biochemistry-11th-edition/
ebookmass.com
ADVANCEDALGORITHMSFOR MINERALANDHYDROCARBON EXPLORATIONUSING
SYNTHETICAPERTURERADAR
Thispageintentionallyleftblank
ADVANCED ALGORITHMSFOR MINERALAND HYDROCARBON EXPLORATION
USINGSYNTHETIC APERTURERADAR
MAGED MARGHANY
GlobalGeoinformation,Sdn.Bhd.,KualaLumpur,Malaysia
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright © 2022ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.
ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhom theyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
ISBN:978-0-12-821796-2
ForinformationonallElsevierpublicationsvisitourwebsite at https://www.elsevier.com/books-and-journals
Publisher: CandiceJanco
AcquisitionsEditor: AmyShapiro
EditorialProjectManager: MichelleFisher
ProductionProjectManager: VijayarajPurushothaman
CoverDesigner: GregHarris
TypesetbyTNQTechnologies
Dedicatedto
MymotherFaridah COVID-19victims and RichardFeynmanandMichioKaku,who taughtmethatthedistinguishedprofessor inventsanoveltyanddoesnotmisusehis powerexploitingotherstobene fitaworthlessH-index.
Thispageintentionallyleftblank
Contents
Prefacexi
1. Anintroductiontominerals,rocks,and mineraldeposits
1.1Whatisthedenotationofminerals?1
1.2Queriesofunderstandingminerals5
1.3Whatmakesamineralasmineral?7
1.4Propertiesofminerals7
1.5Howaremineralsclassified?15
1.6Whatismeantbyores?20
1.7Whatareigneousrocks?21
1.8Howdoigneousrocksform?21
1.9Typesofigneousrocks23
1.10Whataremeantofsedimentaryrocks?24
1.11Whataremeantofmetamorphic rocks?25
1.12Isglaciericeatypeofrock?27
1.13Bowen’sreactionseriesinunderstanding formationofigneousrock27 References29
2. Structuralgeologyofmineral,oiland gasexplorations
2.1Whatismeanbystructuralgeology?31
2.2Categorizationofgeologicalstructures32
2.3Folds35
2.4Stressandmountainbuilding42
2.5Mechanicalprinciplesinstructuralgeology44
2.6Shearcriteriaandkinematicanalysis50
2.7Oredepositsasafunctionofstructural geology52
2.8Veinsandhydrothermaldeposits57
2.9Mesothermal59
2.10Epithermal60
2.11Metamorphicprocesses60
2.12Surficialprocesses(exogenous)60
2.13Genesisofcommonores62
2.14Oilandgasformation70
2.15Typeofoilandgastraps72 References77 Furtherreading79
3. Theoriesofmicrowavesynthetic apertureradar
3.1Maxwell’sequations81
3.2Electromagneticwaves85
3.3Microwavebeam87
3.4Microwavephotonbeams88
3.5Generationofelectromagneticwaveby antenna90
3.6Radiodetectionandranging(RADAR)92
3.7Howdoesaradarmeasurethedistanceofan object?93
3.8Line-of-sightofaradar95
3.9Radar-microwavecharacteristics96
3.10Radarequation97
3.11Realapertureradar100
3.12Syntheticapertureradar(SAR)103
3.13Slantandgroundrangeresolution105
3.14KindsofSAR105
3.15TheoreticallimitsforstripmapSAR107
3.16Whatistheeffectofobjectwidthon stripmapSARresolution?107
3.17SARpolarization108 References110
4. MarghanyAdaptiveModification Algorithmforlineamentautomatic detectioninSyntheticapertureradardata
4.1Whatismeantbylineament?113
4.2Whatisthemagicoflineament?117
4.3Whatarethesortsoflineaments?119
4.4Canimplementlineamentsastoolformineral andhydrocarbonexplorations?120
4.5WhatismechanismofSyntheticAperture Radarinimaginelineaments?122
4.6Howfardoestheincidenceangleeffect lineamentimaginginSARimage?124
4.7Howfardoesthelook-azimuthimpact lineamentimaginginSAR?125
4.8Radarspecklenoise128
4.9Multilookprocessingandspeckle129
4.10MarghanyAdaptiveModificationAlgorithmfor lineamentdetection130
4.11Automaticlineamentdetectionusing MarghanyAdaptiveModification Algorithm132 References136
5. Mechanismofimagingstructural geologyfeaturesinsyntheticapertureradar
5.1SARimaginggeometry139
5.2Howdodifferentviewgeometrieseffectgeology imaging?140
5.3Howfarthewavelengthandincidentangle effectgeologicalfeatureimaging?142
5.4Howfarbeampolarizationimpactgeology featureimagingmechanismsinSAR sensors?146
5.5SubsurfaceimagingmechanismsinSAR image148
5.6Complexdielectricconstantimpactinmineral depositimaginginSARimage?149
5.7SARgeometricdistortionmechanisms153
5.8Complexvolume-scattering mechanisms156
5.9Imaginemechanismsofterraincategoriesin SARimages160
5.10GeologicalstructureimaginginSAR images164
5.11SARstereoscopymechanismforgeological structureimagings165
References168
Furtherreading170
6. RetrievingMineralsandRocks inpolarimetryMicrowaveRemote Sensingdata
6.1Whatisthemagicofpolarimetryin nature?171
6.2Howpolarizationpatterncanidentifymineral deposits?172
6.3Whatismeantbystateofpolarization?173
6.4Whatarethesortsofapproachestodescribe stateofpolarization?176
6.5Mechanismofpolarimetricscattering181
6.6Muellermatrix183
6.7Thecovarianceandcoherencymatrixes184
6.8Circularpolarization185
6.9Airbornesyntheticapertureradar (AIRSAR)187
6.10GeologicalpolariemetrysignaturesinAIRSAR data188
6.11Marghany’stechniqueforrockandmineral depositdetectionsinAIRSARdata195
6.12Freeman Durdenpolarizationdecomposition formineraldepositdetections197
References200
7. Textureandquantumentropy algorithmsformineralandhydrocarbon explorationsinsyntheticapertureradar images
7.1Whatisthemagicofmineraldepositsin hydrocarbonexplorations?203
7.2Howtoexploitclaymineralsinoilandgas exploration?205
7.3Howremotesensingimaginehydrocarbonas basedonalterationminerals?206
7.4SARimagetexture207
7.5TextureSARimagealgorithms209
7.6WhatisthecorrelationbetweenGLCMand SARimagepixels?209
7.7HowdoGLCMoperateinSARimage?210
7.8HowSARimageturnsintosymmetricalmatrix usingGLCM?211
7.9HowtonormalizesymmetricalSARGLMC matrix?212
7.10HowtocreateSARtextureimage?212
7.11Whatisthemathematicalformofcooccurrence matrix?214
7.12CanGLCMaccuratelydetectmineraldeposit indicesforhydrocarbonpotentialzones?217
7.13Canquantumentropyperformbetterthan entropyfortheautomaticdetectionofdiversity ofmineraldepositsandhydrocarbonzones? 220 References223
Furtherreading224
8. Mahalanobisclassifierandneural networkalgorithmsformineralexploration
8.1SARimaginemineraldeposits225
8.2Whatistheexactissueformineralextraction inSARdata?227
8.3Hypotheses228
8.4SelectedSARdataacquisition229
8.5Mahalanobisalgorithm230
8.6LineamentdetectionbyMahalanobis classifier232
8.7Mineralizationautomaticdetectionby Mahalanobisclassifier232
8.8Artificialintelligentformineralsortsautomatic detection236
8.9Howdothemineralexplorationindicesselect inSARdataintoneuralnetwork?237
8.10Framestructureofneuralnetworkformineral depositsautomaticdetection239
8.11Back-propagationlearningalgorithmfor automaticdetectionofmineraldeposits239
8.12Back-propagationtrainingalgorithm241
8.13MineraldepositdetectionsbyNN algorithm242
8.14ComparisonbetweenMahalanobisclassifierand neuralnetworks244 References248
Furtherreading249
9. Fractaldimensionalgorithmfor automaticdetectionofgoldmineralization
9.1Howisgoldformed?251
9.2Howearthquakesandvolcanoesplayvitalroles informinggoldatoms252
9.3Whatarethecharacteristicsofgold?253
9.4MineralexplorationinSARdata254
9.5Whatismeantbyfractal?256
9.6Fractaldimensions258
9.7Howtocalculatethefractal?260
9.8Computingofhurstexponent261
9.9Fractalalgorithmforgoldmining identification262
9.10ExaminedSARsatellitedataandinsitudata collection264
9.11Backscatterpatternvariationsasafunctionof incidenceanglesandwindspeed267
9.12FractalmapofBauanticlineandBaugold field268
9.13HowfarcanfractalalgorithmdetectaBaugold field?271
References274
Furtherreading275
10. Quantum finiteautomatonalgorithm formineralandhydrocarbonexploration inSentinel-1ASARdata
10.1Whatisthemainprobleminthe fieldof geologyimageprocessing?277
10.2Whatismeantbyquantum computing?277
10.3Whatismeantbyquantization?278
10.4Whatarequantumcomputers,andhowdo theywork?279
10.5Whatismeantbyquantumimage processing?281
10.6Whatismeantbyprobabilisticautomaton? 282
10.7Quantum finiteautomatonalgorithm284
10.8Automaticdetectionofalteredmineralsand hydrocarbonmicroseepage286
10.9Quantumoperatorgate287
10.10InsitumeasurementandSARsatellite data288
10.11AlteredmineraldetectioninSAR image289
10.12Trainingscoreandautomaticclassifier bias292
References298
11. Quantumcellularautomataalgorithm forautomaticdetectionofhydrocarbon explorationzones
11.1Howsurfacegeomorphicanomaliesarekey indexofhydrocarbonexplorationpotential zones?301
11.2Whatarethedrainagepatternsvisualinradar images?303
11.3Whatisthesignificanceofdrainage network?307
11.4HowdoSARsensorsimagine drainage?308
11.5Howshuttleradartopographymission (SRTM)imaginethedrainagetrappedoil andgas?309
11.6Principlesofquantum-dotcellular automata311
11.7Quantumcellularautomatacell construction311
11.8QCAadderwith fivegatesforautomatic detectionofhydrocarbonzones313
11.9Cellularautomataforautomaticdetectionof hydrocarbonzones314
11.105exploredSARimage318
11.11Automaticdetectionofhydrocarbonzone usingquantumcellularautomata318
11.12WhyQCAcandetectpotentialzoneof hydrocarbonautomatically?322
References322
Furtherreading323
12. Multiobjectivequantumevolutionary algorithmforoilseepdetectionfrom syntheticapertureradar
12.1Whatismeantbyoilseep?325
12.2Whatarethedifferencesbetweenonshoreand offshoreseeps?326
12.3Typesofseeps327
12.4Chronological fluctuationsinseeps327
12.5Howdomicrowaveremotesensingdata identifyoilseeps?328
12.6Whatarethephysicalseepparameters distinguishinSARdata?329
12.7Whatisthemainobstacleinseepautomatic detectioninSARimages?330
12.8Canaquantumalgorithmautomaticallydetect naturaloilseepsinSARimages?330
12.9Marghany’squantumoilspillimagineinSAR images331
12.10Quantumparetooptimalsolution335
12.11AutomaticdetectionofoilseepinSAR images336
12.12ApplicationsofMOQEA-basedquantum paretofronttoothersatelliteSAR sensors338
12.13WhydoesMOQEsuccesstoclusterdifferent typesofoilseep?341
References343
13. Four-dimensionalradarquantum interferometryforoilandgas explorations
13.1Howdosatellitesaidinoilexploration?345
13.2Whatismeantbyreservoir geomechanics?347
13.3Whatisthevitalroleofgeomechanicsin matureoilandgas fields?348
13.4Whatistheroleofborehole integrity?349
13.5Whatisthemainroleofgeomechanicalin frackingoperations?350
13.6Howdosubsurfacestressesandstrengths form?351
13.7Whatistheroleofreservoirgeomechanicsin oilandgasexplorations?351
13.8Whatismeantbyinterferometry?352
13.9HowtodemonstrateInSARusingdouble-slit experiment353
13.10Whatismeantbysyntheticaperture interferometry(InSAR)?355
13.11Whatarethesortsofradarinterferometry? 357
13.12HowInSARworks?358
13.13WhatareInSARprocessing challenges?360
13.14Marghany’sspeculationforquantizationof InSAR361
13.15Marghany’s4Dquantizedphaseunwrapping algorithm363
13.16ApplicationofMarghany’s4Dquantized phaseunwrappingforretrievingland deformation:studycaseKhargIsland, Iran365 References371
Furtherreading372
Index373
Preface
ThisbookwasaccomplishedwhenIwas rankedamongthetop2%ofscientistsina globalrecordcompiledbyStanfordUniversity.TheprestigiousUniversidadeEstadual deFeiradeSantana,UniversidadeFederal daBahia,andUniversidadeFederaldePernambuco,Brazil,rankedmeastheforemost worldwideprofessorinthe fieldofoil-spill detectionandmappingduringthelast 50years.
I finishedthisbookamidahardtimeof stressandstrugglesduetothenearlytwo yearsoflockdownduringtheCOVID-19 pandemic.Therefore,thestrictlockdown measures,thepandemiciswellcontrolled successfully.
Thisbookexplorestheinclusiveimplementationofsyntheticapertureradar(SAR) formineral,oilandgasexplorations.Inthis sense,thebookisdevotedtodemonstrating thecapabilitiesofSARingeologicalfeature detectionwithoutintegrationwithoptical remotesensingsensors.Infact,themajority ofgeologistsdonotbelieveinSARimaging mechanismcapabilitiesinmineraland hydrocarbonexplorationswithoutreferring toopticalremotesensingsensorsduetothe absenceofspectralsignatureinSARdata. Consequently,theliteratureinvolves repeatedandsimilarimage-processingtools inmineralandhydrocarbonexplorations usingopticalremotesensingoverseveral decades.Inotherwords,allpublished researchworkingeologyremotesensingare restrictedtocommercialsoftwaresuchas ERDAS,TheEnvironmentforVisualizing Images(ENVI),etc.Thissortofconstraint
doesnotallowforfurtherdevelopmentsin the fieldofgeologyremotesensingimage processing.Thus,numerousremotesensing geologyworksinadevelopedcountryare ill-defined.
Sincetheinitiatingofremote-sensing mineralogyapplications,therehasbeenno precisealgorithmdevelopingtostatethe quantityofmineralandhydrocarbonexplorationsinSARdata.Thisbook,consequently,isassignedtoprovidingnovel algorithmsinmineralandhydrocarbon explorationsinSARdata.Themajorityofthe advancedalgorithmsexploredinthisbook arebasedonquantumcomputing.Inthis view,thisbookis fillingagapbetween advancedquantumcomputingalgorithms; microwaveremotesensing;mineraland hydrocarbonexplorations.Forinstance, quantumimageprocessingwithanew generationofremote-sensingtechnology suchasSentinel-1,TerraSAR-Xdata,and polarimetricradarimagesareimplemented toprovideprecisemineralandhydrocarbon explorations.
Chapters1and2 deliverafundamental understandingofminerals,mineralrocks, rockdeposits,andgeologystructuresare associatedwithhydrocarbonexplorations. Therefore, Chapter3 isdevotedtounderstandingtheimagingmechanismsofSAR basedonthephysicsofradarsignals. Consequently, Chapter4 deliversanovel algorithmbasedonspecklereductionaspart oftheimagingmechanismofSARsignalfor geologicalfeaturessuchaslineaments.This newalgorithmistermedas “Marghany
AdaptiveModificationAlgorithmforLineamentAutomaticDetections.” Following Chapter4, Chapter5 deliversawiderange ofunderstatingofradarimagingmechanismsingeologystructures.Suchmechanismsoflook-direction,incidentangle, geometrydistortions,anddepthofpenetrationarewelladdressed.Themostsigni ficant mechanismaccomplishedisthepossibilityof radarimagestodetectmineralandgeologicalrockstructuredielectricconstants. Indeed,eachmineralandrockhasits dielectricconstantvalue,whichcanbeused asanalternativetoopticalremotesensing spectralsignaturesindiscrimination betweendifferentmineralsandrocks.
Succeeding Chapter5, Chapter6 discusses thepolarizationsignaturesareexploitedto distinguishbetweendifferentmineralsand rocksinsuchpolarimetryradardataof AIRSAR/TOPSAR.Thechainofthemathematicalschemeisnamed “Marghany’ s TechniqueforRockandMineralDeposit DetectionsinAIRSARData” areaddressed forrockandmineraldetectionsinfull polarimetryradardata.
Chapter7compilesconventionaltexture algorithmsandadvancedentropyalgorithmsforautomaticdetectionofrockformingminerals.Inaddition,thechapter alsorevealstheoccurrenceofthealtered mineralsinducedbyhydrocarbonmicroseepage,whichisdetectedbythequantum entropyalgorithm.Subsequently, Chapter8 deliversanewapproachforaccurate,automaticdetectionofmineraldepositsin microwaveremote-sensingdata.Thenew approachisbasedontheunitizationof MahalanobisClassifierandNeuralNetwork Algorithmsasapartfromthemachine learninginimageprocessing.Indeed,machinelearningisakeystonetoconstruct automatedsystems,whichcanclassifyand recognizecomplexspatialpatternvariations inSARdata.
Themodifiedformulaofthefractalboxcountingdimensionisdemonstratedand implementedin Chapter9 forautomatic detectionofthegoldminingintheSARdata. Itcanbesaidthatthenewapproachofthe fractalbox-countingdimensionalgorithm canbeusedasanautomatictoolforthegold open-pitmine,andgeologicalstructures suchasdikes,lineaments,andfaultsthatare alliedwiththemineraldeposits.Successively, Chapter10 deliversanovelalgorithm basedonthe “QuantumFiniteAutomaton Algorithm” inautomaticdetectionofthe alteredmineralsinducedbyhydrocarbon micro-seepage.Theamazing findingisthe automaticdetectionofhydrocarbonmicroseepagealthoughthereareheavyvegetationcovers.Itbelievesthesehydrocarbon micro-seepagesaredepositedalongfracturedlineamentsandfaults.Thus, Chapter 11 overviewsthemajorobstacles(math-, geological-,andtechnological-based)on applyingimageprocessingandconventional techniquesonhydrocarbonandmineral exploration.Thischapterrevealsanovel computingimageprocessingtoolforautomaticdetectionofmineralandhydrocarbon explorationzonesinSARdata.Quantumdotcellularautomata(QCA)isanoveland hypotheticallyimpressivetechnologyfor executingcomputingarchitecturesatthe nanoscale.Thischapterpresentsanovel designforQCAcellsandanotherpossible andunconventionalschemeformajority gatesforautomaticdetectionofthemineral andhydrocarbonexplorationzones.
Chapter12 deliversanintroductionabout oilseepanditcanbeimplementedasan indicatorformarineoilandgasexplorations. Theadvancedalgorithmofthequantum multiobjectiveisusedasanewautomatic detectiontooltodetectandmapoilseepin SARdata.Chapter13introducesanovel algorithmnamed “Marghany’s4DQuantizedPhaseUnwrappingAlgorithm” for
implementing4Dquantuminterferometry formonitoringoilandgasinSARimages. Thischapterprovidesasuccessfulstudycase ofKhargIsland,Iran,asitisusedastheindexformonitoringIran’soilstorageduring theongoingconflictsbetweenIranandthe UnitedStatesofAmerica.
Iwishtoconveymyappreciationto Dr.SamyIsmailElMahady;Mr.Mohamed ElHakami,HeadoftheRemoteSensing DivisionatGeologicalDepartmentofSaudi
GeologicalSurvey(SGS)foroffering geologicalconsultancy;editorialproject managerMs.AmyShapiro;andMs.Devlin Personwhohelpedbringthisbookto publication.Withouttheirintensecommitment,thisbookwouldnothavebecomesuch apreciousandnovelworkofknowledge.
Prof.Dr.MagedMarghany GlobalGeoinformation,Sdn.Bhd., KualaLumpur,Malaysia
Thispageintentionallyleftblank
CHAPTER
Anintroductiontominerals,rocks, andmineraldeposits
1.1Whatisthedenotationofminerals?
Seeingglitteringcrystal(Fig.1.1)inamuseummakesagoodimpression;itiscertainlya mineral.Consequently,lookaroundthesurroundingenvironment:themetalinadesk,the graphiteinapencil,andtheglassinthewindowsarejustthreecasesofhowmodernhumans useproductsmadefromminerals.Yetthecriticalquestionrequiresapreciseanswer:Whatis amineral,truly?
Therearenumerousdefinitionsofminerals.Overall,themineralisasubstancethatarises certainlyinnutrients,water,ortheground,andisnotalivingorganism.Forearthscience,a mineraliscorrespondinglyanaturalsubstancesuchascoal,gold,ordiamond(Fig.1.2)thatis attainedfromtheearthbymining.Yet,thespeci ficdefinitionofamineralisahardtask. Indeed,themineralhasmanydefinitions.Thesedefinitionsaredeliveredfromvariouspoints ofviewincludingfromgeology,economy,andbiologicalandmedical fields,aswellaslegal definitionsofmineralsandfederalgovernmentdefinitions(Putnis,1992).
Anothersimpledefinitionfromthepointofviewofgeologycanbeasanaturallyoccurringinorganiccomponentorelementhavingatidyinternalassemblyandcharacteristic chemicalcompositions,crystalforms,andphysicalproperties.Therefore,mineralsvary fromrocks,whicharenaturallyarisingsolidscomprisedofoneormoreminerals.Rocks, however,donothaveadistinguishingchemicalstructureorcrystalstructure.Theearth scienceexplanation,nevertheless,isnotalwaysdepletedtoexpressminerals.Thecontrast definitionisthelegaldefinition,whichquotesthatanytreasuredinertorlifelesssubstance createdordepositedinitspresentpositionthroughnaturalagenciesalone,andwhichisoriginatedeitherinoruponthesoiloftheearthorintherocksbeneaththesoil.Inthisview,this isamuchwiderdescriptionofthemineralthantheearthsciencedefinition.Intheseregards, thetermperhapsquotesthemineralsandrocksasgeologicallywell-de fined,andsediment (gravel,sand,andclay).Inapproximatecircumstances,itmighteveninvolvewater(Bates & Jackson,1980).Consequently,thefederalgovernmentdescribesmineralsinitssection onnationalminingandmineralspolicy(U.S.Code:30,Section21a; Rainesetal.,1996) asinvolvingallmineralsandmineralfuelsincludingsomenonsolidsubstancessuchas
1.Anintroductiontominerals,rocks,andmineraldeposits
petroleumandnaturalgas.Thisdefinition,nevertheless,isproblematicbecauseitexploitsthe term “minerals” inthedefinition.Italsoinvolvespetroleumandnaturalgas,whicharenot studiedmineralsonthewordoftheearthscienceexplanation.Whileinthelegalexplanation, watercouldbecountedasamineralinapproximateregions,relyingonthenaturalofwater storagestatutesandlegalissuebeingcounted.Intheseregards,mineralproductsare
FIGURE1.1 Glitteringcrystal.
FIGURE1.2 Naturalsubstances.
minerals,similartotheearthscienceexplanation,butsimilarlymanufacturedproducts,for instance,abrasives,cement,andlime(Black,1968).Stillconfused?Fromthepointofview ofeconomists,engineers,andscientists,thetermmineralresourcesrefertotheexistenceof anymineralcommoditythatcouldbedetachedfromtheground.Inthisunderstanding,there arethreecategoriesofmineralresources(Fig.1.3):fuelminerals,metallicmineralssuchas coppermineralisolatedonthewhitebackground(Fig.1.3;alsotermedoreminerals),andindustrialorconstructionminerals,forinstance,graymarblestonerubble(Fig.1.3).Inthese contexts,regardingfuels,mineralsalsorefertonaturalgasandpetroleum,andthusminerals asdefinedbythefederalgovernmentbutnotmineralsaccordingtotheearthsciencedefinition.Thetermmetallicminerals(forexample,ironoreandcopper)continuallydenotemineralsasstatedbytheearthscienceclassi fication.Thewordindustrialmineralswouldinvolve mineralsconsistentwiththeearthsciencedescription,butmoreoftenstatestorocks (forinstance,limestone)andsediments(forinstance,sandandclays)alongwiththeearth sciencedefinition(Bates & Jackson,1980).
Lastly,thebiologicalandhealthdefinitionofmineralsisinthecontextof “vitaminsand minerals” (Fig.1.4).Medicalprofessionalsexploitmineralstodesignatenaturallyhappening nutrients,whichareinorganicelementsandcompounds,forinstance,iron,potassium,and calciumsuchascalciumcarbonatesalt(Fig.1.5);rocksorfossilfuelsarenotcomprised, eventhoughthemineralsutilizedinvitaminsmaybeoriginatedfromrocksandfossilfuels. Therefore,thehealthdefinitionisslightlydissimilarfromtheearthsciencedefinitionbecause itcancontainfreeelements,forexample,calcium.Ingeology(andothersciences),calciumis countedasanelementthatcanbeamalgamatedintoanaturallyarisingsolidwithadissimilarcrystalstructure,forinstance,calcite,whichwouldbebelievedasamineralfromthe pointofviewofearthscience(Bates & Jackson,1980).
FIGURE1.3 Examplesofeconomicminerals.
1.Anintroductiontominerals,rocks,andmineraldeposits
Vitaminsandminerals.
FIGURE1.5 Inorganicelementandcompoundexamples.
FIGURE1.4
1.2Queriesofunderstandingminerals
Therearenumerousnoteworthyqueriestoabundantlycomprehendthemineralandrock generations.Thesequeriesincludethefollowing:Whatarethemineralsfoundinrocks?Are mineralsandrocksthesame?Howaremineralsandrocksclassi fied?andHowdominerals contributetorock?Thefollowingsectionsanswerthesetremendousquestions.
1.2.1Whyaremineralsinrocksimportant?
Rocksandmineralshaveexistedallaroundus.Theyallowustocreatenewtechnologies andareexploitedinoureverydaylives.Ouruseofrocksandmineralsconsistsofconstructingmaterials,cosmetics,cars,roads,andpurposes.Rocksandmineralsarevitalforstudying earthmaterials,structures,androutines(Barnes-Svarney & Svarney,2004; Black,1968; Chatterjee,1993; Ford,2005).
1.2.2Howaremineralsandrocksclassified?
Ingeneral,rocksarecategorizedbythegeologicproceduresthatmoldedthem.Inthis regard,igneous,metamorphicandsedimentaryarethreekeystonerocks.Inthisunderstanding,mineralshavenotcategorizedthisapproach.Consequently,mineralsareclusteredby theirphysicalcharacteristicsandchemicalsets(Barnes-Svarney & Svarney,2004).
1.2.3Whatarethemineralsfoundinrocks?
Approximately200mineralscreatethebulkofmostrocks(Li,2010; Putnis,1992).The feldsparmineralvarietyisthefurthermostvarious.Commonmineralsmakeupofquartz, calcite,andclayminerals.Intheseregards,quartz(Fig.1.6)isalwaysSiO2,andcalcite (Fig.1.6)isalwaysCaCO3.Otherminerals,however,revealarangeofcompositionsbetween twoormorecompoundstermedend-members.Forinstance,plagioclasefeldspar(Fig.1.6) hasacompositionthatrangesbetweenend-membersanorthite(CaAl2Si2O8)andalbite (NaAlSi3O8),soitschemicalformulaiswrittenas(Ca,Na)(Al,Si)AlSi2O8 (Li,2010).Therefore,thesynthesizedmaterialishardandusuallycolorless,butmaybemadeinavarietyof differentcolors.Itshouldnotbeconfusedwithzircon,whichisazirconiumsilicate(ZrSiO4). Itissometimeserroneouslycalled cubiczirconium (Fig.1.7).
Consequently,mineralsaremorecommoninigneousrock,whicharegeneratedunder tremendousheatandpressure,forinstance,olivine,feldspars,pyroxenes,andmicas.The mostcriticalquestionremains:Aremineralsandrockssimilar?Inthisrespect,rocksand mineralsarenotsimilarobjects;rocksarecomprisedofminerals,whicharecertainlyprevailingchemicalcomposites.Humans,conversely,canconstructrocksandminerals;artifacts areidenticaltorocksandminerals.Inthisview,rocksandmineralsareindeedbefalling substancesthatareregularlycrystallineandsolid(Jianping,1999; Li,2010; MacKenzie etal.,1982; Putnis,1992).
1.Anintroductiontominerals,rocks,andmineraldeposits
1.2.4Howdomineralscontributetorock?
Minerals,theconstructionblocksofrocks,areinorganicsolidswithanexplicitinternal assemblyandacertainchemicalcompositionthatvariesonlywithina finerange.They cancreateunderavarietyofcircumstances,forinstance,throughoutthecoolingofmolten materialssuchassteel,fromlavas,andigneousrocks(Chatterjee,1993; Ford,2005; Jianping, 1999; Putnis,1992).
FIGURE1.6 Quartzcrystal,calcite,andplagioclasefeldspar.
FIGURE1.7 Cubiczirconia.
1.3Whatmakesamineralasmineral?
Forsomethingtobeamineral,itwouldinitiallyinvolve, first,thatallmineralsaresolid. Second,whilewatermayencompassminerals,wateritselfcannotbeamineralsinceitis liquid.Mineralsareallinnatelycreated.Thisindicatestheycannotbeassembledinalaboratory.Inthisunderstanding,syntheticgemslikecubiczirconiaareconsequently,notminerals.
Allmineralshaveauniqueandspecificchemicalcomposition.ThisisliketheDNAofthe mineral itiswhatmakesthemineraldifferentfromotherminerals.Lastly,allmineralshave acrystallinestructure.Inthissense,thecrystalstructuredependsonthebondingandtypesof atoms.Soallthreeareinterrelated:howtheatomsbondtogether(Fig.1.8),whichaffectsthe crystalstructure,whichaffectsthematerialproperties(Chatterjee,1993; Ford,2005).
Infact,mineralsaresomeofthemostbeautifulsubstancesontheEarth,sincetheyare constantlyarrangedinanorderlygeometricpattern(Fig.1.8).Mineralsofthesimilarkind permanentlyhaveasimilarsymmetricalarrangementoftheiratoms.Onotherwords,the shapesofthesemineralcrystalsreflecttheinternalarrangementoftheiratoms(Fig.1.9).
Pyrite,forinstance,in Fig.1.9 demonstratesthecorearraystructureoftheiratoms (Bates & Jackson,1980).
1.4Propertiesofminerals
Mineralsareclassi fiedbytheirchemicalcompositionandcrystallinestructure.Thesetwo featuresoccuronamicroscopiclevel,butwecanseetheminotherwaysbecausetheydetermineamineral’sobservablephysicalproperties.Inotherwords,whatappearstousonthe outsideisdeterminedbywhat’sontheinside.Thesevenphysicalpropertiesofminerals
FIGURE1.8 Sketchofatomsinthecrystallinestructure.
includethefollowing(Ford,2005; Geigeretal.,2004; Li,2010):crystalform,hardnessfracture orcleavage,luster,color,streak,density,andtenacity.Let’sseehoweachoneassistsinrecognizingamineral.Eachphysicalcharacteristicmentionedabovecanassistindistinguishing betweendifferentminerals.
1.4.1Crystalform
Thecrystalformistheoutwardexpressionoftheorderlyarrangementofatomsinsidethe mineral.Whatyouareseeingistheactualarrangementandstructureoftheatomsinthat mineral.Forexample,lookatsomeeverydaytablesalt,whichisacombinationofsodium andchlorine.Normally,whatyouseeisasaltcube,butifyouweretobreakthiscube downintosmallerparts,itwouldsimplybreakintosmallerandsmallercubesbecause thatishowtheatomsarearranged(Jacksonetal.,1978).Theexternalformofamineral crystal(oritscrystalshape)isextremelyrevealedbyitsinternalatomicstructure,which meansthatcharacteristicscanbeexceedinglydiagnostic.Theshapeofacrystalisidentified bytheangularrelationshipsbetweencrystalfaces.Moreorfewermineralscorrespondingto halite(NaCl,orsalt)andpyrite(FeS)haveacubicform(Fig.1.10);othersliketourmaline(see Fig.1.10,middle)areprismatic.Someminerals,identicaltoazuriteandmalachite,whichare bothcopperores,donotshowregularcrystalsandareamorphous(Fig.1.10).
Regrettably,thecrystalformisahardtasktoobtain.Theperfectcrystalscanberealized merelywhentheyhavehadachancetocultivateintoacavity,forinstance,inageode.
FIGURE1.9 Atomsarrayinmineralcrystals.
Whencrystalscultivateinthecontextofcoolingmagma,nevertheless,theyarechallenging forspacewithalltheothercrystalsthatarestrivingtoscalate,andescalate,andtheyincline topluginwhateverspacetheycantobepresentedincrystalformandhardrock.Theformof thecrystal,therefore,candifferfairlyabit,relyingonthevolumeofspaceavailable;nevertheless,theanglebetweenthecrystalfaceswillalwaysbealike(Barnes-Svarney & Svarney, 2004; Jianping,1999; Li,2010; Sedimentarypetrology:Anintroductiontotheoriginof sedimentaryrocks,2009).
1.4.2Hardness
Hardnessishowresistantamineralistoscratching,nothoweasilyitbreaks.Hardness dependsonthebondswithinthemineral,sothestrongerthebonds,theharderthemineral. MineralhardnessismeasuredontheMohsscaleofhardness,whichcomparesthehardness ofdifferentminerals(Fig.1.11).
Diamondisconsideredthehardestmineral,soitisa10ontheMohsscaleofhardness.Talc hasaveryweakbondbetweenitsatoms,andsoitisa1ontheMohsscaleofhardness.Ifit helps,youcanthinkofthehardnessoftalcconcerningthehardnessofyour fingernail,which isabouta2.5.Intheseregards,variationsinhardnessmakemineralsbene ficialfordiverse purposes.Thesoftnessofcalcitemakesit,forinstance,apopularmaterialforsculpture (marbleismadeupentirelyofcalcite),whereasthehardnessofdiamondmeansthatitis usedasanabrasivetopolishrock(Tucker,2003).
FIGURE1.10 Differentcrystalformsofminerals.
1.4.3Fractureandcleavage
Fractureandcleavagedescribehowamineralbreaks.Mostmineralscompriseintrinsic dimnesswithintheiratomicstructures,aplanealongwhichthebondstrengthislower thanthesurroundingbonds.Whenhitwithahammerorotherwisebroken,amineralwill tendtobreakalongthatplaneofpreexistingweakness.Thistypeofbreakageisnamed cleavage,andthesuperiorityofthecleavagedivergeswiththestrengthofthebonds.Biotite, forinstance,haslayersofextremelyweakhydrogenbondsthatbreakincrediblysimply,and thusbiotitebreaksalong flatplanesandiscountedtohaveidealcleavage(Fig.1.12).Inthis view, Fig.1.12 illustratesthattheconcavesurfaceandthecurvedribs.Othermineralscleave alongplanarsurfacesofvaryingroughness thesearebelievedtohavevirtuoustofeeble cleavage(Geigeretal.,2004; Imbrie & Poldervaart,1959).
Table1.1 summarizesthecharacteristicsofthemineralfractureswithsomegiving examples.Indeed,fracturesareinvolved:conchoidalfracture;subconchoidalfracture;earthy fracture;hacklyfracture;splinteryfracture;andunevenfracture.
Consistentwiththeaboveperspective,somemineralsdonothaveanyframesofweakness intheiratomicstructure.Inthisunderstanding,thesemineralsdonothaveanycleavage,and asanalternative,theyfracture.Inthissense,quartzfracturesinadistinctstyle,termed conchoidal,whichformsaconcavesurfacewithaseriesofarcuateribssimilartothe approachthatglassfractures(Fig.1.12).Forquartz,indeed,thislackofcleavageisadistinctivecharacteristic.
FIGURE1.11 Mohsscaleofhardnessfordifferentminerals.
FIGURE1.12 Numerousconchoidalfracturesarevisibleinthemineralsamples.
TABLE1.1 Summaryofmineralfracturecharacteristics.
FracturesCharacteristics
Conchoidal fracture Itisrupturethatresemblestheconcentricripplesofamusselshell.Itregularlyarisesin amorphousor fine-grainedminerals;forinstance, flint;opal,orobsidian,butperhapsalso ariseincrystallineminerals;forexamplequartz.
Subconchoidal fracture Itisanalogoustoconchoidalfracture,butwithlesssignificantcurvature.Inthisview, obsidianisanigneousrock,notamineral,butitdoesexemplifyconchoidalfracture completely.
Obsidianisformedwhenfelsiclavaextrudedfromavolcanocoolsspeedilywithminimal crystalescalation.
EarthyfractureItisevocativeofnewlybrokensoil.Itisregularlyrealizedincomparativelysoft,loosely boundminerals,i.e.,limonite, Kaoliniteandaluminite.
Limonite(/0 laɪmənaɪt/)isanironorecontainingamixtureofhydratediron(III)oxidehydroxidesin fluctuatingconfiguration.Thegenericformulationiscommonlyinscribedas FeO(OH) nH2O,eventhoughthisisnotfullypreciseastheratioofoxidetohydroxidecan differrelativelybroadly.
HacklyfractureItis(correspondinglyidentifiedasjaggedfracture)isjagged,sharp,andnotuniform.Itarises whenmetalsaredithering,andconsequentlyisfrequentlyconfrontedinnativemetals,i.e., copper,andsilver. Nativecopperisanuncombinedformulaofcopperthatappearsasanaturalmineral.Copper isoneofthefewmetallicelementstooccurinnativeform,althoughitmostcommonlyoccurs inoxidizedstatesandmixedwithotherelements.
SplinteryfractureItencompassessharplengthenedpoints.Itispredominantlyrealizedin fibrousminerals;for instance,chrysotile.Italso;however,befallinnonfibrousminerals;forexample,kyanite. Chrysotileorwhiteasbestosisthemostgenerallyconfrontedconfigurationofasbestos, reportingforalmost95%oftheasbestosintheUnitedStatesandacomparablequantityin othercountries.
UnevenfractureItisacoarsesurfaceoronewithhaphazardasymmetries. Ithappensinawiderrangeofmineralscountingarsenopyrite,pyrite,andmagnetite. Magnetiteisarockmineralandoneoftheforemostironores,withthechemicalformula Fe3O4.Itisoneoftheoxidesofiron,andisferrimagnetic;itisattractedtoamagnetandcan bemagnetizedtodevelopaneverlastingmagnetitself.