Additive friction stir deposition hang z. yu - Download the ebook now for full and detailed access

Page 1


https://ebookmass.com/product/additive-friction-stirdeposition-hang-z-yu/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Metal Additive Manufacturing Ehsan Toyserkani

https://ebookmass.com/product/metal-additive-manufacturing-ehsantoyserkani/

ebookmass.com

Fast Desktop-Scale Extrusion Additive Manufacturing (Article, NOT a book) Jamison Go

https://ebookmass.com/product/fast-desktop-scale-extrusion-additivemanufacturing-article-not-a-book-jamison-go/

ebookmass.com

Laying Bones Reavis Z. Wortham

https://ebookmass.com/product/laying-bones-reavis-z-wortham/

ebookmass.com

The Hidden Psychology of Social Networks: How Brands Create Authentic Engagement by Understanding What Motivates Us Joe Federer

https://ebookmass.com/product/the-hidden-psychology-of-socialnetworks-how-brands-create-authentic-engagement-by-understanding-whatmotivates-us-joe-federer/ ebookmass.com

Poisoning & Drug Overdose 7th Edition Kent R. Olson (Ed.)

https://ebookmass.com/product/poisoning-drug-overdose-7th-editionkent-r-olson-ed/

ebookmass.com

The Stars at Night Gerri Hill

https://ebookmass.com/product/the-stars-at-night-gerri-hill/

ebookmass.com

ISE Principles of Statistics for Engineers and Scientists (ISE HED IRWIN INDUSTRIAL ENGINEERING) 2nd Edition William Navidi Prof.

https://ebookmass.com/product/ise-principles-of-statistics-forengineers-and-scientists-ise-hed-irwin-industrial-engineering-2ndedition-william-navidi-prof/ ebookmass.com

Controlled Release Fertilizers for Sustainable Agriculture F.B. Lewu

https://ebookmass.com/product/controlled-release-fertilizers-forsustainable-agriculture-f-b-lewu/

ebookmass.com

Tracheostomy and Ventilator Dependency: Management of Breathing,

Speaking

https://ebookmass.com/product/tracheostomy-and-ventilator-dependencymanagement-of-breathing-speaking/

ebookmass.com

https://ebookmass.com/product/etextbook-978-0135078228-basicmarketing-research-with-excel/

ebookmass.com

AdditiveFrictionStir Deposition

AdditiveFrictionStir Deposition

SeriesEditor MAQIAN AdditiveManufacturingMaterialsand Technologies

HANGZ.YU

VirginiaTech,UnitedStates

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-824374-9

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: DennisMcGonagle

EditorialProjectManager: JoshuaMearns

ProductionProjectManager: KameshRamajogi

CoverDesigner: MatthewLimbert

TypesetbyMPSLimited,Chennai,India

Preface

Theabilitytomanufacturenewproductsthatgivebetterperformance andincurlesscostisameasureofthefuturecompetenciesofanation. Whethertheyarebulk-scalemetalsandceramicsusedfortheaerospace andautomotiveindustriesorthinfilmsandnanoscaledevicesforthe semiconductorindustry,wealwayswantthemtobemanufacturedinan efficient,amorereliable,andascalablemannerwhilepossessingan unprecedentedsupplyofexcellentproperties.Inthisregard,theimportanceofadvancedmanufacturingcannotbeoverstated acommonsense alreadysharedbyscientists,engineers,entrepreneurs,industryleaders,and policymakers.Asanexample,numerousadvancedmanufacturingprogramsorinitiativeshavebeenwitnessedoverthelastfewyears;America Makes,ManufacturingUSA,andtheAdvancedManufacturingInitiative byEuropeanSpaceAgency,tonamejustafew.InrecentTMSand MS&Tconferences,morethan1/3ofthesymposiawererelatedto advancedmanufacturing.

Amongsubfieldsofadvancedmanufacturing,bulk-scalemetaladditive manufacturingrepresentsafrontierofinnovationrapidlychanginghow engineersdesignandfabricatecriticalcomponents,suchasfuelnozzlesin enginesandcombustorliners.Atthetimeofwriting,themainstream metaladditivemanufacturingtechnologiesareknowntobebasedon selectivemeltingandrapidsolidification.Asfusion-basedadditiveprocesses,thesetechnologiessharethesameliquidbondingmechanismwith castingandthereforearefacedwithmanagingthesamechallenges,such asporosity,dendriticmicrostructure,hotcracking,andhighresidualstress. Becauseofsuchissues,castingisnotwidelyusedforcreatingcriticalmetal componentsintraditionalmetalmanufacturing;instead,thesecomponents areusuallyprocessedviathermomechanicalroutes,likeforging,rolling, andextrusion.Thisnaturallyraisesthequestion:tofundamentallyavoid thequalityissuesinfusion-basedmetaladditivemanufacturing,shouldwe adoptametaladditiveprocessthatisthermomechanicalprocessing-based ratherthanliquidprocessing-based?

Duringrecentyears,thisquestionhasmotivatedmetoresearchan emergingmetaladditivemanufacturingtechnologywithathermomechanicalprocessingnature.Theprocessistermedadditivefrictionstirdeposition,whichleveragesthefrictionstirprincipleandamaterialfeeding

mechanismtoenablelocation-specificprintingandfreeformingin3D space.Viewedasaforging-basedadditiveprocess,additivefrictionstir depositioninheritstheadvantagesofforginginporosityremovaland equiaxedmicrostructureformation,allowingforexcellentmechanicalperformanceintheas-printedstate.Ithasshowngreatpromiseforlarge-scale additivemanufacturing,structuralrepair,materialsrecycling,aswellas operationunderextremeconditions.Despiteitsrelativelyyoungage, extensiveresearchanddevelopmenteffortsduringthelastfewyearshave propelledthistechnologytotheforefrontofinnovationwithfocused attentionfromtheaerospaceanddefensesectors.

Thegoalofthisbookistoofferatimelyoverviewofthisvigorously growingfield,inthehopethatmoretalentsfromacademiaandindustry willjointheR&Deffortsofadditivefrictionstirdeposition.NewR&D advanceswillimproveourfundamentalunderstandingoftheprocess, therebyunlockingitsfullpotentialforwidespreadapplications.Thestudy onadditivefrictionstirdepositionisinterdisciplinary,necessitatingjoint effortsfromexpertsinphysics,metallurgy,materialsscience,fluid mechanics,mechanicalengineering,andcomponentdesign.Asamaterials scientistbyeducationandtraining,Iattemptedtoincludeknowledge fromallrelevantdisciplinesinthisbook,whichmayhavebeenastretch attimes.Fortunately,thecolleaguesinthisresearchfieldcomefroma varietyofacademicbackgrounds;learningfromthemandincorporating theirworkintothisbookhashopefullycompensatedforanynegative effectsfrommystretch.

Thisbookaimstoprovideacomprehensivepictureofadditivefriction stirdeposition,fromprocessfundamentalsandmaterialsflowtomicrostructureevolutionandmechanicalproperties.Somespecialtopicslike printingofcomposites,tooling,andnicheapplicationsarealsoincluded. However,thisbookisnotaconclusionbyanymeans;givenhowrapidly thisfieldisgrowingthesedays,extensiveupdatesareexpectedinthenext edition.Someoftheideasdiscussedinthelastchapter(“Future Perspectives”),suchastheincorporationofartificialintelligenceandprintingofhierarchicalmaterials,mayhavematuredintoadisciplinewitha largenumberofresearchresultsbythattime.

Iamgratefultomanypeoplewithoutwhomwritingthisbookwould notbepossible.FirstIwouldliketothankDr.JackLesko,whoinitiated theAdvancedManufacturingTeamatVirginiaTechandconnectedme withthefolksatAeroprobeInc.backin2016.ThiswasthefirsttimeI learnedofacommerciallyavailableadditivefrictionstirdepositionprocess,

whichisnowknownastheMELDtechnology.Iwouldalsoliketo thankMs.NanciHardwick,theCEOofMELDManufacturing Corporation,andDr.ChaseCox,theDirectorofTechnologyatMELD ManufacturingCorporation.Throughinteractionswiththem,Iwasable torealizehowadditivefrictionstirdepositionmayhaveabigimpactin reallife,especiallyintherealmoflarge-scaleadditivemanufacturing.

IamparticularlygratefultoProf.RajivMishrafromtheUniversityof NorthTexasandDr.ZhiliFengfromOakRidgeNationalLaboratory, who,asworld-renownedexpertsinfrictionstirresearch,neverhesitated tooffermeinvaluablecareeradvice.IamgratefultoMr.KyuChofrom theArmyResearchLaboratoryaswellasMr.NamPhanfromNAVAIR, whonotonlyprovidedsupportformyresearchinthisareabutalsoprovidedvitalguidanceregardingtheresearchdirectionforcriticalapplications.Helpfuldiscussionsandguidancefromtheindustryfolks,including fromDr.GeorgeLuckey,Dr.JoyForsmark,andMr.EricPoczatekfrom FordMotorCompany,Dr.NanzhuZhaofromNissanMotor Corporation,Dr.ChangjieSunfromGEResearch,Dr.MichaelEller fromLockheedMartinCorporation,andDr.JimLuafromGEMInc.are alsogreatlyappreciated.

Icannotsay “thankyou” enoughtothegreatstudentsatVirginia Techwhohaveworkedandwhoareworkingwithme,fortheirgroundbreakingresearchonadditivefrictionstirdepositionaswellastheir tremendoushelpinwritingthisbook.Iwouldliketoacknowledgemy previousPh.D.students:Dr.MackenziePerry,Dr.JoeyGriffiths, Dr.HunterRauch,andDr.DavidGarcia,aswellascurrentgraduatestudentsandpostdocs:DougHartley,JakeYoder,GregHahn,Ryan Gottwald,KendallKnight,RobertCallaham,RobertPalisin,Donnie Erb,HannahGlaser,andDr.NikhilGotawala.Mostofthemreadpartof thebookdraftandprovidedcriticalcomments.Iwouldalsoliketo acknowledgeafewundergraduatestudentsfortheirinput:JustinHe, AdamSeigler,andGideonCrawford.

Iamgratefultomycolleaguesintheresearchfieldofadditivefriction stirdeposition,includingProf.PaulAllison,Prof.BrianJordon,andProf. LukeBrewerfromtheUniversityofAlabama,Prof.RajivMishrafrom theUniversityofNorthTexas,aswellasProf.DanielFabijanicfrom DeakinUniversity.Theirworkhasbeeninstrumentalinenrichingmy knowledgeandunderstandingofadditivefrictionstirdeposition;incorporatingtheirworkhasimprovedthebookquality.Iwouldliketothank theeditorsfromElsevierfortheirpatienceinhelpingmepreparethe

book:Ms.ChristinaGifford,Mr.DennisMcGonagle,andMr.Joshua Mearns.

Abookprojectlikethiswouldnothavebeenpossiblewithoutstrong supportfrommyfamily.Iwouldliketoexpressmyheartfeltgratitudeto mywife,Yunhui,forherenduringencouragementofmycareerand unwaveringeffortsincaringforourtoddler,Chris whoalsodeserves creditforbeingabletosleepthroughthenightasayoungbabyduring thetimeIworkedonthebookdraft.

Blacksburg,Virginia,April2022

Preface xi

Bookendorsement:AdditiveFrictionStirDepositionxv

1.Introduction1

1.1 Additivemanufacturingformetals2

1.2 Solid-statemetaladditivemanufacturing5

1.3 Additivefrictionstirdeposition9

1.4 Organizationofthisbook16 References18

2.Processfundamentals21

2.1 Elementsoffrictiontheory22

2.2 Fundamentalsofheatandmasstransfer29

2.2.1 Heattransfer29

2.2.2 Masstransfer31

2.3 Basicprincipleofadditivefrictionstirdeposition33

2.4 Establishmentofanintegratedinsitumonitoringsystem:real-time measurementoftemperature,force,torque,andmaterialflow37

2.5 Temperatureevolutioninthedepositedmaterialandsubstrate41

2.5.1 Thermalhistoryofthedepositedmaterials41

2.5.2 Dependenceofthermalfeaturesontheprocessingconditionsin additivefrictionstirdeposition43

2.5.3 Powerlawrelationshipsofpeaktemperatureandprocessing parameters47

2.5.4 Temperatureevolutionofthesubstrate48

2.6 Forceandtorqueevolution51

2.6.1 Multiplephasesofforceandtorqueevolution52

2.6.2 Dependenceofsteady-stateforceandtorqueonprocessing conditions54

2.7 Insituvisualizationofmaterialrotationandflow57

2.7.1 Footprintandmaterialrotation58

2.7.2 Contactstateandstickingcoefficient60

2.8 Correlationofthematerialflowbehaviortotemperature,force,and torqueevolution64

2.8.1 Influencesofthecontactstateandmaterialflowonheat generation66

2.8.2 Influencesofthecontactstateandmaterialflowonforceand torque69

2.8.3 Factorsgoverningthecontactstateandmaterialflowbehavior71

2.9 Summary73 References74

3.Materialflowphenomena77

3.1 Plasticityandfinitedeformationtheory78

3.2 Elementsoffluidmechanics82

3.3 Previousexperimentalstudiesonmaterialflowinfrictionstirwelding87

3.4 Designoftracerexperimentsformaterialflowinvestigationin additivefrictionstirdeposition92

3.5 Flowpathofthecentervolumeofthefeedmaterial95

3.5.1 Centertracerflowduringinitialmaterialfeeding95

3.5.2 Centertracerflowduringsteady-statedeposition102

3.6 Flowpathoftheedgevolumeofthefeedmaterial107

3.6.1 Edgetracerflowduringinitialmaterialfeeding107

3.6.2 Edgetracerflowduringsteady-statedeposition110

3.7 Materialdeformationandflowattheinterface112

3.7.1 Surfaceandinterfacemorphology113

3.7.2 Interfacialmixing118

3.8 Summary122 References124

4.Dynamicmicrostructureevolution127

4.1 Elementsofmicrostructureevolution129

4.2 Dynamicrecrystallizationmechanisms135

4.2.1 Discontinuousdynamicrecrystallization135

4.2.2 Continuousdynamicrecrystallization138

4.3 Thermomechanicalhistoryinadditivefrictionstirdeposition142

4.3.1 StageA143

4.3.2 StageB144

4.3.3 StageC146

4.4 Characteristicsoftheresultingmicrostructuresbyadditivefrictionstir deposition147

4.4.1 Highstackingfaultenergymaterials:AlandMg147

4.4.2 Low(tomedium)stackingfaultenergymaterials:Inconel625and 316Lstainlesssteel149

4.5 DynamicmicrostructureevolutionalongtheflowpathofanAl Cualloy151

4.5.1 Microstructurecharacterizationalongtheflowpathofthecenter tracer151

4.5.2 Microstructurecharacterizationalongtheflowpathoftheedge tracer156

4.5.3 Quantificationoftheoveralltrend158

4.6 Processing-microstructurelinkagesofAl-Mg-SiandCu161

4.6.1 MicrostructurecharacterizationofAl Mg Siprintedatvarious conditions162

4.6.2 MicrostructurecharacterizationofCuprintedatvarious conditions167

4.6.3 Analysisofthemicrostructureevolutionmechanismsandtrends170

4.7 Dynamicphaseevolution174

4.8 Summary176 References178

5.Effectsoftoolgeometry183

5.1 Asurveyoftooleffectsinfrictionstirwelding184

5.2 Tooltypesandgeometriesforadditivefrictionstirdeposition186

5.3 Effectsoftoolgeometryoninterfacemorphology189

5.4 Effectsoftoolgeometryonmicrostructure196

5.5 Summary200 References200

6.Beyondmetalsandalloys:additivefrictionstirdepositionof metalmatrixcomposites203

6.1 Introductiontometalmatrixcomposites204

6.2 Currentprocessingapproachestometalmatrixcomposites206

6.2.1 Bulkprocessing206

6.2.2 Additiveproduction210

6.3 Additivefrictionstirdepositionofmetalmatrixcomposites215

6.3.1 Feedingstrategyandprintingprinciple216

6.3.2 Potentialbenefits217

6.4 Examples219

6.4.1 Cu-ZrO2 printedusingacompositefeed-rod219

6.4.2 Al ZrO2,Al SiC,andCu SiCcompositesprintedbypacking particlesinthehollowfeed-rod219

6.4.3 Al SiCprintedbyaugerfeeding225

6.5 Limitationsofthisprintingapproach227

6.5.1 Maximumvolumefractionofreinforcement227

6.5.2 Toolwear228

6.6 Summary229 References230

7.Mechanicalpropertiesoftheprintedmaterials233

7.1 Elementsofthemechanicalbehaviorofmaterials234

7.2 Tensilepropertiesoftheprintedmetalsandalloys238

7.2.1 Effectsofprecipitationstrengthening238

7.2.2 Effectsofpostprocessaging244

7.2.3 Effectsofdislocationcontent246

7.2.4 Effectsofgrainsize250

7.2.5 Two-phasealloys253

7.2.6 Gradientofthemechanicalproperties254

7.3 Fracturebehavior256

7.4 Fatiguebehavior264

7.5 Mechanicalpropertiesofbilayerstructures268

7.6 Mechanicalpropertiesofprintedmetalmatrixcomposites271

7.7 Summary271 References272

8.Nicheapplications277

8.1 Structuralrepair278

8.1.1 Through-holefilling281

8.1.2 Groovefilling284

8.1.3 Surfaceanddivotrepair286

8.1.4 Fastenerholerepair289

8.2 Selective-areacladdingonthinautomotivesheetmetals292

8.2.1 Claddingquality292

8.2.2 Thinsubstratedistortion295

8.3 Recycling301

8.3.1 Solid-statemetalrecyclingbackground301

8.3.2 Frictionstirringforsolid-staterecycling305

8.4 Large-scaleadditivemanufacturing310

8.5 Printingandrepairunderharshconditions311

8.6 Summary313 References314

9.Futureperspectives319

9.1 In-depthunderstandingoftheunderlyingphysics320

Bookendorsement:AdditiveFrictionStir Deposition

Prof.HangYuhascreatedamasterpieceinthisfirstbookonadditivefrictionstirdepositiontechnology.Additivefrictionstirdepositionisemergingasaveryhighdepositrateadditivemanufacturingprocessandhas startedfindingreal-worldapplications.Thisbookprovidesatimelyoverviewofthisnewfield.Asresearchersandpractitionersofthisnewtechnologyworkonvariousnewopportunities,theywillbenefitfromthe necessarytheoreticalbasisprovidedinChapters2 4,and7.Prof.Yu drawsfromhisownresearchandexperiencetoprovideinsights.Itisa verycomprehensivebookthatcoversareasrangingfromprocessphysics andmaterialssciencetotooling/applications.Thisisagreatresourcefor studentsinthisfieldandisa “must-read” book.Facultiesteaching advancedmanufacturingprocessescanuseseveralchaptersfromthebook toteachaboutthisdisruptivemanufacturingprocess.

• Dr.RajivMishra,UniversityDistinguishedProfessor,Universityof NorthTexas,UnitedStates.

Thisisaverytimelybookonthisnewemergingsolid-stateadditivemanufacturingtechnology.Anexcellentreferenceforthosewho areinterestedinthisdynamicandfast-growingtopic.Thebookcovers thefundamentalsoftheprocess,technologyinnovations,andresulting microstructureandproperties.

• Dr.ZhiliFeng,DistinguishedR&DStaff,andLeaderMaterialsJoining Group,OakRidgeNationalLaboratory,UnitedStates.

Prof.Yu’sresearchhasplacedhimandhisteamattheforefrontof atechnologythatiswitnessingtremendousgrowthontheglobaladditivemanufacturingstage.Thisbookexpertlycombinesknowledge gainedfromyearsofexperienceintoasinglesourcethatwillofferthe readerakeeninsightintounderstandingtheMELDprocess.

• Dr.ChaseCox,VicePresident,MELDManufacturingCorporation, UnitedStates.

Thisisathoroughbookontheemergingadditivefrictionstir depositiontechnologythatispoisedtobeverydisruptivetofusionbasedadditivemanufacturing.Itsufficientlycoversthebenefitsand

challengesofusingtheprocessandprovidesasolidfoundationforfurtherresearch.

• Dr.MichaelEller,AdjunctProfessor,UniversityofNewOrleans, UnitedStates.

CHAPTER1 Introduction

Thebeginningisthemostimportantpartofthework.

Shiftingthemanufacturingparadigm,additivemanufacturingisthe industrialproductionnamefor3Dprintingthatenablesthecreationof lighter,stronger,multifunctional,andmultimaterialcomponentsina layer-by-layerorvoxel-by-voxelfashion.Almostalltypesofmaterialscan beadditivelymanufacturedinto3Dcomponents,includingpolymers, ceramics,metals,composites,andevennaturalmaterials.Amongthese, metaladditivemanufacturingisofspecialindustrialinterestduetothe widespreadusageofmetallicmaterials,includingstructuralcomponents, protectivecoatings,heatexchangers,andconductingwires.Liketraditionalmetalmanufacturing,whichinvolvescastingandforging,metal additivemanufacturingcanbeimplementedbyfusion-basedaswellas solid-stateapproaches(YuandMishra,2021).Theformerreliesonmeltingandsolidification,whereasthelatterreliesonplasticdeformationor sintering.Inthisbook,ourfocusisonanemergingsolid-statemetaladditiveprocess, additivefrictionstirdeposition,whichleverageshightemperaturesevereplasticdeformationtoenablelocation-specificmetal depositionandprinting.

Thischapterintroducesadditivefrictionstirdepositionandanalyzesits placeinthemetaladditivemanufacturingspectrum.Webeginwiththe classificationofadditivemanufacturingtechnologiesandtheassessmentof theirsuitabilityforprintingmetals.Adistinctionisdrawnbetweenthe fusion-basedandsolid-stateadditiveprocesses,whereinthebenefitsand limitationsofeachtypeareconsidered.Withinthesolid-stateadditive technologies,weintroducetheprincipleofadditivefrictionstirdeposition andcontrastitsmanufacturingcapabilitieswithultrasonicadditive manufacturingandcoldspray.Wealsocompareadditivefrictionstir depositionwithanotherfrictionstir-derivedtechnology,frictionstiradditivemanufacturing,whichisasheetlaminationprocess.Finally,wediscuss theorganizationofthebookandprovideabriefoverviewofthechapters thatfollow coveringprocessfundamentals,materialflow,microstructure

evolution,tooling,metalmatrixcomposites,mechanicalproperties,niche applications,andfutureperspectives.

1.1Additivemanufacturingformetals

Asillustratedin Fig.1.1,commonadditivemanufacturingtechnologies canbecategorizedasfollows(Gibsonetal.,2015):

• Powderbedfusion,inwhichanenergybeamisusedtomeltpowderinabed.

• Directedenergydeposition,inwhichanenergybeamandthe feedstockaresuppliedsimultaneouslyinthefreespace.

• Binderjetting,inwhichapolymericbinderisselectivelydeposited togluepowdertogether.

• Materialextrusion or fuseddepositionmodeling,inwhicha polymerismeltedandextrudedtothelocationsofinterest.

• Materialjetting,inwhichmaterial(usuallyapolymer)issprayedin dropletform.

• Vatphotopolymerization or stereolithography,whichleverages theinteractionsbetweenUVlightandphoto-curablepolymer.

• Sheetlamination,acut-and-stackapproach.

Figure1.1 Categorizationofadditivetechnologies,includingpowderbedfusion, directedenergydeposition,binderjetting,fuseddepositionmodeling,materialjetting,stereolithography,andsheetlamination. ReprintedwithpermissionfromGibson, I.,Rosen,D.W.,Stucker,B.,2015.AdditiveManufacturingTechnologies:Rapid PrototypingtoDirectDigitalManufacturing.SpringerUS. 2 AdditiveFrictionStirDeposition

Formetaladditivemanufacturing,currently,themostpopular approachesarepowderbedfusionanddirectedenergydeposition (Frazier,2014).Inpowderbedfusion,high-qualitymetalparticlesare thinlylaidoutandsubsequentlyselectivelymeltedusingahigh-energy laserbeamorelectronbeam.Uponcooling,apatternofthesolidified materialisformedinthecurrentlayer(DebRoyetal.,2018).Byrepeatingthepowderdepositionandselectivemeltingandsolidificationina layer-by-layerfashion,aspecified3Dcomponentcanbebuiltbasedon theG-code.Indirectedenergydeposition,thecomponentisbuiltupin freespaceandthematerial(oftenpowderorwire)andenergy(laseror arc)aredeliveredsimultaneouslytothelocationofinterest.Thedelivered materialfirstmeltsandthensolidifiesuponcooling,formingmetallurgical bondswiththepreexistingmaterial(Carrolletal.,2015).Thekeyhardwareisthepowderfeedingsystem,whichcanprovideaflowofsmall quantitiesofpowderwithhighprecision.

Overtheyears,differenttermshavebeenusedtorefertothesame additiveprocess.Selectivelasermelting(orsintering),directmetallasersintering,andelectronbeammeltingallrefertopowderbedfusion.Laser metaldepositionandlaserengineerednetshaping(i.e.,LENS)aredirected energydepositionprocesses.Forlaser-basedpowderbedfusion(Fig.1.2), thekeyprintermanufacturersincludeEOS,Renishaw,SLMSolutions,and ConceptLaser(nowpartofGEAdditive)(Gusarovetal.,2018).Forelectronbeam-basedpowderbedfusion,ArcamAB(alsopartofGEAdditive) hasbeendominatingthemanufacturingmarket.Fordirectedenergydeposition,OptomecisanotableindustryleaderandapioneeroftheLENS technology.

Althoughpowderbedfusionanddirectedenergydepositiondifferin geometricalconfigurationandmaterialfeeding,theyarebasedonthe sameliquidbondingmechanism,whichcriticallyreliesonmeltingand solidificationofthefeedstock.Thesetwocategoriesarethustermed fusion-basedorbeam-basedadditivemanufacturing(Yuetal.,2018).Like otherfusion-basedmetalprocessessuchascastingandfusionwelding, controlofporosity,residualstress,andhotcrackingischallengingin fusion-basedadditivemanufacturing.Theseproblemsareexacerbatedby thesmallmoltenpoolsize,largethermalgradient,andrapidcoolingrate rootedintheadditivenature.Becausetextured,columnargrainstructures naturallyformalongthebuilddirection,microstructurecontrolhasalso remainedapersistentchallengeinpowderbedfusionanddirectedenergy deposition(BasakandDas,2016).Furthermore,meltingrequireshigher

Figure1.2 Exampleprintersforpowderbedfusion,withthemanufacturersincludingEOS,PhenixSystems,TRUMPF,SLMSolutions,ConceptLaser,andRenishaw. ReprintedwithpermissionfromGusarov,A.V.,Grigoriev,S.N.,Volosova,M.A.,Melnik,Y. A.,Laskin,A.,Kotoban,D.V.,etal.,2018.Onproductivityoflaseradditivemanufacturing.JournalofMaterialsProcessingTechnology261,213 232.

energyconsumptionandmorecarbondioxideemission,makingthese processesunfavorablefromanenvironmentalperspective.

Then,thequestionis:canweprintmetalsusingotheradditivetechnologiesin Fig.1.1 whileavoidingmelting?Binderjetting thetechnologyoriginallytermed 3Dprinting isaversatileprocessthatselectively depositsbinderstogluepowderstogether,formingagreenbodythatcan bemadeofmetals,ceramics,orcomposites(Gonzalezetal.,2016).This processinvolvestheselectiveremovalofbindersfollowedbysintering. Fuseddepositionmodeling,materialsjetting,andstereolithographyare widelyusedforprintingpolymers.Theformerispowerfulforprinting thermoplastics,whereasthelattertwoaresuitableforphoto-curablepolymers.Inprinciple,metaladditivemanufacturingcanbeimplemented usingthesepolymerprintingprocessesbymixingmetallicmicro-or nano-particleswiththepolymers(Liuetal.,2020).Asaresult,a metal polymercompositeisfirstformed,followedbyselectiveremoval ofthepolymers(e.g.,byburn-out)andsinteringofthemetalcomponent. Alltheaforementionedprocessesmaybetermedsintering-basedmetal additivemanufacturing,whichreferstoindirectapproachesthatinitially formametal-basedcompositefollowedbyextensivepostprocessing.

Thelastcategoryin Fig.1.1 issheetlamination,whichreferstohybrid processesinvolvingbothadditiveandsubtractiveprocedures.Inthiscategory,thereisadirectapproachformetaladditivemanufacturing:ultrasonicadditivemanufacturing(HehrandNorfolk,2020),whichleverages high-frequencysoundwavesforinterfacialcleaningandbonding,followedbyselectiveCNC(computernumericalcontrol)millingofthe bondedfoils.Undoubtedly,ultrasonicadditivemanufacturingprovidesa low-temperaturerouteformetaladditivemanufacturing;however,itis notafreeformprocessandcannotbeusedforlocation-specificdeposition, reinforcement,andrepair.

Giventhelimitationsoffusion-based,sintering-based,aswellassheet lamination-basedmetaladditivemanufacturing,wehaveastrongmotivationtosearchfororevendevelopnewsolid-statemetaladditiveprocesses thatgobeyondtheconventionallistin Fig.1.1.

1.2Solid-statemetaladditivemanufacturing

Itisinterestingtonotethelinkagebetweenweldingandmetaladditive manufacturing,bothofwhichrelyonmaterialbonding.Forexample,inthe categoryofdirectedenergydeposition,laserengineerednetshapingisan advancedversionoflaserwelding,whilewirearcadditivemanufacturingfollowsasimilarprincipleofarcwelding.Theinnovationinadditivemanufacturingliesinmaterialfeedingandprintpathcontrol.Anotherexampleis ultrasonicadditivemanufacturing,whichissimplyanextensionofultrasonic weldingtoincludeCNCmillingforshapecontrol.Theseexamplesaresummarizedin Fig.1.3 (HehrandDapino,2017;Huetal.,2018).

Solid-stateweldingorjoiningprocesses,therefore,mayprovidenew insightsintosolid-statemetaladditivemanufacturing;someexistingweldingprocessesmaybeadvancedforadditivemanufacturing.Alongthat line,anotableoptionisfrictionstirwelding(Fig.1.4A; Gemmeetal., 2010),inwhicharotatingnonconsumabletoolisusedtojointwofacing workpiecesbyleveragingthefrictionalheatingatthetool-workpiece interface(MishraandMa,2005).Duringwelding,thematerialsoftensand undergoessevereplasticdeformationduetocompressionandshear.The extensivematerialflowandrotationcanleadtosignificantmaterialmixingacrosstheoriginalboundaries,resultinginhigh-qualityjoiningofthe twoworkpieces.Thisweldingprocesshasshowngreatsuccessinjoining low-temperaturematerials,suchasAl,Mg,andCu(Mishraetal.,2014). Thenextquestionis:canwehaveasolid-stateadditivetechnologythat

Figure1.3 Thelinkagebetweenweldingandmetaladditivemanufacturing,showing examplesof(A)laserengineerednetshaping,(B)wirearcadditivemanufacturing, and(C)ultrasonicadditivemanufacturing. ReprintedwithpermissionfromHehr,A., Dapino,M.J.,2017.Dynamicsofultrasonicadditivemanufacturing.Ultrasonics73, 49 66;Hu,Y.,Ning,F.,Cong,W.,Li,Y.,Wang,X.,Wang,H.,2018.UltrasonicvibrationassistedlaserengineeringnetshapingofZrO2-Al2O3bulkparts:Effectsoncracksuppression,microstructure,andmechanicalproperties.CeramicsInternational44, 2752 2760.

followsthesamebondingmechanismasfrictionstirwelding aslongas wecanaddanappropriatematerialfeedingmechanismandenableautomaticdepositionpathcontrol?

Theanswerisyes.Thecorrespondingtechnologyisessentiallythe focusofthisbook,additivefrictionstirdeposition,whichintegratesthe frictionstirprinciplewitharobustmaterialfeedingmechanismtoenable location-specificdeposition.Asshownin Fig.1.4B,themachine's mechanicalsetupappearstobesimilartothatoffuseddepositionmodeling:thefeedmaterialissuppliedthroughachannelinsidetheprinthead beforeitisdepositedontothesubstrate.However,infuseddeposition modeling,thermoplasticprintingisimplementedsimplybyheatingand compression,whereasinadditivefrictionstirdeposition,thefrictionstir principleisemployed.Thisisbecausethedeformationofmetallicfeed materialandformationofmaterial substratebondingnecessitateamuch moreefficientthermomechanicalprocessingstrategy.Duringdeposition, thefeedmaterial whichisusuallyintheformofametalrod isstirred, severelydeformed,andmixedwiththesubstrate,resultinginmetallurgical bondformationacrosstheoriginalinterface.Withstronginterfacialbonding,thein-planemotionoftheprintheadrelativetothesubstrateresults

Figure1.4 Processesbasedonthefrictionstirprinciple:(A)frictionstirweldingand (B)additivefrictionstirdeposition. (A)isreprintedwithpermissionfromGemme,F., Verreman,Y.,Dubourg,L.,Jahazi,M.,2010.Numericalanalysisofthedwellphaseinfrictionstirweldingandcomparisonwithexperimentaldata.MaterialsScienceand Engineering:A527,4152 4160.

inamaterialpatterncontrolledbytheG-codeineachlayer.Through layer-by-layerdeposition,3Dmetalcomponentsarenaturallyformed.In additivefrictionstirdeposition,theextensiveflowofthefeedmaterial anditsmixingwiththesubstrateguaranteegoodmaterialqualityevenin theas-printedstate.

Atthetimeofwriting,additivefrictionstirdeposition,ultrasonicadditivemanufacturing,andcoldsprayrepresentthethreemajorsolid-state metaladditivemanufacturingtechnologies;thelatterwaspreviouslyconsideredacoatingprocessbuthasgraduallygainedmoreattentionfromthe

Figure1.5 Illustrationofthreemajorsolid-statemetaladditiveprocesses,additive frictionstirdeposition,ultrasonicadditivemanufacturing,andcoldspray.Thefeed materialandfinalgrainstructureareincluded. ReprintedwithpermissionfromYu,H. Z.,Mishra,R.S.,2021.Additivefrictionstirdeposition:adeformationprocessingrouteto metaladditivemanufacturing.MaterialsResearchLetters9,71 83.

additivemanufacturingcommunity(Yinetal.,2018).Alloftheseprocesses,asillustratedin Fig.1.5 (YuandMishra,2021),involvedirect printingofmetalswithouttheneedforextensivepostprocessing,suchas polymerburn-outandmetaldensification(e.g.,bysinteringorhotisostaticpressing).Bothadditivefrictionstirdepositionandcoldsprayare freeformprocessesthatenablelocation-specificdeposition,reinforcement, andrepair,whereasultrasonicadditivemanufacturingisasheetlamination processrequiringmachining.Althoughdeformationbondingistheprevalentbondingmechanism,coldsprayandultrasonicadditivemanufacturing onlyinvolvelocalplasticdeformationatthelayerinterfaceorparticle contact(TuncerandBose,2020).Incontrast,additivefrictionstirdepositioninvolvesglobaldeformationinthatallthematerialvoxelsinthe feed-rodundergosevereplasticdeformationathightemperatures.

Thankstothematerialflowandstress-state(i.e.,compressionand shear),additivefrictionstirdepositioniscapableofproducingafullydenseas-printedmaterial.Thereisnoneedforpostprocessannealingto eliminatetheporosity,whichisnecessaryforcoldspray.Inaddition,the

globaldeformationnatureleadstoauniform,equiaxed,finemicrostructureduetodynamicrecrystallization.Moreimportantly,theresulting mechanicalpropertiescanbecomparabletowroughtorforgedalloys. Thisisauniqueadvantagethatdistinguishesadditivefrictionstirdepositionfromothermetaladditiveprocesses.Inacertainsense,wemayconsideradditivefrictionstirdepositiontobeaforging-basedmetaladditive manufacturingapproach.

1.3Additivefrictionstirdeposition

Fig.1.6A illustratesthecross-sectionoftheprintingprocessbyadditive frictionstirdeposition.Ametalrodrapidlyrotatesasitpassesthroughthe rotatingprinthead,generatingfrictionalheatasitcontactsthesubstrate.

Figure1.6 Illustrationofthedeformationstepsinadditivefrictionstirdeposition. ReprintedwithpermissionfromGriffiths,R.J.,Garcia,D.,Song,J.,Vasudevan,V.K., Steiner,M.A.,Cai,W.,etal.,2021.Solid-stateadditivemanufacturingofaluminumand copperusingadditivefrictionstirdeposition:Process-microstructurelinkages.Materialia 15,100967.

Thefeed-rodthenheatsup,yields,andextrudestofillthespacebetween thesubstrateandtherotatingprinthead.Thedepositedmaterialgoes throughseveraldeformationsteps,includinginitialuniaxialcompression (Fig.1.6B),compressionandshearbelowtherotatingfeed-rod (Fig.1.6C),andfinalshear-dominateddeformationbelowtherotating printhead(Fig.1.6D)(Griffithsetal.,2021).

Inadditivefrictionstirdeposition,thematerialischaracterizedbya macroscopicshapechangefromarodtoathindiskbyextrusion,followedbyrotationandflowundertherotatingprinthead.Theprinthead regulatesthelayerthicknessbyimposingaverticalconstraint.Itsrotation alsosmearsandshearsthedepositedmaterialmoreandleadstogoodprint qualitywithnoporosity.Notethatthesurfacelayersofthesubstratealso getheatedupandplasticallydeformed,mixingwiththefeedmaterialand formingstronginterfacialbonds.

Unlikefrictionstirwelding,whichproducessteepstraingradientsand significantmicrostructuraldifferencesbetweenthestirzone, thermomechanically-affectedzone,andheat-affectedzone,additivefrictionstirdepositionproducesrelativelyuniformdeformationwithminor microstructuralvariabilityacrossthethicknessorwidth.Additivefriction stirdepositionshouldbedistinguishedfromanotherfrictionstir-derived technology,frictionstiradditivemanufacturing(Palaniveletal.,2015), whichisasheetlaminationprocessthatinvolvesstackingmultiplemetal layers(withathicknessofafewmillimeters)andjoiningthembyfriction stirwelding,followedbymachining.Weldingisdoneonthetoplayerof sheetsusingacustom-designedpinthatpenetratesthemvertically,rotates, andtraversestocreateajoininglinethroughouttheoverlappingsheets.This stacking,welding,andmachiningprocesscanberepeatedallowingforthe fabricationoflargecomponentsin3D.Althoughbotharebasedonthefrictionstirprincipleformaterialbonding,additivefrictionstirdepositionenables selective-areacladding,repair,andlocalfeaturebuildup,whichareallchallengingtoimplementusingfrictionstiradditivemanufacturing. Fig.1.7 illustratesandcomparesthetwoprocesses(Yu,2022).

Nomatteriftheprintingisbasedonliquidorsolidbondingmechanisms,themechanicalpropertiesoftheprintedmaterialaregovernedby themicrostructure.Asaresultofepitaxialsolidification,themicrostructureproducedbyfusion-basedmetaladditivemanufacturingischaracterizedbyhighlyoriented,columnargrains.Theratiobetweenthethermal gradientandsolidificationratemustbecarefullyadjustedtocausesignificantundercooling.Withthat,nucleationwithinthemoltenpoolis

Figure1.7 Illustrationandcomparisonof(A)additivefrictionstirdepositionand(B) frictionstiradditivemanufacturing. ReprintedwithpermissionfromYu,H.Z.,2022. EmergingProcesses FrictionStirBased,In:Caballero,F.G.(Ed.),Encyclopediaof Materials:MetalsandAlloys.Elsevier,Oxford,pp153 161andPalanivel,S.,Nelaturu,P., Glass,B.,Mishra,R.S.,2015.FrictionstiradditivemanufacturingforhighstructuralperformancethroughmicrostructuralcontrolinanMgbasedWE43alloy.Materials& Design(1980 2015)65,934 952.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.