Accident-tolerant materials for light water reactor fuels raul b. rebak (editor) - The ebook is avai

Page 1


https://ebookmass.com/product/accident-tolerant-materials-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Solar Fuels (Advances in Solar Cell Materials and Storage)

Nurdan Demirci Sankir

https://ebookmass.com/product/solar-fuels-advances-in-solar-cellmaterials-and-storage-nurdan-demirci-sankir/

ebookmass.com

Sustainable Alternatives for Aviation Fuels Abu Yousuf

https://ebookmass.com/product/sustainable-alternatives-for-aviationfuels-abu-yousuf/

ebookmass.com

Nanostructured Materials for Visible Light Photocatalysis (Micro and Nano Technologies) 1st Edition Arpan Kumar Nayak (Editor)

https://ebookmass.com/product/nanostructured-materials-for-visiblelight-photocatalysis-micro-and-nano-technologies-1st-edition-arpankumar-nayak-editor/ ebookmass.com

Foundations of Calculus for Data Science: An Foundational Guide to Understanding the Application of Calculus to Data Science Bisette

https://ebookmass.com/product/foundations-of-calculus-for-datascience-an-foundational-guide-to-understanding-the-application-ofcalculus-to-data-science-bisette/ ebookmass.com

Black Widows Cate Quinn

https://ebookmass.com/product/black-widows-cate-quinn/

ebookmass.com

Scripting Farming Simulator with Lua: Unlocking the Virtual Fields 1st Edition Zander Brumbaugh

https://ebookmass.com/product/scripting-farming-simulator-with-luaunlocking-the-virtual-fields-1st-edition-zander-brumbaugh/

ebookmass.com

Anesthesiology 3rd Edition David Longnecker Et Al.

https://ebookmass.com/product/anesthesiology-3rd-edition-davidlongnecker-et-al/

ebookmass.com

Windows 11 Mastery: From Foundation to Mastery 1st Edition Kameron Hussain

https://ebookmass.com/product/windows-11-mastery-from-foundation-tomastery-1st-edition-kameron-hussain/

ebookmass.com

Beginning EJB 3: Java EE 7 Edition Jonathan Wetherbee

https://ebookmass.com/product/beginning-ejb-3-java-ee-7-editionjonathan-wetherbee/

ebookmass.com

Science, Secrecy, and the Smithsonian: The Strange History of the Pacific Ocean Biological Survey Program Ed Regis

https://ebookmass.com/product/science-secrecy-and-the-smithsonian-thestrange-history-of-the-pacific-ocean-biological-survey-program-edregis-2/

ebookmass.com

Accident-Tolerant MaterialsforLight WaterReactorFuels

GeneralElectricResearch,Schenectady,NY,UnitedStates

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-12-817503-3

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionEditor: ChristinaGifford

EditorialProjectManager: JoshuaMearns

ProductionProjectManager: R.VijayBharath

CoverDesigner: MatthewLimbert

TypesetbyMPSLimited,Chennai,India

ResistanceofmonolithicFeCrAlcladdingtothermalshock

InteractionbetweentheuraniafuelandtheFeCrAlcladding

OxidationresistanceofFeCrAlinhigh-temperaturegas

Normaloperationoxidationtoaccidentoxidationscenarioand viceversa124

Scenario1:Water-oxidizedAPMTtubesexposedtosuperheated

Scenario2:Steam-oxidizedAPMTtubesexposedto high-temperaturewater

8.Maturityoftheaccident-tolerantfuelconcepts:

Preface

Theaimofthisbookistoprovideasnapshotonthestate-of-the-artdevelopmentofafamilyofmaterialscalledaccidenttolerantfuels(ATF)forcommerciallightwaterreactors.Thesematerialsincludeadvancedcladding componentsandfuelforms.Thisbookisnotmeanttobeacomprehensive orexhaustivecollectionofdataorinformationonmaterialsforcivilian nuclearpowergenerationsinceitsstatusiscontinuouslychanging,practicallyonaweeklybasis.Adescriptionisprovidedonhowtheenthusiasmof thecurrentdevelopmentofnewerinnovativematerialsstartedaftersixdecadesofstagnationorcomplacencyinthenuclearindustry.Thebookis intendedforgraduatestudentsornewprofessionalswhoaregettingstarted inthefield;sotheycanputthingsinperspectiveandunderstandhowwe reached2019,theyearofATF.

TheconceptofATFwasbornafterthe2011unfortunateeventsatthe FukushimaDaiichinuclearpowerstations.Initially,therewasastateofgreat concernthatthedestructivetsunamiwavenotonlywashedawaythediesel generatorsattheaffectedplants,butitalsosweptawaytheresolveofusing nuclearfissiontogeneratecivilianelectricity,especiallyinthewestern world.However,onlyafewmonthsafterthedisaster,thenuclearmaterials’ internationalcommunitywasabletorecoverfromthenegativereporting regardingtheexplosionsshownliveontelevisionworldwideandoffermaterialssolutionstoensurethattheeventsofFukushimawouldnotrepeatthemselves.Itwasabeautifulthingtowitnesshowgovernmentalfunding agencies,nuclearfuelvendors,regulatoryagencies,tradeorganizations,universityprofessors,reactorownerutilities,researchinstitutesscientists,and plantoperatorscameseamlesslytogethertooffersolutionsforthecontinuing useoflightwaterreactors.Theefforttolookforsolutionscametolifeat bothnationalandinternationallevels,andtherewas(is)agreatcontinuous cooperationbetweenalltheinvolvedparts.Thedevelopmentalprogramsare evolvingsoquicklythatalltheinitialschedulesarebeingbeaten.Thereis alsosuchanagilityintheexecutionoftheprogramsthatmanyinitialideas notdeemedviableoffastimplementationarebeingshedquicklyand researchersarejoiningforcesonthegrowthoftheremainingmorerobust concepts.Therefore,thefocusofthisbookistodescribeandassessthetechnologyreadinesslevelofonlythefewstrongestideasratherthantomeander tryingtocoverallearlyproposedideasthatmaybefarawayfromfruition.

Initialchapterssuccinctlydescribethehistoryandevolutionofnuclear energyasasourceofcivilianelectricity,praisingthematerialsthatwere abletomakepossibletheexistenceofnuclearpowerforalmostsevendecades.Themaingoalofthemoretechnicalchapterswastoreviewtheliteraturedatausingthesamesetofguidelines,metrics,orparameterstoevaluate thematurityofeachconceptandtoassesstheprogressorimportantgaps thatexistineachoftheengineeringanswerstothenewermaterialschallenge.Thisbookdoesnotcovereffortsandresultsfromthefieldofmodelingandsimulation.Ineachoneoftheproposedsolutionsthereisasolid foundationofsciencejustifyingtheviabilityofeachconcept,butforautility tobeabletoimplementtheproposedaccidenttolerantfuel,italsoneedsto besimple,practical,economical,andsafe.

Itisanexcitingtimetobeworkinginthefieldofadvancedtechnology materialsformakinglightwaterreactorssafertooperate.Theuseofelectricityoriginatingfromnuclearsourcesrepresentsacrucialcontributiontoa cleanenvironmentandtothereductionintheatmosphericreleaseof climate-changinggreenhousegases.

Finally,Iwouldliketoacknowledgethepatienceandunderstandingof myhusbandWilliamW.Wickline,whomakesmelaughandwhoprefersto ignorethetravailsoftherealworldbywatchingvintageHollywoodmovies.

RaulB.Rebak Schenectady,NewYork,May15,2019 x Preface

Listofabbreviations andacronyms

ANL ArgonneNationalLaboratory(UnitedStates)

AOOs Anticipatedoperationaloccurrences

ATF Accident-tolerantfueloradvancedtechnologyfuel

ATR Advancedtestreactor

BDBAs Beyond-design-basisaccidents

BNL BrookhavenNationalLaboratory(UnitedStates)

BWR Boilingwaterreactor

CANDU CanadaDeuteriumUranium

CA-PVD Cathodearcphysicalvapordeposition

CEA FrenchAlternativeEnergiesandAtomicEnergyCommission

CHF Criticalheatflux

CILC Crud-inducedlocalizedcorrosion

CMC Ceramicmatrixcomposite(SiC/SiC)

CNL CanadianNuclearLaboratories

CRIEPI CentralResearchInstituteofElectricPowerIndustry(Japan)

CTE Coefficientofthermalexpansion

CVD Chemicalvapordeposition

CVI Chemicalvaporinfiltration

DBA Design-basisaccident

DNB Departurefromnucleateboiling

DOE DepartmentofEnergy(UnitedStates)

EATF Enhancedaccident-tolerantfuel

EBSD Electronbackscatterdiffraction

ECCS Emergencycorecoolingsystem

ECR Equivalent-claddingreacted

EDF Electricite ´ deFrance

EDS Energydispersivespectroscopy

EGATFL ExpertGrouponAccident-TolerantFuelsforLightWaterReactors(NEA)

EPR Europeanpressurizedreactor

EPRI ElectricPowerResearchInstitute

ETF Elongationtofailure

HFIR High-fluxisotopereactor

HWC Hydrogenwaterchemistry

IAEA InternationalAtomicEnergyAgency

IMAGO IrradiationofMaterialsforAccident-tolerantfuelsintheGosgenreactor

INL IdahoNationalLaboratory(UnitedStates)

xii Listofabbreviationsandacronyms

IRSN Institutderadioprotectionetdesu ˆ rete ´ nucle ´ aire(France)

JAEA JapanAtomicEnergyAgency

KAERI KoreaAtomicEnergyResearchInstitute

KIT KarlsruheInstituteofTechnology(Germany)

KTH RoyalInstituteofTechnology(Sweden)

LBM Laserbeamwelding

LFA Leadfuelassembly

LFR Leadfuelrods

LHGR Linearheatgenerationrate

LOCA Loss-of-coolantaccident

LTA Leadtestassemblies

LTR Leadtestrod

LWR Lightwaterreactor

METI MinistryofEconomy,TradeandIndustry(Japan)

NDE Nondestructiveevaluation

NEA NuclearEnergyAgency

NEAMS Nuclearenergyadvancedmodelingandsimulation

NFD NipponNuclearFuelDevelopment

NPP Nuclearpowerplant

NPS Nuclearpowerstation

NRC NuclearRegulatoryCommission(UnitedStates)

NWC Normalwaterchemistry

OD Outerdiameter

ODS Oxidedispersionstrengthened

ORNL OakRidgeNationalLaboratory(UnitedStates)

PCI Pellet cladinteraction

PCMI Pellet cladmechanicalinteraction

PIE Postirradiationexamination

PNNL PacificNorthwestNationalLaboratory(UnitedStates)

PRW Pressureresistancewelding

PSI PaulScherrerInstitute(Switzerland)

PVD Physicalvapordeposition

PWR Pressurizedwaterreactor

RBMK HighPowerChannel-TypeReactor(Russia)

RCS Reactorcoolantsystem

RE Rare-earthelements

RIA Reactivity-initiatedaccident

RPV Reactorpressurevessel

RT Roomtemperature

SBO Stationblackout

SCC Stresscorrosioncracking

SEM Scanningelectronmicroscopy

TD Theoreticaldensity

TIG Tungsteninertgas

TREAT Transientreactortestfacility

TRISO Tri-structuralIsotropic

TRL Technologyreadinesslevel

UTS Ultimatetensilestrength

VHT Veryhightemperature

VVER Water waterenergeticreactor(Russia)

XRD X-raydiffraction

YS Yieldstress

Chapter1

Nuclearpoweriscleanandsafe

ChapterOutline

Overview1

Thefirststepsofcommercialnuclear power8

Overview

Theelectricityintheinterconnectedcommercialgridcomesfrommany sourcesincludingfossilfuels,renewableenergies(e.g.,solarandwind),and nuclearenergy.Theenergyharvestedfromnuclearfissionsourcesisclean, itdoesnotreleasegreenhousegasestotheenvironment,anditdoesnotcontributetoclimatechange.Moreover,nuclearsourcedelectricityisthesafest typeforcivilianuse.IntheUnitedStatesandaroundtheglobe,thenumber ofhumandeathsperkilowatthourofgeneratedelectricityfromnuclear sourcesisfiveordersofmagnitudelowerthanforcoalandotherhydrocarbonsources.Nuclearelectricityisevensaferthansolarorwindelectricity.

Nuclearpowerwasfirstusedformilitarypurposes,especiallyforthepropulsionofsubmarines.However,intheearly1950s,theUnitedNationsprogramofAtomsforPeace,boththeUnitedStatesandtheSovietUnion developedtheirfirstciviliannuclearpowerplantswhichwereconnectedto theirrespectivegridsinthelate1950s.Ataroundthistime,thetrustedfuel rodpairofzirconiumalloycladdingcontainingpelletsofuraniafuelwas bornandusedformanydecadessince.Currently,thereareapproximately30 nationswhichuse451civilianreactorstogenerateelectricity.Thelargest expansionofnuclearreactorswasinthedecadesof1970sand1980s.In 2019therewere54newreactorsunderconstruction,mainlyinAsia.

Introduction

Cleanenergyisanenergythatdoesnotpollutetheenvironmentnor increasestheamountofgreenhousegasesthatmaycontributetoclimate change.Nuclearenergyiscleanenergysinceitdoesnotchangethecarbon footprintintheplanet.Nuclearenergyisalsothesafestformofallenergies

2 Accident-TolerantMaterialsforLightWaterReactorFuels

usedtogenerateelectricity.Nuclearenergyisevensaferthantherenewable solarorwindenergies.Electricitygeneratedusingfossilfuelsmayincrease thecarbonfootprintbyreleasingmethanegastotheatmosphereinthe upstream(duringexplorationandproduction)andthenreleasingcarbon dioxidetotheatmosphereinthedownstreamwhenthefossilfuelsorhydrocarbonsareburnttoextracttheheat.

SteamturbinesgeneratemostoftheelectricityusedintheUnitedStates andintheplanet.Powerplantsthatarefedbyuraniumorcoalaresimilarin thesensethatbothusesteamturbinestomovethegeneratorstoproduce electricity.Nuclearandcoalplantsdifferinthewayhowtheymaketheir steamneededfortheturbines.Onetypeofplantsplitstheatomthrougha fissionreactionwhichgeneratesvastamountsofenergy,andtheothertype ofpowerplantburnshydrocarbonsthroughacombustionreaction.Overall, theoperationofbothtypesofplantsgreatlydiffersinthefactthatoneplant producessteaminthesafestandcleanestwaypossiblewhiletheotherdoes not.

Worldwide,thegenerationofelectricpowerhasseveralsourcesof energythatcanbegroupedas:(1)fossilfuels(coal,petroleum,andnatural gas),(2)nuclear,and(3)renewable(wind,solar,hydroelectric,geothermal, biomass,etc.)sources. Fig.1.1 showsthattheworldenergyconsumptionin thenexttwodecadeswillbestilldominated(B80%)bytheburningoffossil fuels(liquid,gas,andcoal).Nuclearenergyrepresentsonly6%oftheenergy consumedworldwide.IntheUnitedStates,30%oftheconsumednaturalgas isusedtogenerateabout20%oftheelectricalpowerproducedinthecountry.Theother70%oftheconsumednaturalgasisusedforpurposesother thantogenerateelectricity,forexample,forheating.Onthecontrary,100% ofthenuclearenergygeneratedisusedtoproduceelectricity.

Nuclearoratomicenergyisreleasedwhenatomsaresplitinareactor. Thereleaseofnuclearfissionenergyistransferredtowater,whichmakes

FIGURE1.1 Worldenergyconsumption.

Operationalpowerreactors(IAEA,2019).

steamthatisusedtospintheturbineswhichrotatestheshaftoranelectrical generator.Electricitygeneratedusingnuclearsourcesrepresentsabout20% ofalltheelectricalpowerconsumedintheUnitedStates.Inothercountries, suchasFrance,theelectricitygeneratedfromnuclearfissionrepresentsover 70%ofthetotalelectricityconsumedinthenation.Therearecurrently around30countriesintheglobethatusenuclearsourcestogeneratecivilian electricity(IAEA,2019).

Fig.1.2 showsthattheworldwidenumberofoperationalreactorsslightly increasedbetween2013and2019from430to446(IAEA,2019).ThelargestincreaseinnewerpowerreactorswasinAsiaandEasternEurope(China, Korea,India,Pakistan,andRussia).ThenotableincreasewasinChinawhere thenumberofreactorsmorethandoubledfrom18in2013to46in2019.In thewesternworld,thenumberofoperationalreactorsmostlydecreased, exceptforArgentinawhereitincreasedfromtwotothree.

Fig.1.3 showsthenuclearpowerpercentageofthetotalelectricityconsumedinthe30currentcountrieswithnuclearpowerfor2013and2019 (IAEA,2019).Thecountrieswiththelargestshareofnuclearpowerare France,Slovakia,Ukraine,Belgium,andHungary.Franceisalsoexporting electricitytoneighboringcountriessincetheircostofpowergenerationis lowcomparedtoothernonnuclearsourcesinthoseneighboringcountries. Therewaslittlechangebetweentheshareofnuclearpowerbetween2013 and2019forthe30countrieslisted.IntheUnitedStates,forexample,the shareofnuclearpowerstayedthesameat20%betweenthese2years,consideringthatthecountryhadfourfewerreactorsin2019thanin2013.One

FIGURE1.2

4 Accident-TolerantMaterialsforLightWaterReactorFuels

ofthereasonsisthatthepowerreactorsbecamemoreefficientandanother reasonisbecausethetotalconsumptionofelectricitydecreasedduetheenvironmentalgreenmeasures.

Fig.1.2 showsthatJapanhadapproximately40operationalreactors between2013and2019buttheshareofnuclearpowerwasonlyintheorder of3%.ThereasonforthisisthatmostoftheJapanesereactorswerenotproducingelectricityinthisperiodbecauseoftheirtemporaryshutdownfollowingtheFukushimaaccidentofMarch2011.Beforetheaccidentatthe Fukushimasite,thenuclearpowershareinJapanwasapproximately30% (IAEA,2019).

Fig.1.4 showstheagedistributionofthe451powerreactorsoperating worldwideinMay2019(IAEA,2019).Sixty-eightpercentofthereactors are30ormoreyearsoldandonly13%ofthereactorshaveanageof10 yearsorless.Theworldwidefleetofpowerreactorsisaging,butitalso appearsthatthereisaslightincreaseinthenumberofreactorswith5years orlessinage.Itisimportanttopreventtheshutdownofolderreactorsby licenserenewal.Oneofthemeasurestopreventtheshutdownofolderreactorsistoretrofitthemusingaccidenttolerantfuels,whichwillmakethe reactorssafertooperate.

IntheUnitedStates,therearecurrently98operatingcommerciallight waterpowerreactors,34boilingwaterreactors(BWRs),and64pressurized waterreactors(PWRs).Approximately90%oftheUSpowerreactorsareat least30yearsoldand45%ofthereactorsareatleast40yearsold.Onlyone

FIGURE1.3 Nuclearpowershare(IAEA,2019).

FIGURE1.4 Agepowerreactors.

newreactorwasconnectedtothegridintheUnitedStates,inthelast25 yearsandonlytwonewreactorsarecurrentlyunderconstruction(2019).

Fig.1.5 showsthat19countrieshavecurrentlypowerreactorsunderconstructionascomparedto15countriesin2013.Fourcountries(Bangladesh, Belarus,Turkey,andUnitedArabEmirates)thatdidnothavenuclearpower beforearecurrentlyplanningtoentertheinternationalcommunityofgeneratingelectricityfromnuclearenergy(IAEA,2019).China,India,andRussia havecurrentlythelargestamountofnuclearpowerplantsunderconstruction, eventhoughtheconstructionrateinChinaseemedtohavesloweddownin thelastquinquennium.TheUnitedArabEmirateshasfourreactorsunder constructionwhichismorethandoublethanitwasin2013.Itislikelythat EgyptwillfollowsoonwithapowerreactoroftheirownintheArabcommunity.Egypthashadanuclearprogramsince1954.Therearealsocurrent advocacygroupstobringnuclearpowertoAustralia,consideringthat Australiahasmorethan30%oftheworlddepositsinuranium,similartothe depositsofCanadaandKazakhstan.

Benefitsofnuclearenergy

Nuclearpowerplantsworkallthetime,andtheydonotneedspecificclimaticconditionstooperate.Nuclearenergyprotectstheenvironmentsinceit doesnotreleasenitrogenoxide,sulfuroxide,orcarbondioxide.The

Accident-TolerantMaterialsforLightWaterReactorFuels

FIGURE1.5 Reactorsunderconstruction.

FIGURE1.6 Casualtiesperkilowatthour(kWh).

productionofnuclearelectricitydoesnotgenerateparticulatesorspread mercuryanditdoesnotcontributetothereleaseofmethanetotheatmosphere.Nuclearenergyisalsothesafesttypeofenergysinceithistorically

producedthelowestnumberofcasualtiesorfatalitiesperkilowatthourof energygenerated(Fig.1.6).Thelargestnumberofhumancasualtiesaround theworldbecauseofgeneratingelectricityiscausedbyairpollution,more specificallybythepresenceoffineparticulatematter( , 2.5 µmdiameter)in theatmosphere.Thefinesuspendedparticulatematter,whichoriginates mainlythroughtheburningofcoal,maycausemorethan2milliondeathsa yearmainlyintheformofcardiopulmonarydiseasesandlungcancer(Silva etal.,2013).MostoftheseannualprematuredeathsareinAsia(India, SoutheastandEastAsia)(Silvaetal.,2013).

Fig.1.6 showsthemortalityrateintheUnitedStatesperkilowatthourof electricitygeneratedaccordingtofivesourcesofenergy.Thehumanfatalities causedbytheburningofcoalarefiveordersofmagnitudehigherthanthe fatalitiescausedbynuclearpower.Majoraccidentscausingimmediatedeaths andrelatedtotheproductionofelectricityincludethecollapseofdams (hydroelectricity),coalminingaccidents,andtheruptureofpipelinesfollowedbyexplosions.Forexample, theruptureoftheShimantanDamin 1975producedmorethe170,000humanf atalities.Coalminingaccidents producedalmost5000immediatedeath sin2006inChinaalone.Moreover, inChina,morethan70,000minersayearsufferfromtheblacklungdisease (pneumoconiosis).IntheUnitedStates,thefatalitiesincoalmineswerein theorderof1500peryearuntilthe1970s,whicheventuallydeclinedtoless than100peryearbetween1990and2012.Incontrast,intheUnitedStates, therewerezerofatalitiesrelatedtotheproductionofelectricityfromnuclear sources.

Whydoesnuclearpowerstillhaveamixedsupportinthepublic?Itis mainlybecausenuclearenergyiscomplexandnontransparent.Thegenerationofcivilianpowerusingnuclearenergyhasanunprecedentedandunparalleledsafetyrecord.Itsimplementationfollowsstrictlicensingprocedures andregulationsandthenuclearpowerplantsareoperatedandmaintainedby highlytrainedprofessionals.Onlythreemajoraccidentsarerelatedtothe productionofcommercialelectricityfromnuclearfissionsourcesandare describedin Table1.1.TheaccidentthatcausedthelargestnumberofcasualtieswasinUkrainebytheChernobylReactorNumber4.Approximately 30firstresponders’firefightersdiedduringorimmediatelyafterthe Chernobylaccidentanditisestimatedthatthehumancasualtiesmayhave reachedseveralthousandsinthethreedecadessincetheaccident,mainly becauseofcancer.Bycontrast,theaccidentofThreeMileIslandhadzero immediateandlong-termcasualties.TheFukushimaaccidentsitssomewhere inthemiddle.TheonlycasualtiesattheFukushimasiteduringthetsunami andtheimmediateeventswereduetothedrowningoftwotechnicianswho wereinthebasementwhenthesecondwavehittheturbinebuildings. RelatedprematurecasualtiesbecauseoftheFukushimaaccidentemanated fromtheevacuationofelderlyandailingresidentsfromnearthepower

8 Accident-TolerantMaterialsforLightWaterReactorFuels

TABLE1.1 Commercialnuclearaccidents.

Commercial nuclear accident

ThreeMile Island,1979

Chernobyl, 1986

Whathappened?Directhumancasualties (delayed,estimated)

PartialmeltdownofthePWRUnit2 reactorduetoalossofcoolantinthe primarycircuitcausedbyavalve stuckopen.Cause,humanerror,& lackoftraining.

Steamexplosionfollowedbyopen airgraphitefireofthelightwater graphitemoderatedRBMKUnit4 reactorduringatesttosimulatea stationblackout.Thefireburnedfor 9daysreleasingfissionproductsto theatmosphere.Cause,operator error,negligence,&lackoftraining orknowledge.

0(0)

30(134upto1996, maybeatotalof4000, leukemiaandcancer)

Fukushima Daiichi,2011

Hydrogengasexplosionsbecauseof lossofcoolantduetostationblack outcausedbyatsunamiwave. Releaseofradioactiveproductsto theatmospherefromBWRUnits1, 2,and3.Cause,failureofoperator tomeetbasicsafetyrequirements.

2drowned(1600elderly relatedtoevacuation,not toradiation)

BWR,Boilingwaterreactor; PWR,pressurizedwaterreactor; RBMK comesfrom“ReaktorBolshoy MoshchnostiKanalnyy”whichmeans“HighPowerChannel-typeReactor”.

station.CasualtiesduetoirradiationexposureintheFukushimaPrefecture maynotbeprovenyet.

Thefirststepsofcommercialnuclearpower

CiviliannuclearpowerwasdevelopedalmostsimultaneouslyintheUSSR andintheUnitedStatesinthemidtolate1950s. Fig.1.7 showsafewmilestonesofnuclearpowerfrom1950,mostlycenteredaroundeventsinthe UnitedStates.Theutilizationofnuclearenergytogenerateelectricityoriginatedfromthediscoveryofthenuclearfission(andthereleaseofheat)in December1938inGermany.Thecontrolledreleaseofnuclearenergybya self-sustainingchainreactionwasrealizedbyEnricoFermiattheUniversity ofChicagoinDecember1942.CriticalitywasreachedintheFermibuiltpile reactorwithnaturaluranium.Areactorachievescriticalityandbecomescritical,wheneachfissioneventreleasesenoughneutronstosustainanongoing

Nuclearpowertimeline.

FIGURE1.7

10 Accident-TolerantMaterialsforLightWaterReactorFuels

seriesofreactions,producingacontinuousreleaseofheat.Approximately 99%ofthenaturaluraniumistheuranium-238(U-238)isotopewhichis nonfissile.Thenaturaluraniumalsocontainsapproximately0.7%ofthefissileU-235isotope.AftertheFermisustainedchainreactiondemonstration, effortswereundertakenattheClintonEngineerWorksatOakRidgeto enrichtheuraniumfuelintheU-235isotopefromapproximately0.7%to levelsintheorderof3% 5%.Theearly1940seffortsandactionstoharvest energyfromnuclearfissionwereacceleratedasaresponsetotheWorldWar IIeventsinEurope.

TheuseofnuclearfissionenergytoproduceelectricityintheUnited Stateswasmainlytheresultofthelaborsofoneperson,HymanGeorge Rickover.RickoverwasanofficerintheUSNavyandafterspendingtime duringWorldWarIIinthePhilippinesandJapan,hereturnedtotheUnited Statesanddecidedtoreinventhisowncareerbydedicatinghimselftolearn howtousenuclearenergytopropelasubmarine.Between1946and1947, RickoverspentayearatOakRidgetolearnasmuchashecouldabout nuclearenergyandthenhereturnedtoWashington,DC,tobethedirectorof reactordevelopmentinthenewlycreated(1946)AtomicEnergy Commission.Rickover’smainobjectivewastobuildareactorforasubmarinebutbecauseofpoliticalbacklash,theUSpoliticalsystemdecidedto demonstrateintheearly1950sthatnuclearenergycouldbeusedforpeacefulpurposes,suchasgeneratingelectricityfortheciviliandistributiongrid.

Thefirstpressurizedlightwatercooledpowerreactortobeconnectedto theelectricalgridandtooperatecommerciallywastheatomicpowerstation 1(APS-1)atObninsk,USSR,onJune27,1954(Simnad,1981).The Obninskreactoralsoservedasaresearchstationforseveraldecadesuntilit wasdecommissionedin2002.Researchanddevelopmentconductedatthe ObninskpowerstationhelpedinthedesignandimprovementoftheRBMK sovietpowerreactor,atypeofpowerreactorwhichisstillinusetoday. AfteranRBMKtypereactorsufferedtheaccidentinChernobylinUkraine inApril1986,theexistingoperatingRBMKreactorsweremodifiedandretrofittedtomakethemmoreresilienttoaccidents.TheRBMKdesignissimple,ituseslightwaterforcoolant,graphitewithboroncarbideforcontrol rods,andzirconium niobiumcladdingfor2%enricheduranium235inuraniafuel.

Asmentionedearlier,thefirstwesternproductionofelectricitybyways ofharvestingnuclearfissionenergywasapoliticalmovebytheUnited Statestofulfillthegoalofpeacefulusesofatomicenergy,asafollow-upof theDecember8,1953,“AtomsforPeace”speechbytheUSPresident DwightD.EisenhowerdeliveredattheUnitedNationsGeneralAssembly.A PWRthatwasunderconstructionintheearly1950sattheWestinghouseoperatedBettisLaboratories(nearPittsburgh)foranaircraftcarrierwas repurposedtobeusedfortheciviliangenerationofelectricity.TheUS AtomicEnergyCommissionpartneredwiththeWestinghouseCoandthe

DuquesneLightCompanytotakethisfirstcivilianpowerreactortocompletion(Lustman,1981;VanDuysenandMericdeBellefon,2017).ThelocationforthisfirstcivilianreactorwasShippingportinBeaverCountyonthe OhioRiverapproximately40kmsouthofPittsburgh.Theresponsibilityof theconstructionofthereactorwasgiventoRearAdmiralH.G.Rickover, DirectoroftheAtomicEnergyCommissionDivisionofNavalReactors.The constructioncompanyfortheShippingportreactorwasWestinghouseand theutilitythatwasgoingtoparticipateintheconstructionandlaterdistribute theelectricitywastheDuquesneLightCompany.ThegroundbreakingceremonyfortheciviliannuclearpowerstationonShippingportwason September6,1954(Karoutasetal.,2018).Thenuclearpowerstationreached criticality3yearslater,onDecember2,1957(Fig.1.7).Thefirstelectricity fromthisplantarrivedattheelectricgridonDecember18,1957,andthe plantgeneratedelectricityuntilitwaspermanentlyshutdownin1982.The objectivebytheUSAtomicEnergyCommissionintheearly1950swasto haveapublicutilityrunanuclearpowerreactorbeforetheSecondUnited NationsInternationalConferenceonthePeacefulUsesofAtomicEnergyin GenevaSeptember1 13,1958(UnitedNations,1958;Lustman,1981).As inthecaseoftheObninskpowerplantintheUSSR,Shippingportwasbuilt toserveadualpurpose,notonlyasapowergeneratorforthegrid,butalso asatestfacilityfortheadvancementofnuclearpowertechnology.

ThereactoratShippingportwasaPWRbasedonpreviousdesignsmade fortheUSNavynuclearsubmarinessuchastheMark1prototypebuiltin IdahoandthesecondcomparablereactorbuiltfortheNautilussubmarine (Lustman,1981;VanDuysenandMericdeBellefon,2017).ThefirstsubmarinetypePWRcalledS1Wwasbuiltonlandanditachievedcriticalityon March30,1953.ThesecondPWRwasinstalledintheNautilussubmarine andcommissionedonSeptember30,1954.Twoengineeringandmaterial issueshadtoberesolvedatthattime:(1)whattouseforthefueland(2) whattouseforthecladdingofthefuelinthereactors.ThecorrosionbehaviorofnuclearcandidatematerialsintheUnitedStatesintheearlier1950s wascharacterizedbyurgencyandsecrecy(WanklynandJones,1962). Remarkably,inthemidtolate1950s,thebasicphenomenaoftheoxidation ofZircaloy-2inair,waterandsteamwerealreadyratherwelltestedandrecognized.Then,thedecisionwasmadethatShippingportwasgoingtouse Zircaloy-2ascladdingforthefuelbasedonthepositiveresultsfromtheprevioustwobuiltreactors,thelandbasedinIdahoandtheNautilusone,even thoughZircaloywasveryexpensiveatthattimesincetheKrollproduction processwasnotoptimizedyet.Also,atthetimeofthefabricationofthe ShippingportreactoratBettis,theonlyknownfuelwasmetallicuranium, sometimesminimallyalloyedtocontrolgrainsize(Lustman,1981). Compatibilitystudiesofmetallicuraniumwithhotwaterthatmaycomein contactviacladdingdefectswerenotoptimistic.When9% 12%ofmolybdenumwasaddedtotheuraniummetal,theresearchersachievedthegamma

12 Accident-TolerantMaterialsforLightWaterReactorFuels

orface-centeredcubic-phasestabilizationoftheuraniummetalanda decreaseofseveralordersofmagnitudeinthecorrosionrateofmetallic uraniuminhotwater.ItwasalsobelievedthatMoadditionswouldlimit swellingduringirradiation(Lustman,1981).Ataroundthesametimeinthe mid-1950s,Glatter,aBettisceramist,waspushingfortheconsiderationof urania(UO2)forthefuelinthethreereactorsbuiltorunderconstructionin theUnitedStates(Lustman,1981).Oneofthemainissuesthatmanyresisted ontheimplementationofuraniaasfuelwasitspoorthermalconductivity. Highthermalconductivityisneededtoremovetheheatquicklyfromthe fuel,viathecladdingandintothecoolantwater.Nevertheless,uraniawas consideredattractivebecauseofitsresistancetointeractionwithwaterinthe caseofacladdingbreachandbecauseofitsresistancetoirradiationdamage (AngandBurkhammer,1960).Eventuallyinthe1950s,aftermanyfabricationandperformancetrials,themanufacturingofuraniawasdeemedareproducible,controllable,andpredictableprocess(Lustman,1981).Thereforein thelate1950s,thecoupleorpairofuraniafuelandZircaloy-2claddingwas bornandadoptedeversinceformanydecadestocomeallovertheworld (Fig.1.7)(Lustman,1981).Atthesametime,theUSNavyusedZircaloy claddingfortheuraniumdioxide(UO2)oruraniafuel,butintheearly 1960s,thecostofzirconiumwashighenoughthatmostofthecommercial nuclearpowerstationsbuiltintheUnitedStatesusedstainlesssteelsforthe claddingoftheuraniapellets(Simnad,1981).EventuallyasthecostofzirconiumstartedtodecreaseaftertheKrollproductionprocesswasoptimized, thecommercialplantsshiftedfromausteniticstainlesssteelssuchastype 304toZircaloy-2orZircaloy-4.

Thedesign,construction,andtestingofBWRs,withoutasecondloopto producesteam,wereexploredbothintheUnitedStatesandtheUSSRonthe mid-1950stoearly1960s(Simnad,1981).IntheUnitedStates,Argonne builtanexperimentalBWRwhichoperatedbetween1956and1967demonstratingthefeasibilityofanintegratedBWRplant.GeneralElectricbuiltthe VallecitosprototypeBWRwhichoperatedbetweenOctober1957and December1963.TheGEVallecitosreactorstartedoperation4monthsbefore theWestinghouseShippingportinPennsylvania(Fig.1.7).Eventhough VallecitosgeneratedelectricityforthePacificGas&Electriccompanygrid, itspowercontributionwassmallenoughthatVallecitosisnotgenerally acceptedasthefirstUScivilianpowerreactor,therecordthatbelongsto Shippingport(VanDuysenandMericdeBellefon,2017).TheactualfirstUS civilianBWRwastheDresdenpowerstationdesignedbyGE,whichstarted operationsin1960inIllinois(VanDuysenandMericdeBellefon,2017). Dresdenwasthefirstreactordesignedandbuiltbyprivateinitiativeand withoutgovernmentassistance.MeanwhileintheUSSR,acoreofaBWR startedtestinginsidetheObninskAPS-1reactorin1954(Simnad,1981). ThefirstfullycommercialPWRintheUnitedStateswasYankee-Rowe powerstationinwesternMassachusetts,whichstartedoperationinJanuary

USreactorsfirstconnectedtogrid.

1961andendedinFebruary1992.InitiallythefuelintheYankee-Rowe PWRplantwasuraniapelletsandthecladdingwastype348austeniticstainlesssteel,withsomeelementshavingZircaloy-2cladding(Simnad,1981).

Figs.1.7and1.8 showthatthehighestnumberofpowerreactorsconnectedtotheUSgridwas12in1974(IAEA,2019). Fig.1.8 showsfora spanof60yearsthenumberofreactorsconnectedannuallytotheUSelectricalgrid.Mostofthereactorswereconnectedinthefirst30years (1960 90).Forthelast30years(1990 2019),onlyfournewreactorswere connectedtothegrid.Thelargestnumberofreactorswasconnectedinthe mid-1970sandlateragaininthemid-1980s.

TheVallecitosreactorinSunol(California)hadtheUSAtomicEnergy CommissionPowerReactorLicenseN 1.Vallecitoswasthefirstprivately ownedcommercialprototypeBWRownedbyGeneralElectric.Thisreactor initiallyusedaustenitictype304SScladdingforslightlyenrichedurania fuel.LatersomeofthecladdingwasreplacedusingZircaloy-2andZircaloy4(Simnad,1981).Eventually,someofthetype304SScladdingwasfound tosufferintergranularstresscorrosioncrackingfromthecoolantside,mainly becauseoftheradiolyticoxygen-containingenvironment(Terrani,2018). Thetype304SSusedinthe1960scontainedaconsiderableamountofcarbonandduringtheweldingoftheendcaps,theausteniticsteelwouldsensitize,makingtheweldseamareavulnerabletostresscorrosioncrackingfrom thecoolantside,mainlybecauseofthehighcorrosionpotentialinthewater

FIGURE1.8

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.