A practical approach to fracture mechanics 1° edition jorge luis gonzález-velázquez - The full ebook

Page 1


https://ebookmass.com/product/a-practical-approach-tofracture-mechanics-1-edition-jorge-luis-gonzalez-velazquez/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Introduction to Fracture Mechanics Robert O. Ritchie

https://ebookmass.com/product/introduction-to-fracture-mechanicsrobert-o-ritchie/

ebookmass.com

Fracture Mechanics: Fundamentals and Applications, Fourth Edition 4th Edition – Ebook PDF Version

https://ebookmass.com/product/fracture-mechanics-fundamentals-andapplications-fourth-edition-4th-edition-ebook-pdf-version/

ebookmass.com

Pathophysiology: A Practical Approach 3rd Edition

https://ebookmass.com/product/pathophysiology-a-practicalapproach-3rd-edition/

ebookmass.com

Bystander Society: Conformity and Complicity in Nazi Germany and the Holocaust Mary Fulbrook

https://ebookmass.com/product/bystander-society-conformity-andcomplicity-in-nazi-germany-and-the-holocaust-mary-fulbrook/

ebookmass.com

https://ebookmass.com/product/get-it-done-surprising-lessons-from-thescience-of-motivation-ayelet-fishbach/

ebookmass.com

Programming with Microsoft Visual Basic 2017 8th Edition

Diane Zak

https://ebookmass.com/product/programming-with-microsoft-visualbasic-2017-8th-edition-diane-zak/

ebookmass.com

The Virtues in Psychiatric Practice John R. Peteet

https://ebookmass.com/product/the-virtues-in-psychiatric-practicejohn-r-peteet/

ebookmass.com

Spatiotemporal changes of drought characteristics and their dynamic drivers in Canada Yang Yang & Thian Yew Gan & Xuezhi Tan

https://ebookmass.com/product/spatiotemporal-changes-of-droughtcharacteristics-and-their-dynamic-drivers-in-canada-yang-yang-thianyew-gan-xuezhi-tan/

ebookmass.com

Chemical Analysis and Material Characterization by Spectrophotometry Bhim Prasad Ka■e

https://ebookmass.com/product/chemical-analysis-and-materialcharacterization-by-spectrophotometry-bhim-prasad-ka%ef%ac%82e/

ebookmass.com

Adversarial Robustness for Machine Learning Chen

https://ebookmass.com/product/adversarial-robustness-for-machinelearning-chen/

ebookmass.com

APRACTICALAPPROACHTO FRACTUREMECHANICS

Thispageintentionallyleftblank

APRACTICALAPPROACHTO FRACTUREMECHANICS

JORGELUISGONZÁLEZ-VELÁZQUEZ

MetallurgicalandMaterialsEngineeringDeparmentof InstitutoPolitécnicoNacional, MexicoCity,Mexico

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany methods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-823020-6

ForinformationonallElsevierpublicationsvisitourwebsite at https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: DennisMcGonagle

EditorialProjectManager: RachelPomery

ProductionProjectManager: PremKumarKaliamoorthi

CoverDesigner: VictoriaPearson

TypesetbyTNQTechnologies

1.Generalconceptsofmechanicalbehaviorandfracture1

1.1 Fracturemechanics fieldofapplication1

1.2 Definitionofstressandstrain3

1.3 Mechanicalbehaviorundertension6

1.4 Thestresstensor13

1.5 TheMohr’scircle17

1.6 Yieldcriteria21

1.7 Stressconcentration24

1.8 Definitionsandbasicconceptsoffracture27

1.9 Objectand fieldofapplicationoffracturemechanics31

2.Linearelasticfracturemechanics35

2.1 Cohesivestrength35

2.2 TheGriffithcriterion37

2.3 Thestressintensityfactor(Irwin’sanalysis)40

2.4 Solutionsofthestressintensityfactor48

2.5 Experimentaldeterminationofthestressintensityfactor56

2.6 Determinationofthestressintensityfactorbythe finiteelementmethod62

2.7 Theplasticzone66

2.8 Thecracktipopeningdisplacement72

3.Theenergycriterionandfracturetoughness75

3.1 Theenergycriterion75

3.2 TheR-curve81

3.3 Planestrainfracturetoughness86

3.4 Planestrainfracturetoughnesstesting(KIC)87

3.5 Effectofsizeonfracturetoughness94

3.6 Charpyimpactenergyfracturetoughnesscorrelations96

3.7 Dynamicfractureandcrackarrest98

4.Elastic-plasticfracturemechanics107

4.1 Elastic-plasticfractureandthe J-integral107

4.2 JIC testing113

4.3 Useofthe J-integralasafractureparameter118

4.4 Thecrack-tipopeningdisplacementasfractureparameter125

4.5 Thetwo-parametercriterion133

5.Fractureresistanceofengineeringmaterials145

5.1 Remainingstrength145

5.2 Materialsselectionforfractureresistance153

5.3 Materialpropertiescharts163

5.4 Failureanalysisusingfracturemechanics165

5.5 Reinforcementofcrackedstructures168

5.6 Theleak-before-breakcondition172

6.Fatigueandenvironmentallyassistedcrackpropagation177

6.1 FatiguecrackgrowthandParis’slaw177

6.2 EffectoftheloadratioontheFCGrate183

6.3 Fatiguecrackclosure184

6.4 Effectoftheenvironmentonfatiguecrackgrowth190

6.5 Effectofvariableloadsonfatiguecrackgrowth192

6.6 Effectofasingleoverloadonfatiguecrackgrowth195

6.7 Fatiguecracksemanatingfromnotchesandholes200

6.8 Stress-corrosioncracking204

6.9 Creepcrackgrowth208

6.10 Crackgrowthbyabsorbedhydrogen213

7.Structuralintegrity219

7.1 In-servicedamageofstructuralcomponents219

7.2 Generalaspectsofstructuralintegrity227

7.3 Remaininglifeofcrackedcomponents235

7.4 Amethodologyfortheestimationofremaininglife241

7.5 Structuralintegrityassessmentprocedure250

7.6 Exampleofastructuralintegrityassessment256

Preface

Rightafter finishingmyPhDinmetallurgyattheUniversityofConnecticutin1990,undertheguidanceofProfessorArthurJ.McEvily,a renownedpioneeronthestudyoffatiguecrackpropagationunderthe fracturemechanicsapproach,Ibecameafull-timeprofessorattheMetallurgyDepartmentoftheInstitutoPolitecnicoNacional(IPN),thesecondlargesthighereducationinstitutioninMexico,withmorethan200,000 students.Asayoungteacherandresearcher,Ihadthefullintention ofapplyingmyknowledgetothesolutionofthetechnologicalchallenges ofmycountryandperhapsmakeasignificantcontributiontothe fieldsof metallurgyandfracturemechanics.Asaresult,Iintroducedthevery first graduate-levelcourseonFractureMechanicsinMexicoin1990,and 2yearslater,IpersuadedPemex,Mexico’sstate-ownedoilcompany,to financeanacademy-industryresearchprojecttostudypipelinefractures.

After4yearsofintenseworkbothat fieldandlaboratoryIfundedthe GrupodeAnálisisdeIntegridaddeDuctos(PipelineIntegrityAssessment Group,GAID)atIPN,anorganizationcomposedbyprofessors,undergraduate,andgraduateengineeringstudentsandprofessionalsintendedto performfracturemechanicsresearch,technicalassistanceonmaintenance andfailureanalysis,andmostimportant,structuralassessmentofpipelines andhydrocarbonprocessingandstoragefacilities.Bythe2000sGAIDhad morethan500collaboratorstoprovidefracturemechanicsrelatedservices inmorethan60,000kmofpipelines,morethan144marineplatforms,six largeoilrefineries,andmorethan50hydrocarbonstorageanddistribution plants.ThemostsignificantcontributionofGAIDwastointroducethe structuralintegrityapproachintothemanagementofmaintenanceattheoil andgasindustryinMexico,culminatingwiththeissuingofthenational standardsonpipelineintegritymanagement,nondestructiveinspection,and manyothertechnicalspecificationsandrecommendedpractices,allofthem aimedtothepracticalapplicationsoffracturemechanics.

Thetopicoffracturemechanicswasararityinthe1990sMexico,since therewereonlyafewprofessionalsworkingonitbythattime.Evenafter submittingaprojectproposaltotheindustry,somehigh-levelexecutives toldmethat “fracturemechanicsisatheoreticalcuriositywithoutpractical applicationbeyondexplainingsomefailures.” Thisexperienceencouraged metowritemy firstbook,backin1998.ThebookwaswritteninSpanish

becauseIrealizedthatmanystudentsandindustryprofessionalsdidnot haveenoughproficiencyinEnglishtofullyunderstandandmoreimportantlytoapplythetheoreticalfoundationsofFractureMechanicstothe solutionofreal-lifeproblems.MySpanishbookonfracturemechanicshad asecondeditionin2004,andinbetweenIwroteabookonmechanical metallurgy,alsoinSpanish.Yearslater,encouragedbyAshokSaxenaand otherbrilliantcolleaguesIpublishedmybookson FractographyandFailure Analysis and MechanicalBehaviorandFractureofEngineeringMaterials in English.Bothbookshadagoodreceptionamongengineeringstudentsand professionals,butIstillhesitatedtopublishabookonfracturemechanicsin English,untilElsevierkindlyinvitedmetodoso.Afterconsideringthe excellent buthighlytheoreticalandfullofcomplexmathematics existingbooksonfracturemechanics,Idecidedtotakeadifferentapproach andtowriteatextintendedtomakethissubjectaccessibletostudentsthat enterforthe firsttimeintothistopicandprofessionalssearchingforquick andpracticalanswerstothefractureproblemstheyfaceintheir fieldof practice.Thatishow APracticalApproachtoFractureMechanics becamea reality.

Thisbookplacesemphasisonthepracticalapplicationsoffracture mechanics,avoidingheavymathematicaldemonstrations,withafewexceptions,andfocusinginsteadonmakingthephysicalconceptsclearand simple,providingexamplesfrommyreal-lifeexperience,butyetatalevel thatcanbeeasilyunderstoodandappliedbybothengineeringstudentsand practicingengineersthathavetheneedtolearnaboutitbuthaveneither thetimenorthebackgroundtounderstandahigh-leveltextbookor researchpaper.

Myintentionistointroducethereaderintothefracturemechanics field inalogicalandchronologicalsequence,asthefracturemechanicsconcepts weredevelopedalongthehistory;therefore,thebookbeginswithbrief introductionoftheimportanceofthestudyoffracturemechanicsand presentsthebasicdefinitionsofstressandstrainitssignificancefor mechanicaldesignandmaterialsselection.Chapters2and3introduce Griffith’sanalysisasthebackgroundforIrwin’sanalysisthatledtothe introductionoflinearelasticfracturemechanics.Theanalyticaland experimentalmethodstodeterminethestressintensityfactorandthe fracturetoughnessofengineeringmaterialsaredescribed,alongwiththe implicationsoflinearelasticfracturemechanicsandtheenergycriterionon thebehaviorofaloadedbodycontainingcracks.

Chapter4isdedicatedtoelastic-plasticfracturebyRice’sJintegraland thetwo-parametercriterionwhicharenowadaysthemostwidelyused methodtoassesscracklike flawsinstructuralintegrity.InChapter5,the conceptsoflinear-elasticandelastic-plasticfracturemechanicsareappliedto thedeterminationofremainingstrength,materialsselection,andtodescribe theuseoffracturemechanicsinfailureanalysisandthereinforcementof crackedstructures.Oncethestaticfractureproblemisunderstood,thenext developmentistheapplicationoffracturemechanicsconcepttotheunderstandingofthegradualorslowcrackpropagationphenomenainengineeringmaterialsunderserviceconditions.ThisisdiscussedinChapter6, beginningwithfatiguecrackgrowthandcoveringstress-corrosion-induced crackpropagation,creepcrackgrowth,andcrackgrowthbyabsorbed hydrogen.

Thebook finisheswiththelatestandmostimportantapplicationof fracturemechanicstoday,whichisthestructuralintegrityassessmentof crackedcomponents.Itpresentsabriefintroductiontothemaindamage mechanismsofin-servicecomponentstothenpresentthegeneralconcepts ofstructuralintegrity,includingtheestimationoftheremaininglife.Since themainattemptofthistextistoserveasapracticalguidancetopracticing engineers,acompleteexampleoftheassessmentofareal-lifecomponentis presented.

Thisbookisconsideredsuitableforengineeringstudents,designengineers,inspectionandmaintenanceengineersperformingFitness-For-Service (FFS)assessmentsinallindustries(oilandgas,powergeneration,construction,chemicalandpetrochemical,transportation,etc.)aswellasfor professionalsworkingatresearchlaboratories,engineering firms,insurance, andaslossadjusters.Thebookcouldbeusedinfracturemechanicscourses thatarebeingtaughtinmostmajoruniversitiesandhighereducation institutions,atbothundergraduateandgraduatelevels.

IamindebtedtomycolleaguesattheIPN,whomIdonotlisthereto avoidinvoluntaryomissions,andtomanyPemexengineers,speciallyto Ing.FranciscoFernandezLagos( ),Ing.CarlosMoralesGil,Ing.Javier HinojosaPuebla,andIng.MiguelTameDominguezfortheirsupportand encouragementtoallowmetofulfillmylifeprojectofapplyingscientific knowledgeintothesolutionofstrategicproblemsintheindustry.Iwishto dedicatethisbooktothememoryofProfessorArthurJ.McEvily,notonly forhisguidanceandsupportwhenIwasadoctoralstudent,butalsoforhis

x Preface

friendshipandinspirationformorethan30years.Finally,Iamgratefulto mydaughterCarolinaforhermanysuggestionsfortheimprovementofthis text,andtomybrotherJuanManuelforhishelpinthepreparationofthe manuscriptinEnglishlanguage.

April2020

CHAPTER1

Generalconceptsofmechanical behaviorandfracture

1.1Fracturemechanics fieldofapplication

Fractureisaphenomenonthathasreceivedconstantattention,practically sincemachinesandstructuresfounduseinbothwartimeandpeacetime. Particularly,theuseofmechanicalandstructuralcomponentssuchas beams,columns,shafts,pressurevessels,cables,gears,andsoforthhave alwayscomealongwiththeriskoffracture.Frequently,thefractureofa structuralcomponentisaccompaniedwithgreatmaterial,economicand humanlosses.Itisalsocommonthat,althoughfailuresmayoccuronceina lifetime,asinglefailurecanmeanagreatcatastrophe,whichisthecasefor airplanecrashes,explosionsofgaspipelines,ornuclearreactorfailures.The lossesarenotonlylimitedtohumanandeconomicones,butalsothereare additionallosses,suchasdelaysinproduction,environmentaldamage,and thedetrimentofthecompany’spublicperceptionandimage.Premature fractureofsmallcomponents,suchasscrewsandbolts,isalsoaninsidious problem,sinceconsumersassociateitwithpoorquality,whichresultsin salesreduction.Insummary,itwouldbeimpossibletoquantifythe magnitudeoflossescausedbyfracture-relatedfailures,butwhatiscertainis thatfracturemaybethelimitingfactorforthesuccessofindustriesand entireeconomies.

Fracturemechanicsisthedisciplinethatprovidesthebasisandmethodologyforthedesignandassessmentofcrackedcomponentsinorderto determinetheeffectofthepresenceofacrack.Itisalsoappliedtodevelop structuresandmaterialsmoreresistanttofracture.Throughtime,ithasbeen demonstratedthatthetraditionalcriteriaofstructuredesignunderthe assumptionofabsenceof flaws,andfurthercompensatingitseffectby meansofsafetyfactorsareriskyandoftenlackanytechnicalfoundation. Thefactisthat flaws,especiallycracks,inevitablyappearinbothmechanical andstructuralcomponentsduetopoormanufacturing,inadequate

APracticalApproachtoFractureMechanics

ISBN978-0-12-823020-6

https://doi.org/10.1016/B978-0-12-823020-6.00001-3

construction,orintroducedduringservice,sotheengineershavetodeal withthem,andthebestwayisbyanalyzingtheireffectonthemechanical behavior.

Theproblemoffracturehaskeptscientistsandengineersbusysince theerasofthegreatLeonardoDaVinciandGalileo.However,itwas untilthebeginningofthetwentiethcenturythatGrif fi thwasableto calculatethefracturestrengthofbrittlematerials,butevenso,theoretical andexperimentaldif fi cultieshinderedthedevelopmentoffracture mechanicsuntil1956,whenGeorgeR.Irwinintroducedtheconceptof stressintensityfactorandfracturetoughness,givingbirthtomodern fracturemechanics.Nowadays,thestudyoffracturemechanicsisa fundamentalpartofmechanical,materialsandmetallurgicalengineering. Asigni fi cantfactisthatover40%ofthearticlespublishedinengineering andmaterialssciencejournalsarerelated,directlyorindirectlytomechanicalbehaviorandfracture.Withintheindustry,fracturemechanics isextensivelyusedintheaeronautic,aerospace,chemicalprocessing,oil re fi ning,andnuclearindustries,andithasbeguntobeusedmore frequentlyintheautomobileindustry,pipelinehydrocarbontransport, andconstructionindustries.

Althoughtheeconomicalandsafeoperationofengineeringcomponentsandindustrialfacilitiesrequiresadesignresistanttocrackingand fracture,fracturemechanicsisofgreatusefulnessincomponentsthathave alreadybeeninservice.Ithelpstosetthecriteriafortheacceptanceor rejectionof flaws,establishingthefrequencyofinspectionsandsafeoperationallimitsofprocessequipmentandmachinery;thesestudiesareknown as StructuralIntegrity or Fitness-For-Service.Fracturemechanicsisalsousefulin failedcomponents,sinceitprovidestheanalyticaltoolstodetermineifthe causeoffailurewasanoverloadorthecomponenthaddefectsoutofthe acceptancelimits.

Theapplicationoffracturemechanicsinallstagesofthelifecycleof structuralandmechanicalcomponentsyieldsgreatwinsinsafetyand economysinceitreducesthefrequencyoffailuresandextendsthelifespan. Allofwhichallowengineerstopaymoreattentiontootherfundamental issuessuchasthedevelopmentofnewmaterialsandtheimprovementof designswhichresultinfurthertechnologicaladvance.

The fieldoffracturemechanicsisdividedintotwobroad fields,as illustratedin Fig.1.1.Atthemicroscopicscale,fracturemechanicsispartof thematerialsscience field.Theaimistostudytherelationshipbetween microstructureandfracturemechanisms,includingplasticityand

fractographicexamination.Atthemacroscopicscale,fracturemechanicsisa branchofmaterialsandmechanicalengineering,focusedonapplications, suchaslaboratorytestingtodeterminethefractureproperties,andsolving practicalproblems,suchasdefectassessment,crackarrest,materialsselection,andfailureanalysis,amongothers.

1.2Definitionofstressandstrain

TheFrenchmathematicianandscientistAugustinLouisCauch^ yintroduced theconceptofstressin1833.HeusedthemovementlawsbyEuler,and Newton’smechanics,todeterminethedisplacementsproducedonastatic solidbodysubjecttosurfaceloads.BasedonNewton’ssecondlaw,which states, “toeveryaction,thereisacorrespondingreaction,” Cauch^ y figured outthatwhenanexternalforceisappliedonastaticbody,aninternal reactionforcebalancingtheexternalforceisinstantaneouslyproduced.The magnitudeofsuchreactionisdirectlyproportionaltothemagnitudeofthe appliedforceandinverselyproportionaltothesizeofthecross-sectionarea, thisreactionbeing stress

UnderCauch^ y ’sprinciple,themechanicalbehaviorofsolidmaterials maybesummarizedasfollows:Loadsproducestresses,thestressescause strain,andstrainleadstofracture;thereforetheaimistodeterminethe stressesandstrainsproducedinaloadedsolidbodyanddeterminethe material’sstrengthtowithstandsuchstresseswithoutneitherexcessively strainingnorfracturing.

Tofacilitatetheanalysisofthemechanicalbehaviorofsolids,itis necessarytosimplifythesystem,becausematerialsarecomplexarraysof atoms,crystallinedefects,secondphases,andmicrostructuralheterogeneities.

Figure1.1 Fieldofstudyoffracturemechanics,accordingtothescalesize.

Thebasicassumptionsfortheinitialapproachofmechanicalbehavior includethefollowing:

• Thematerialisacontinuum:Thismeansthatmatter fillsinthetotal volumeandtherearenovoidsnorinterruptions.Underthisassumption,itcanbeestablishedthattherewillbeaninfinitesimalvolume(a volumethattendstozero,butitneveriszero),wheretheforcesand areasbedefined,sothestressexistsinapoint.Thisassumptionisalso thereasonwhythestudyofmechanicsofmaterialsiscalled continuum mechanics.

• Thematerialishomogeneous:Thewholevolumeis filledinwiththe sametypeofmatter.

• Thematerialisisotropic:Thepropertiesarethesameinanydirection. Basedontheseassumptions,astaticsolidundertheactionofanapplied externalforce FA remainsstatic,ifandonlyifthisforceisbalancedbyan internalforce Fi, ofthesamemagnitudeandoppositedirectionto FA.The forcecausesaninternalreactioninthesolidthatisdirectlyproportionalto themagnitudeoftheappliedforceandthenumberofparticlesresistingthe actionofsuchforce,beingproportionaltothecross-sectionarea A.The magnitudeoftheinternalreactionisthestress,representedbythesymbol s, andcanbedefinedas:

s ¼ F=A

Theinternalforceisavector,sinceithasmagnitudeanddirection, thereforeitcanbesplitintotwocomponents:Oneperpendiculartothe cross-sectionarea(Fn)andtheotherparallel(ortangential)tothecrosssectionarea(Ft),asshownin Fig.1.2.

Thestressproducedby Fn iscalled normalstress andisexpressedby

n ¼ Fn

External applied force, FA Internal area, A

Figure1.2 Internalreactionforcetoanappliedforcethatgivesorigintothestress conceptanditsdecompositionintonormal(Fn)andtangential(Ft)components.

Normalstressesaredividedintotwotypes;whentheinternalforces tendtoelongatethebody,theyarecalled tension stressesanditssignis positive(þ)andwhentheyshortenthebody,arecalled compression stresses andareofnegativesign( ).Ontheotherhand,thetangentialforceswill produce shear stress,representedbythesymbol s,beingcalculatedas

Thephysicaleffectsofthenormalandshearstressesonthebodyare quitedifferentandtherefore,theyhavetobetreatedseparately.Thetypical stressunitsaregivenin Table1.1

Cauch^ yalsoincludedtheconceptofstraininhisanalysisofthemechanicalbehaviorofsolidmaterials.Insimpleterms,strainisthechangeof shapeinabodyduetotheactionofstresses,anditisdividedintotwotypes:

Elongationstrain,identifiedbythesymbol ε,anddefinedasthechange oflength(lf l0)overtheinitiallength(l0)

Shearstrain,identifiedbythesymbol g,anddefinedasthechangeof straightangle q ofacubicvolumeelement,soitiscalculatedas

Where i isthedirectionofdisplacementand j istheoriginaldirectionofthe displacedside. Fig.1.3 schematicallyillustratesthetwotypesofstrain.

Thestressandstrainarerelatedbytheso-calledconstitutiveequations, whichappearineverybookofmechanicalbehaviororstrengthofmaterials.Thereaderisencouragedtobecomeacquaintedwiththem,sincethey arefundamentalfortheanalysisofthemechanicalbehaviorofengineering materials.

Table1.1 Typicalstressunits.

SystemUnitsCommonmultiple

InternationalPascal(Pa ¼ Nw/m2)MPa ¼ 106 Pa Englishpsi(psi ¼ lbf/plg2)ksi ¼ 1000psi Mkskg/mm2 kg/cm2 ¼ 100kg/mm2

Conversionfactors: 1ksi ¼ 6.895MPa 1kg/cm2 ¼ 14.23psi 1MPa ¼ 10.5kg/cm2

1.3Mechanicalbehaviorundertension

Thesimplestwaytoobservethemechanicalbehaviorofasolidisby applyingatensionforceonabodyofregularcross-sectionandrecordthe loadandelongationproducedinthetestspecimen.Thetypical Load versus Elongation recordofanengineeringmaterialisshownin Fig.1.4.Byusing thedefinitionofstressas s ¼ F/A0,where A0 istheinitialcross-sectionarea ofthetestspecimen,anddefiningtheelongationstrainas ε ¼ Dl/l0,where Dl istheelongationand l0 istheinitiallength,the stress-strain curvein tensioncanbereconstructedfromtheoriginalLoad-Elongationcurve. Since A0 and l0 areconstants,theshapeofthecurvedoesnotchange,only thescaleismodified,thereforethestress-straincurveinuniaxialtensionhas thesameshapeoftheLoad-Elongationcurve.

Asitcanbeobservedonthestress-straincurve,attheonsetofloading, theelongationisproportionaltothestress,butiftheloadisremoved,the bodyrecoversitsinitialshapeandlength;thisbehavioristermedas elastic.In mostmaterials,thestrainislinearlyproportionaltothestrainandthe constantofproportionalityiscalledthe Young’smodulus, representedbythe

Figure1.3 Schematicillustrationofengineeringstrain.
Figure1.4 TypicalLoad-ElongationorStress-Straincurveinuniaxialtensionofan engineeringmaterial.

symbol E.Whenthestresssurpassesalimitvaluethedeformationbecomes permanent,aconditiontermedas plasticstrain,thestressatthispointis termedasthe yieldstrength,anditusuallyrepresentedbythesymbol s0.On furtherloading,theloadhastobeincreasedtosustaintheplasticdeformation,thisbehavioriscalled strainhardening anditmakesthecurvetotake aparabolic-likeshape,whichmaximumisreferredas ultimatetensilestrength, representedbythesymbol suts.Justaftertheultimatetensilestrengthis reached,thematerialexperiencesalocalcontractionknownas necking,so thecross-sectionareaisrapidlyreducedandtheloaddrops,leadingtothe finalrupture.Themaximumelongationintensionloadingisreferredas ductility,identifiedbythesymbol εf.Theseessentialfeaturesofthestressstraincurveinuniaxialtensionallowdeterminingthefundamentalmechanicalpropertiesofengineeringmaterials,whichare:

• Young’smodulus(E):Proportionalityconstantbetweenstrainandstress intheelasticregime.

• Yieldstrength(s0):Tensionstressattheonsetofplasticdeformation.

• Ultimatetensilestrength(suts):Maximumtensionstressthatamaterial canwithstandbeforefailure.

• Ruptureelongationorductility(εf):Maximumplasticelongation measuredafterruptureintension.

Atthispoint,itisimportanttodiscussaboutthehardness,whichis generallyregardedasamechanicalproperty.Hardnessistheresistanceofa materialtobescratchedorindented,anditsvalue,regardlessthetesting method,involvesseveralmechanicalprocessessuchaselasticstrain,plastic strain,andstrainhardening.Additionally,itisaffectedbyotherfactorssuch asfriction,thicknessandsurface finish;therefore,hardnessisnotafundamentalmechanicalproperty.However,sinceitstestingissimple,fastand economical,ithasbecomeverypopularasaparametertocharacterizethe mechanicalbehaviorofengineeringmaterials.Thebasicruleisthatthe harderamaterialis,thehigherloadbearingcapability,butthedisadvantage isthathardmaterialsareusuallybrittle.Hardnessismeasuredinseveral scales,beingthemostcommoninengineeringmaterials:Brinell,Vickers, Rockwell,andShore(forplastics).

Theuniaxialtensiontestnotonlyprovidesthefundamentalmechanical propertiesofmaterials,butalsoprovidesinformationontheoverallperformanceofmaterialsunderstresses.Thisinformationisquiteusefulintheanalysis ofthemechanicalandfracturebehaviorofmaterials,allowingcomparisons formaterialsselection,materialsdevelopment,designandqualitycontrol, amongothers.Typicalmaterialbehaviorcategoriesaccordingtothestressstraincurveinuniaxialtensionisschematicallydepictedin Fig.1.5

Thematerialcategoriesaccordingtothiscriterionare:

Hardandbrittle: Highyieldstrength,lowstrainhardeningandpoor ductility.TheYoungmodulusmaybeveryhigh.Thesematerialshavehigh hardnessandstiffness,buttheyarebrittle,sotheydonotresistimpacts, strainandthermalshock.Theyareusedincuttingtoolsandpartsrequiring highabrasivewearanderosionresistance.

Softandductile: Lowyieldandtensilestrength,lowstrainhardeningand highductility,sotheyareductileandeasytoshapebymechanicalprocessing.TheYoungmodulusmaybelow,butnotnecessarily.Theyare usedtofabricatecomponentsofintricateforms,butlimitedlowload bearingapplications.

Highstrength: Highyieldandtensilestrength,highstrainhardeningand moderatetohighductility.TheYoungmodulusisusuallyhigh.These materialsresistheavyloads,strongimpactsandrequirehighenergyinputto causefracture,sotheyarewidelyusedforhighloadandimpactconditions, suchasbuildings,bridges,machinery,processequipment,allkindsof transportvehicles.

Weak: Theyfeaturelowmechanicalstrength,sotheyareusedinlow loadbearing,wear,andimpactconditionsandlowdurabilityitems,suchas disposablecupsandpackingstuffing.

Thetypicaltensilepropertiesofcommonengineeringmaterialsare shownin Table1.2.Itisobservedthatthestrongestmaterialsarethe metallicmaterials,whichmakesthemanexcellentchoiceforstructuraland mechanicalapplications.Polymershavethelowestmechanicalstrength levels,althoughtheirlowdensity,chemicalstabilityandeasyofmanufacturemakesthemidealforlowloadrequirements.Ceramicsandglassare highlyresistanttocompressionandexhibithighhardness,buttheyare

Figure1.5 TypicalmaterialbehaviorcategoriesaccordingtotheStress-Straincurvein uniaxialtension.

Table1.2 Mechanicalpropertiesofcommonengineeringmaterials.

Carbonsteel200 212250 1200340 1600120 80100 1100

Lowalloysteel200 212400 1100460 120014 100120 350

Stainlesssteel200 212170 1000480 224062 180140 650

Castiron200 212215 790350 100010 35100 290

Aluminumalloys70.330 50060 55022 3518 160

Cooperalloys13030 500100 55030 9029 160

Nickelalloys20070 1100340 120080 110100 350

Titaniumalloys90 110250 1250300 160014 12086 460

Zincalloys70e8080e450130e52010e10038e150

Elastomers0.01 0.62 9025 500.2 0.47 15

Polymers8 10018 7020 701 66 20 Foams0.02e

Brick15 2050-140a 7 141 2N/A Concrete15 3032 60a 2 60.35 0.45N/A Rocks7 2034-298a 5 170.7 1.5N/A Wood5 2030 7060 1005 9N/A Leather0.1 0.55 1020 263 5N/A

brittle,soitsapplicationislimitedtocompressiveloadingandnonimpact uses.

Accordingtothecontinuummechanicsprinciplesandtakinginto considerationthestress-strainbehaviorinuniaxialtension,themechanical behavioranalysisofloadedbodiesistypicallycarriedoutbythefollowing procedure:

(1) Definitionofthecomponentgeometry.

(2) Definitionofloads,magnitude,direction,andpointofapplication.

(3) Calculationofstresses.

(4) Calculationofstrainsanddisplacementsresultingofthestresses.

Thedesignbasedoncontinuummechanicsaimstodeterminetheloads and/orthesizeofthecomponentandtoselectamaterialofspecificmechanicalpropertiescapableofwithstandandtransmittheappliedloadsand/ ordisplacements.Todothis,thecross-sectionareaandtheappliedloads shouldbesuchthatthestressesarelowerthanthematerial’sstrength.This processcanbeexplainedbythemathematicaldefinitionofstress:

s ¼ F A

Where s isthestress, F istheappliedloadorexternalforceand A isthesize ofthecross-sectionarea.Thegeneraldesigncriterionisusually:

If s Limitstress,thecomponentfails.

Thelimitstressisusuallytheyieldstrengthmultipliedbyasafetyfactor (SF).Basedontheearlier-mentionedequation,thestress-basedmechanical designiscarriedoutundertheprocedureshownin Fig.1.6.First,theshape andsizeofthecomponentaredefined,todeterminethecross-sectionarea size(inmanydesigncodesthecross-sectionareasizeisdeterminedbythe thickness),then,theloadsareassignedandamaterialwithenoughmechanicalstrengthtowithstandthecalculatedstressesisselected.

Inengineeringpractice,thesafetyfactorisanadditionalmaterial strength,additionalthicknessand/oralimitload,allofthemestablishedin ordertocompensatethepresenceofadditionalorhigherstresses,eitherby unexpectedaccidentalloadsorbyabuse.Thesafetyfactorisalsointroduced tocompensateforlowerstrengthcausedbythepresenceof flawsand defectsinthematerial.Inmostmechanicaldesigncodes,themaximum allowablestressisthecalculatedstressmultipliedbythesafetyfactor, definingthe designstress,insuchcaseFSismorethanone,butifthesafety factorisappliedtothematerial’sstrength,thenFSislessthanone.

Themoreuncertaintyofin-serviceloads,thepoorerqualityofmaterial, andthemoreseverefailureconsequences,thehighersafetyfactor.

Regardlesstowhatvariablethesafetyfactorisapplied,itshouldgivea reasonablylargegapbetweenthematerial’sstrengthandthereaction stressesadschematicallyillustratedin Fig.1.7.Asitmaybeobserved FS givesthedesignsafetymargin,whichisthedifferencebetweentheminimumspecifiedmaterial’sstrengthandthelimitdesignload.Becausemost vendorssupplymaterialswithstrengthsomewhatgreaterthantheminimumspecified,thedesignsafetymarginbecomesaminimumexpected value;however,thisshouldnotbeconsideredasawarrantyofasaferdesign andtheusersshouldnotrelayonthefreeexcessstrength.Furthermore, moststructuralormechanicalcomponentsarenotregularlyoperatedat theirdesignlimit,andinmanycases,theoperationalloadsarefarbelowthe designlimit,suchashappenswithautomobiles,handtools,cranes,and manyothers,andadditionaloperationalsafetymarginisintroduced, allowingtheimplementationofdamagetolerancestrategies,asitwillbe furtherdiscussedinthisbook.

Formostengineeringmaterials,theelasticpartofthestress-straincurve linear,thereforeYoung’smodulusisdefinedas:

Figure1.6 Flowchartofstructuralcomponentsdesignbycontinuummechanics.

Figure1.7 Stresslevelsinthedesignofstructuralcomponentsresultingoftheuseof thesafetyfactor.

Bearinginmind,that ε ¼

0 and s ¼ F/A0,itcanbestatedthat

Theterm(AE/l0)isknownastheelasticcoefficient,highvaluesofthe elasticcoefficientresultinrigidstructures,thatislesslikelytoelastically deformunderload;whereaslowvaluesoftheelasticcoefficientindicate thatthestructureis flexible,anditwilleasilydeformunderload.Theelastic coefficientiswidelyappliedinthedesignofmechanicalandstructural components,sinceitallowstosetthephysicaldimensionsandselectthe appropriatematerialtocontroltheelasticstrain.

The firstcaseofelasticdesignare flexibleorelasticcomponents:those arethatshouldfeaturefairlylargeelasticstrainsor flexions,butnotasmuch astoreachyield,asitisthecaseofhelicalandleafsprings.Inotherwords, flexiblecomponentsaredesignedtohavelargecontrolledelasticstrains undertheappliedloads.Accordingtotheelasticcoefficient,thiscanbe achievedbylonglengths,smallcross-sectionareasandmaterialswithalow Young’smodulus.The firsttwoconditionsmake flexiblecomponentslong andslender.

Theothertypeofelasticdesignisrigidcomponents,whicharethosewhose excessiveelasticstrainisadversefortheirperformance,suchasbuilding

structures,supports,gears,andmachineparts.Inthesecomponents,the magnitudeoftheelasticstrainmustbelimitedtoaminimum,sotheelastic coefficientmustbehigh.Thiscanbeattainedbywideningthecross-section, shorteningthelengthandbyselectinghighYoungmodulusmaterials.The first twocharacteristicsmakerigidcomponentsshortandthick.

Thefollowingexampleillustratestheuseoftheelasticcoefficient. Ahollowrectanglebarof5cmexternalheightand4cmexternalwidth,1mm thickness,and50cmlong,tobeusedaspartofaframeisrequiredtosupportaload F ¼ 5000N.Themaximumallowabletensilestrainis Dl/l0 ¼ 2.0 10 4.The originaldesignusessteel,butanovelengineersuggestssubstitutingsteelbyaluminum tosaveweightandcost.Isthisagoodidea?Assumethatthecostofaluminumisthree timesthecostofsteel.ESteel ¼ 200 109 N/m2;EAluminum ¼ 70.3 109 N/m2

Solution:

Accordingtotheforce-elongationelasticformula:(Dl/l0) ¼ F/(AE)

A ¼ 1.96cm2 ¼ 0.000,196m2.

Substitutingvaluesforsteel: (Dl/l0)Steel ¼ (5000N)/(0.000196m2 200 109 N/m2) ¼

Substitutingvaluesforaluminum:

Noticethatthealuminumbardoesnotmeetthespecificationforallowablestrain. Iftheframehastobemadeofaluminum,inordertomeettheallowablestrain specification,itsthicknessneedtobechangedas

A ¼ F/[(

Iftheexternaldimensionshavetobethesame,thethicknessofthealuminum frameshallbe0.184cm ¼ 1.84mm,buttheimportantfactoristheweight.

Thealuminumframeweights1.6timeslessthanthesteelframe,butitwillcost 1.872timesmorethansteel,sointermsofweightsaving,aluminumisabetter choice,butintermsofcoststeelisbetter.

1.4Thestresstensor

AccordingtoCauch^ y ’sstresstheory,thestateofstressatonepointis describedbythestresstensorwhichisdeterminedbythestresscomponents

Stresscomponentsinaunitaryvolumeelementofasolidbody.

actingonthefacesofanelementofadifferentialvolume(acube)locatedat theoriginofaCartesiancoordinatesystemof x,y, and z axes,asshownin Fig.1.8.

Thisresultsinninestresscomponents,threenormalandsixshear.An indexnotationidentifieseachstresscomponent:

sij

Where i isthecube’sfacewherethestressisacting,and j isthedirection ofthestress.

Theninestresscomponentswritteninmatrixform,becomethe stress tensor,sincetheyarevectors,andithastheform:

Duetobalanceofmomentum,itcanbeeasilydemonstratedthatthe shearcomponentsaresymmetric,thatmeansthat sij ¼ sji,sothatreduces thestresstensortosixindependentcomponents,threenormalandthreeof shear.Theotherthanzerocomponentsofthestresstensordefinethe stateof stresses andrepresentthereactionsthatoccurinsideofastaticsolidbody subjecttoexternalloads.Themostcommonstatesofstressarepresentedin Table1.3.

Themethodologytodeterminethestateofstresses(qualitatively)ofa solidofregularshapeunderafewknownloadsisthefollowing: 1. Drawafreebodydiagramofthecomponent,indicatingtheapplied loadsintheformofvectors(arrowswithmagnitude,direction,and applicationpoint)aswellasthepointsofsupportand/orrestrictions todisplacement.

Figure1.8

Table1.3 Commonstatesofstress.

NameStresstensorExample

Deadweighthangingofabar

Thinwallcylinderunder internalpressure

Transmissionshaft

Wiredrawing

Thinsheetandfreesurfaces

Generalcase

Note:Thecommonpracticeistoeliminaterowsandcolumnswhichvaluesarezero.

2. Placeanorthogonalcoordinatesystem x, y, z,withitscenteronthe body’scenterofgravityorthegeometricalcentroid,preferablywith oneoftheaxesalignedwiththebody’ssymmetryaxisorparallelto thedirectionofthemainappliedload.

3. Drawacubeattheoriginofthecoordinatesystem,withitssidesaligned paralleltothecoordinatesystemaxes.

4. Identifytheinternalreactionloadsoneachofthecube’sfaces,asvectors ofthesamemagnitudeandinoppositedirectiontotheexternalforces.

5. Identifynormalandshearstresscomponentsgeneratedonthecubefaces byapplyingtheindexnotation,bearinginmindthatthe firstsubindexis thefacewheretheforceisactingon,andthesecondsubindexisthe directionofthereactionforce.Usetheruleofsignstodeterminethe

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.