4g, lte-advanced pro and the road to 5g 3rd revised edition edition dahlman - Own the complete ebook

Page 1


https://ebookmass.com/product/4g-lte-advanced-pro-and-the-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

From GSM to LTE-Advanced Pro and 5G: An Introduction to Mobile Networks and Mobile Broadband 4th Edition Martin Sauter

https://ebookmass.com/product/from-gsm-to-lte-advanced-pro-and-5g-anintroduction-to-mobile-networks-and-mobile-broadband-4th-editionmartin-sauter/ ebookmass.com

The Power of Art, Revised 3rd Edition

https://ebookmass.com/product/the-power-of-art-revised-3rd-edition/

ebookmass.com

Pro Bash: Learn to Script and Program the GNU/Linux Shell 3rd Edition Jayant Varma

https://ebookmass.com/product/pro-bash-learn-to-script-and-programthe-gnu-linux-shell-3rd-edition-jayant-varma/ ebookmass.com

Architecting a Modern Data Warehouse for Large Enterprises: Build Multi-cloud Modern Distributed Data Warehouses with Azure and AWS 1st Edition Anjani Kumar

https://ebookmass.com/product/architecting-a-modern-data-warehousefor-large-enterprises-build-multi-cloud-modern-distributed-datawarehouses-with-azure-and-aws-1st-edition-anjani-kumar-3/ ebookmass.com

Biology: Concepts and Applications 10th edition Edition

https://ebookmass.com/product/biology-concepts-and-applications-10thedition-edition-cecie-starr/

ebookmass.com

Prenatal and Postnatal Care: A Woman-Centered Approach 2nd Edition

https://ebookmass.com/product/prenatal-and-postnatal-care-a-womancentered-approach-2nd-edition/

ebookmass.com

The Euro Crisis in the Press: Political Debate in Germany, Poland, and the United Kingdom Katarzyna Sobieraj

https://ebookmass.com/product/the-euro-crisis-in-the-press-politicaldebate-in-germany-poland-and-the-united-kingdom-katarzyna-sobieraj/

ebookmass.com

As We Fight: A Dark College Romance (A Mayfair University Novel Book 2) K.G. Reuss

https://ebookmass.com/product/as-we-fight-a-dark-college-romance-amayfair-university-novel-book-2-k-g-reuss/

ebookmass.com

Autonomy in Language Learning and Teaching: New Research Agendas 1st Edition Alice Chik

https://ebookmass.com/product/autonomy-in-language-learning-andteaching-new-research-agendas-1st-edition-alice-chik/

ebookmass.com

Private Wealth Management: The Complete Reference for the Personal Financial Planner, Ninth Edition 9th Edition, (Ebook PDF)

https://ebookmass.com/product/private-wealth-management-the-completereference-for-the-personal-financial-planner-ninth-edition-9thedition-ebook-pdf/ ebookmass.com

4G,LTE-AdvancedProand TheRoadto5G

ThirdEdition

AcademicPressisanimprintofElsevier

ErikDahlman
StefanParkvall
JohanSko ¨ ld

AcademicPressisanimprintofElsevier

125LondonWall,LondonEC2Y5AS,UnitedKingdom

525BStreet,Suite1800,SanDiego,CA92101-4495,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright © 2016,2014,2011ErikDahlman,StefanParkvallandJohanSkold. PublishedbyElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyright.LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-804575-6

ForinformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/

Publisher: JoeHayton

AcquisitionEditor: TimPitts

EditorialProjectManager: CharlotteKent

ProductionProjectManager: LisaJones

Designer: GregHarris

TypesetbyTNQBooksandJournals

Preface

LTEhasbecomethemostsuccessfulmobilewirelessbroadbandtechnology,servingoveronebillion usersasofthebeginningof2016andhandlingawiderangeofapplications.Comparedtotheanalog voice-onlysystems25yearsago,thedifferenceisdramatic.AlthoughLTEisstillatarelativelyearly stageofdeployment,theindustryisalreadywellontheroadtowardthenextgenerationofmobile communication,commonlyreferredtoasthefifthgenerationor5G.Mobilebroadbandis,andwill continuetobe,animportantpartoffuturecellularcommunication,butfuturewirelessnetworksare toalargeextentalsoaboutasignificantlywiderrangeofusecasesandacorrespondinglywiderrange ofrequirements.

ThisbookdescribesLTE,developedin3GPP(Third-GenerationPartnershipProject)and providingtruefourth-generation(4G)broadbandmobileaccess,aswellasthenewradio-accesstechnology3GPPiscurrentlyworkingon.Together,thesetwotechnologieswillprovide5Gwireless access.

Chapter1providesabriefintroduction,followedbyadescriptionofthestandardizationprocess andrelevantorganizationssuchastheaforementioned3GPPandITUinChapter2.Thefrequency bandsavailableformobilecommunicationarealsobecovered,togetherwithadiscussiononthe processforfindingnewfrequencybands.

AnoverviewofLTEanditsevolutionisfoundinChapter3.Thischaptercanbereadonitsownto getahigh-levelunderstandingofLTEandhowtheLTEspecificationsevolvedovertime.Tounderline thesignificantincreaseincapabilitiesbroughtbytheLTEevolution,3GPPintroducedthenames LTE-AdvancedandLTE-AdvancedProforsomeofthereleases.

Chapters4 11coverthebasicLTEstructure,startingwiththeoverallprotocolstructurein Chapter4andfollowedbyadetaileddescriptionofthephysicallayerinChapters5 7.Theremaining Chapters8 11,coverconnectionsetupandvarioustransmissionprocedures,includingmulti-antenna support.

SomeofthemajorenhancementstoLTEintroducedovertimeiscoveredinChapters12 21, includingcarrieraggregation,unlicensedspectrum,machine-typecommunication,anddevice-to-device communication.Relaying,heterogeneousdeployments,broadcast/multicastservices,anddualconnectivitymulti-sitecoordinationareotherexamplesofenhancementscoveredinthesechapters.

Radiofrequency(RF)requirements,takingintoaccountspectrumflexibilityandmulti-standard radioequipment,isthetopicofChapter22.

Chapters23and24coverthenewradioaccessabouttobestandardizedaspartof5G.Acloserlook ontherequirementsandhowtheyaredefinedisthetopicofChapter23,whileChapter24digsintothe technicalrealization.

Finally,Chapter25concludesthebookandthediscussionon5Gradioaccess.

Acknowledgments

WethankallourcolleaguesatEricssonforassistinginthisprojectbyhelpingwithcontributionstothe book,givingsuggestionsandcommentsonthecontent,andtakingpartinthehugeteameffortof developingLTEandthenextgenerationofradioaccessfor5G.

Thestandardizationprocessinvolvespeoplefromallpartsoftheworld,andweacknowledgethe effortsofourcolleaguesinthewirelessindustryingeneralandin3GPPRANinparticular.Without theirworkandcontributionstothestandardization,thisbookwouldnothavebeenpossible.

Finally,weareimmenselygratefultoourfamiliesforbearingwithusandsupportingusduringthe longprocessofwritingthisbook.

AbbreviationsandAcronyms

3GPP Third-generationpartnershipproject

AAS Activeantennasystems

ACIR Adjacentchannelinterferenceratio

ACK Acknowledgment(inARQprotocols)

ACLR Adjacentchannelleakageratio

ACS Adjacentchannelselectivity

AGC Automaticgaincontrol

AIFS Arbitrationinterframespace

AM Acknowledgedmode(RLCconfiguration)

A-MPR Additionalmaximumpowerreduction

APT Asia-Pacifictelecommunity

ARI Acknowledgmentresourceindicator

ARIB Associationofradioindustriesandbusinesses

ARQ Automaticrepeat-request

AS Accessstratum

ATC Ancillaryterrestrialcomponent

ATIS Alliancefortelecommunicationsindustrysolutions

AWGN AdditivewhiteGaussiannoise

BC Bandcategory

BCCH Broadcastcontrolchannel

BCH Broadcastchannel

BL Bandwidth-reducedlowcomplexity

BM-SC Broadcastmulticastservicecenter

BPSK Binaryphase-shiftkeying

BS Basestation

BW Bandwidth

CA Carrieraggregation

CACLR Cumulativeadjacentchannelleakageratio

CC Componentcarrier

CCA Clearchannelassessment

CCCH Commoncontrolchannel

CCE Controlchannelelement

CCSA ChinaCommunicationsStandardsAssociation

CDMA Code-divisionmultipleaccess

CE Coverageenhancement

CEPT EuropeanConferenceofPostalandTelecommunicationsAdministrations

CGC Complementarygroundcomponent

CITEL Inter-AmericanTelecommunicationCommission

C-MTC CriticalMTC

CN Corenetwork

CoMP Coordinatedmulti-pointtransmission/reception

CP Cyclicprefix

CQI Channel-qualityindicator

CRC Cyclicredundancycheck

C-RNTI Cellradio-networktemporaryidentifier

CRS Cell-specificreferencesignal

CS Capabilityset(forMSRbasestations)

CSA Commonsubframeallocation

CSG ClosedSubscriberGroup

CSI Channel-stateinformation

CSI-IM CSIinterferencemeasurement

CSI-RS CSIreferencesignals

CW Continuouswave

D2D Device-to-device

DAI Downlinkassignmentindex

DCCH Dedicatedcontrolchannel

DCH Dedicatedchannel

DCI Downlinkcontrolinformation

DCF Distributedcoordinationfunction

DFS Dynamicfrequencyselection

DFT DiscreteFouriertransform

DFTS-OFDMDFT-spreadOFDM(DFT-precodedOFDM)

DIFS Distributedinterframespace

DL Downlink

DL-SCH Downlinksharedchannel

DM-RS Demodulationreferencesignal

DMTC DRSmeasurementstimingconfiguration

DRS Discoveryreferencesignal

DRX Discontinuousreception

DTCH Dedicatedtrafficchannel

DTX Discontinuoustransmission

DwPTS Downlinkpartofthespecialsubframe(forTDDoperation)

ECCE Enhancedcontrolchannelelement

EDCA Enhanceddistributedchannelaccess

EDGE EnhanceddataratesforGSMevolution;enhanceddataratesforglobalevolution

eIMTA EnhancedInterferencemitigationandtrafficadaptation

EIRP Effectiveisotropicradiatedpower

EIS Equivalentisotropicsensitivity

EMBB EnhancedMBB

eMTC Enhancedmachine-typecommunication

eNB eNodeB

eNodeB E-UTRANNodeB

EPC Evolvedpacketcore

EPDCCH Enhancedphysicaldownlinkcontrolchannel

EPS Evolvedpacketsystem

EREG Enhancedresource-elementgroup

ETSI EuropeanTelecommunicationsStandardsInstitute

E-UTRA EvolvedUTRA

E-UTRANEvolvedUTRAN

EVM Errorvectormagnitude

FCC FederalCommunicationsCommission

FDD Frequencydivisionduplex

FD-MIMOFull-dimensionmultipleinput multipleoutput

FDMA Frequency-divisionmultipleaccess

FEC Forwarderrorcorrection

FeICIC Furtherenhancedintercellinterferencecoordination

FFT FastFouriertransform

FPLMTS Futurepubliclandmobiletelecommunicationssystems

FSTD Frequency-switchedtransmitdiversity

GB Guardband

GERAN GSM/EDGEradioaccessnetwork

GP Guardperiod(forTDDoperation)

GPRS Generalpacketradioservices

GPS Globalpositioningsystem

GSM Globalsystemformobilecommunications

GSMA GSMAssociation

HARQ HybridARQ

HII High-interferenceindicator

HSFN Hypersystemframenumber

HSPA High-speedpacketaccess

HSS Homesubscriberserver

ICIC Intercellinterferencecoordination

ICNIRP InternationalCommissiononNon-IonizingRadiationProtection

ICS In-channelselectivity

IEEE InstituteofElectricalandElectronicsEngineers

IFFT InversefastFouriertransform

IMT-2000InternationalMobileTelecommunications2000(ITU’snameforthefamilyof3Gstandards)

IMT-2020InternationalMobileTelecommunications2020(ITU’snameforthefamilyof5Gstandards)

IMT-AdvancedInternationalMobileTelecommunicationsAdvanced(ITU’snameforthefamilyof4G standards).

IOT Internetofthings

IP Internetprotocol

IR Incrementalredundancy

IRC Interferencerejectioncombining

ITU InternationalTelecommunicationsUnion

ITU-R InternationalTelecommunicationsUnion Radiocommunicationssector

KPI Keyperformanceindicator

LAA License-assistedaccess

LAN Localareanetwork

LBT Listenbeforetalk

LCID Logicalchannelidentifier

LDPC Low-densityparitycheckcode

LTE Long-termevolution

MAC Mediumaccesscontrol

MAN Metropolitanareanetwork

MBB Mobilebroadband

MBMS Multimediabroadcast multicastservice

MBMS-GWMBMSgateway

MB-MSR Multi-bandmulti-standardradio(basestation)

MBSFN Multicast broadcastsingle-frequencynetwork

MC Multi-carrier

MCCH MBMScontrolchannel

MCE MBMScoordinationentity

MCG Mastercellgroup

MCH Multicastchannel

MCS Modulationandcodingscheme

METIS MobileandwirelesscommunicationsEnablersforTwenty twenty(2020)Information Society

MIB Masterinformationblock

MIMO Multipleinput multipleoutput

MLSE Maximum-likelihoodsequenceestimation

MME Mobilitymanagemententity

M-MTC MassiveMTC

MPDCCHMTCphysicaldownlinkcontrolchannel

MPR Maximumpowerreduction

MSA MCHsubframeallocation

MSI MCHschedulinginformation

MSP MCHschedulingperiod

MSR Multi-standardradio

MSS Mobilesatelliteservice

MTC Machine-typecommunication

MTCH MBMStrafficchannel

MU-MIMOMulti-userMIMO

NAK Negativeacknowledgment(inARQprotocols)

NAICS Network-assistedinterferencecancelationandsuppression

NAS Non-accessstratum(afunctionallayerbetweenthecorenetworkandtheterminalthat supportssignaling)

NB-IoT Narrow-bandinternetofthings

NDI Newdataindicator

NGMN Next-generationmobilenetworks

NMT NordiskMobilTelefon(NordicMobileTelephony)

NodeB Alogicalnodehandlingtransmission/receptioninmultiplecells;commonly,butnotnecessarily,correspondingtoabasestation

NPDCCHNarrowbandPDCCH

NPDSCH NarrowbandPDSCH

NS Networksignaling

OCC Orthogonalcovercode

OFDM Orthogonalfrequency-divisionmultiplexing

OI Overloadindicator

OOB Out-of-band(emissions)

OSDD OTAsensitivitydirectiondeclarations

OTA Overtheair

PA Poweramplifier

PAPR Peak-to-averagepowerratio

PAR Peak-to-averageratio(sameasPAPR)

PBCH Physicalbroadcastchannel

PCCH Pagingcontrolchannel

PCFICH Physicalcontrolformatindicatorchannel

PCG ProjectCoordinationGroup(in3GPP)

PCH Pagingchannel

PCID Physicalcellidentity

PCRF Policyandchargingrulesfunction

PDC Personaldigitalcellular

PDCCH Physicaldownlinkcontrolchannel

PDCP Packetdataconvergenceprotocol

PDSCH Physicaldownlinksharedchannel

PDN Packetdatanetwork

PDU Protocoldataunit

P-GW Packet-datanetworkgateway(alsoPDN-GW)

PHICH Physicalhybrid-ARQindicatorchannel

PHS Personalhandy-phonesystem

PHY Physicallayer

PMCH Physicalmulticastchannel

PMI Precoding-matrixindicator

PRACH Physicalrandomaccesschannel

PRB Physicalresourceblock

P-RNTI PagingRNTI

ProSe Proximityservices

PSBCH Physicalsidelinkbroadcastchannel

PSCCH Physicalsidelinkcontrolchannel

PSD Powerspectraldensity

PSDCH Physicalsidelinkdiscoverychannel

P-SLSS Primarysidelinksynchronizationsignal

PSM Power-savingmode

PSS Primarysynchronizationsignal

PSSCH Physicalsidelinksharedchannel

PSTN Publicswitchedtelephonenetworks

PUCCH Physicaluplinkcontrolchannel

PUSCH Physicaluplinksharedchannel

QAM Quadratureamplitudemodulation

QCL Quasi-colocation

QoS Quality-of-service

QPP Quadraturepermutationpolynomial

QPSK Quadraturephase-shiftkeying

RAB Radio-accessbearer

RACH Random-accesschannel

RAN Radio-accessnetwork

RA-RNTIRandom-accessRNTI

RAT Radio-accesstechnology

RB Resourceblock

RE Resourceelement

REG Resource-elementgroup

RF Radiofrequency

RI Rankindicator

RLAN Radiolocalareanetworks

RLC Radiolinkcontrol

RNTI Radio-networktemporaryidentifier

RNTP Relativenarrowbandtransmitpower

RoAoA Rangeofangleofarrival

ROHC Robustheadercompression

R-PDCCHRelayphysicaldownlinkcontrolchannel

RRC Radio-resourcecontrol

RRM Radioresourcemanagement

RS Referencesymbol

RSPC Radiointerfacespecifications

RSRP Referencesignalreceivedpower

RSRQ Referencesignalreceivedquality

RV Redundancyversion

RX Receiver

S1 InterfacebetweeneNodeBandtheevolvedpacketcore

S1-c Control-planepartofS1

S1-u User-planepartofS1

SAE Systemarchitectureevolution

SBCCH Sidelinkbroadcastcontrolchannel

SCG Secondarycellgroup

SCI Sidelinkcontrolinformation

SC-PTM Single-cellpointtomultipoint

SDMA Spatialdivisionmultipleaccess

SDO Standardsdevelopingorganization

SDU Servicedataunit

SEM Spectrumemissionsmask

SF Subframe

SFBC Space frequencyblockcoding

SFN Single-frequencynetwork(ingeneral,seealsoMBSFN);systemframenumber(in3GPP).

S-GW Servinggateway

SI Systeminformationmessage

SIB Systeminformationblock

SIB1-BR SIB1bandwidthreduced

SIC Successiveinterferencecombining

SIFS Shortinterframespace

SIM Subscriberidentitymodule

SINR Signal-to-interference-and-noiseratio

SIR Signal-to-interferenceratio

SI-RNTI SysteminformationRNTI

SL-BCH Sidelinkbroadcastchannel

SL-DCH Sidelinkdiscoverychannel

SLI Sidelinkidentity

SL-SCH Sidelinksharedchannel

SLSS Sidelinksynchronizationsignal

SNR Signal-to-noiseratio

SORTD Spatialorthogonal-resourcetransmitdiversity

SR Schedulingrequest

SRS Soundingreferencesignal

S-SLSS Secondarysidelinksynchronizationsignal

SSS Secondarysynchronizationsignal

STCH Sidelinktrafficchannel

STBC Space timeblockcoding

STC Space timecoding

STTD Space timetransmitdiversity

SU-MIMOSingle-userMIMO

TAB Transceiverarrayboundary

TCP Transmissioncontrolprotocol

TC-RNTI TemporaryC-RNTI

TDD Time-divisionduplex

TDMA Time-divisionmultipleaccess

TD-SCDMATime-division-synchronouscode-divisionmultipleaccess

TF Transportformat

TPC Transmitpowercontrol

TR Technicalreport

TRP Timerepetitionpattern;transmissionreceptionpoint

TRPI Timerepetitionpatternindex

TS Technicalspecification

TSDSI TelecommunicationsStandardsDevelopmentSociety,India

TSG TechnicalSpecificationGroup

TTA TelecommunicationsTechnologyAssociation

TTC TelecommunicationsTechnologyCommittee

TTI Transmissiontimeinterval

TX Transmitter

TXOP Transmissionopportunity

UCI Uplinkcontrolinformation

UE Userequipment(the3GPPnameforthemobileterminal)

UEM Unwantedemissionsmask

UL Uplink

UL-SCH Uplinksharedchannel

UM Unacknowledgedmode(RLCconfiguration)

UMTS Universalmobiletelecommunicationssystem

UpPTS Uplinkpartofthespecialsubframe,forTDDoperation

URLLC Ultra-reliablelow-latencycommunication

UTRA Universalterrestrialradioaccess

UTRAN Universalterrestrialradio-accessnetwork

VoIP Voice-over-IP

VRB Virtualresourceblock

WARC WorldAdministrativeRadioCongress

WAS Wirelessaccesssystems

WCDMA Widebandcode-divisionmultipleaccess

WCS Wirelesscommunicationsservice

WG Workinggroup

WiMAX Worldwideinteroperabilityformicrowaveaccess

WLAN Wirelesslocalareanetwork

WMAN Wirelessmetropolitanareanetwork

WP5D WorkingParty5D

WRC WorldRadiocommunicationConference

X2 InterfacebetweeneNodeBs.

ZC Zadoff-Chu

INTRODUCTION 1

Mobilecommunicationhasbecomeaneverydaycommodity.Inthelastdecades,ithas evolvedfrombeinganexpensivetechnologyforafewselectedindividualstotoday’s ubiquitoussystemsusedbyamajorityoftheworld’spopulation.

Theworldhaswitnessedfourgenerationsofmobile-communicationsystems,each associatedwithaspecificsetoftechnologiesandaspecificsetofsupportedusecases,see Figure1.1.Thegenerationsandthestepstakenbetweenthemareusedhereasbackgroundto introducethecontentofthisbook.Therestofthebookfocusesonthelatestgenerationsthat aredeployedandunderconsideration,whicharefourthgeneration(4G)andfifthgeneration (5G).

1.1 1GAND2G VOICE-CENTRICTECHNOLOGIES

Thefirst-generation(1G)systemsweretheanalogvoice-onlymobile-telephonysystemsof the1980s,oftenavailableonanationalbasiswithlimitedornointernationalroaming.1G systemsincludeNMT,AMPS,andTACS.Mobilecommunicationwasavailablebeforethe 1Gsystems,buttypicallyonasmallscaleandtargetingaveryselectedgroupofpeople.

Thesecond-generation(2G)systemsappearedintheearly1990s.Examplesof2G technologiesincludetheEuropean-originatedGSMtechnology,theAmericanIS-95/CDMA andIS-136/TDMAtechnologies,andtheJapanesePDCtechnology.The2Gsystemswere

FIGURE1.1 Cellulargenerations.

4G,LTE-AdvancedProandTheRoadto5G. http://dx.doi.org/10.1016/B978-0-12-804575-6.00001-7 Copyright © 2016ErikDahlman,StefanParkvallandJohanSkold.PublishedbyElsevierLtd.Allrightsreserved.

stillvoicecentric,butthankstobeingall-digitalprovidedasignificantlyhighercapacitythan theprevious1Gsystems.Overtheyears,someoftheseearlytechnologieshavebeen extendedtoalsosupport(primitive)packetdataservices.Theseextensionsaresometimes referredtoas2.5Gtoindicatethattheyhavetheirrootsinthe2Gtechnologiesbuthavea significantlywiderrangeofcapabilitiesthantheoriginaltechnologies.EDGEisawellknownexampleofa2.5Gtechnology.GSM/EDGEisstillinwidespreaduseinsmartphonesbutisalsofrequentlyusedforsometypesofmachine-typecommunicationsuchas alarms,paymentsystems,andreal-estatemonitoring.

1.2 3GAND4G MOBILEBROADBAND

Duringthe1990s,theneedtosupportnotonlyvoicebutalsodataserviceshadstartedto emerge,drivingtheneedforanewgenerationofcellulartechnologiesgoingbeyondvoiceonlyservices.Atthistimeinthelate1990s,2GGSM,despitebeingdevelopedwithinEurope, hadalreadybecomeadefactoglobalstandard.Toensureglobalreachalsofor3Gtechnologiesitwasrealizedthatthe3Gdevelopmenthadtobecarriedoutonaglobalbasis.To facilitatethis,the Third-GenerationPartnershipProject (3GPP)wasformedtodevelopthe 3GWCDMAandTD-SCDMAtechnologies,seeChapter2forfurtherdetails.Shortlyafterward,theparallelorganization3GPP2wasformedtodevelopthecompeting3Gcdma2000 technology,anevolutionofthe2GIS-95technology.

ThefirstreleaseofWCDMA(release991)wasfinalizedin1999.Itincludedcircuitswitchedvoiceandvideoservices,anddataservicesoverbothpacket-switchedand circuit-switchedbearers.

ThefirstmajorenhancementstoWCDMAcamewiththeintroductionof HighSpeed DownlinkPacketAccess (HSDPA)inrelease5followedby EnhancedUplinkinrelease6, collectivelyknownas HighSpeedPacketAccess(HSPA) [61].HSPA,sometimesreferredto as3.5G,allowedfora“true”mobile-broadbandexperiencewithdataratesofseveralMbit/s whilemaintainingthecompatibilitywiththeoriginal3Gspecifications.Withthesupportfor mobilebroadband,thefoundationfortherapiduptakeofsmartphonessuchastheiPhoneand thewiderangeofAndroiddeviceswereinplace.Withoutthewideavailabilityofmobile broadbandforthemassmarket,theuptakeofsmartphoneusagewouldhavebeensignificantlyslowerandtheirusabilityseverelylimited.Atthesametime,themassiveuseofsmart phonesandawiderangeofpacket-data-basedservicessuchassocialnetworking,video, gaming,andonlineshoppingtranslatesintorequirementsonincreasedcapacityandimproved spectralefficiency.Usersgettingmoreandmoreusedtomobileservicesalsoraisetheir expectationsintermsofexperiencingincreaseddataratesandreducedlatency.Theseneeds

1Forhistoricalreasons,thefirst3GPPreleaseisnamedaftertheyearitwasfrozen(1999),whilethefollowingreleasesare numbered4,5,6,andsoon.

werepartlyhandledbyacontinuous,andstillongoing,evolutionofHSPA,butitalsotriggeredthediscussionson4Gtechnologyinthemid-2000s.

The4GLTEtechnologywasfromthebeginningdevelopedforpacket-datasupportand hasnosupportforcircuit-switchedvoice,unlikethe3GwhereHSPAwasan“add-on”to providehigh-performancepacketdataontopofanexistingtechnology.Mobilebroadband serviceswerethefocus,withtoughrequirementsonhighdatarates,lowlatency,andhigh capacity.SpectrumflexibilityandmaximumcommonalitybetweenFDDandTDDsolutions wereotherimportantrequirements.Anewcorenetworkarchitecturewasalsodeveloped, knownas EnhancedPacketCore (EPC),toreplacethearchitectureusedbyGSMand WCDMA/HSPA.ThefirstversionofLTEwaspartofrelease8ofthe3GPPspecificationsand thefirstcommercialdeploymenttookplaceinlate2009,followedbyarapidandworldwide deploymentofLTEnetworks.

OnesignificantaspectofLTEistheworldwideacceptanceofasingletechnology,unlike previousgenerationsforwhichtherehasbeenseveralcompetingtechnologies,see Figure1.2. Havingasingle,universallyacceptedtechnologyacceleratesdevelopmentofnewservices andreducesthecostforbothusersandnetworkoperators.

Sinceitscommercialintroductionin2009,LTEhasevolvedconsiderablyintermsofdata rates,capacity,spectrumanddeploymentflexibility,andapplicationrange.Frommacrocentricdeploymentswithpeakdataratesof300Mbit/sin20MHzofcontiguous,licensed spectrum,theevolutionofLTEcaninrelease13supportmulti-Gbit/speakdataratesthrough improvementsintermsofantennatechnologies,multisitecoordination,exploitationof fragmentedaswellasunlicensedspectrumanddensifieddeploymentsjusttomentionafew areas.TheevolutionofLTEhasalsoconsiderablywidenedtheusecasesbeyondmobile broadbandby,forexample,improvingsupportformassivemachine-typecommunicationand introducingdirectdevice-to-devicecommunication.

1.3 5G BEYONDMOBILEBROADBAND NETWORKEDSOCIETY

AlthoughLTEisstillatarelativelyearlystageofdeployment,theindustryisalreadywellon theroadtowardsthenextgenerationofmobilecommunication,commonlyreferredtoasfifth generationor5G.

Mobilebroadbandis,andwillcontinuetobe,animportantpartoffuturecellular communication,butfuturewirelessnetworksaretoalargeextentalsoaboutasignificantly widerrangeofusecases.Inessence,5Gshouldbeseenasaplatformenablingwireless connectivitytoallkindsofservices,existingaswellasfuturenot-yet-knownservicesand therebytakingwirelessnetworksbeyondmobilebroadband.Connectivitywillbeprovided essentiallyanywhere,anytimetoanyoneandanything.Theterm networkedsociety is sometimesusedwhenreferringtosuchascenariowhereconnectivitygoesbeyondmobile smartphones,havingaprofoundimpactonthesociety.

Massivemachine-typecommunication,exemplifiedbysensornetworksinagriculture, trafficmonitoring,andremotemanagementofutilityequipmentinbuildings,isonetypeof non-mobile-broadbandapplications.Theseapplicationsprimarilyputrequirementsonvery lowdevicepowerconsumptionwhilethedataratesandamountsofdataperdeviceare modest.ManyoftheseapplicationscanalreadybesupportedbytheLTEevolution.

Anotherexampleofnon-mobile-broadbandapplicationsare ultra-reliableandlowlatencycommunications (URLLC),alsoknownascriticalmachine-typecommunication. Exampleshereofareindustrialautomation,wherelatencyandreliabilityrequirementsare verystrict.Vehicle-to-vehiclecommunicationfortrafficsafetyisanotherexample.

Nevertheless,mobilebroadbandwillremainanimportantusecaseandtheamountof trafficinwirelessnetworksisincreasingrapidly,asistheuserexpectationondatarates, availability,andlatency.Theseenhancedrequirementsalsoneedtobeaddressedby5G wirelessnetworks.

Increasingthecapacitycanbedoneinthreeways:improvedspectralefficiency,densified deployments,andanincreasedamountofspectrum.ThespectralefficiencyofLTEisalready highandalthoughimprovementscanbemade,itisnotsufficienttomeetthetrafficincrease. Networkdensificationisalsoexpectedtohappen,notonlyfromacapacityperspective,but alsofromahigh-data-rate-availabilitypointofview,andcanprovideaconsiderableincrease incapacityalthoughatthecostoffindingadditionalantennasites.Increasingtheamountof spectrumwillhelp,butunfortunately,theamountofnot-yet-exploitedspectrumintypical cellularbands,uptoabout3GHz,islimitedandfairlysmall.Therefore,theattentionhas increasedtosomewhathigherfrequencybands,bothinthe3 6GHzrangebutalsointhe range6 30GHzandbeyondforwhichLTEisnotdesigned,asawaytoaccessadditional spectrum.However,asthepropagationconditionsinhigherfrequencybandsareless favorableforwide-areacoverageandrequiremoreadvancedantennatechniquessuchas beamforming,thesebandscanmainlyserveasacomplementtotheexisting,lower-frequency bands.

Asseenfromthediscussionearlier,therangeofrequirementsfor5Gwirelessnetworks areverywide,callingforahighdegreeofnetworkflexibility.Furthermore,asmanyfuture

5GconsistingofLTEevolutionandanewradio-accesstechnology.

applicationscannotbeforeseenatthemoment,future-proofnessisakeyrequirement.Some oftheserequirementscanbehandledbytheLTEevolution,butnotall,callingforanew radio-accesstechnologytocomplementLTEevolutionasillustratedin Figure1.3.

1.4 OUTLINE

Theremainderofthisbookdescribesthetechnologiesforthe4Gand5Gwirelessnetworks.

Chapter2describesthestandardizationprocessandrelevantorganizationssuchasthe aforementioned3GPPandITU.Thefrequencybandsavailableformobilecommunicationis alsobecovered,togetherwithadiscussionontheprocessforfindingnewfrequencybands.

AnoverviewofLTEanditsevolutionisfoundinChapter3.Thischaptercanbereadonits owntogetahigh-levelunderstandingofLTEandhowtheLTEspecificationsevolvedover time.TounderlinethesignificantincreaseincapabilitiesbroughtbytheLTEevolution,3GPP introducedthenamesLTE-AdvancedandLTE-AdvancedProforsomeofthereleases.

Chapters4 11coverthebasicLTEstructure,startingwiththeoverallprotocolstructurein Chapter4andfollowedbyadetaileddescriptionofthephysicallayerinChapters5 7.The remainingChapters8 11,coverconnectionsetupandvarioustransmissionprocedures, includingmulti-antennasupport.

SomeofthemajorenhancementstoLTEintroducedovertimeiscoveredinChapters 12 21,includingcarrieraggregation,unlicensedspectrum,machine-typecommunication, anddevice-to-devicecommunication.Relaying,heterogeneousdeployments,broadcast/ multicastservices,dualconnectivitymultisitecoordinationareotherexamplesofenhancementscoveredinthesechapters.

RFrequirements,takingintoaccountspectrumflexibilityandmulti-standardradio equipment,isthetopicofChapter22.

Chapters23and24coverthenewradioaccessabouttobestandardizedaspartof5G.A closerlookontherequirementsandhowtheyaredefinedisthetopicofChapter23,while Chapter24digsintothetechnicalrealization.

Finally,Chapter25concludesthebookandthediscussionon5Gradioaccess.

Evolution of LTE New radio access 5G wireless access
FIGURE1.3

SPECTRUMREGULATIONAND STANDARDIZATIONFROM 3GTO5G

2

Theresearch,development,implementation,anddeploymentofmobile-communication systemsareperformedbythewirelessindustryinacoordinatedinternationaleffortby whichcommonindustryspecificationsthatdefinethecompletemobile-communication systemareagreed.Theworkdependsalsoheavilyonglobalandregionalregulation,in particularforthespectrumusethatisanessentialcomponentforallradiotechnologies.This chapterdescribestheregulatoryandstandardizationenvironmentthathasbeen,andcontinuestobe,essentialfordefiningthemobile-communicationsystems.

2.1 OVERVIEWOFSTANDARDIZATIONANDREGULATION

Thereareanumberoforganizationsinvolvedincreatingtechnicalspecificationsandstandardsaswellasregulationinthemobile-communicationsarea.Thesecanlooselybedivided intothreegroups:standardsdevelopingorganizations,regulatorybodiesandadministrations, andindustryforums.

Standardsdevelopingorganizations (SDOs)developandagreeontechnicalstandardsfor mobile-communicationssystems,inordertomakeitpossiblefortheindustrytoproduceand deploystandardizedproductsandprovideinteroperabilitybetweenthoseproducts.Most componentsofmobile-communicationsystems,includingbasestationsandmobiledevices, arestandardizedtosomeextent.Thereisalsoacertaindegreeoffreedomtoprovideproprietarysolutionsinproducts,butthecommunicationsprotocolsrelyondetailedstandards forobviousreasons.SDOsareusuallynonprofitindustryorganizationsandnotgovernment controlled.Theyoftenwritestandardswithinacertainareaundermandatefromgovernments(s),however,givingthestandardsahigherstatus.

TherearenationalsSDOs,butduetotheglobalspreadofcommunicationsproducts,most SDOsareregionalandalsocooperateonagloballevel.Asanexample,thetechnical specificationsofGSM,WCDMA/HSPA,andLTEareallcreatedby3GPP(ThirdGeneration PartnershipProject)whichisaglobalorganizationfromsevenregionalandnationalSDOsin Europe(ETSI),Japan(ARIBandTTC),UnitedStates(ATIS),China(CCSA),Korea(TTA), andIndia(TSDSI).SDOstendtohaveavaryingdegreeoftransparency,but3GPPisfully transparentwithalltechnicalspecifications,meetingdocuments,reports,andemailreflectors publicallyavailablewithoutchargeevenfornonmembers.

4G,LTE-AdvancedProandTheRoadto5G. http://dx.doi.org/10.1016/B978-0-12-804575-6.00002-9 Copyright © 2016ErikDahlman,StefanParkvallandJohanSkold.PublishedbyElsevierLtd.Allrightsreserved.

Regulatorybodiesandadministrations aregovernment-ledorganizationsthatsetregulatoryandlegalrequirementsforselling,deploying,andoperatingmobilesystemsandother telecommunicationproducts.Oneoftheirmostimportanttasksistocontrolspectrumuseand tosetlicensingconditionsforthemobileoperatorsthatareawardedlicensestousepartsof theradiofrequency(RF)spectrumformobileoperations.Anothertaskistoregulate“placing onthemarket”ofproductsthroughregulatorycertification,byensuringthatdevices,base stations,andotherequipmentistypeapprovedandshowntomeettherelevantregulation.

Spectrumregulationishandledbothonanationallevelbynationaladministrations,but alsothroughregionalbodiesinEurope(CEPT/ECC),Americas(CITEL),andAsia(APT). Onagloballevel,thespectrumregulationishandledbythe InternationalTelecommunicationsUnion (ITU).Theregulatorybodiesregulatewhatservicesthespectrumistobeusedfor andalsosetmoredetailedrequirementssuchaslimitsonunwantedemissionsfromtransmitters.Theyarealsoindirectlyinvolvedinsettingrequirementsontheproductstandards throughregulation.TheinvolvementofITUinsettingrequirementsonthetechnologiesfor mobilecommunicationisexplainedfurtherin Section2.2.

Industryforums areindustryleadgroupspromotingandlobbyingforspecifictechnologies orotherinterests.Inthemobileindustry,theseareoftenledbyoperators,buttherearealso vendorscreatingindustryforums.AnexampleofsuchagroupisGSMA(GSMassociation) whichispromotingmobile-communicationtechnologiesbasedonGSM,WCDMA,andLTE. Otherexamplesofindustryforumsare Next-GenerationMobileNetworks (NGMN)whichis anoperatorgroupdefiningrequirementsontheevolutionofmobilesystemsand 5GAmericas, whichisaregionalindustryforumthathasevolvedfromitspredecessor4GAmericas.

Figure2.1 illustratestherelationbetweendifferentorganizationsinvolvedinsetting regulatoryandtechnicalconditionsformobilesystems.Thefigurealsoshowsthemobile industryview,wherevendorsdevelopproducts,placethemonthemarketandnegotiatewith operatorswhoprocureanddeploymobilesystems.ThisprocessreliesheavilyonthetechnicalstandardspublishedbytheSDOs,whileplacingproductsonthemarketalsorelieson certificationofproductsonaregionalornationallevel.NotethatinEurope,theregionalSDO (ETSI)isproducingtheso-called Harmonizedstandards usedforproductcertification (throughthe“CE”mark),basedonamandatefromtheregulators.Thesestandardsareused forcertificationinmanycountriesalsooutsideofEurope.

2.2 ITU-RACTIVITIESFROM3GTO5G

2.2.1 THEROLEOFITU-R

ITU-RistheradiocommunicationssectoroftheITU.ITU-Risresponsibleforensuring efficientandeconomicaluseoftheRFspectrumbyallradiocommunicationservices.The differentsubgroupsandworkingpartiesproducereportsandrecommendationsthatanalyze anddefinetheconditionsforusingtheRFspectrum.ThegoalofITU-Risto“ensure interference-freeoperationsofradiocommunicationsystems,”byimplementingthe Radio

Mobile industry view:

Simplifiedviewofrelationbetweenregulatorybodies,standardsdevelopingorganizations,industryforums, andthemobileindustry.

Regulations andregionalagreements.TheRadioRegulationsisaninternationalbinding treatyforhowRFspectrumisused.A WorldRadiocommunicationConference (WRC)isheld every3 4years.AtWRCtheRadioRegulationsarerevisedandupdatedandinthatway providerevisedandupdateduseofRFspectrumacrosstheworld.

Whilethetechnicalspecificationofmobile-communicationtechnologies,suchasLTEand WCDMA/HSPAisdonewithin3GPP,thereisaresponsibilityforITU-Rintheprocessof turningthetechnologiesintoglobalstandards,inparticularforcountriesthatarenotcovered bytheSDOsarepartnersin3GPP.ITU-RdefinesspectrumfordifferentservicesintheRF spectrum,includingmobileservicesandsomeofthatspectrumisparticularlyidentifiedfor theso-calledInternationalMobileTelecommunications(IMT)systems.WithinITU-R,itis WorkingParty5D (WP5D)thathastheresponsibilityfortheoverallradiosystemaspectsof IMTsystems,which,inpractice,correspondstothedifferentgenerationsofmobilecommunicationsystemsfrom3Gandonward.WP5Dhastheprimeresponsibilitywithin ITU-RforissuesrelatedtotheterrestrialcomponentofIMT,includingtechnical,operational, andspectrum-relatedissues.

WP5DdoesnotcreatetheactualtechnicalspecificationsforIMT,buthaskepttherolesof definingIMTincooperationwiththeregionalstandardizationbodiesandmaintainingasetof recommendationsandreportsforIMT,includingasetof RadioInterfaceSpecifications (RSPC).Theserecommendationscontain“families”of radiointerfacetechnologies

Product Vendor
FIGURE2.1

(RITs) allincludedonanequalbasis.Foreachradiointerface,theRSPCcontainsan overviewofthatradiointerface,followedbyalistofreferencestothedetailedspecifications. TheactualspecificationsaremaintainedbytheindividualSDO,andtheRSPCprovides referencestothespecificationstransposedandmaintainedbyeachSDO.Thefollowing RSPCrecommendationsareinexistenceorplanned:

•ForIMT-2000:ITU-RRecommendationM.1457[1]containingsixdifferentRITs includingthe3Gtechnologies.

•ForIMT-Advanced:ITU-RRecommendationM.2012[4]containingtwodifferentRITs wherethemostimportantis4G/LTE.

•ForIMT-2020(5G):AnewITU-RRecommendation,plannedtobedevelopedin 2019 2020.

EachRSPCiscontinuouslyupdatedtoreflectnewdevelopmentinthereferenceddetailed specifications,suchasthe3GPPspecificationsforWCDMAandLTE.Inputtotheupdatesis providedbytheSDOsandthePartnershipProjects,nowadaysprimarily3GPP.

2.2.2 IMT-2000ANDIMT-ADVANCED

WorkonwhatcorrespondstothirdgenerationofmobilecommunicationstartedintheITU-R alreadyinthe1980s.Firstreferredtoas FuturePublicLandMobileSystems (FPLMTS)it waslaterrenamedIMT-2000.Inthelate1990s,theworkinITU-Rcoincidedwiththework indifferentSDOsacrosstheworldtodevelopanewgenerationofmobilesystems.AnRSPC forIMT-2000wasfirstpublishedin2000andincludedWCDMAfrom3GPPasoneof theRITs.

ThenextstepforITU-RwastoinitiateworkonIMT-Advanced,thetermusedforsystems thatincludenewradiointerfacessupportingnewcapabilitiesofsystemsbeyondIMT-2000. ThenewcapabilitiesweredefinedinaframeworkrecommendationpublishedbytheITU-R [2]andweredemonstratedwiththe“vandiagram”shownin Figure2.2.ThestepintoIMTAdvancedcapabilitiesbyITU-Rcoincidedwiththestepinto4G thenextgenerationof mobiletechnologiesafter3G.

AnevolutionofLTEasdevelopedby3GPPwassubmittedasonecandidatetechnology forIMT-Advanced.Whileactuallybeinganewrelease(release10)oftheLTEspecifications andthusanintegralpartofthecontinuousevolutionofLTE,thecandidatewasnamedLTEAdvancedforthepurposeofITU-Rsubmission.3GPPalsosetupitsownsetoftechnical requirementsforLTE-Advanced,withtheITU-Rrequirementsasabasis.

ThetargetoftheITU-Rprocessisalwaysharmonizationofthecandidatesthrough consensusbuilding.ITU-Rdeterminedthattwotechnologieswouldbeincludedinthefirst releaseofIMT-Advanced,thosetwobeingLTEandWirelessMAN-Advanced[3]basedon theIEEE802.16mspecification.Thetwocanbeviewedasthe“family”ofIMT-Advanced technologiesasshownin Figure2.3.Notethat,amongthesetwotechnologies,LTEhas emergedasthedominating4Gtechnology.

IMT-Advanced = New capabilities of

FIGURE2.2

IllustrationofcapabilitiesofIMT-2000andIMT-Advanced,basedontheframeworkdescribedinITU-R RecommendationM.1645[2].

IMT-Advanced terrestrial Radio Interfaces (ITU-R M.2012)

LTE-Advanced (E-UTRA/ Release 10+)

3GPP

WirelessMAN-Advanced (WiMAX/ IEEE 802.16m)

IEEE

FIGURE2.3

RadiointerfacetechnologiesinIMT-Advanced.

2.2.3 IMT-2020

During2012to2015,ITU-RWP5DsetthestageforthenextgenerationofIMTsystems, namedIMT-2020.ItistobeafurtherdevelopmentoftheterrestrialcomponentofIMT beyondtheyear2020and,inpractice,correspondstowhatismorecommonlyreferredtoas “5G,”thefifthgenerationofmobilesystems.TheframeworkandobjectiveforIMT-2020is outlinedinITU-RRecommendationM.2083[63],oftenreferredtoasthe“Vision”recommendation.Therecommendationprovidesthefirststepfordefiningthenewdevelopmentsof

IMT,lookingatthefuturerolesofIMTandhowitcanservesociety,lookingatmarket,user andtechnologytrends,andspectrumimplications.TheusertrendsforIMTtogetherwiththe futureroleandmarketleadstoasetofusagescenariosenvisionedforbothhuman-centricand machine-centriccommunication.Theusagescenariosidentifiedare EnhancedMobile Broadband (eMBB), Ultra-ReliableandLowLatencyCommunications (URLLC),and MassiveMachine-TypeCommunications (MTC).

TheneedforanenhancedMBBexperience,togetherwiththenewandbroadenedusage scenarios,leadstoanextendedsetofcapabilitiesforIMT-2020.TheVisionrecommendation [63]givesafirsthigh-levelguidanceforIMT-2020requirementsbyintroducingasetof keycapabilities,withindicativetargetnumbers.Thekeycapabilitiesandtherelatedusage scenariosarefurtherdiscussedinChapter23.

Asaparallelactivity,ITU-RWP5Dproducedareporton“Futuretechnologytrendsof terrestrialIMTsystems”[64],withfocusonthetimeperiod2015 2020.Itcoverstrendsof futureIMTtechnologyaspectsbylookingatthetechnicalandoperationalcharacteristics ofIMTsystemsandhowtheyareimprovedwiththeevolutionofIMTtechnologies.Inthis way,thereportontechnologytrendsrelatetoLTErelease13andbeyond,whilethevision recommendationlooksfurtheraheadandbeyond2020.Areportstudyingoperationinfrequenciesabove6GHzwasalsoproduced.Chapter24discussessomeofthetechnology componentsconsideredforthenew5Gradioaccess.

AfterWRC-15,ITU-RWP5Disin2016initiatingtheprocessofsettingrequirementsand definingevaluationmethodologiesforIMT-2020systems.Theprocesswillcontinueuntil mid-2017,asshownin Figure2.4.Inaparalleleffort,atemplateforsubmittinganevaluation

ofcandidateRITswillbecreated.Externalorganizationsarebeinginformedoftheprocess throughacircularletter.AfteraworkshoponIMT-2020isheldin2017,theplanistostartthe evaluationofproposals,aimingatanoutcomewiththeRSPCforIMT-2020beingpublished earlyin2020.

ThecomingevaluationofcandidateRITsforIMT-2020inITU-Risexpectedtobe conductedinawaysimilartotheevaluationdoneforIMT-Advanced,wheretherequirements weredocumentedinRecommendationITU-RM.2134[28]andthedetailedevaluation methodologyinRecommendationITU-RM.2135[52].Theevaluationwillbefocusedonthe keycapabilitiesidentifiedintheVISIONrecommendation[63],butwillalsoincludeother technicalperformancerequirements.Therearethreefundamentalwaysthatrequirementsare evaluatedforacandidatetechnology:

• Simulation:Thisisthemostelaboratewaytoevaluatearequirementanditinvolves system-orlink-levelsimulations,orboth,oftheRIT.Forsystem-levelsimulations, deploymentscenariosaredefinedthatcorrespondtoasetoftestenvironments,suchas IndoorandDenseUrban.Requirementsthatarecandidatesforevaluationthrough simulationareforexamplespectrumefficiencyanduser-experienceddatarate(for detailsonthekeycapabilities,seeChapter23).

• Analysis:Somerequirementscanbeevaluatedthroughacalculationbasedonradio interfaceparameters.Thisappliesforexampleincaseofrequirementsonpeakdatarate andlatency.

• Inspection:Somerequirementscanbeevaluatedbyreviewingandassessingthe functionalityoftheRIT.Examplesofparametersthatmaybesubjecttoinspectionare bandwidth,handoverfunctionality,andsupportofservices.

Oncethetechnicalperformancerequirementsandevaluationmethodologyaresetup,the evaluationphasestarts.Evaluationcanbedonebytheproponent(“self-evaluation”)orbyan externalevaluationgroup,doingpartialorcompleteevaluationofoneormorecandidate proposals.

2.3 SPECTRUMFORMOBILESYSTEMS

ThereareanumberoffrequencybandsidentifiedformobileuseandspecificallyforIMT today.ManyofthesebandswerefirstdefinedforoperationwithWCDMA/HSPA,butarenow sharedalsowithLTEdeployments.Notethatinthe3GPPspecificationsWCDMA/HSPAis referredtoas UniversalTerrestrialRadioAccess (UTRA),whileLTEisreferredtoas EnhancedUTRA (E-UTRA).

NewbandsaretodayoftendefinedonlyforLTE.Bothpairedbands,whereseparated frequencyrangesareassignedforuplinkanddownlink,andunpairedbandswithasingle sharedfrequencyrangeforuplinkanddownlink,areincludedintheLTEspecifications. PairedbandsareusedforFrequencyDivisionDuplex(FDD)operation,whileunpairedbands

areusedforTimeDivisionDuplex(TDD)operation.TheduplexmodesofLTEaredescribed furtherinSection3.1.5.Notethatsomeunpairedbandsdonothaveanyuplinkspecified. These“downlinkonly”bandsarepairedwiththeuplinkofotherbandsthrough carrier aggregation,asdescribedinChapter12.

AnadditionalchallengewithLTEoperationinsomebandsisthepossibilityofusing channelbandwidthsupto20MHzwithasinglecarrierandevenbeyondthatwithaggregated carriers.

Historically,thebandsforthefirstandsecondgenerationofmobileserviceswereassigned atfrequenciesaround800 900MHz,butalsoinafewlowerandhigherbands.When3G (IMT-2000)wasrolledout,focuswasonthe2GHzbandandwiththecontinuedexpansionof IMTserviceswith3Gand4G,newbandswereusedatbothlowerandhigherfrequencies.All bandsconsideredareuptothispointbelow6GHz.

Bandsatdifferentfrequencieshavedifferentcharacteristics.Duetothepropagation properties,bandsatlowerfrequenciesaregoodforwide-areacoveragedeployments,bothin urban,suburban,andruralenvironments.Propagationpropertiesofhigherfrequenciesmake themmoredifficulttouseforwide-areacoverage,andhigher-frequencybandshavetherefore toalargerextentbeenusedforboostingcapacityindensedeployments.

Withnewservicesrequiringevenhigherdataratesandhighcapacityindensedeployments,frequencybandsabove6GHzarebeinglookedatasacomplementtothefrequencybandsbelow6GHz.Withthe5Grequirementsforextremedataratesandlocalized areaswithveryhighareatrafficcapacitydemands,deploymentusingmuchhigherfrequencies,evenabove60GHz,isconsidered.Referringtothewavelength,thesebandsare oftencalledmm-wavebands.

2.3.1 SPECTRUMDEFINEDFORIMTSYSTEMSBYTHEITU-R

Theglobaldesignationsofspectrumfordifferentservicesandapplicationsaredonewithin theITU-Randaredocumentedinthe ITURadioRegulations [65].The WorldAdministrative RadioCongress WARC-92identifiedthebands1885 2025and2110 2200MHzas intendedforimplementationofIMT-2000.Ofthese230MHzof3Gspectrum,2 30MHz wereintendedforthesatellitecomponentofIMT-2000andtherestfortheterrestrial component.Partsofthebandswereusedduringthe1990sfordeploymentof2Gcellular systems,especiallyintheAmericas.Thefirstdeploymentsof3Gin2001 2002byJapanand Europeweredoneinthisbandallocation,andforthatreasonitisoftenreferredtoastheIMT2000“coreband.”

AdditionalspectrumforIMT-2000wasidentifiedattheWorldRadiocommunication Conference1 WRC-2000,whereitwasconsideredthatanadditionalneedfor160MHzof spectrumforIMT-2000wasforecastedbytheITU-R.Theidentificationincludesthebands

1TheWorldAdministrativeRadioConference(WARC)wasreorganizedin1992andbecametheWorldRadiocommunication Conference(WRC).

usedfor2Gmobilesystemsat806 960and1710 1885MHz,and“new”3Gspectruminthe bandsat2500 2690MHz.Theidentificationofbandspreviouslyassignedfor2Gwasalso recognitionoftheevolutionofexisting2Gmobilesystemsinto3G.Additionalspectrumwas identifiedatWRC’07forIMT,encompassingbothIMT-2000andIMT-Advanced.Thebands addedwere450 470,698 806,2300 2400,and3400 3600MHz,buttheapplicabilityof thebandsvariesonaregionalandnationalbasis.AtWRC’12therewerenoadditional spectrumallocationsidentifiedforIMT,buttheissuewasputontheagendaforWRC’15. Itwasalsodeterminedtostudytheuseoftheband694 790MHzformobileservicesin Region1(Europe,MiddleEast,andAfrica).

Thesomewhatdivergingarrangementbetweenregionsofthefrequencybandsassignedto IMTmeansthatthereisnotonesinglebandthatcanbeusedfor3Gand4Groaming worldwide.Largeeffortshave,however,beenputintodefiningaminimumsetofbandsthat canbeusedtoprovidetrulyglobalroaming.Inthisway,multibanddevicescanprovide efficientworldwideroamingfor3Gand4Gdevices.

2.3.2 FREQUENCYBANDSFORLTE

LTEcanbedeployedbothinexistingIMTbandsandinfuturebandsthatmaybeidentified. Thepossibilityofoperatingaradioaccesstechnologyindifferentfrequencybandsis,in itself,nothingnew.Forexample,2Gand3Gdevicesaremultibandcapable,coveringbands usedinthedifferentregionsoftheworldtoprovideglobalroaming.Fromaradioaccess functionalityperspective,thishasnoorlimitedimpactandthephysicallayerspecifications suchastheonesforLTE[24 27]donotassumeanyspecificfrequencyband.Whatmay differ,intermsofspecification,betweendifferentbandsaremainlythemorespecificRF requirements,suchastheallowedmaximumtransmitpower,requirements/limitsonoutof-band(OOB)emission,andsoon.Onereasonforthisisthatexternalconstraints, imposedbyregulatorybodies,maydifferbetweendifferentfrequencybands.

ThefrequencybandswhereLTEwilloperateareinbothpairedandunpairedspectrum, requiringflexibilityintheduplexarrangement.Forthisreason,LTEsupportsbothFDDand TDDoperation,willbediscussedlater.

Release13ofthe3GPPspecificationsforLTEincludes32frequencybandsforFDDand12 forTDD.Thenumberofbandsisverylargeandforthisreason,thenumberingschemerecently hadtoberevisedtobecomefutureproofandaccommodatemorebands.Thepairedbandsfor FDDoperationarenumberedfrom1to32and65to66[38],asshownin Table2.1,whilethe unpairedbandsforTDDoperationarenumberedfrom33to46,asshownin Table2.2.Note thatthefrequencybandsdefinedforUTRAFDDusethesamenumbersasthepairedLTE bands,butarelabeledwithRomannumerals.Bands15and16arereservedfordefinitionin Europe,butarepresentlynotused.AllbandsforLTEaresummarizedin Figures2.5and2.6, whichalsoshowthecorrespondingfrequencyallocationdefinedbytheITU-R.

Someofthefrequencybandsarepartlyorfullyoverlapping.Inmostcasesthisis explainedbyregionaldifferencesinhowthebandsdefinedbytheITU-Rareimplemented.At

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.