https://ebookmass.com/product/4g-lte-advanced-pro-and-the-
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
From GSM to LTE-Advanced Pro and 5G: An Introduction to Mobile Networks and Mobile Broadband 4th Edition Martin Sauter
https://ebookmass.com/product/from-gsm-to-lte-advanced-pro-and-5g-anintroduction-to-mobile-networks-and-mobile-broadband-4th-editionmartin-sauter/ ebookmass.com
The Power of Art, Revised 3rd Edition
https://ebookmass.com/product/the-power-of-art-revised-3rd-edition/
ebookmass.com
Pro Bash: Learn to Script and Program the GNU/Linux Shell 3rd Edition Jayant Varma
https://ebookmass.com/product/pro-bash-learn-to-script-and-programthe-gnu-linux-shell-3rd-edition-jayant-varma/ ebookmass.com
Architecting a Modern Data Warehouse for Large Enterprises: Build Multi-cloud Modern Distributed Data Warehouses with Azure and AWS 1st Edition Anjani Kumar
https://ebookmass.com/product/architecting-a-modern-data-warehousefor-large-enterprises-build-multi-cloud-modern-distributed-datawarehouses-with-azure-and-aws-1st-edition-anjani-kumar-3/ ebookmass.com
Biology: Concepts and Applications 10th edition Edition
Cecie Starr
https://ebookmass.com/product/biology-concepts-and-applications-10thedition-edition-cecie-starr/
ebookmass.com
Prenatal and Postnatal Care: A Woman-Centered Approach 2nd Edition
https://ebookmass.com/product/prenatal-and-postnatal-care-a-womancentered-approach-2nd-edition/
ebookmass.com
The Euro Crisis in the Press: Political Debate in Germany, Poland, and the United Kingdom Katarzyna Sobieraj
https://ebookmass.com/product/the-euro-crisis-in-the-press-politicaldebate-in-germany-poland-and-the-united-kingdom-katarzyna-sobieraj/
ebookmass.com
As We Fight: A Dark College Romance (A Mayfair University Novel Book 2) K.G. Reuss
https://ebookmass.com/product/as-we-fight-a-dark-college-romance-amayfair-university-novel-book-2-k-g-reuss/
ebookmass.com
Autonomy in Language Learning and Teaching: New Research Agendas 1st Edition Alice Chik
https://ebookmass.com/product/autonomy-in-language-learning-andteaching-new-research-agendas-1st-edition-alice-chik/
ebookmass.com
Private Wealth Management: The Complete Reference for the Personal Financial Planner, Ninth Edition 9th Edition, (Ebook PDF)
https://ebookmass.com/product/private-wealth-management-the-completereference-for-the-personal-financial-planner-ninth-edition-9thedition-ebook-pdf/ ebookmass.com
4G,LTE-AdvancedProand TheRoadto5G ThirdEdition AcademicPressisanimprintofElsevier
ErikDahlman
StefanParkvall
JohanSko ¨ ld
AcademicPressisanimprintofElsevier
125LondonWall,LondonEC2Y5AS,UnitedKingdom
525BStreet,Suite1800,SanDiego,CA92101-4495,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom
Copyright © 2016,2014,2011ErikDahlman,StefanParkvallandJohanSkold. PublishedbyElsevierLtd.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyright.LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.
ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
ISBN:978-0-12-804575-6
ForinformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/
Publisher: JoeHayton
AcquisitionEditor: TimPitts
EditorialProjectManager: CharlotteKent
ProductionProjectManager: LisaJones
Designer: GregHarris
TypesetbyTNQBooksandJournals
Preface LTEhasbecomethemostsuccessfulmobilewirelessbroadbandtechnology,servingoveronebillion usersasofthebeginningof2016andhandlingawiderangeofapplications.Comparedtotheanalog voice-onlysystems25yearsago,thedifferenceisdramatic.AlthoughLTEisstillatarelativelyearly stageofdeployment,theindustryisalreadywellontheroadtowardthenextgenerationofmobile communication,commonlyreferredtoasthefifthgenerationor5G.Mobilebroadbandis,andwill continuetobe,animportantpartoffuturecellularcommunication,butfuturewirelessnetworksare toalargeextentalsoaboutasignificantlywiderrangeofusecasesandacorrespondinglywiderrange ofrequirements.
ThisbookdescribesLTE,developedin3GPP(Third-GenerationPartnershipProject)and providingtruefourth-generation(4G)broadbandmobileaccess,aswellasthenewradio-accesstechnology3GPPiscurrentlyworkingon.Together,thesetwotechnologieswillprovide5Gwireless access.
Chapter1providesabriefintroduction,followedbyadescriptionofthestandardizationprocess andrelevantorganizationssuchastheaforementioned3GPPandITUinChapter2.Thefrequency bandsavailableformobilecommunicationarealsobecovered,togetherwithadiscussiononthe processforfindingnewfrequencybands.
AnoverviewofLTEanditsevolutionisfoundinChapter3.Thischaptercanbereadonitsownto getahigh-levelunderstandingofLTEandhowtheLTEspecificationsevolvedovertime.Tounderline thesignificantincreaseincapabilitiesbroughtbytheLTEevolution,3GPPintroducedthenames LTE-AdvancedandLTE-AdvancedProforsomeofthereleases.
Chapters4 11coverthebasicLTEstructure,startingwiththeoverallprotocolstructurein Chapter4andfollowedbyadetaileddescriptionofthephysicallayerinChapters5 7.Theremaining Chapters8 11,coverconnectionsetupandvarioustransmissionprocedures,includingmulti-antenna support.
SomeofthemajorenhancementstoLTEintroducedovertimeiscoveredinChapters12 21, includingcarrieraggregation,unlicensedspectrum,machine-typecommunication,anddevice-to-device communication.Relaying,heterogeneousdeployments,broadcast/multicastservices,anddualconnectivitymulti-sitecoordinationareotherexamplesofenhancementscoveredinthesechapters.
Radiofrequency(RF)requirements,takingintoaccountspectrumflexibilityandmulti-standard radioequipment,isthetopicofChapter22.
Chapters23and24coverthenewradioaccessabouttobestandardizedaspartof5G.Acloserlook ontherequirementsandhowtheyaredefinedisthetopicofChapter23,whileChapter24digsintothe technicalrealization.
Finally,Chapter25concludesthebookandthediscussionon5Gradioaccess.
Acknowledgments WethankallourcolleaguesatEricssonforassistinginthisprojectbyhelpingwithcontributionstothe book,givingsuggestionsandcommentsonthecontent,andtakingpartinthehugeteameffortof developingLTEandthenextgenerationofradioaccessfor5G.
Thestandardizationprocessinvolvespeoplefromallpartsoftheworld,andweacknowledgethe effortsofourcolleaguesinthewirelessindustryingeneralandin3GPPRANinparticular.Without theirworkandcontributionstothestandardization,thisbookwouldnothavebeenpossible.
Finally,weareimmenselygratefultoourfamiliesforbearingwithusandsupportingusduringthe longprocessofwritingthisbook.
AbbreviationsandAcronyms 3GPP Third-generationpartnershipproject
AAS Activeantennasystems
ACIR Adjacentchannelinterferenceratio
ACK Acknowledgment(inARQprotocols)
ACLR Adjacentchannelleakageratio
ACS Adjacentchannelselectivity
AGC Automaticgaincontrol
AIFS Arbitrationinterframespace
AM Acknowledgedmode(RLCconfiguration)
A-MPR Additionalmaximumpowerreduction
APT Asia-Pacifictelecommunity
ARI Acknowledgmentresourceindicator
ARIB Associationofradioindustriesandbusinesses
ARQ Automaticrepeat-request
AS Accessstratum
ATC Ancillaryterrestrialcomponent
ATIS Alliancefortelecommunicationsindustrysolutions
AWGN AdditivewhiteGaussiannoise
BC Bandcategory
BCCH Broadcastcontrolchannel
BCH Broadcastchannel
BL Bandwidth-reducedlowcomplexity
BM-SC Broadcastmulticastservicecenter
BPSK Binaryphase-shiftkeying
BS Basestation
BW Bandwidth
CA Carrieraggregation
CACLR Cumulativeadjacentchannelleakageratio
CC Componentcarrier
CCA Clearchannelassessment
CCCH Commoncontrolchannel
CCE Controlchannelelement
CCSA ChinaCommunicationsStandardsAssociation
CDMA Code-divisionmultipleaccess
CE Coverageenhancement
CEPT EuropeanConferenceofPostalandTelecommunicationsAdministrations
CGC Complementarygroundcomponent
CITEL Inter-AmericanTelecommunicationCommission
C-MTC CriticalMTC
CN Corenetwork
CoMP Coordinatedmulti-pointtransmission/reception
CP Cyclicprefix
CQI Channel-qualityindicator
CRC Cyclicredundancycheck
C-RNTI Cellradio-networktemporaryidentifier
CRS Cell-specificreferencesignal
CS Capabilityset(forMSRbasestations)
CSA Commonsubframeallocation
CSG ClosedSubscriberGroup
CSI Channel-stateinformation
CSI-IM CSIinterferencemeasurement
CSI-RS CSIreferencesignals
CW Continuouswave
D2D Device-to-device
DAI Downlinkassignmentindex
DCCH Dedicatedcontrolchannel
DCH Dedicatedchannel
DCI Downlinkcontrolinformation
DCF Distributedcoordinationfunction
DFS Dynamicfrequencyselection
DFT DiscreteFouriertransform
DFTS-OFDMDFT-spreadOFDM(DFT-precodedOFDM)
DIFS Distributedinterframespace
DL Downlink
DL-SCH Downlinksharedchannel
DM-RS Demodulationreferencesignal
DMTC DRSmeasurementstimingconfiguration
DRS Discoveryreferencesignal
DRX Discontinuousreception
DTCH Dedicatedtrafficchannel
DTX Discontinuoustransmission
DwPTS Downlinkpartofthespecialsubframe(forTDDoperation)
ECCE Enhancedcontrolchannelelement
EDCA Enhanceddistributedchannelaccess
EDGE EnhanceddataratesforGSMevolution;enhanceddataratesforglobalevolution
eIMTA EnhancedInterferencemitigationandtrafficadaptation
EIRP Effectiveisotropicradiatedpower
EIS Equivalentisotropicsensitivity
EMBB EnhancedMBB
eMTC Enhancedmachine-typecommunication
eNB eNodeB
eNodeB E-UTRANNodeB
EPC Evolvedpacketcore
EPDCCH Enhancedphysicaldownlinkcontrolchannel
EPS Evolvedpacketsystem
EREG Enhancedresource-elementgroup
ETSI EuropeanTelecommunicationsStandardsInstitute
E-UTRA EvolvedUTRA
E-UTRANEvolvedUTRAN
EVM Errorvectormagnitude
FCC FederalCommunicationsCommission
FDD Frequencydivisionduplex
FD-MIMOFull-dimensionmultipleinput multipleoutput
FDMA Frequency-divisionmultipleaccess
FEC Forwarderrorcorrection
FeICIC Furtherenhancedintercellinterferencecoordination
FFT FastFouriertransform
FPLMTS Futurepubliclandmobiletelecommunicationssystems
FSTD Frequency-switchedtransmitdiversity
GB Guardband
GERAN GSM/EDGEradioaccessnetwork
GP Guardperiod(forTDDoperation)
GPRS Generalpacketradioservices
GPS Globalpositioningsystem
GSM Globalsystemformobilecommunications
GSMA GSMAssociation
HARQ HybridARQ
HII High-interferenceindicator
HSFN Hypersystemframenumber
HSPA High-speedpacketaccess
HSS Homesubscriberserver
ICIC Intercellinterferencecoordination
ICNIRP InternationalCommissiononNon-IonizingRadiationProtection
ICS In-channelselectivity
IEEE InstituteofElectricalandElectronicsEngineers
IFFT InversefastFouriertransform
IMT-2000InternationalMobileTelecommunications2000(ITU’snameforthefamilyof3Gstandards)
IMT-2020InternationalMobileTelecommunications2020(ITU’snameforthefamilyof5Gstandards)
IMT-AdvancedInternationalMobileTelecommunicationsAdvanced(ITU’snameforthefamilyof4G standards).
IOT Internetofthings
IP Internetprotocol
IR Incrementalredundancy
IRC Interferencerejectioncombining
ITU InternationalTelecommunicationsUnion
ITU-R InternationalTelecommunicationsUnion Radiocommunicationssector
KPI Keyperformanceindicator
LAA License-assistedaccess
LAN Localareanetwork
LBT Listenbeforetalk
LCID Logicalchannelidentifier
LDPC Low-densityparitycheckcode
LTE Long-termevolution
MAC Mediumaccesscontrol
MAN Metropolitanareanetwork
MBB Mobilebroadband
MBMS Multimediabroadcast multicastservice
MBMS-GWMBMSgateway
MB-MSR Multi-bandmulti-standardradio(basestation)
MBSFN Multicast broadcastsingle-frequencynetwork
MC Multi-carrier
MCCH MBMScontrolchannel
MCE MBMScoordinationentity
MCG Mastercellgroup
MCH Multicastchannel
MCS Modulationandcodingscheme
METIS MobileandwirelesscommunicationsEnablersforTwenty twenty(2020)Information Society
MIB Masterinformationblock
MIMO Multipleinput multipleoutput
MLSE Maximum-likelihoodsequenceestimation
MME Mobilitymanagemententity
M-MTC MassiveMTC
MPDCCHMTCphysicaldownlinkcontrolchannel
MPR Maximumpowerreduction
MSA MCHsubframeallocation
MSI MCHschedulinginformation
MSP MCHschedulingperiod
MSR Multi-standardradio
MSS Mobilesatelliteservice
MTC Machine-typecommunication
MTCH MBMStrafficchannel
MU-MIMOMulti-userMIMO
NAK Negativeacknowledgment(inARQprotocols)
NAICS Network-assistedinterferencecancelationandsuppression
NAS Non-accessstratum(afunctionallayerbetweenthecorenetworkandtheterminalthat supportssignaling)
NB-IoT Narrow-bandinternetofthings
NDI Newdataindicator
NGMN Next-generationmobilenetworks
NMT NordiskMobilTelefon(NordicMobileTelephony)
NodeB Alogicalnodehandlingtransmission/receptioninmultiplecells;commonly,butnotnecessarily,correspondingtoabasestation
NPDCCHNarrowbandPDCCH
NPDSCH NarrowbandPDSCH
NS Networksignaling
OCC Orthogonalcovercode
OFDM Orthogonalfrequency-divisionmultiplexing
OI Overloadindicator
OOB Out-of-band(emissions)
OSDD OTAsensitivitydirectiondeclarations
OTA Overtheair
PA Poweramplifier
PAPR Peak-to-averagepowerratio
PAR Peak-to-averageratio(sameasPAPR)
PBCH Physicalbroadcastchannel
PCCH Pagingcontrolchannel
PCFICH Physicalcontrolformatindicatorchannel
PCG ProjectCoordinationGroup(in3GPP)
PCH Pagingchannel
PCID Physicalcellidentity
PCRF Policyandchargingrulesfunction
PDC Personaldigitalcellular
PDCCH Physicaldownlinkcontrolchannel
PDCP Packetdataconvergenceprotocol
PDSCH Physicaldownlinksharedchannel
PDN Packetdatanetwork
PDU Protocoldataunit
P-GW Packet-datanetworkgateway(alsoPDN-GW)
PHICH Physicalhybrid-ARQindicatorchannel
PHS Personalhandy-phonesystem
PHY Physicallayer
PMCH Physicalmulticastchannel
PMI Precoding-matrixindicator
PRACH Physicalrandomaccesschannel
PRB Physicalresourceblock
P-RNTI PagingRNTI
ProSe Proximityservices
PSBCH Physicalsidelinkbroadcastchannel
PSCCH Physicalsidelinkcontrolchannel
PSD Powerspectraldensity
PSDCH Physicalsidelinkdiscoverychannel
P-SLSS Primarysidelinksynchronizationsignal
PSM Power-savingmode
PSS Primarysynchronizationsignal
PSSCH Physicalsidelinksharedchannel
PSTN Publicswitchedtelephonenetworks
PUCCH Physicaluplinkcontrolchannel
PUSCH Physicaluplinksharedchannel
QAM Quadratureamplitudemodulation
QCL Quasi-colocation
QoS Quality-of-service
QPP Quadraturepermutationpolynomial
QPSK Quadraturephase-shiftkeying
RAB Radio-accessbearer
RACH Random-accesschannel
RAN Radio-accessnetwork
RA-RNTIRandom-accessRNTI
RAT Radio-accesstechnology
RB Resourceblock
RE Resourceelement
REG Resource-elementgroup
RF Radiofrequency
RI Rankindicator
RLAN Radiolocalareanetworks
RLC Radiolinkcontrol
RNTI Radio-networktemporaryidentifier
RNTP Relativenarrowbandtransmitpower
RoAoA Rangeofangleofarrival
ROHC Robustheadercompression
R-PDCCHRelayphysicaldownlinkcontrolchannel
RRC Radio-resourcecontrol
RRM Radioresourcemanagement
RS Referencesymbol
RSPC Radiointerfacespecifications
RSRP Referencesignalreceivedpower
RSRQ Referencesignalreceivedquality
RV Redundancyversion
RX Receiver
S1 InterfacebetweeneNodeBandtheevolvedpacketcore
S1-c Control-planepartofS1
S1-u User-planepartofS1
SAE Systemarchitectureevolution
SBCCH Sidelinkbroadcastcontrolchannel
SCG Secondarycellgroup
SCI Sidelinkcontrolinformation
SC-PTM Single-cellpointtomultipoint
SDMA Spatialdivisionmultipleaccess
SDO Standardsdevelopingorganization
SDU Servicedataunit
SEM Spectrumemissionsmask
SF Subframe
SFBC Space frequencyblockcoding
SFN Single-frequencynetwork(ingeneral,seealsoMBSFN);systemframenumber(in3GPP).
S-GW Servinggateway
SI Systeminformationmessage
SIB Systeminformationblock
SIB1-BR SIB1bandwidthreduced
SIC Successiveinterferencecombining
SIFS Shortinterframespace
SIM Subscriberidentitymodule
SINR Signal-to-interference-and-noiseratio
SIR Signal-to-interferenceratio
SI-RNTI SysteminformationRNTI
SL-BCH Sidelinkbroadcastchannel
SL-DCH Sidelinkdiscoverychannel
SLI Sidelinkidentity
SL-SCH Sidelinksharedchannel
SLSS Sidelinksynchronizationsignal
SNR Signal-to-noiseratio
SORTD Spatialorthogonal-resourcetransmitdiversity
SR Schedulingrequest
SRS Soundingreferencesignal
S-SLSS Secondarysidelinksynchronizationsignal
SSS Secondarysynchronizationsignal
STCH Sidelinktrafficchannel
STBC Space timeblockcoding
STC Space timecoding
STTD Space timetransmitdiversity
SU-MIMOSingle-userMIMO
TAB Transceiverarrayboundary
TCP Transmissioncontrolprotocol
TC-RNTI TemporaryC-RNTI
TDD Time-divisionduplex
TDMA Time-divisionmultipleaccess
TD-SCDMATime-division-synchronouscode-divisionmultipleaccess
TF Transportformat
TPC Transmitpowercontrol
TR Technicalreport
TRP Timerepetitionpattern;transmissionreceptionpoint
TRPI Timerepetitionpatternindex
TS Technicalspecification
TSDSI TelecommunicationsStandardsDevelopmentSociety,India
TSG TechnicalSpecificationGroup
TTA TelecommunicationsTechnologyAssociation
TTC TelecommunicationsTechnologyCommittee
TTI Transmissiontimeinterval
TX Transmitter
TXOP Transmissionopportunity
UCI Uplinkcontrolinformation
UE Userequipment(the3GPPnameforthemobileterminal)
UEM Unwantedemissionsmask
UL Uplink
UL-SCH Uplinksharedchannel
UM Unacknowledgedmode(RLCconfiguration)
UMTS Universalmobiletelecommunicationssystem
UpPTS Uplinkpartofthespecialsubframe,forTDDoperation
URLLC Ultra-reliablelow-latencycommunication
UTRA Universalterrestrialradioaccess
UTRAN Universalterrestrialradio-accessnetwork
VoIP Voice-over-IP
VRB Virtualresourceblock
WARC WorldAdministrativeRadioCongress
WAS Wirelessaccesssystems
WCDMA Widebandcode-divisionmultipleaccess
WCS Wirelesscommunicationsservice
WG Workinggroup
WiMAX Worldwideinteroperabilityformicrowaveaccess
WLAN Wirelesslocalareanetwork
WMAN Wirelessmetropolitanareanetwork
WP5D WorkingParty5D
WRC WorldRadiocommunicationConference
X2 InterfacebetweeneNodeBs.
ZC Zadoff-Chu
INTRODUCTION 1 Mobilecommunicationhasbecomeaneverydaycommodity.Inthelastdecades,ithas evolvedfrombeinganexpensivetechnologyforafewselectedindividualstotoday’s ubiquitoussystemsusedbyamajorityoftheworld’spopulation.
Theworldhaswitnessedfourgenerationsofmobile-communicationsystems,each associatedwithaspecificsetoftechnologiesandaspecificsetofsupportedusecases,see Figure1.1.Thegenerationsandthestepstakenbetweenthemareusedhereasbackgroundto introducethecontentofthisbook.Therestofthebookfocusesonthelatestgenerationsthat aredeployedandunderconsideration,whicharefourthgeneration(4G)andfifthgeneration (5G).
1.1 1GAND2G VOICE-CENTRICTECHNOLOGIES Thefirst-generation(1G)systemsweretheanalogvoice-onlymobile-telephonysystemsof the1980s,oftenavailableonanationalbasiswithlimitedornointernationalroaming.1G systemsincludeNMT,AMPS,andTACS.Mobilecommunicationwasavailablebeforethe 1Gsystems,buttypicallyonasmallscaleandtargetingaveryselectedgroupofpeople.
Thesecond-generation(2G)systemsappearedintheearly1990s.Examplesof2G technologiesincludetheEuropean-originatedGSMtechnology,theAmericanIS-95/CDMA andIS-136/TDMAtechnologies,andtheJapanesePDCtechnology.The2Gsystemswere
FIGURE1.1 Cellulargenerations.
4G,LTE-AdvancedProandTheRoadto5G. http://dx.doi.org/10.1016/B978-0-12-804575-6.00001-7 Copyright © 2016ErikDahlman,StefanParkvallandJohanSkold.PublishedbyElsevierLtd.Allrightsreserved.
stillvoicecentric,butthankstobeingall-digitalprovidedasignificantlyhighercapacitythan theprevious1Gsystems.Overtheyears,someoftheseearlytechnologieshavebeen extendedtoalsosupport(primitive)packetdataservices.Theseextensionsaresometimes referredtoas2.5Gtoindicatethattheyhavetheirrootsinthe2Gtechnologiesbuthavea significantlywiderrangeofcapabilitiesthantheoriginaltechnologies.EDGEisawellknownexampleofa2.5Gtechnology.GSM/EDGEisstillinwidespreaduseinsmartphonesbutisalsofrequentlyusedforsometypesofmachine-typecommunicationsuchas alarms,paymentsystems,andreal-estatemonitoring.
1.2 3GAND4G MOBILEBROADBAND Duringthe1990s,theneedtosupportnotonlyvoicebutalsodataserviceshadstartedto emerge,drivingtheneedforanewgenerationofcellulartechnologiesgoingbeyondvoiceonlyservices.Atthistimeinthelate1990s,2GGSM,despitebeingdevelopedwithinEurope, hadalreadybecomeadefactoglobalstandard.Toensureglobalreachalsofor3Gtechnologiesitwasrealizedthatthe3Gdevelopmenthadtobecarriedoutonaglobalbasis.To facilitatethis,the Third-GenerationPartnershipProject (3GPP)wasformedtodevelopthe 3GWCDMAandTD-SCDMAtechnologies,seeChapter2forfurtherdetails.Shortlyafterward,theparallelorganization3GPP2wasformedtodevelopthecompeting3Gcdma2000 technology,anevolutionofthe2GIS-95technology.
ThefirstreleaseofWCDMA(release991)wasfinalizedin1999.Itincludedcircuitswitchedvoiceandvideoservices,anddataservicesoverbothpacket-switchedand circuit-switchedbearers.
ThefirstmajorenhancementstoWCDMAcamewiththeintroductionof HighSpeed DownlinkPacketAccess (HSDPA)inrelease5followedby EnhancedUplinkinrelease6, collectivelyknownas HighSpeedPacketAccess(HSPA) [61].HSPA,sometimesreferredto as3.5G,allowedfora“true”mobile-broadbandexperiencewithdataratesofseveralMbit/s whilemaintainingthecompatibilitywiththeoriginal3Gspecifications.Withthesupportfor mobilebroadband,thefoundationfortherapiduptakeofsmartphonessuchastheiPhoneand thewiderangeofAndroiddeviceswereinplace.Withoutthewideavailabilityofmobile broadbandforthemassmarket,theuptakeofsmartphoneusagewouldhavebeensignificantlyslowerandtheirusabilityseverelylimited.Atthesametime,themassiveuseofsmart phonesandawiderangeofpacket-data-basedservicessuchassocialnetworking,video, gaming,andonlineshoppingtranslatesintorequirementsonincreasedcapacityandimproved spectralefficiency.Usersgettingmoreandmoreusedtomobileservicesalsoraisetheir expectationsintermsofexperiencingincreaseddataratesandreducedlatency.Theseneeds
1Forhistoricalreasons,thefirst3GPPreleaseisnamedaftertheyearitwasfrozen(1999),whilethefollowingreleasesare numbered4,5,6,andsoon.
werepartlyhandledbyacontinuous,andstillongoing,evolutionofHSPA,butitalsotriggeredthediscussionson4Gtechnologyinthemid-2000s.
The4GLTEtechnologywasfromthebeginningdevelopedforpacket-datasupportand hasnosupportforcircuit-switchedvoice,unlikethe3GwhereHSPAwasan“add-on”to providehigh-performancepacketdataontopofanexistingtechnology.Mobilebroadband serviceswerethefocus,withtoughrequirementsonhighdatarates,lowlatency,andhigh capacity.SpectrumflexibilityandmaximumcommonalitybetweenFDDandTDDsolutions wereotherimportantrequirements.Anewcorenetworkarchitecturewasalsodeveloped, knownas EnhancedPacketCore (EPC),toreplacethearchitectureusedbyGSMand WCDMA/HSPA.ThefirstversionofLTEwaspartofrelease8ofthe3GPPspecificationsand thefirstcommercialdeploymenttookplaceinlate2009,followedbyarapidandworldwide deploymentofLTEnetworks.
OnesignificantaspectofLTEistheworldwideacceptanceofasingletechnology,unlike previousgenerationsforwhichtherehasbeenseveralcompetingtechnologies,see Figure1.2. Havingasingle,universallyacceptedtechnologyacceleratesdevelopmentofnewservices andreducesthecostforbothusersandnetworkoperators.
Sinceitscommercialintroductionin2009,LTEhasevolvedconsiderablyintermsofdata rates,capacity,spectrumanddeploymentflexibility,andapplicationrange.Frommacrocentricdeploymentswithpeakdataratesof300Mbit/sin20MHzofcontiguous,licensed spectrum,theevolutionofLTEcaninrelease13supportmulti-Gbit/speakdataratesthrough improvementsintermsofantennatechnologies,multisitecoordination,exploitationof fragmentedaswellasunlicensedspectrumanddensifieddeploymentsjusttomentionafew areas.TheevolutionofLTEhasalsoconsiderablywidenedtheusecasesbeyondmobile broadbandby,forexample,improvingsupportformassivemachine-typecommunicationand introducingdirectdevice-to-devicecommunication.
1.3 5G BEYONDMOBILEBROADBAND NETWORKEDSOCIETY AlthoughLTEisstillatarelativelyearlystageofdeployment,theindustryisalreadywellon theroadtowardsthenextgenerationofmobilecommunication,commonlyreferredtoasfifth generationor5G.
Mobilebroadbandis,andwillcontinuetobe,animportantpartoffuturecellular communication,butfuturewirelessnetworksaretoalargeextentalsoaboutasignificantly widerrangeofusecases.Inessence,5Gshouldbeseenasaplatformenablingwireless connectivitytoallkindsofservices,existingaswellasfuturenot-yet-knownservicesand therebytakingwirelessnetworksbeyondmobilebroadband.Connectivitywillbeprovided essentiallyanywhere,anytimetoanyoneandanything.Theterm networkedsociety is sometimesusedwhenreferringtosuchascenariowhereconnectivitygoesbeyondmobile smartphones,havingaprofoundimpactonthesociety.
Massivemachine-typecommunication,exemplifiedbysensornetworksinagriculture, trafficmonitoring,andremotemanagementofutilityequipmentinbuildings,isonetypeof non-mobile-broadbandapplications.Theseapplicationsprimarilyputrequirementsonvery lowdevicepowerconsumptionwhilethedataratesandamountsofdataperdeviceare modest.ManyoftheseapplicationscanalreadybesupportedbytheLTEevolution.
Anotherexampleofnon-mobile-broadbandapplicationsare ultra-reliableandlowlatencycommunications (URLLC),alsoknownascriticalmachine-typecommunication. Exampleshereofareindustrialautomation,wherelatencyandreliabilityrequirementsare verystrict.Vehicle-to-vehiclecommunicationfortrafficsafetyisanotherexample.
Nevertheless,mobilebroadbandwillremainanimportantusecaseandtheamountof trafficinwirelessnetworksisincreasingrapidly,asistheuserexpectationondatarates, availability,andlatency.Theseenhancedrequirementsalsoneedtobeaddressedby5G wirelessnetworks.
Increasingthecapacitycanbedoneinthreeways:improvedspectralefficiency,densified deployments,andanincreasedamountofspectrum.ThespectralefficiencyofLTEisalready highandalthoughimprovementscanbemade,itisnotsufficienttomeetthetrafficincrease. Networkdensificationisalsoexpectedtohappen,notonlyfromacapacityperspective,but alsofromahigh-data-rate-availabilitypointofview,andcanprovideaconsiderableincrease incapacityalthoughatthecostoffindingadditionalantennasites.Increasingtheamountof spectrumwillhelp,butunfortunately,theamountofnot-yet-exploitedspectrumintypical cellularbands,uptoabout3GHz,islimitedandfairlysmall.Therefore,theattentionhas increasedtosomewhathigherfrequencybands,bothinthe3 6GHzrangebutalsointhe range6 30GHzandbeyondforwhichLTEisnotdesigned,asawaytoaccessadditional spectrum.However,asthepropagationconditionsinhigherfrequencybandsareless favorableforwide-areacoverageandrequiremoreadvancedantennatechniquessuchas beamforming,thesebandscanmainlyserveasacomplementtotheexisting,lower-frequency bands.
Asseenfromthediscussionearlier,therangeofrequirementsfor5Gwirelessnetworks areverywide,callingforahighdegreeofnetworkflexibility.Furthermore,asmanyfuture
5GconsistingofLTEevolutionandanewradio-accesstechnology.
applicationscannotbeforeseenatthemoment,future-proofnessisakeyrequirement.Some oftheserequirementscanbehandledbytheLTEevolution,butnotall,callingforanew radio-accesstechnologytocomplementLTEevolutionasillustratedin Figure1.3.
1.4 OUTLINE Theremainderofthisbookdescribesthetechnologiesforthe4Gand5Gwirelessnetworks.
Chapter2describesthestandardizationprocessandrelevantorganizationssuchasthe aforementioned3GPPandITU.Thefrequencybandsavailableformobilecommunicationis alsobecovered,togetherwithadiscussionontheprocessforfindingnewfrequencybands.
AnoverviewofLTEanditsevolutionisfoundinChapter3.Thischaptercanbereadonits owntogetahigh-levelunderstandingofLTEandhowtheLTEspecificationsevolvedover time.TounderlinethesignificantincreaseincapabilitiesbroughtbytheLTEevolution,3GPP introducedthenamesLTE-AdvancedandLTE-AdvancedProforsomeofthereleases.
Chapters4 11coverthebasicLTEstructure,startingwiththeoverallprotocolstructurein Chapter4andfollowedbyadetaileddescriptionofthephysicallayerinChapters5 7.The remainingChapters8 11,coverconnectionsetupandvarioustransmissionprocedures, includingmulti-antennasupport.
SomeofthemajorenhancementstoLTEintroducedovertimeiscoveredinChapters 12 21,includingcarrieraggregation,unlicensedspectrum,machine-typecommunication, anddevice-to-devicecommunication.Relaying,heterogeneousdeployments,broadcast/ multicastservices,dualconnectivitymultisitecoordinationareotherexamplesofenhancementscoveredinthesechapters.
RFrequirements,takingintoaccountspectrumflexibilityandmulti-standardradio equipment,isthetopicofChapter22.
Chapters23and24coverthenewradioaccessabouttobestandardizedaspartof5G.A closerlookontherequirementsandhowtheyaredefinedisthetopicofChapter23,while Chapter24digsintothetechnicalrealization.
Finally,Chapter25concludesthebookandthediscussionon5Gradioaccess.
Evolution of LTE New radio access 5G wireless access
FIGURE1.3
SPECTRUMREGULATIONAND STANDARDIZATIONFROM 3GTO5G 2 Theresearch,development,implementation,anddeploymentofmobile-communication systemsareperformedbythewirelessindustryinacoordinatedinternationaleffortby whichcommonindustryspecificationsthatdefinethecompletemobile-communication systemareagreed.Theworkdependsalsoheavilyonglobalandregionalregulation,in particularforthespectrumusethatisanessentialcomponentforallradiotechnologies.This chapterdescribestheregulatoryandstandardizationenvironmentthathasbeen,andcontinuestobe,essentialfordefiningthemobile-communicationsystems.
2.1 OVERVIEWOFSTANDARDIZATIONANDREGULATION Thereareanumberoforganizationsinvolvedincreatingtechnicalspecificationsandstandardsaswellasregulationinthemobile-communicationsarea.Thesecanlooselybedivided intothreegroups:standardsdevelopingorganizations,regulatorybodiesandadministrations, andindustryforums.
Standardsdevelopingorganizations (SDOs)developandagreeontechnicalstandardsfor mobile-communicationssystems,inordertomakeitpossiblefortheindustrytoproduceand deploystandardizedproductsandprovideinteroperabilitybetweenthoseproducts.Most componentsofmobile-communicationsystems,includingbasestationsandmobiledevices, arestandardizedtosomeextent.Thereisalsoacertaindegreeoffreedomtoprovideproprietarysolutionsinproducts,butthecommunicationsprotocolsrelyondetailedstandards forobviousreasons.SDOsareusuallynonprofitindustryorganizationsandnotgovernment controlled.Theyoftenwritestandardswithinacertainareaundermandatefromgovernments(s),however,givingthestandardsahigherstatus.
TherearenationalsSDOs,butduetotheglobalspreadofcommunicationsproducts,most SDOsareregionalandalsocooperateonagloballevel.Asanexample,thetechnical specificationsofGSM,WCDMA/HSPA,andLTEareallcreatedby3GPP(ThirdGeneration PartnershipProject)whichisaglobalorganizationfromsevenregionalandnationalSDOsin Europe(ETSI),Japan(ARIBandTTC),UnitedStates(ATIS),China(CCSA),Korea(TTA), andIndia(TSDSI).SDOstendtohaveavaryingdegreeoftransparency,but3GPPisfully transparentwithalltechnicalspecifications,meetingdocuments,reports,andemailreflectors publicallyavailablewithoutchargeevenfornonmembers.
4G,LTE-AdvancedProandTheRoadto5G. http://dx.doi.org/10.1016/B978-0-12-804575-6.00002-9 Copyright © 2016ErikDahlman,StefanParkvallandJohanSkold.PublishedbyElsevierLtd.Allrightsreserved.
Regulatorybodiesandadministrations aregovernment-ledorganizationsthatsetregulatoryandlegalrequirementsforselling,deploying,andoperatingmobilesystemsandother telecommunicationproducts.Oneoftheirmostimportanttasksistocontrolspectrumuseand tosetlicensingconditionsforthemobileoperatorsthatareawardedlicensestousepartsof theradiofrequency(RF)spectrumformobileoperations.Anothertaskistoregulate“placing onthemarket”ofproductsthroughregulatorycertification,byensuringthatdevices,base stations,andotherequipmentistypeapprovedandshowntomeettherelevantregulation.
Spectrumregulationishandledbothonanationallevelbynationaladministrations,but alsothroughregionalbodiesinEurope(CEPT/ECC),Americas(CITEL),andAsia(APT). Onagloballevel,thespectrumregulationishandledbythe InternationalTelecommunicationsUnion (ITU).Theregulatorybodiesregulatewhatservicesthespectrumistobeusedfor andalsosetmoredetailedrequirementssuchaslimitsonunwantedemissionsfromtransmitters.Theyarealsoindirectlyinvolvedinsettingrequirementsontheproductstandards throughregulation.TheinvolvementofITUinsettingrequirementsonthetechnologiesfor mobilecommunicationisexplainedfurtherin Section2.2.
Industryforums areindustryleadgroupspromotingandlobbyingforspecifictechnologies orotherinterests.Inthemobileindustry,theseareoftenledbyoperators,buttherearealso vendorscreatingindustryforums.AnexampleofsuchagroupisGSMA(GSMassociation) whichispromotingmobile-communicationtechnologiesbasedonGSM,WCDMA,andLTE. Otherexamplesofindustryforumsare Next-GenerationMobileNetworks (NGMN)whichis anoperatorgroupdefiningrequirementsontheevolutionofmobilesystemsand 5GAmericas, whichisaregionalindustryforumthathasevolvedfromitspredecessor4GAmericas.
Figure2.1 illustratestherelationbetweendifferentorganizationsinvolvedinsetting regulatoryandtechnicalconditionsformobilesystems.Thefigurealsoshowsthemobile industryview,wherevendorsdevelopproducts,placethemonthemarketandnegotiatewith operatorswhoprocureanddeploymobilesystems.ThisprocessreliesheavilyonthetechnicalstandardspublishedbytheSDOs,whileplacingproductsonthemarketalsorelieson certificationofproductsonaregionalornationallevel.NotethatinEurope,theregionalSDO (ETSI)isproducingtheso-called Harmonizedstandards usedforproductcertification (throughthe“CE”mark),basedonamandatefromtheregulators.Thesestandardsareused forcertificationinmanycountriesalsooutsideofEurope.
2.2 ITU-RACTIVITIESFROM3GTO5G 2.2.1 THEROLEOFITU-R ITU-RistheradiocommunicationssectoroftheITU.ITU-Risresponsibleforensuring efficientandeconomicaluseoftheRFspectrumbyallradiocommunicationservices.The differentsubgroupsandworkingpartiesproducereportsandrecommendationsthatanalyze anddefinetheconditionsforusingtheRFspectrum.ThegoalofITU-Risto“ensure interference-freeoperationsofradiocommunicationsystems,”byimplementingthe Radio
Mobile industry view:
Simplifiedviewofrelationbetweenregulatorybodies,standardsdevelopingorganizations,industryforums, andthemobileindustry.
Regulations andregionalagreements.TheRadioRegulationsisaninternationalbinding treatyforhowRFspectrumisused.A WorldRadiocommunicationConference (WRC)isheld every3 4years.AtWRCtheRadioRegulationsarerevisedandupdatedandinthatway providerevisedandupdateduseofRFspectrumacrosstheworld.
Whilethetechnicalspecificationofmobile-communicationtechnologies,suchasLTEand WCDMA/HSPAisdonewithin3GPP,thereisaresponsibilityforITU-Rintheprocessof turningthetechnologiesintoglobalstandards,inparticularforcountriesthatarenotcovered bytheSDOsarepartnersin3GPP.ITU-RdefinesspectrumfordifferentservicesintheRF spectrum,includingmobileservicesandsomeofthatspectrumisparticularlyidentifiedfor theso-calledInternationalMobileTelecommunications(IMT)systems.WithinITU-R,itis WorkingParty5D (WP5D)thathastheresponsibilityfortheoverallradiosystemaspectsof IMTsystems,which,inpractice,correspondstothedifferentgenerationsofmobilecommunicationsystemsfrom3Gandonward.WP5Dhastheprimeresponsibilitywithin ITU-RforissuesrelatedtotheterrestrialcomponentofIMT,includingtechnical,operational, andspectrum-relatedissues.
WP5DdoesnotcreatetheactualtechnicalspecificationsforIMT,buthaskepttherolesof definingIMTincooperationwiththeregionalstandardizationbodiesandmaintainingasetof recommendationsandreportsforIMT,includingasetof RadioInterfaceSpecifications (RSPC).Theserecommendationscontain“families”of radiointerfacetechnologies
Product Vendor
FIGURE2.1
(RITs) allincludedonanequalbasis.Foreachradiointerface,theRSPCcontainsan overviewofthatradiointerface,followedbyalistofreferencestothedetailedspecifications. TheactualspecificationsaremaintainedbytheindividualSDO,andtheRSPCprovides referencestothespecificationstransposedandmaintainedbyeachSDO.Thefollowing RSPCrecommendationsareinexistenceorplanned:
•ForIMT-2000:ITU-RRecommendationM.1457[1]containingsixdifferentRITs includingthe3Gtechnologies.
•ForIMT-Advanced:ITU-RRecommendationM.2012[4]containingtwodifferentRITs wherethemostimportantis4G/LTE.
•ForIMT-2020(5G):AnewITU-RRecommendation,plannedtobedevelopedin 2019 2020.
EachRSPCiscontinuouslyupdatedtoreflectnewdevelopmentinthereferenceddetailed specifications,suchasthe3GPPspecificationsforWCDMAandLTE.Inputtotheupdatesis providedbytheSDOsandthePartnershipProjects,nowadaysprimarily3GPP.
2.2.2 IMT-2000ANDIMT-ADVANCED WorkonwhatcorrespondstothirdgenerationofmobilecommunicationstartedintheITU-R alreadyinthe1980s.Firstreferredtoas FuturePublicLandMobileSystems (FPLMTS)it waslaterrenamedIMT-2000.Inthelate1990s,theworkinITU-Rcoincidedwiththework indifferentSDOsacrosstheworldtodevelopanewgenerationofmobilesystems.AnRSPC forIMT-2000wasfirstpublishedin2000andincludedWCDMAfrom3GPPasoneof theRITs.
ThenextstepforITU-RwastoinitiateworkonIMT-Advanced,thetermusedforsystems thatincludenewradiointerfacessupportingnewcapabilitiesofsystemsbeyondIMT-2000. ThenewcapabilitiesweredefinedinaframeworkrecommendationpublishedbytheITU-R [2]andweredemonstratedwiththe“vandiagram”shownin Figure2.2.ThestepintoIMTAdvancedcapabilitiesbyITU-Rcoincidedwiththestepinto4G thenextgenerationof mobiletechnologiesafter3G.
AnevolutionofLTEasdevelopedby3GPPwassubmittedasonecandidatetechnology forIMT-Advanced.Whileactuallybeinganewrelease(release10)oftheLTEspecifications andthusanintegralpartofthecontinuousevolutionofLTE,thecandidatewasnamedLTEAdvancedforthepurposeofITU-Rsubmission.3GPPalsosetupitsownsetoftechnical requirementsforLTE-Advanced,withtheITU-Rrequirementsasabasis.
ThetargetoftheITU-Rprocessisalwaysharmonizationofthecandidatesthrough consensusbuilding.ITU-Rdeterminedthattwotechnologieswouldbeincludedinthefirst releaseofIMT-Advanced,thosetwobeingLTEandWirelessMAN-Advanced[3]basedon theIEEE802.16mspecification.Thetwocanbeviewedasthe“family”ofIMT-Advanced technologiesasshownin Figure2.3.Notethat,amongthesetwotechnologies,LTEhas emergedasthedominating4Gtechnology.
IMT-Advanced = New capabilities of
FIGURE2.2
IllustrationofcapabilitiesofIMT-2000andIMT-Advanced,basedontheframeworkdescribedinITU-R RecommendationM.1645[2].
IMT-Advanced terrestrial Radio Interfaces (ITU-R M.2012)
LTE-Advanced (E-UTRA/ Release 10+)
3GPP
WirelessMAN-Advanced (WiMAX/ IEEE 802.16m)
IEEE
FIGURE2.3
RadiointerfacetechnologiesinIMT-Advanced.
2.2.3 IMT-2020 During2012to2015,ITU-RWP5DsetthestageforthenextgenerationofIMTsystems, namedIMT-2020.ItistobeafurtherdevelopmentoftheterrestrialcomponentofIMT beyondtheyear2020and,inpractice,correspondstowhatismorecommonlyreferredtoas “5G,”thefifthgenerationofmobilesystems.TheframeworkandobjectiveforIMT-2020is outlinedinITU-RRecommendationM.2083[63],oftenreferredtoasthe“Vision”recommendation.Therecommendationprovidesthefirststepfordefiningthenewdevelopmentsof
IMT,lookingatthefuturerolesofIMTandhowitcanservesociety,lookingatmarket,user andtechnologytrends,andspectrumimplications.TheusertrendsforIMTtogetherwiththe futureroleandmarketleadstoasetofusagescenariosenvisionedforbothhuman-centricand machine-centriccommunication.Theusagescenariosidentifiedare EnhancedMobile Broadband (eMBB), Ultra-ReliableandLowLatencyCommunications (URLLC),and MassiveMachine-TypeCommunications (MTC).
TheneedforanenhancedMBBexperience,togetherwiththenewandbroadenedusage scenarios,leadstoanextendedsetofcapabilitiesforIMT-2020.TheVisionrecommendation [63]givesafirsthigh-levelguidanceforIMT-2020requirementsbyintroducingasetof keycapabilities,withindicativetargetnumbers.Thekeycapabilitiesandtherelatedusage scenariosarefurtherdiscussedinChapter23.
Asaparallelactivity,ITU-RWP5Dproducedareporton“Futuretechnologytrendsof terrestrialIMTsystems”[64],withfocusonthetimeperiod2015 2020.Itcoverstrendsof futureIMTtechnologyaspectsbylookingatthetechnicalandoperationalcharacteristics ofIMTsystemsandhowtheyareimprovedwiththeevolutionofIMTtechnologies.Inthis way,thereportontechnologytrendsrelatetoLTErelease13andbeyond,whilethevision recommendationlooksfurtheraheadandbeyond2020.Areportstudyingoperationinfrequenciesabove6GHzwasalsoproduced.Chapter24discussessomeofthetechnology componentsconsideredforthenew5Gradioaccess.
AfterWRC-15,ITU-RWP5Disin2016initiatingtheprocessofsettingrequirementsand definingevaluationmethodologiesforIMT-2020systems.Theprocesswillcontinueuntil mid-2017,asshownin Figure2.4.Inaparalleleffort,atemplateforsubmittinganevaluation
ofcandidateRITswillbecreated.Externalorganizationsarebeinginformedoftheprocess throughacircularletter.AfteraworkshoponIMT-2020isheldin2017,theplanistostartthe evaluationofproposals,aimingatanoutcomewiththeRSPCforIMT-2020beingpublished earlyin2020.
ThecomingevaluationofcandidateRITsforIMT-2020inITU-Risexpectedtobe conductedinawaysimilartotheevaluationdoneforIMT-Advanced,wheretherequirements weredocumentedinRecommendationITU-RM.2134[28]andthedetailedevaluation methodologyinRecommendationITU-RM.2135[52].Theevaluationwillbefocusedonthe keycapabilitiesidentifiedintheVISIONrecommendation[63],butwillalsoincludeother technicalperformancerequirements.Therearethreefundamentalwaysthatrequirementsare evaluatedforacandidatetechnology:
• Simulation:Thisisthemostelaboratewaytoevaluatearequirementanditinvolves system-orlink-levelsimulations,orboth,oftheRIT.Forsystem-levelsimulations, deploymentscenariosaredefinedthatcorrespondtoasetoftestenvironments,suchas IndoorandDenseUrban.Requirementsthatarecandidatesforevaluationthrough simulationareforexamplespectrumefficiencyanduser-experienceddatarate(for detailsonthekeycapabilities,seeChapter23).
• Analysis:Somerequirementscanbeevaluatedthroughacalculationbasedonradio interfaceparameters.Thisappliesforexampleincaseofrequirementsonpeakdatarate andlatency.
• Inspection:Somerequirementscanbeevaluatedbyreviewingandassessingthe functionalityoftheRIT.Examplesofparametersthatmaybesubjecttoinspectionare bandwidth,handoverfunctionality,andsupportofservices.
Oncethetechnicalperformancerequirementsandevaluationmethodologyaresetup,the evaluationphasestarts.Evaluationcanbedonebytheproponent(“self-evaluation”)orbyan externalevaluationgroup,doingpartialorcompleteevaluationofoneormorecandidate proposals.
2.3 SPECTRUMFORMOBILESYSTEMS ThereareanumberoffrequencybandsidentifiedformobileuseandspecificallyforIMT today.ManyofthesebandswerefirstdefinedforoperationwithWCDMA/HSPA,butarenow sharedalsowithLTEdeployments.Notethatinthe3GPPspecificationsWCDMA/HSPAis referredtoas UniversalTerrestrialRadioAccess (UTRA),whileLTEisreferredtoas EnhancedUTRA (E-UTRA).
NewbandsaretodayoftendefinedonlyforLTE.Bothpairedbands,whereseparated frequencyrangesareassignedforuplinkanddownlink,andunpairedbandswithasingle sharedfrequencyrangeforuplinkanddownlink,areincludedintheLTEspecifications. PairedbandsareusedforFrequencyDivisionDuplex(FDD)operation,whileunpairedbands
areusedforTimeDivisionDuplex(TDD)operation.TheduplexmodesofLTEaredescribed furtherinSection3.1.5.Notethatsomeunpairedbandsdonothaveanyuplinkspecified. These“downlinkonly”bandsarepairedwiththeuplinkofotherbandsthrough carrier aggregation,asdescribedinChapter12.
AnadditionalchallengewithLTEoperationinsomebandsisthepossibilityofusing channelbandwidthsupto20MHzwithasinglecarrierandevenbeyondthatwithaggregated carriers.
Historically,thebandsforthefirstandsecondgenerationofmobileserviceswereassigned atfrequenciesaround800 900MHz,butalsoinafewlowerandhigherbands.When3G (IMT-2000)wasrolledout,focuswasonthe2GHzbandandwiththecontinuedexpansionof IMTserviceswith3Gand4G,newbandswereusedatbothlowerandhigherfrequencies.All bandsconsideredareuptothispointbelow6GHz.
Bandsatdifferentfrequencieshavedifferentcharacteristics.Duetothepropagation properties,bandsatlowerfrequenciesaregoodforwide-areacoveragedeployments,bothin urban,suburban,andruralenvironments.Propagationpropertiesofhigherfrequenciesmake themmoredifficulttouseforwide-areacoverage,andhigher-frequencybandshavetherefore toalargerextentbeenusedforboostingcapacityindensedeployments.
Withnewservicesrequiringevenhigherdataratesandhighcapacityindensedeployments,frequencybandsabove6GHzarebeinglookedatasacomplementtothefrequencybandsbelow6GHz.Withthe5Grequirementsforextremedataratesandlocalized areaswithveryhighareatrafficcapacitydemands,deploymentusingmuchhigherfrequencies,evenabove60GHz,isconsidered.Referringtothewavelength,thesebandsare oftencalledmm-wavebands.
2.3.1 SPECTRUMDEFINEDFORIMTSYSTEMSBYTHEITU-R Theglobaldesignationsofspectrumfordifferentservicesandapplicationsaredonewithin theITU-Randaredocumentedinthe ITURadioRegulations [65].The WorldAdministrative RadioCongress WARC-92identifiedthebands1885 2025and2110 2200MHzas intendedforimplementationofIMT-2000.Ofthese230MHzof3Gspectrum,2 30MHz wereintendedforthesatellitecomponentofIMT-2000andtherestfortheterrestrial component.Partsofthebandswereusedduringthe1990sfordeploymentof2Gcellular systems,especiallyintheAmericas.Thefirstdeploymentsof3Gin2001 2002byJapanand Europeweredoneinthisbandallocation,andforthatreasonitisoftenreferredtoastheIMT2000“coreband.”
AdditionalspectrumforIMT-2000wasidentifiedattheWorldRadiocommunication Conference1 WRC-2000,whereitwasconsideredthatanadditionalneedfor160MHzof spectrumforIMT-2000wasforecastedbytheITU-R.Theidentificationincludesthebands
1TheWorldAdministrativeRadioConference(WARC)wasreorganizedin1992andbecametheWorldRadiocommunication Conference(WRC).
usedfor2Gmobilesystemsat806 960and1710 1885MHz,and“new”3Gspectruminthe bandsat2500 2690MHz.Theidentificationofbandspreviouslyassignedfor2Gwasalso recognitionoftheevolutionofexisting2Gmobilesystemsinto3G.Additionalspectrumwas identifiedatWRC’07forIMT,encompassingbothIMT-2000andIMT-Advanced.Thebands addedwere450 470,698 806,2300 2400,and3400 3600MHz,buttheapplicabilityof thebandsvariesonaregionalandnationalbasis.AtWRC’12therewerenoadditional spectrumallocationsidentifiedforIMT,buttheissuewasputontheagendaforWRC’15. Itwasalsodeterminedtostudytheuseoftheband694 790MHzformobileservicesin Region1(Europe,MiddleEast,andAfrica).
Thesomewhatdivergingarrangementbetweenregionsofthefrequencybandsassignedto IMTmeansthatthereisnotonesinglebandthatcanbeusedfor3Gand4Groaming worldwide.Largeeffortshave,however,beenputintodefiningaminimumsetofbandsthat canbeusedtoprovidetrulyglobalroaming.Inthisway,multibanddevicescanprovide efficientworldwideroamingfor3Gand4Gdevices.
2.3.2 FREQUENCYBANDSFORLTE LTEcanbedeployedbothinexistingIMTbandsandinfuturebandsthatmaybeidentified. Thepossibilityofoperatingaradioaccesstechnologyindifferentfrequencybandsis,in itself,nothingnew.Forexample,2Gand3Gdevicesaremultibandcapable,coveringbands usedinthedifferentregionsoftheworldtoprovideglobalroaming.Fromaradioaccess functionalityperspective,thishasnoorlimitedimpactandthephysicallayerspecifications suchastheonesforLTE[24 27]donotassumeanyspecificfrequencyband.Whatmay differ,intermsofspecification,betweendifferentbandsaremainlythemorespecificRF requirements,suchastheallowedmaximumtransmitpower,requirements/limitsonoutof-band(OOB)emission,andsoon.Onereasonforthisisthatexternalconstraints, imposedbyregulatorybodies,maydifferbetweendifferentfrequencybands.
ThefrequencybandswhereLTEwilloperateareinbothpairedandunpairedspectrum, requiringflexibilityintheduplexarrangement.Forthisreason,LTEsupportsbothFDDand TDDoperation,willbediscussedlater.
Release13ofthe3GPPspecificationsforLTEincludes32frequencybandsforFDDand12 forTDD.Thenumberofbandsisverylargeandforthisreason,thenumberingschemerecently hadtoberevisedtobecomefutureproofandaccommodatemorebands.Thepairedbandsfor FDDoperationarenumberedfrom1to32and65to66[38],asshownin Table2.1,whilethe unpairedbandsforTDDoperationarenumberedfrom33to46,asshownin Table2.2.Note thatthefrequencybandsdefinedforUTRAFDDusethesamenumbersasthepairedLTE bands,butarelabeledwithRomannumerals.Bands15and16arereservedfordefinitionin Europe,butarepresentlynotused.AllbandsforLTEaresummarizedin Figures2.5and2.6, whichalsoshowthecorrespondingfrequencyallocationdefinedbytheITU-R.
Someofthefrequencybandsarepartlyorfullyoverlapping.Inmostcasesthisis explainedbyregionaldifferencesinhowthebandsdefinedbytheITU-Rareimplemented.At