https://ebookmass.com/product/3d-printing-technology-forwater-treatment-applications-jitendra-kumar-pandey/
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
3D Printing for Energy Applications Vincenzo Esposito
https://ebookmass.com/product/3d-printing-for-energy-applicationsvincenzo-esposito/
ebookmass.com
Multimaterial 3D Printing Technology Jiquan Yang
https://ebookmass.com/product/multimaterial-3d-printing-technologyjiquan-yang/
ebookmass.com
3D Printing: A Revolutionary Process for Industry Applications Richard Sheng
https://ebookmass.com/product/3d-printing-a-revolutionary-process-forindustry-applications-richard-sheng/
ebookmass.com
Wicked Highland Ways Wine Mary
https://ebookmass.com/product/wicked-highland-ways-wine-mary/
ebookmass.com
https://ebookmass.com/product/echoes-of-war-a-state-of-the-unionnovel-2-nelle-nikole/
ebookmass.com
Curso completo de guitarra acu00fastica: Mu00e9todo moderno de tu00e9cnica y teoru00eda aplicada (Spanish Edition)
https://ebookmass.com/product/curso-completo-de-guitarra-acusticametodo-moderno-de-tecnica-y-teoria-aplicada-spanish-edition/
ebookmass.com
Iraq against the World: Saddam, America, and the Post-Cold War Order Samuel Helfont
https://ebookmass.com/product/iraq-against-the-world-saddam-americaand-the-post-cold-war-order-samuel-helfont/
ebookmass.com
Traditionalism: The Radical Project for Restoring Sacred Order Mark Sedgwick
https://ebookmass.com/product/traditionalism-the-radical-project-forrestoring-sacred-order-mark-sedgwick/
ebookmass.com
Principles and Practice of Surgery 7th Edition O. James Garden
https://ebookmass.com/product/principles-and-practice-of-surgery-7thedition-o-james-garden/
ebookmass.com
https://ebookmass.com/product/delivered-to-my-orcs-mail-order-matingsbook-7-mazzy-j-march/
ebookmass.com
3DPRINTINGTECHNOLOGYFOR WATERTREATMENT APPLICATIONS
Thispageintentionallyleftblank
AdditiveManufacturingMaterials andTechnologies
3DPrinting Technologyfor WaterTreatment Applications
SeriesEditior MA QIAN
Editedby
JITENDRA KUMAR PANDEY
UniversityofPetroleumandEnergyStudies,DepartmentofResearchandDevelopment, Dehradun,India
SUVENDU MANNA
UniversityofPetroleumandEnergyStudies,SchoolofEngineering,Dehradun,India
RAVI KUMAR PATEL
UniversityofPetroleumandEnergyStudies,Dehradun,India
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright © 2023ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,orany informationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchasthe CopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatour website: www.elsevier.com/permissions.
Thisbookandtheindividualcontributionscontainedinitareprotectedunder copyrightbythePublisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledge inevaluatingandusinganyinformation,methods,compounds,orexperiments describedherein.Inusingsuchinformationormethodstheyshouldbemindfulof theirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.
ISBN:978-0-323-99861-1
ForinformationonallElsevierpublicationsvisitour websiteat https://www.elsevier.com/books-and-journals
Publisher: MatthewDeans
AcquisitionsEditor: DennisMcGonagle
EditorialProjectManager: IsabellaC.Silva
ProductionProjectManager: PrasannaKalyanaraman
CoverDesigner: ChristianJ.Bilbow
1.Anoverviewoftheadvancesinthe3Dprintingtechnology
TarunMateti,ShikhaJain,L.AnandaShruthi,AninditaLaha,andGoutamThakur
1.1Introduction1
1.2Technologyclassificationfor3Dprinting7
1.3Materialsfor3Dprinting10
1.4Applicationsof3Dprintingtechnology13
1.5Limitationsof3Dprinting24
1.6Futureandconclusions26 References28
2.Fabricationofmicrochannelforwatertreatmentusing3D printing
PrakashBobde,RaviKumarPatel,andLalitNagapurkar
2.1General39 2.23Dprintingofmicrochannel40 2.3Solidmodeling40 2.4Devicedesign41 2.5TMAanalyzer51 2.6Conclusion52 References52
3.Recentadvanceson3Dprintingforwastewatertreatmentand processoptimizationusingartificialintelligenceandmachine learning:updatesandperspectives
S.Tripathy,D.K.Tripathy,andS.Samantaray
3.1Introduction55
3.2Overviewandscope56
3.3Principles60
3.4Currentapplications62
3.5Applicationof3Dprintingforwatertreatmentusingmembranetechnology64
3.6Membranematerialsandtheirfabricationmethods65
3.7Advancedapplicationsof3Dprintingforwastewatertreatment66
3.8Optimizationandsustainabilityof3Dprintingtechnologyinwastewater treatment71
3.9Computationalintelligenttechniquesforcontrolandcostoptimizationof wastewatertreatment71
3.10Futureprospectsandnextgenerationapplicationsofmachinelearningfor wastewatertreatment78
3.11Summary79 References80
4.Anoverviewofwaterpollutantsinpresentscenario
SanthoshNaraseeyappaKuchangi,ManoharaHalanurMruthunjayappa,and NatarajSannaKotrappanavar
4.1Introduction83
4.2Sourceofpollutants85
4.3Emergingpollutants95
4.4.Waterpurificationtechnologies101
4.5Conclusion101 Acknowledgments102 References102
5.Abriefoverviewonadvancesinwatertreatmentprocess
AmitKumar,LeenaV.Bora,NikitaP.Chokshi,GajendraKenil,andMansuriZaid
5.1Introduction107
5.2Suspendedsolidremoval108
5.3Adsorption112
5.4Movingbedbiofilmreactor(MBBR)114
5.5Solardesalination116
5.6Advancedoxidationprocesses118
5.7Reverseosmosis124
5.8Electrodialysis126 References127 Furtherreading131
6.3D-Printedmembraneforwatertreatment
A.Manmadhachary,RoopaTulasi,andPriyankaChattoraj
6.1Introduction133
6.2Waterpollutants134
6.3Membranesforwastewatertreatment136
6.4Wastewatertreatmentprocesses137
6.5Membranemodulesandselection138
6.63Dprintingtechnology(additivemanufacturing)139
6.73Dprintedmaterialsfordesalinationandmembraneseparation141
6.8Membraneseparation141
6.9Membranesforfiltration143
6.10Capsulesorbiocarriersforwastewater145
6.11Substratesforoil-waterseparation146
6.12Dyedegenerationinwatertreatment147
6.13Useofgrapheneaerogelsinwaterfiltration148
6.14Useofceramicsinwatertreatment149
6.15Challengesof3Dprinting150
6.16Theoutlookforfuture151
6.17Conclusions152 References153 Furtherreading156
7.Applicationofnanotechnologyinwaterandwastewater treatmentandthevastvisionforthefuture SukanchanPalit,PratikDas,andPiyaliBasak
7.1Introduction157
7.2Thevisionofthisstudy158
7.3Theneedandtherationaleofthisstudy159
7.4Thescientificdoctrineinthefieldofnanomaterialsandengineered nanomaterialsandtheneedofsustainability159
7.5Whatexactlydowemeanwhenwesaynanoparticlesanddesigned nanomaterials?160
7.6Environmentalsustainability,scientificprogress,andabroadvision forthefuture160
7.7Recentscientificadvancesinenvironmentalpreservation,aswellasa visionaryroadforward161
7.8Recentscientificadvancesintheapplicationofnanotechnologyin waterandwastewatertreatment166
7.9Recentscientificadvancementsintheapplicationofenvironmental sustainabilityinhumansocietyandtheroadahead169
7.103Dprinting,devicedevelopment,andwatertreatmentapplications172
7.11Heavymetalandarsenicgroundwaterremediation,theapplicationof nanotechnologyandthevisionaryfuture174
7.12Futurescientificrecommendationsandfutureflowofscientificideas175
7.13Conclusion,summary,andenvironmentalengineeringperspectives176 References177
8.3Dprintedmembranesforoil/waterseparation
SreelakshmiRajeevanandSoneyC.George
8.1Introduction181 Acknowledgments190 References190
9.Useof3Dprintedtechniquesfororganicpollutantsremoval AshwaniKumar,SunilDutt,RajKumar,andSonika
9.1Introduction193
9.2Organicpollutants:classificationandadverseeffects196
9.3Techniquestodetectorganicpollutantsandtheirremoval200
9.43Dprintedtechniquesfororganicpollutantdetectionandremoval201
9.5Advantagesof3Dprintedtechniques205
9.6Futureperspectivesof3Dprintedtechniques206 9.7Conclusion207 References207
10.Resourcemanagementusing3Dprintingtechnology PritamDeyandSrimantaRay
Abbreviations213
10.1Introduction213
10.2Thesignificanceof3Dprinting215
10.3Currentapplicationsof3Dprintinginwatertreatment217
10.4Currenttrendingfieldswhere3Dprintingisemployedforwater treatmentandwaterqualityanalysis223
10.5Summary226 References227
11.Sustainabilityof3Dprintinginindustry4.0:Abriefreview AdityaSachdeva,RashiAgrawal,ChetanChaudhary,DarshitSiddhpuria, DeepanshuKashyapandSeimTimung
11.1Industry4.0 past,present,andfuture229 11.23Dprinting232 11.33DprintingandIndustry4.0 potentialandfuturescope246 11.4Conclusions247 References249 Index253
Contributors
RashiAgrawalSchoolofEngineering,UniversityofPetroleumandEnergy Studies,Dehradun,Uttarakhand,India
L.AnandaShruthiDepartmentofChemicalEngineering,ManipalInstituteof Technology,ManipalAcademyofHigherEducation,Manipal,Karnataka,India
PiyaliBasakSchoolofBioscienceandEngineering,JadavpurUniversity, Kolkata,WestBengal,India
PrakashBobdeUniversityofPetroleumandEnergyStudies,Dehradun, Uttarakhand,India
LeenaV.BoraSchoolEngineering,NirmaUniversity,Ahmedabad,Gujarat, India
PriyankaChattorajDepartmentofMechatronics,ICFAITech,FacultyofScience andTechnology,ICFAIFoundationforHigherEducation,Hyderabad,India
ChetanChaudharySchoolofEngineering,UniversityofPetroleumandEnergy Studies,Dehradun,Uttarakhand,India
NikitaP.ChokshiDepartmentofChemicalEngineering,InstituteofTechnology, NirmaUniversity,Ahmedabad,Gujarat,India
PratikDasSchoolofBioscienceandEngineering,JadavpurUniversity,Kolkata, WestBengal,India
PritamDeyDepartmentofChemicalEngineering,NationalInstituteof TechnologyAgartala,Agartala,Tripura,India
SunilDuttDepartmentofChemistry,Govt.PostGraduateCollegeUna, HimachalPradesh,India
SoneyC.GeorgeCenterforNanoscienceandTechnology,AmalJothiCollegeof Engineering,Koovappally,Kerala,India
ShikhaJainDepartmentofBiomedicalEngineering,ManipalInstituteof Technology,ManipalAcademyofHigherEducation,Manipal,Karnataka,India
DeepanshuKashyapSchoolofEngineering,UniversityofPetroleumandEnergy Studies,Dehradun,Uttarakhand,India
GajendraKenilDepartmentofChemicalEngineering,InstituteofTechnology, NirmaUniversity,Ahmedabad,Gujarat,India
SanthoshNaraseeyappaKuchangiSustainableMaterialsandProcessesLab, CentreforNano&MaterialSciences,JainGlobalCampus,JainUniversity, Bangalore,Karnataka,India
AmitKumarDepartmentofChemicalEngineering,InstituteofTechnology, NirmaUniversity,Ahmedabad,Gujarat,India
AshwaniKumarDepartmentofChemistry,Govt.CollegeKullu,Himachal Pradesh,India
RajKumarDepartmentofPharmaceuticalSciences,UniversityofMichigan, AnnArbor,MI,UnitedStates
AninditaLahaDepartmentofChemicalEngineering,ManipalInstituteof Technology,ManipalAcademyofHigherEducation,Manipal,Karnataka,India
A.ManmadhacharyDepartmentofMechatronics,ICFAITech,FacultyofScience andTechnology,ICFAIFoundationforHigherEducation,Hyderabad,India
TarunMatetiDepartmentofChemicalEngineering,ManipalInstituteof Technology,ManipalAcademyofHigherEducation,Manipal,Karnataka,India
ManoharaHalanurMruthunjayappaSustainableMaterialsandProcessesLab, CentreforNano&MaterialSciences,JainGlobalCampus,JainUniversity, Bangalore,Karnataka,India
LalitNagapurkarAIC-PrestigeInspireFoundation,Indore,MadhyaPradesh, India
SukanchanPalitDepartmentofChemicalEngineering,UniversityofPetroleum andEnergyStudies,Dehradun,Uttarakhand,India
RaviKumarPatelAIC-PrestigeInspireFoundation,Indore,MadhyaPradesh, India
SreelakshmiRajeevanCenterforNanoscienceandTechnology,AmalJothi CollegeofEngineering,Koovappally,Kerala,India;APJAbdulKalam TechnologicalUniversity,CETCampus,Thiruvananthapuram,Kerala,India
SrimantaRayDepartmentofChemicalEngineering,NationalInstituteof TechnologyAgartala,Agartala,Tripura,India
AdityaSachdevaSchoolofEngineering,UniversityofPetroleumandEnergy Studies,Dehradun,Uttarakhand,India
S.SamantarayDepartmentofMechanicalEngineering,ITER,Siksha‘O’ Anusandhan(DeemedtobeUniversity),Bhubaneswar,Odisha,India
NatarajSannaKotrappanavarSustainableMaterialsandProcessesLab,Centre forNano&MaterialSciences,JainGlobalCampus,JainUniversity,Bangalore, Karnataka,India
DarshitSiddhpuriaSchoolofEngineering,UniversityofPetroleumandEnergy Studies,Dehradun,Uttarakhand,India
SonikaDepartmentofPhysics,RajivGandhiUniversity,Itanagar,Arunachal Pradesh,India
GoutamThakurDepartmentofBiomedicalEngineering,ManipalInstituteof Technology,ManipalAcademyofHigherEducation,Manipal,Karnataka,India
SeimTimungSchoolofEngineering,UniversityofPetroleumandEnergy Studies,Dehradun,Uttarakhand,India
D.K.TripathyIITKharagpur,Kharagpur,WestBengal,India
S.TripathyDepartmentofMechanicalEngineering,ITER,Siksha‘O’ Anusandhan(DeemedtobeUniversity),Bhubaneswar,Odisha,India
RoopaTulasiDepartmentofMechanicalEngineering,SreenidhiInstituteof ScienceandTechnology,Hyderabad,India
MansuriZaidDepartmentofChemicalEngineering,InstituteofTechnology, NirmaUniversity,Ahmedabad,Gujarat,India
Thispageintentionallyleftblank
Anoverviewoftheadvancesin the 3Dprintingtechnology
TarunMateti2,
a,ShikhaJain1, a , L.AnandaShruthi2, a,AninditaLaha2,and
GoutamThakur1
1 DepartmentofBiomedicalEngineering,ManipalInstituteofTechnology, ManipalAcademyofHigherEducation,Manipal,Karnataka,India;
2 DepartmentofChemicalEngineering,ManipalInstituteofTechnology, ManipalAcademyofHigherEducation,Manipal,Karnataka,India
1.1Introduction
Three-dimensional(3D)Printingmayturnamathematicalmodelintoa physicalobjectbygraduallydepositingmaterial[1].In1980,CharlesHull oftheUnitedStatescommercializedthetechniqueof3Dprintingby layeringstructuresfromcomputer-aideddesign(CAD)drawings[2].Itis agroundbreakingtechnologythathasdevelopedintoaflexibledevelopmentplatform.
Thethree-dimensionalapproachhasexplodedinpopularityrecently. Themethodinvolveslayeringthinfilmssuchasfluidorpowderypolymer,metal,orconcreteandthenmergingthelayers.3Dprintingpromises thepossibilityoffabricatingcomplexbiomedicaldevicesusingcomputer settingsandanatomicalinformationfrompatientsandhassinceproducedremarkablegadgets,implants,andframeworksfortissuedesign, analytics,andmedicineconveyance.Accesstomodestprintersfuelsthe renewedinterestinfusingcellswithbespoke3Dframeworksfor customizedregenerationmedicine[3].3Dprintingcanalsocreatejewelry
a Contributedequally.
collections,corneas,rocketengines,andsteelbridges,amongother things.Itprovidesnumeroussignificantbenefitsingeneratingprototypes,includingtheeasetoreplicateproducts,cost-effectiveness,and productsecurity[4].
3Dprintingcreatesmultipleopportunitiesforenterprisesseekingto increasetheiroutlook.Itcancurrentlymakegraphene-basedmaterials, metals,ceramics,andthermoplasticsandhasprospectstochangebusinessesandstreamlineindustrialprocesses.
Utilizing3Dprintingwillexpeditemanufacturingwhilecuttingcosts. Simultaneously,consumerdemandwillhaveamoresubstantialinfluence onmanufacturing.Clientshaveamoresignificantsayinthefinalproduct andmayrequestitsmanufacturingtotheirexactspecifications.Meanwhile,3Dprintingtechnologyfacilitieswillbecustomer-centric,witha moreadaptableandflexiblemanufacturingprocessandenhancedquality control.
3Dprinting(Fig.1.1)hasmanyapplicationsindiversefieldslikeengineeringandarchitecture,healthanddentistry,pharmaceuticals,aerospace,anddefense.Ithaspioneerednovelmaterialsandmethodsthatare efficient,timely,andcost-friendly.3DPrintinghasproventobethefuture ofmodernscienceandisdescribedindetailinthischapter.
However,manydisadvantagesexistinutilizing3Dprintinginthe industrialsector.Forinstance,itsadoptionwouldreducelabor greatly influencingtheeconomyofcountriesthatdependonlow-wage
FIGURE1.1 A3Dprinter. Courtesy:InnovationCenter ManipalInstituteofTechnology, ManipalAcademyofHigherEducation.
employment.Additionally,usersmaycreatecommodities,including harmfulobjectslikeknives,andso,itsusemustlimitonlytoresponsible individualstopreventlawbreakers.Nevertheless,3Dprintingtechnology hasevolvedintoaflexibleandpowerfultoolforhigh-techproduction[5]. Thischapterprovidesanoverviewof3Dprintingandrecentadvancesin thisrevolutionarytechnology.
1.1.1Chronicleof3Dprinting
3Dprintingwasinitiallyintroducedduringthe1980sandwasknown as“RapidPrototyping”becausethemethodsarequickandcost-effective tocreateprototypesforindustrialproductdevelopment.
1.1.1.1Foundationof3Dprinting
theearly1980s
In1981,HideoKodamaofJapanprintedlayersofmaterialtocreatea 3Dobject.Regrettably,Kodamacouldnotgetapprovalforhispatent. However,hepublishedamodeltoproduceaprintedsolid whichserved asthefoundationfor3Dprinting[6].Thefollowingdecadessawsignificantadvancementsinthistechnology,whichhasgrownintoahelpful toolforresearchers,manufacturers,designers,engineers,andscientists.
CILASandtheFrenchGeneralElectricCompanyinFrancedeviseda methodforcreating3Dobjects.Inanycase,theorganizationsundervaluedtheideaandquicklyabandonedit.
SinceCharlesHullbuiltthefirst3Dprinterin1984[5],technologyhas advanced,makingmachinesmorefunctionalwhiletheirpricepoints decreased,makingthemmoreaccessible.
In1986,CharlesHullinventedamodelforstereolithography.Photopolymers(acrylic-basedmaterials)wereusedtotransformfluidintosolid undertheinfluenceofintenselight.SelectiveLaserSinteringandFused DepositionModelingwerealsopatentedduringthesametime.These modelssetthegroundworkfor3Dprinting[7].
1.1.1.2Onestepahead 1990s
Afewnovel3Dprintersweredevised,includingtheSolidscap ModelMaker.
Newtechniques(suchasmicrocastingandsplashingmaterials) enabledthe3Dprintingofmetals.Thereceptionwasconfinedtothe creationofhigh-cost,low-volumeitems.Asaresult,itbecameawellsuitedmaterialfordevelopinginnovativeproductsintheaviation, automotive,andpharmaceuticalindustries.
1.1.1.3Theexplosionof3Dtechnology 2000s
Whiletherewereseveraladvancementsin3Dprintingthroughoutthe early2000s,in2005,thetechnologygainedmainstreammomentum.
Numerousinitialpatentshaveexpired,andentrepreneursandinvestors rushedtoseizetheopportunity.
Dr.AdrianBowyersetouttoconstructalow-cost3Dprinter.By2008, his“Darwin”printerhadeffectively3Dprintedapproximately18%ofall itscomponentsatthecostofunder$650.
WhentheFusedDepositionModelingpatentwasmadepublicin2009, numerousorganizationsbuiltvarious3Dprinters,democratizingthe technology.
3Dprintinggainedpopularityduetotheintrigueandcriticalnatureof notionssuchasprintedappendagesandkidneys[8].
1.1.1.4Therevolution 2010
Asthecostof3Dprintersdecreased,interestintheinventionincreased, andtheybecameincreasinglyprevalentinhomesandbusinesses.
Manufacturersbeganexperimentingwith3Dprinting.Machinecomponentswererapidlyfixed,andsupplyproblemswerequicklyresolved. By2014,3Dprinterssurpassedthe$1billionmarkinsales.Withits economicinfluence,3Dprintinghasrevolutionizedthewaypeople work[9].
Individualswerepermittedtocreatenewproductsthemselveswithout theassistanceofgroupsorcorporations.Thismovementfuels“The MakerRevolution” prioritizinginnovationandopen-sourcehardware.
3Dprintingwasexpectedtogrowata14.37%compoundannual growthratetoabout$17.2billionbetween2017and2020[10].
1.1.1.5COVID-19andtodate
Consistently,theadvancementof3Dprintinghasdisruptedtheindustry.Asseenin Fig.1.2,3Dprintinghasacquiredsignificantattention foritscontributionstoeducationandmedicine,alongwithitsextensive commercialuse.Variousmanufacturersandexpertssteppedforwardto combattheCOVID-19pandemic,andthevolumeofrecommendationsto offercrucialmaterialsusing3Dprintingwasneverexpected.Over1700 professionalsvolunteeredto3Dmanufactureveils,respirators,and valves;thepossibilitiesareendless[11].
1.1.2Computer-aideddesign(CAD)
Thoughnumeroustypesof3Dprintingtechniquesexist,mostrelyon CAD.Amanufacturingcompanymustfirstuseacomputertodigitally sketchaproductbeforeemployinga3Dprintertomanufacturea prototype.
Computer-aideddesign,orCAD,createsdigital2Dor3Dstructures. Two-dimensionalCADmodelsarefrequentlyutilizedinarchitectureand
engineering,whereas3Ddesignsareusedindigitalinnovationssuchas animationandfabricationoperations.
ManufacturingcompaniesemployseveralformsofCADtocreate prototypesandproducefinalproductsinproperformsandsizes.While theircharacteristicsdiffer,theyallfacilitatethebuildingofcomputerized models.
3Dprinterscreateitemsusinganozzlecoupledtoamaterialfilament fromwhichmaterialisejectedontotheprintbed.The3Dprinterwillstart workingonthenextlayerafterfinishingthebaselayeratthebottomofthe printbed.
ACADfilecontainsguidelinesthatregulate3Dprinters.Datafroma CADfileisusedtoestimatetheamountofsubstanceneededandwhereit isneeded.Asaresult,onemustfirstdevelopaCADfiletocreatea suitabledimensionmodel.TheCADfileisstoredandsenttothe3D printerforprocessingaftertheobjectmodeliscompleted.Theobjectwill subsequentlybebuiltusingthedirectionsprovidedintheCADfilebythe 3Dprinter(Fig.1.3)[12].
Sincebeingintroducedinthe1960s,CADsystemshavegrown dramaticallyinproductdevelopment.CADsystemsgenerateand construct3Dmodelsinengineering,technology,andarchitecture, settingthefoundationforfurtherplanningandproduction[13 ].Studentsmayconverttheirvirtual3DmodelsfromCADtotangible3D modelsinthismanner.Asaresult,thestudent’scomprehensionof designguidelinesappropriatefor3DPrintingcouldbestrengthened [ 14 ,15 ].
FIGURE1.2 Hype-cycleof3Dprinting[165].
1.Anoverviewoftheadvancesinthe3Dprintingtechnology
FIGURE1.3 (Top)overviewof3Dprintingprocedure(middleandbottom)3Dprinted objects. ReproducedwithpermissionA.Mahmoodetal.,Applicationsof3DPrintingforthe AdvancementofOralDosageForms.ElsevierInc.,2020;Courtesy:InnovationCenter Manipal InstituteofTechnology,ManipalAcademyofHigherEducation.
1.2Technologyclassificationfor3Dprinting
Fig.1.4 describesthetypesof3Dprintingdevisedsofar.Adescription oftheworkingprincipleforeachtypeisgivenbelow.
1.2.1Basedonmaterialextrusion
Materialextrusionbeganasaquickprototypeprocessbuthasbecome arevolutionaryproductiontechnologyfortheindustrial,medical,automotive,andaerospaceindustries.Thismethodenablestheprintingof severalmaterialsonplastics,food,andlivecells,hencelowering manufacturingcosts.Additionally,itcancreateworkingcomponentsofa product[16].
Thematerialissuppliedviaanozzleandplacedalongapredeterminedroutetolayer-by-layerconstructcomponentsbyheatingand extruding.Aftercoolingandsolidifying,atangibleitemisformed.The earliestexampleofamaterialextrusiontechniqueisfuseddeposition modeling,whichutilizespolymerastheprincipalmaterial[17].
FIGURE1.4 Abrieftechnologyclassificationfor3Dprinting.
1.2.2Basedonvatpolymerization
Photopolymerization:thecuringofphotoreactivepolymersusingUV radiation,light,orlaser,isthemostoftenused3Dprintingtechnology.Vat polymerizationisa3Dprintingtechnologythathardensatinylayerof liquidplasticbycarefullydirectinglighttoaparticularlocationonit.The processcontinuesuntilthe3Dcomponentiscreated.Stereolithography anddigitallightprocessingaretwoexamplesofphotopolymerizationbased3Dprintingtechnology[18].
1.2.3Basedonpowderbedfusion
Selectivelasersintering,selectiveheatsintering,andelectronbeam meltingarethedifferenttypesofpowderbedfusiontechniques.These approachesmeltorfusepowderaccordingtospecifieddimensionsand layerthicknessesusinganelectronbeamoralaser.Materialslikeceramics,composites,andmetalsareusedinthisprocess[19].
1.2.4Basedonmaterialjetting
Materialjettingisaprocedurewherethematerialiscureddropbydrop onabuildplate.Underultraviolet(UV)light,aprinterdistributes dropletsofaphotosensitivesubstancethathardens,layeringthe component[20].Itproducesasmoothsurfacefinishandhighdimension accuracyandalsoenablesmulti-materialprintingandtheuseofadiverse varietyofmaterials,includingcomposites,ceramics,polymers,biologicals,andhybrids[16].However,theproductscreatedaresometimes brittleandunsuitableformechanicalcomponents.Materialjettingcreates full-colorproductprototypesandmedicalmodels[21].
1.2.5Basedonbinderjetting
Binderjettingsecuresparticlesusingaliquidbinderandgeneratesa layerbysprayingthebinderoverthepowder[18].Thepowderlayeris distributedoverabuildplatform,andbindersaredepositedselectivelyin eachlayerdependingonCADmodelinformationandtheprocessis continueduntilthedesiredgeometryisobtained[22].Binderjetting createscastingpatterns,rawsinteredgoods,andhigh-volumeitemssuch asmetals,sand,polymers,hybrids,andceramics.Binderjettingissimple, quick,andinexpensive[18].
1.2.6Basedonsheetlamination
Sheetlaminationisamethodof3Dprintinginwhichstackedand laminatedsheetsofbondedmaterialaremachinedtoproduceanobject [20].Metalsheets,paper,andplasticareexamplesofmaterialsutilizedin
thisprocess.Differentsheetlaminationmethodsareutilizedfordistinct objectivesandareintrinsicallylinkedtoeachprocedure.Theprocessis economical,canproducecolorprints,andfacilitatematerialhandling. Furthermore,surplusmaterialmaybereused[21].
1.2.7Basedondirectenergydeposition
Directenergydepositionisusedtorepairoraugmentexistingcomponents[16].BeforedepositingitwithCAD,itmeltsmaterialusinga concentratedenergysource(laserorelectronbeam).Thismethodutilizes metalpowderssuchastitanium,copper,tin,stainlesssteel,aluminum, nickel,andcobalt[23 25].Additionally,themethodalsoappliestoceramics,polymers,andmetalhybrids.
Directenergydepositionallowsforagreatdegreeofcontroloverthe grainstructureandmaygenerateobjectsofexcellentquality.Laserengineerednetshapingandlaserdepositionareexamplesofthistechnique[16].
Thebenefitsincludesavingmaterialandprogressivelyreplacing traditionaltechniquesofrepairingcomponents complicatedandprecise ones,suchasmendingbrokenturbinebladesorpropellers[26].
1.2.8Othertypes
1.2.8.13Dbioprinting
Biologicmaterials cells,tissues,andmolecules areassembledto accomplishdesiredfunctionsinbioprinting[27].Themostoftenused methodisextrusion-basedbioprinting[28 31],whichenablestheincorporationofvariousmaterialkinds anapproachnecessitatedbythediversityofbiomaterials,celltypes,andsignalingchemicals[32 34].
Thistechniqueisbasedontheprecisestackingofbiologicalcomponentsandcelldevelopment.Themostfrequentlyusedbiologicalmaterial depositionandpatterningmethodsareinkjet,microextrusion,andlaserassistedprinting[35].
Theprimarybenefitsofbioprintingarethecapacitytomasscreate tissue-engineereditems,greatprecisioninplacingvariouscelltypes,and theabilitytoconstructtissuewithahighcelldensity[27,36].Bioprinting isarelativelynewdevelopingtechnologywhoseprimaryvalueisits capacitytoconstructliveorgans[27,35,37].
1.2.8.2Inkjetprinting
Inkjetprintersareusedforbothbiologicalandnonbiologicalapplications.Itaccumulatesmaterialdropletsdepositedbyinkjetprintingnozzlestoprintanobject[38].Inkjetprintersoftenemploythermalor piezoelectricheads.Electricallyheatedheadscreatepressurepulsesthat
1.Anoverviewoftheadvancesinthe3Dprintingtechnology
propeldropletsoutofthenozzle.Acrystallocatedwithintheheadofa printerprovidesanacousticpulsethatsplitstheliquidintodropletsat equalintervals.Whenthematerialisshocked,itrapidlyexpelsdroplets fromthenozzleduetotheresultingpressure[35].
Fig.1.5 demonstrates polyjetprinting(aninkprintingtechnique)[39],whichusesUVlightto cureaphoto-resin.
1.3Materialsfor3Dprinting
Tocreateconsistent,high-qualityproducts,3Dprintingrequiresmaterialsthatfulfillconsistentcriteria.Materialcontrolmethods,requirements,andagreementsareformedbetweensuppliers,buyers,and enduserstoaccomplishthis.3Dprintingtechnologyenablestheproductionofcompletelyfunctioningitemsfromvariousmaterials, includingceramics,metals,polymersandtheirhybrids,composites,and functionallygradedmaterials[17].
1.3.1Metals
Metalsarecriticalintheaerospace,automotive,andmedicalindustries [40].Theyhaveexceptionalphysicalqualitiesandmayprinteverything fromhumanorganstoaircraftcomponents.Aluminum[41],cobalt-based [42],nickel-based[43],stainlesssteels[44],andtitaniumalloys[45,46]are examplesofsuchmetals.
Duetotheirstiffness,robustness,highrecoverycapacity,andheat resistance,cobalt-basedalloysarewell-suitedfor3Dprinteddentalapplications[42].Additionally,3Dprintingtechnologyenablestheproductionofaeronauticalcomponentsusingnickel-basedalloys[43].
FIGURE1.5 Polyjetprinting[39].
Nickel-basedalloysaresuitableforapplicationinhazardoussituations becauseoftheirstrongcorrosionandheatresistance(till1200 C)[40]. Objectsusingtitaniumalloyscanalsobeprinted,whichhaveunique propertiessuchasductility,corrosionresistance,oxidationresistance,and lowdensity,andarefrequentlyusedinhigh-temperatureenvironments, suchasaerospacecomponents[45,46].
1.3.2Polymers
3Dprinterscanproducepolymercomponentsbydepositingsuccessive layersbasedonmaterialextrusion[47].Polymersusedin3Dprintingmay becategorizedasnanocomposites,particlereinforcedcomposites,fiberreinforcedcomposites,thermoplastics,thermoresponsive,andthermoplasticcomposites[39].Recently,thermoplasticswithhighermelting pointshavebeenemployedas3Dprintingmaterials[48].Duetotheir lightweight,processingflexibility,andcheapcost,3Dprintingpolymer materialsarefrequentlyemployedinthe3Dprintingindustry[49]. Generally,polymersplayasignificantroleinbiomaterialsandmedical devicesbyprovidingmechanicalsupportforvariousorthopedicimplants [42].
1.3.3Ceramics
3Dprintingmaygenerateceramicsandconcreteitemswithoutsignificantporesorfractures.Ceramicsarerobust,resilient,andresistantto fire.Duetoceramics’fluidconditionpriortosettingmaybeputinalmost anyform,makingthemidealforfuturebuilding[50].Bysubjectingceramicstoheat,itispossibletoachievehighdensities,ahighlyhomogenousmicrostructure,strongcompressionstrength,andbending[51]. Also,ceramicmaterialsareadvantageousfordentalandaeronautical applications[52].Alumina[53],bioactiveglasses[51],andzirconia[54] areafewexamples.
1.3.4Composites
Compositematerialshaverevolutionizedhigh-performancesectors withtheirextraordinaryadaptability,lightweight,andtailorablefeatures.Reinforcedcarbon[ 55 ]andglassfibercomposites[56 ]areafew examplesofcompositematerials.Compositesareemployedinthe aviationsectorduetotheirhighstrength,stiffness,andcorrosion resistance[ 55 ].Simultaneously,theyhavesignificantpotentialuses in3Dprinting[56 ],owingtotheirlowcostandoutstanding performance[ 57 ].
FIGURE1.6 Theshaperecoveryeffectofcarbonblack/polyurethane. Reproducedwith permissionfromQ.Meng,J.Hu,Areviewofshapememorypolymercompositesandblends,Compos.PartAAppl.Sci.Manuf.40(11)(2009)1661 1672,doi: https://doi.org/10.1016/J. COMPOSITESA.2009.08.011 1.Anoverviewoftheadvancesinthe3Dprintingtechnology
1.3.5Smartmaterials
Thematerialcomplexityenabledby3Dprintinghassimplifiedthe processingofsmartmaterials:materialsthatchangegeometryinresponse tostimulisuchasheatandwater[58].Shapememorypolymers(Fig.1.6) andalloysaretwoexamplesofsuchmaterials[59,60].Certainshape memoryalloys,suchasnickel-titanium[59],haveapplicationsranging frombiomedicalimplantstomicroelectromechanicalsystems[50].They arethermomechanicallyprogrammedtoachievecomplicatedgeometries in3D:bends,coils,twists,andfolds.
1.3.6Earth-basedmaterials
Earth-basedmaterials(e.g.,finesoil)haveattractedconsiderableattentionduetotheirminimalenvironmentaleffect.Despitethis,theirprogress isconstrainedbythelowproductionrate.Recentadvancementshave enhancedthedesignandprocessingproceduresforearth-basedmaterials. Simultaneously,3Dprintinghasbeenbroughtintotheconstructionindustry,particularlyforcement-basedmaterialapplications[61].
1.3.7Novelmaterials
Novelmaterialsarediverseinnovationsprintedforvariouspurposes. Theyrefertoasophisticatedcompositematerialcomposedoftwoorthree photopolymerswithdistinctstructures.Thesecreatepracticalprototypes withcustomizableproperties hardness,texture,andcolorofthe surface[39].
1.3.83Dprintingpenmaterials
Onlyafewmaterialsareoftenutilizedin3Dprintingpens.Polyvinyl alcohol,polylacticacid,andacrylonitrilebutadienestyreneareafewof thesematerials.Thenewest3Doodlerpenhasanewmaterialpalette: polycarbonateandpolyamide.Additionally,itworkswithwood,copper, andbronzecompositesmadeofplastics[62].
1.4Applicationsof3Dprintingtechnology
1.4.1Healthanddentalindustry
Three-dimensionalprintingisusedinthemedicalindustrytocreate drugs,medicaldevices,bioelectronics,artificialorgans,inserts,patches, andorodispersiblefilms(Fig.1.7)[63 66].Itmaybeutilizedtocreate polypillscontainingvariousmedicationsindistinctcompartments, resultinginarangeofreleasecharacteristicsforeachdrug[67].Additionally,itisutilizedtomanufacturetablets.Chewableprintlets(topreventchoking),printletshavingvaryingreleaserates(e.g.,burstor sustained),andprintletswithdistinctfeatures(e.g.,highmedication loadings)mayallbedesignedtomatchthespecificrequirementsofeach patient.Thecreationofeasilyswallowableformulationscansignificantly boostpatientacceptance,especiallyamongtheelderlyandyoungsters. Taste,fragrance,andviscosityallhavearoleininfluencingaformulation’sacceptabilitybyyoungsters[63].
FIGURE1.7 Applicationsof3Dprintinginthehealthanddentalindustry.