3d lung models for regenerating lung tissue gunilla westergren-thorsson - The ebook is ready for ins

Page 1


https://ebookmass.com/product/3d-lung-models-for-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Developing the Digital Lung: From First Lung CT to Clinical AI John D. Newell

https://ebookmass.com/product/developing-the-digital-lung-from-firstlung-ct-to-clinical-ai-john-d-newell/

ebookmass.com

Developing the Digital Lung: From First Lung CT to Clinical AI 1st Edition John D. Newell

https://ebookmass.com/product/developing-the-digital-lung-from-firstlung-ct-to-clinical-ai-1st-edition-john-d-newell/

ebookmass.com

Lung Cancer: Standards of Care Goetz Kloecker

https://ebookmass.com/product/lung-cancer-standards-of-care-goetzkloecker/

ebookmass.com

Introductory Chemistry: A Foundation 9th Edition Steven S. Zumdahl

https://ebookmass.com/product/introductory-chemistry-a-foundation-9thedition-steven-s-zumdahl/

ebookmass.com

Vulnerability and the Corporate Immune System: An Integrated and Systemic Approach to Risk Management

https://ebookmass.com/product/vulnerability-and-the-corporate-immunesystem-an-integrated-and-systemic-approach-to-risk-managementalessandro-capocchi/

ebookmass.com

The Hawk Laird (Celtic Hearts Book 1) Susan King

https://ebookmass.com/product/the-hawk-laird-celtic-heartsbook-1-susan-king/

ebookmass.com

CRAFTING & EXECUTING STRATEGY: CONCEPTS 21st Edition

https://ebookmass.com/product/crafting-executing-strategyconcepts-21st-edition-arthur-thompson/

ebookmass.com

Sicurezza dei computer e delle reti 1st Edition W. Stalling

https://ebookmass.com/product/sicurezza-dei-computer-e-delle-reti-1stedition-w-stalling/

ebookmass.com

From Centralised to Decentralising Global Economic Architecture: The Asian Perspective Pradumna B. Rana

https://ebookmass.com/product/from-centralised-to-decentralisingglobal-economic-architecture-the-asian-perspective-pradumna-b-rana/

ebookmass.com

Food Waste Recovery: Processing Technologies, Industrial Techniques, and Applications 2nd Edition Charis M. Galanakis

https://ebookmass.com/product/food-waste-recovery-processingtechnologies-industrial-techniques-and-applications-2nd-editioncharis-m-galanakis/

ebookmass.com

3DLUNGMODELSFORREGENERATING LUNGTISSUE

Thispageintentionallyleftblank

3DLUNGMODELSFOR REGENERATINGLUNG TISSUE

GunillaWestergren-Thorsson LungBiology,DepartmentofExperimentalMedicalScience,FacultyofMedicine, LundUniversity,Lund,Sweden

SaraRolandssonEnes LungBiology,DepartmentofExperimentalMedicalScience,FacultyofMedicine, LundUniversity,Lund,Sweden

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybenoted herein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirown safetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-90871-9

ForInformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: StacyMasucci

AcquisitionsEditor: AnaClaudiaA.Garcia

EditorialProjectManager: PatGonzalez

ProductionProjectManager: SwapnaSrinivasan

CoverDesigner: ChristianJ.Bilbow

TypesetbyMPSLimited,Chennai,India

Listofcontributorsix

Prefacexiii

1Isthelungacomplexorganto rebuild?1

ABDULLAHJABERAALTHUWAYBIAND CHRISTOPHERWARD

Overview:theform,function,andbeautyofthelung1

Themucusbarrierandlungsentinelimmunity2

Thetracheaandupperairways3

Theairwayepithelium4

Spatialorganizationofintegratedinnateandadaptive immunityinthelung7

Thelungcirculation8

Gasexchange:thecorejobofthelungs9

Bioengineeringinthelungsiskeytofunction10

Thelunglymphatics12

Testinglungfunction12

Thelungmicrobiomeinnormallunghomeostasis13

References14

I2Dcultureandthe microenvironment

2Two-dimensionalcellculturingonglass andplastic:thepast,thepresent,andthe future21

ATENAMALAKPOUR-PERMLIDANDSTINAOREDSSON

Definitionoftwo-dimensionalcellculturing21

Glass:thetwo-dimensionalsurfaceinthebeginningof cellculturing21

Glass:atwo-dimensionalsurfaceusedtoday24

Plasticfortwo-dimensionalcellculturing25

Hydrophilicity,surfacechemistry,andcell attachment27

Cellsintwodimensionsandthreedimensionsinthe bodyandrelevancefortwo-dimensionalcell culturing28

Theimpactofswitchingbetweendifferentkindsof surfacesandtheroleofmediumcomposition30

Conclusions32

References32

3Theimportanceoflung microenvironment37

ANDERSMALMSTROM

Introduction37

Collagenandfibrilformation38

Fibrillarycollagensandfibrilformation38

Nonfibrillarycollagens39

Supportiveglycoproteins40

Elastin,fibrillin,andemilin40

Lamininandthebasementmembrane40

Fibronectin41

Proteoglycans41

Chondroitinsulfate/dermatansulfateproteoglycans41

Heparansulfateproteoglycans42

Keratansulfateproteoglycan42

Glycosaminoglycanstructureandfunction42

Chondroitinsulfate/dermatansulfate42

Heparansulfate43

Hyaluronan44

Microenvironments44

Cellsinthemicroenvironmentsofthehumanlung44

Fibroblasts44

Conclusions45

References46

II

3Dlungmodels

4Theair liquidinterfacemodel51

Introduction51

Lungstructureandepitheliumcomposition51

Air liquidinterfacemodelsofthelungepithelium:what canwemeasure?52

Single-cellRNAsequencinganalysisofair liquid interface differentiatedcellsubtypesandstates:how welldotheserepresenttheairwayepithelium invivo?56

Recapitulationofepithelialphenotypeinair liquid interfaceculturesfromasthmapatients57

Recapitulationofepithelialphenotypeinair liquid interfaceculturesfromchronicobstructivepulmonary diseasepatients60

Useofair liquidinterfaceculturetostudyeffectsof environmentalinsults:respiratoryvirus61

Useofair liquidinterfaceculturetostudyeffectsof environmentalinsults:cigarettesmoke62

Useofair liquidinterfaceculturetostudyeffectsof environmentalinsults:airpollution63

Concludingremarks65

References65

5Lungorganoidmodels73

Introduction73

Mouselungorganoids75

Humanadultlungorganoids77

Humanlungorganoids—embryonic78

iPSC-derivedlungorganoids78

Diseasemodelsusinglungorganoids:chroniclung diseases81

Fibrosis81

COPDandemphysema81

Diseasemodelsusinglungorganoids:geneticlung diseases82

Cysticfibrosis82

Hermansky-Pudlaksyndrome82

Diseasemodelsusinglungorganoids:virallung infections83

Conclusion84

Acknowledgments84

References84

6Biomaterialsforinvitromodelsinlung research91

Introductiontobiomaterials91

Briefhistoryofbiomaterials91

Propertiesandtypesofbiomaterials92

Scaffoldfabricationandmodificationstrategies94

Biomaterialsforlung-relatedapplications98

Specificfeaturesofthelung98

Biomaterialsforhealthyanddiseasedlung modeling100

Biomaterialsfororganoidformationand engraftment100

Biomaterialsinair-liquidinterphasecultures101

Newbiomaterial-basedstrategiesformodelingthelung microenvironment103

Conclusions104

Acknowledgment104

References104

7Threedimensionallungmodels-Three dimensionalextracellularmatrix models109

MEHMETNIZAMOGLU,MUGDHAM.JOGLEKAR, RODERICKH.J.DEHILSTER,MAUNICKLEFINKOLOKO NGASSIE,GRETAJ.TEITSMA,NATALIYAMIGULINA, KAJE.C.BLOKLANDANDJANETTEK.BURGESS

Introduction109

Extracellularmatrixchangesinchroniclung diseases112

Asthma112

Chronicobstructivepulmonarydisease112

Idiopathicpulmonaryfibrosis113

Two-dimensionalversusthree-dimensionalcellculture systems114

Three-dimensionalmodels—1:single-protein models116

Collagen116

Gelatinandmethacrylatedgelatin117

Otherextracellularmatrixcomponents119

Three-dimensionalmodels—2:extracellularmatrix modelswithcomplexextracellularmatrix mixtures119

Decellularizedlungscaffolds119

Decellularizedlungextracellularmatrix derived hydrogels122

Challenges123

Conclusions125

References126

8Lung-on-chip133

ANNEM.VANDERDOES,OLIVIERT.GUENAT, THOMASGEISERANDPIETERS.HIEMSTRA

Introduction133

Briefhistoricalbackgroundoforgan-onchip technology135

Alveoluslung-on-chipmodels136

Mimickinglungparenchymaldiseaseson-chip140

Airwaylung-on-chipmodels141

Applicationoflung-on-chipdiseasemodelswithafocus onregenerativemedicine143

Useoflung-on-chipmodelstostudyeffectsof environmentalinsults144

Advantagesandchallengesoflung-on-chip technology146

Concludingremarks147

References148

9Mechanicalstimuliinlung

regeneration153

JORGEOTERO,ISAACALMENDROSANDRAMONFARRE

Introduction153

Stiffnessofthecellmicroenvironment154

Cellstretch156

Cellshearstress159

Microbioreactorsformechanicallypreconditioninglung cells161

Mechanicalstimuliinwholelungbioreactors163

Conclusion164

Funding165 References165

Newdirections

10Advancedmanufacturing:threedimensionalprintingandbioprintingof modelsoflungandairways171

SINEMTAS,EMILREHNBERGANDDARCYE.WAGNER

Introduction171

Designconsiderationsformanufacturedlung scaffolds181

Biomaterialsformanufacturinglungscaffolds183

Naturalmaterials183

Syntheticmaterials183

Hybridmaterials184

Manufacturingporouslungscaffolds184

Casting185

Self-assembly185

Electrospinning185

Manufacturingmethodswithtruearchitecture control186

3Dprinting186

Bioprinting187

Four-dimensionalprintingandresponsivematerials188

Summaryandfuturedirections189

Acknowledgments190

References190

11Drugscreeningandhighthroughputin three-dimensionallungmodels197

LOESEMKISTEMAKERANDREINOUDGOSENS

Introduction197

Themaindifficultiesassociatedwiththeidentificationof newpharmacologicalapproaches198

Howthree-dimensionalmodelscanhelptoovercome theseproblems199

Targetdiscovery199

High-throughputscreeningandleadoptimization201

Phenotypicscreeninganddrugrepurposing201

Absorption,distribution,metabolismandexcretionand inhalationsafetystudies202

Concludingstatements203

References204

12Modelvisualization:frommicroto macro207

SEBASTIANWASSERSTROM,LINDAELOWSSON, SARAROLANDSSONENESANDJOHNSTEGMAYR

Modelvalidation:frommicrotomacro207

Lightversuselectronmicroscopy208

Lightmicroscopyacrossscales212

Imagingattheorganellelevel212

Imagingattheorganlevel217

Conclusion220

Acknowledgments220

References220

13Artificialintelligenceand computationalmodeling223

DANAIKHEMASUWANANDHENRIG.COLT

Introduction223

Definitionandhistoryofartificialintelligenceand machinelearning224

Whatismachinelearning?224

Whatisdeeplearning?225

Machinelearninginthoracicimaging225 Computer-aideddetection225 Radiomics227

Applicationsofmachinelearninginpulmonary diseases230

Machinelearningforlungcancerdiagnosis230

Deeplearningmodelforairwaylocalization230

Deeplearningmodelforclassificationofchronic obstructivepulmonarydisease230

DetectionofCovid-19onmedicalimaging231

Challengestofurtherimplementationofcomputer-aided diagnosisandradiomics232

Conclusion232

References233

Concludingremarksandfuture directions

14.Challengesandopportunitiesfor regeneratinglungtissueusingthreedimensionallungmodels239

GUNILLAWESTERGREN-THORSSONAND SARAROLANDSSONENES

Acknowledgments241

Index243

Listofcontributors

IsaacAlmendros UnitatdeBiofı´sicai Bioenginyeria,FacultatdeMedicinaiCie ` nciesde laSalut,UniversitatdeBarcelona,Barcelona, Spain;CIBERdeEnfermedadesRespiratorias, Madrid,Spain;Institutd’Investigacions BiomediquesAugustPiSunyer,Barcelona,Spain

AbdullahJaberAAlthuwaybi Translationaland ClinicalResearchInstitute,FacultyofMedical Sciences,NewcastleUniversity,Newcastleupon Tyne,UnitedKingdom

KajE.C.Blokland UniversityofGroningen, UniversityMedicalCenterGroningen, DepartmentofPathologyandMedicalBiology, Groningen,TheNetherlands;Universityof Groningen,UniversityMedicalCenter Groningen,GroningenResearchInstitutefor AsthmaandCOPD,Groningen,TheNetherlands; SchoolofBiomedicalSciencesandPharmacy, UniversityofNewcastle,Callaghan,NSW, Australia;NationalHealthandMedicalResearch CouncilCentreofResearchExcellencein PulmonaryFibrosis,Sydney,NSW,Australia

JanetteK.Burgess UniversityofGroningen, UniversityMedicalCenterGroningen, DepartmentofPathologyandMedicalBiology, Groningen,TheNetherlands;Universityof Groningen,UniversityMedicalCenter Groningen,GroningenResearchInstitutefor AsthmaandCOPD,Groningen,TheNetherlands; UniversityofGroningen,UniversityMedical CenterGroningen,W.J.KolffInstitutefor BiomedicalEngineeringandMaterialsScienceFB41,Groningen,TheNetherlands

Y-W.Chen DepartmentofMedicine,Divisionof Pulmonary,CriticalCareandSleepMedicine,

HastingsCenterforPulmonaryResearch, UniversityofSouthernCalifornia,LosAngeles, CA,UnitedStates;DepartmentofStemCell BiologyandRegenerativeMedicine,Universityof SouthernCalifornia,LosAngeles,CA,United States

HenriG.Colt PulmonaryandCriticalCare Medicine,UniversityofCaliforniaIrvine,Irvine, CA,UnitedStates

RoderickH.J.deHilster UniversityofGroningen, UniversityMedicalCenterGroningen, DepartmentofPathologyandMedicalBiology, Groningen,TheNetherlands;Universityof Groningen,UniversityMedicalCenter Groningen,GroningenResearchInstitutefor AsthmaandCOPD,Groningen,TheNetherlands

LindaElowsson LungBiology,Departmentof ExperimentalMedicalScience,Facultyof Medicine,LundUniversity,Lund,Sweden

RamonFarre ´ UnitatdeBiofı´sicaiBioenginyeria, FacultatdeMedicinaiCie ` nciesdelaSalut, UniversitatdeBarcelona,Barcelona,Spain; CIBERdeEnfermedadesRespiratorias,Madrid, Spain;Institutd’InvestigacionsBiomediques AugustPiSunyer,Barcelona,Spain

ThomasGeiser DepartmentofPulmonary Medicine,Inselspital,UniversityHospital, UniversityofBern,Bern,Switzerland; DepartmentforBioMedicalResearch,University ofBern,Bern,Switzerland

ReinoudGosens DepartmentofMolecular Pharmacology,GroningenResearchInstitutefor AsthmaandCOPD,UniversityofGroningen, Groningen,TheNetherlands

OlivierT.Guenat Organs-on-ChipTechnologies Laboratory,ARTORGCenter,UniversityofBern, Bern,Switzerland;DepartmentofPulmonary Medicine,Inselspital,UniversityHospital, UniversityofBern,Bern,Switzerland;Divisionof GeneralThoracicSurgery,Inselspital,University Hospital,UniversityofBern,Bern,Switzerland

Tillie-LouiseHackett Departmentof Anesthesiology,Pharmacology&Therapeutics, CentreforHeartLungInnovation,TheUniversity ofBritishColumbia,Vancouver,Canada

IreneH.Heijink DepartmentofPathologyand MedicalBiology,UniversityofGroningen, UniversityMedicalCenterGroningen, Groningen,TheNetherlands;Universityof Groningen,UniversityMedicalCenter Groningen,GroningenResearchInstitutefor AsthmaandCOPD,Groningen,TheNetherlands; DepartmentofPulmonology,Universityof Groningen,UniversityMedicalCenter Groningen,Groningen,TheNetherlands

PieterS.Hiemstra DepartmentofPulmonology, LeidenUniversityMedicalCenter,Leiden,The Netherlands

ArturoIba ´ n˜ez-Fonseca LungBiology,Department ofExperimentalMedicalScience,Facultyof Medicine,LundUniversity,Lund,Sweden

MugdhaM.Joglekar UniversityofGroningen, UniversityMedicalCenterGroningen, DepartmentofPathologyandMedicalBiology, Groningen,TheNetherlands;Universityof Groningen,UniversityMedicalCenter Groningen,GroningenResearchInstitutefor AsthmaandCOPD,Groningen,TheNetherlands

T.John DepartmentofMedicine,Divisionof Pulmonary,CriticalCareandSleepMedicine, HastingsCenterforPulmonaryResearch, UniversityofSouthernCalifornia,LosAngeles, CA,UnitedStates;DepartmentofStemCell BiologyandRegenerativeMedicine,Universityof SouthernCalifornia,LosAngeles,CA,United States

DanaiKhemasuwan PulmonaryandCriticalCare Medicine,VirginiaCommonwealthUniversity HealthSystem,Richmond,VA,UnitedStates

LoesEMKistemaker DepartmentofMolecular Pharmacology,GroningenResearchInstitutefor

AsthmaandCOPD,UniversityofGroningen, Groningen,TheNetherlands;AquiloBV, Groningen,TheNetherlands

AtenaMalakpour-Permlid FunctionalZoology, DepartmentofBiology,FacultyofScience,Lund University,Lund,Sweden

AndersMalmstrom LungBiology,Departmentof ExperimentalMedicalScience,FacultyofMedicine, LundUniversity,Lund,Sweden

NataliyaMigulina UniversityofGroningen, UniversityMedicalCenterGroningen, DepartmentofPathologyandMedicalBiology, Groningen,TheNetherlands;Universityof Groningen,UniversityMedicalCenter Groningen,GroningenResearchInstitutefor AsthmaandCOPD,Groningen,TheNetherlands

MartijnC.Nawijn DepartmentofPathologyand MedicalBiology,UniversityofGroningen, UniversityMedicalCenterGroningen, Groningen,TheNetherlands;Universityof Groningen,UniversityMedicalCenter Groningen,GroningenResearchInstitutefor AsthmaandCOPD,Groningen,TheNetherlands

MaunickLefinKolokoNgassie Universityof Groningen,UniversityMedicalCenter Groningen,DepartmentofPathologyand MedicalBiology,Groningen,TheNetherlands; UniversityofGroningen,UniversityMedical CenterGroningen,GroningenResearchInstitute forAsthmaandCOPD,Groningen,The Netherlands

MehmetNizamoglu UniversityofGroningen, UniversityMedicalCenterGroningen, DepartmentofPathologyandMedicalBiology, Groningen,TheNetherlands;Universityof Groningen,UniversityMedicalCenter Groningen,GroningenResearchInstitutefor AsthmaandCOPD,Groningen,TheNetherlands

StinaOredsson FunctionalZoology,Department ofBiology,FacultyofScience,LundUniversity, Lund,Sweden

JorgeOtero UnitatdeBiofı´sicaiBioenginyeria, FacultatdeMedicinaiCie ` nciesdelaSalut, UniversitatdeBarcelona,Barcelona,Spain; CIBERdeEnfermedadesRespiratorias,Madrid, Spain

BradyRae DepartmentofPathologyandMedical Biology,UniversityofGroningen,University MedicalCenterGroningen,Groningen,The Netherlands;UniversityofGroningen,University MedicalCenterGroningen,GroningenResearch InstituteforAsthmaandCOPD,Groningen,The Netherlands

M.G.Rea CIRMBridgestoStemCellResearch andTherapy,PasadenaCityCollege,Pasadena, CA,UnitedStates;DepartmentofMedicine, DivisionofPulmonary,CriticalCareandSleep Medicine,HastingsCenterforPulmonary Research,UniversityofSouthernCalifornia,Los Angeles,CA,UnitedStates

EmilRehnberg DepartmentofExperimental MedicalSciences,StemCellCentre,Wallenberg CenterforMolecularMedicine,LundUniversity, Lund,Sweden

SaraRolandssonEnes LungBiology,Department ofExperimentalMedicalScience,Facultyof Medicine,LundUniversity,Lund,Sweden

A.L.Ryan DepartmentofMedicine,Divisionof Pulmonary,CriticalCareandSleepMedicine, HastingsCenterforPulmonaryResearch, UniversityofSouthernCalifornia,LosAngeles, CA,UnitedStates;DepartmentofStemCell BiologyandRegenerativeMedicine,Universityof SouthernCalifornia,LosAngeles,CA,United States;DepartmentofAnatomyandCellBiology, CarverCollegeofMedicine,UniversityofIowa, IowaCity,Iowa,UnitedStates

JohnStegmayr LundUniversityBioimaging Centre,FacultyofMedicine,LundUniversity, Lund,Sweden;LungBioengineeringand Regeneration,DepartmentofExperimental MedicalSciences,WallenbergCentrefor MolecularMedicine,StemCellCenter,Facultyof Medicine,LundUniversity,Lund,Sweden

SinemTas DepartmentofExperimentalMedical Sciences,StemCellCentre,WallenbergCenterfor MolecularMedicine,LundUniversity,Lund, Sweden

GretaJ.Teitsma UniversityofGroningen, UniversityMedicalCenterGroningen, DepartmentofPathologyandMedicalBiology, Groningen,TheNetherlands;Universityof Groningen,UniversityMedicalCenter Groningen,GroningenResearchInstitutefor AsthmaandCOPD,Groningen,TheNetherlands

AnneM.vanderDoes Departmentof Pulmonology,LeidenUniversityMedicalCenter, Leiden,TheNetherlands

GwendaF.Vasse DepartmentofPathologyand MedicalBiology,UniversityofGroningen, UniversityMedicalCenterGroningen, Groningen,TheNetherlands;Universityof Groningen,UniversityMedicalCenter Groningen,GroningenResearchInstitutefor AsthmaandCOPD,Groningen,TheNetherlands

DarcyE.Wagner DepartmentofExperimental MedicalSciences,StemCellCentre,Wallenberg CenterforMolecularMedicine,LundUniversity, Lund,Sweden;NanoLund,LundUniversity, Lund,Sweden

ChristopherWard TranslationalandClinical ResearchInstitute,FacultyofMedicalSciences, NewcastleUniversity,NewcastleuponTyne, UnitedKingdom

SebastianWasserstrom LundUniversity BioimagingCentre,FacultyofMedicine,Lund University,Lund,Sweden

GunillaWestergren-Thorsson LungBiology, DepartmentofExperimentalMedicalScience, FacultyofMedicine,LundUniversity,Lund, Sweden

Thispageintentionallyleftblank

Preface

Studiesoncreatingbioartificiallungsor lungtissuepieceshaveevolvedrapidlyoverthe last10years,partlyasaresponsetotheincreasingnumberofpatientswithend-stagelung diseaseswhorequirelungtransplantation.This responseinvolvesincreasingnumbersofdifferentthree-dimensionallungmodelsandthe developmentofnewadvancedtechniquesand bioreactors.Theideaofwriting 3DLungModels forRegeneratingLungTissue grewoutofavery successfulresearchsessiontitled“From2Dto 3DModelsofHumanLungDisease:Novel DevelopmentstoRebuildtheLung,”whichwas givenatthe2019EuropeanRespiratorySociety conferenceinMadrid,Spain.

Inthistextbook,leadingresearchersshare theircollectivewisdomondifferentadvanced 3Dlungmodels,noveltechniquesincluding bioprintingandadvancedimagingtechniques, andimportantknowledgeaboutthecomplexityofthelunganditsextracellularmatrixcomposition.Theobjectiveinformulating 3DLung ModelsforRegeneratingLungTissue wastocreateahigh-qualitycollectiondescribingavailablepulmonarymodelsthatcanbeusedto

assesspathogenesisandpotentiallydevelop andtesttherapeutictargets.

Thishighlytopicalbookisstructuredas13 chaptersontopicsthatrangefromtheoriginal 2Dcellculturemodelsonplastictoadvanced cutting-edge3Dlungmodelsusingnaturalor syntheticbiomaterials.Thefirstchapterserves asanintroductiontothelunganditscomplexity.PartIfocuseson2Dcellculturemodelsand thelungmicroenvironment.PartIIdescribes different3Dlungmodelsanddiscussesadvantagesandchallengesofthedifferentmodelsystems.PartIIIcoversfuturedirectionswith chaptersdescribingnewtechniques,including 3Dand4Dprinting,bioprinting,andartificial intelligence,thatcanbeusedtodrivethefield forwardandsomefutureperspectives.PartIV providesthereaderwithsomeconcluding remarksandfuturedirections. 3DLungModels forRegeneratingLungTissue wascraftedby43 scientists,andwewishtothankeachofthem fortheircontributions.

SaraRolandssonEnes

Thispageintentionallyleftblank

Isthelungacomplexorgantorebuild?

TranslationalandClinicalResearchInstitute,FacultyofMedicalSciences,NewcastleUniversity, NewcastleuponTyne,UnitedKingdom

Lifeandrespirationarecomplementary.Thereis nothinglivingwhichdoesnotbreathenoranything whichbreathingwhichdoesnotlive.

[LecturesontheWholeofAnatomy;WilliamHarvey 1653] [1].

Overview:theform,function,andbeauty ofthelung

Breathingisremarkable.Itisessentialto existenceyetseemseffortless.Thecoreworkof therespiratorysystemistoprovideoxygen (O2)tothebodyandtoremovecarbondioxide (CO2).Todothis,theaveragepersontakes between17,000and23,000normalortidal breathsaday [2],bringingin(O2-richairon inspirationandremovingCO2)onexpiration.

Breathingcanbeconsideredintwostages. First,gasneedstobeconductedfromtheairto theperipherallung.Second,gasexchangeof O2 andCO2 needstotakeplacebetweenthe alveoliandpulmonarycirculation [3].Thelung isakeyorganofhomeostasis.Throughoutthe workofbreathing,therespiratorysystemis protectedfromexternalpathogensthrough sophisticateddefensesystems,conditionedby ahumanlungmicrobiome.Thecoordinated

activityofthesedefenseshaveformillennia providedprotectiontohumansfrominhaled externalpathogens,wellbeforethegeneral availabilityofantibioticsinthe1940s,with seamlessintegrationintothemechanicaland gasexchangecorefunctionsofthelungs.

Ventilationcanincreaserapidly,andmaximalvoluntaryventilationormaximalbreathingcapacityisabout15 20timesgreaterthan therestingminutevolumeof5L/min [4].In contrast,aresting,normalcardiacoutputof about5L/mincanincreaseto25L/minwith vigorousexercise;thisisaroundafivefold increaseincardiacoutput.

Throughoutwiderangesofrespiratoryactivity,variedworkloads,andchangesinrespiratory capacity,arterialbloodgasesandpHremain tightlyregulatedandconsistent.Amateurultramarathonrunnerscomplete100-kmruns,representingaconsiderableachievementofextreme exerciseendurance.Fingertipcapillaryblood samplesshowa96%O2 saturationaftertherun, comparedwith97%beforetherun [5],illustratingtheremarkablefunctionalityofthelung.This functionalityiscomplementedbyaconsiderable functionalreserve,illustratedbythefactthat patientswhohaverecoveredfromlobectomyor

singlelungtransplantationareabletolive,work, andexercise.

Thefundamentalrelationshipbetweenthe anatomyoftherespiratorysystem,itskey functions,andlifeitselfwererecognizedbythe GreekpolymathAristotlein350 BCE:“theair whenexpiredishot,whiletheinspiredairis cold, ... theairmakesitswayintonumerous pipesornarrowpassageswithinthelungand alongsideeachoftheserunbloodvessels. ... Theentranceoftheairistermedinspiration anditsexitiscalledexpiration. ... lifeandrespirationareinseparablyboundtogether” [6].

Theimportantrelationshipbetweenanatomy andkeyfunctionsoftherespiratorysystem recognizedin350 BCE thereforeincludedan appreciationoftheconditioningofinspiredair, consistentwithhostprotectionandthecorebusinessofgasexchange.Thisconditioningandinitialmovementofairforsubsequentgasexchange startinthenose,mouth,andupperairways.

Mostpeoplebreathethroughtheirnose whennotexercising.Thenoseisanareaofturbulentflow,accountingforhalfthetotalresistanceoftheairways [7].Thenostrilsofthenose narrowtoform3-mm2 “valves”whichgenerate highresistancetoairflow.Thenasalturbinates havealargesurfaceofaround150cm2 andare coveredbyavascularmucosa [8].Thenasal anatomyisthereforeideallysuitedtotheroleof warmingandmoisteningdryinspiredair,consistentwithsubsequentefficientgasexchange inthealveoliofthedistallung [8,9].Particles thataregreaterthan0.5 μminsizearealsoefficientlyfilteredbythenose,facilitatedbynasal hairsthatprojectintothenasallumen [7]

Themucusbarrierandlungsentinel immunity

Inadditiontofacilitatinggasexchangeinthe distallung,theconditioningofairinthenose andupperairwaysisakeyaspectofinnate immunefunctionanddefenseagainstthe

externalenvironment.ThesaturationofairfacilitatestransferofO2 fromthegaseousairintothe liquidphasecirculationbutisalsokeytotheefficientmucociliaryclearanceofmicroorganisms andparticulatesandtheefficientfunctionof mucussecretedbygobletcellsoftheupperairwayepithelium.Mucusisafundamental,evolutionaryconserveddeterminantofinnateimmune function.Mucusoriginshavebeentracedtothe Cnidaria,mostlysea-basedinvertebrates,which includecoralsandjellyfish [10].Gobletcellsthat secretemucusarepresentthroughoutthehuman respiratorytractbutareprominentintheupper airwaymucosa,with10,000cells/mm2 present inthemaxillarysinus [11].Thenumberofgoblet cellsthengenerallydecreasesfromthebronchi tothemoredistalairways [12]

Mucusactsasaformidablephysicalbarrier [13,14],augmentedbythepresenceofantimicrobialpeptidesandglycoproteins [15].Athinfilm ofepithelialliningfluidthatisaround10 μm deep,rangingfrom5to100 μm,linestheairways. Thisconsistsofthegel,amucuslayerontopofa looser,morewateryphasecoveringtheciliated epithelium.Thisallowstheciliatobeatinacoordinatedfashion,facilitatingmucociliaryclearance ofmicroorganismsandparticulates [16].

Thegelpropertiesofthemucusderivefrom theircontentofmucins [17],andthemainairwaymucinsareMUC5ACandMUC5B.Mucins aresecretedinvesiclesthatarederivedfrom theGolgiapparatuswithcompactstoragein thecytoplasm.Structurally,mucusformsatangledpolymerwithathreedimensionalstructureideallysuitedtoimmobilizinginhaled microbesandparticles [14].Thegel-forming mucinsarehighlyglycosylated,viscoelastic, disulfide-bondedglycoproteinswithhighmolecularweights(typically2 20 3 105 Da)and highcarbohydratecontentofbetween50%and 90%byweight [17] Mucinsecratagoguesinclude inflammatorycytokines,suchasinterleukin8 (IL-8)andIL-17A [18 20],whichcanalso recruitinnateimmunecellsthatcankilland phagocytosemicroorganisms.Invivo,mucin

secretionoccursinseconds [17,21],MUCgene upregulationtakesminutestohours,andmucin biosynthesisrequiresbetween6and24hours. Mucusisthenproducedbyhydrationof mucins.Thisindicatesthecapacityforacoordinated,graded,innateresponseinvolvingmucus andcellsofinnateimmunity [18 20].Acalibratedacuteorchronicdefensecantherefore bemounted,accordingtothelevelofhomeostatic challenge [17] tothefunctionalrespiratorysystem.

Thestickyprotectivenasalmucusblanketalso containsmicrobicidalagents,whichareproduced bynasalairwayepithelialcells,constitutingafurtherchemicalbarriertopathogens,conferringa broadspectrumofmicrobiologicalprotection. Microbicidalagentsincludelysozyme [22],which wasfirstdescribedandnamedbyAlexander Fleminginthe1920s.Fleming,whosubsequently discoveredpenicillin,demonstratedthat“diluted nasalmucus”addedto“athicksuspensionof bacterialcoccicausedtheircompletedisappearanceinafewminutesat37 C” [23].Lactoferrin, whichisalsoproducedbynasalepithelialcells [24],isaglycoproteinthatbindsbioavailableiron, whichmostbacteriarequiretogrow [25,26]. Lactoferrinalsohasantifungalandantiviralproperties.Broadmicrobicidalactivitieshavealsobeen shownforthesmallcationicproteindefensins. LL-37isadefensinproducedbyairwayepithelial cellsandneutrophilsthatkillsgram-positiveand gram-negativebacteria,fungi [27,28],andviruses viadisruptionofmembranes [29].

Thefundamentalimportanceofthenoseand upperairwayininnateimmunityhasbeenunderlinedintheCovid-19pandemic.Thisinfection remainsasymptomaticinmanypeople,butthe spectrumofclinicaloutcomesalsoincludesdeep lungpneumonia,intensivecareadmission,and death.AsofApril27,2022,therehadbeenover halfabillionreportedinfections,witharound6.2 milliondeathsduetoCovid-19.(JohnsHopkins UniversityCoronavirusResourceCenter. https:// coronavirus.jhu.edu/).Thecoronavirusthatis responsibleforCovid-19,SARS-CoV-2,infectstargetcellsviatheangiotensin-convertingenzyme2

receptor,whichispresentinthenasalepithelium. Wehaveusedacellmodelofhuman primarynasalepitheliumdifferentiatedatanairliquidinterface [30] tostudypatient-derived SARS-CoV-2infection [31].Patient-derived virusdemonstratedbroadnasalepithelialtropism,withviralproductiondemonstratedin bothciliatedandsecretorycells.Single-cell RNAsequencing,proteomics,andpathological assessmentsshowedthattheepithelialhost responsewasdominatedbytypeIandIIIinterferonsandinterferon-stimulatedgeneproducts. This“delayed”responseoccurred24hoursafter viralgeneexpression,notaffectingSARS-CoV-2 replicationsignificantly.Theprovisionofrecombinantinterferonbeta(IFN-β)orIFN-λ1priorto infectionaugmentedanantiviralstatethat potentiallyrestrictedSARS-CoV-2viralreplication,representingapotentialprophylactic opportunityforintervention(Fig.1.1)andillustratingtheimportanceoftheintegrateddefenses ofthenose,upperairways,andmicrobiome.

Thetracheaandupperairways

Theextrathoracicwindpipeortrachea throughwhichrespiredairflowswasdescribed byAristotle,whoobservedthat“allanimals thatevidentlyrespiredosobymeansofthe windpipe,whentheybreatheeitherthrough themouthorthroughthenostrils” [33].

Conditioned,warmed,hydrated,andfiltered [7] airflowsfromthemouthandnoseintothetracheaandbronchialtreeoninspiration.Thisfollowspressuregradients,whicharecreatedby changesinlungvolume,withtheprocessreversed onexpiration.Therateofairflowisproportional totheresistanceoftheairways,withmostresistanceintheupper,largeconductingairways.

Duringnormalswallowing,thelarynxiselevatedtothetopofthetrachea,andmovement oftheepiglottisoccurstoeffectivelysealthelarynx [34].Inspirationisinhibitedduringswallowing,andthiscomplex,interrelatedresponse

isafurtherkeydefenseoftheairway,thefailureofwhichcancauseaspirationpneumonia, withhigh,relatedmorbidityandmortality.

Thetracheaisprotectedandsupportedby horseshoe-shapedringsofcartilageandcontainssmoothmuscle.Thisanatomyallowsthe posteriorwallofthetracheatobulgeduring cough [35],withluminalnarrowing,increased resistance,andshear.Thisservestodislodge mucus,promotingclearanceandfurtherexemplifyingtheinterrelationshipbetweenanatomicalformandfunctionthatispresentthroughout thetracheobronchialsystem.

Theelegant,strikinglatexcaststhatwere producedbypathologistssuchasWeibel [36] andFrancisGreen [37] revealatracheobronchialtreeformedbyaround24airwaygenerations(Fig.1.2).Thetracheaisthefirstand largest(generation0)andsubsequentlyundergoesfractal [38] branching,witheachairway dividingintotwo.Theprinciplesoffractal geometryasobservedinthelungprovidea systemofairwaysandbloodvesselsthatare matchedasevenlyandefficientlyaspossible forgasexchange,withinanoptimallyminimizedspace [39].Theformationofsmaller daughterairwaysquicklygeneratesahuge cross-sectionalarea,withmostareacontributed tobyairwaygenerations10 24.Theincreasein cross-sectionalareameansthatairwayresistanceismuchlowerinthesmallerairways comparedtothelargeairways.Functionally, thisalsoleadstoarapidfallinthevelocityof

FIGURE1.1 Culturedhumannasalsecretory (cell1)andciliatedcells(cells2and3)showing SARS-CoV-2viralparticlesinsideandoutsidecells withelectronmicroscopy.Thevirusappearsassmall spheres,approximately0.1 μmindiameter(arrows). Redarrow showsvirusthathasleftthehumanhost cell,allowingspread.Scalebar:1 μm [32]

theairasitmovesintothelung.Theconducting airwaygenerations0 16continuetohumidify andwarmairmovingintothelungandlead intotherespiratoryzoneoftheairwaytree.In therespiratorybronchioles,beyondgeneration 17thereisachangeinfunction,withanincreasingnumberofthin-walledgasexchangeairsacs oralveolipresent,groupsofwhichformacini. Thealveolarductsthenleadintothefinalgenerationofairpassagesandfurtheralveoli.

Thewallsofthealveoliarethin(0.1 0.2 μm), ideallysuitedtogasexchangeandO2 uptakeof upto3L/min [12] fromtheair,warmedand humidifiedbythenoseandupperairways.In totaltherearearound3 3 106 alveoliarising fromairwaygenerations17 23,providinga massivesurfaceareaofaround70m2 tofacilitategasexchange [40].

Theairwayepithelium

Thecellsandassociatedstructuresoftheairwayareimportantcontributorstothefunctional respiratorysystemandlungs.Theseincludeairwayepithelia,associatedionchannelsandbasementmembrane,mucus-producinggobletcells, tissuemacrophages,neutrophils,eosinophils, mastcells,lymphocytes,dendriticcells(DCs), fibroblasts,smoothmusclecells,andvessels. Thematrixcomponentsofthelunginclude elastinandcollagens.

Thefulldetailsofthisarebeyondthescope ofthissinglechapter.However,thekeyroles

FIGURE1.2 Fractalgeometryofairwayremodelinginhumanasthma.(A)Low-powerphotographofnonasthmacontrollatex castofapicalsegmentofleftlowerlobeofhumanlung.Thecastshowscharacteristicdichotomousbranchingpatternwithsmooth parallel-sidedsegmentsandcompletefillingtothelevelofrespiratorybronchioles(showningreaterdetailin(B).(C)Castofan 18-year-oldfemalewhodiedofasthma.Thecastshowsirregularsegmentswithtapering, constrictions,andsurfaceprotrusions. Source: AdaptedwithpermissionoftheAmericanThoracicSociety.Copyright r 2022AmericanThoracicSociety.Allrightsreserved. BoserSR,ParkH,PerrySF,MenacheMG,GreenFHY,AmJRespirCritCareMed2005;172:817 823.TheAmericanJournalof RespiratoryandCriticalCareMedicineisanofficialjournalofthe AmericanThoracicSociety.Readersareencouragedtoreadtheentire articleforthecorrectcontextatAmJRespirCritCareMed.2005Oct1;172(7):817 823. https://doi.org/10.1164/rccm.200411-1463OC. Epub2005Jun23.Theauthors,editors,andTheAmericanThoracicSocietyarenotresponsibleforerrorsoromissionsinadaptations.

oftheepitheliaoftherespiratorytractinthe airwayandlungwarrantattentionandare particularlyrelevanttotheconsiderationof requirementsforafunctionallung.Thefunctionalimportanceofrespiratoryepithelia rangesfromstructural,barrier,anddefense considerationsintheairwaystotheremarkable gasexchangecapabilityoftheperipherallung. Theairwayepitheliumformsaninterface betweenthehostandthesurroundingexternal

environmentwithconstantexposuretobacteria,viruses,fungi,parasites,andpollution. Alongwiththisbarrierfunction,mediators fromtheairwayepitheliumcanactivateor downregulateimmunefunction,withapivotal roleinlungandhosthomeostasis.

Inthesurfacepseudostratifiedepitheliaof proximalairways,fourcelltypeswereclassicallyrecognizedasmakingupthesurface epithelium:ciliatedcells,mucus-secretinggobletcells,intermediarycells,andbasalcells. Ciliatedcellsoccurthroughouttherespiratory tract,includingtherespiratorybronchioles [12],butwithagreaterdensityofciliainthe proximalairways.Thebronchialepithelium containsabout6000gobletcells/mm2,andthis reemphasizesthemucociliaryescalatorasa keypartofthelung’sdefensesagainstpathogens,augmentedbysubmucosalglandspresentinlargercartilaginousairways.

Classicalcharacterizationsoftheairwayepitheliumincludeddescriptivemorphologyand traditionaltechniquessuchasmicroscopy informedbytinctorialdyestains.Hencethe gobletcellcanlooklikeacuporgoblet,while periodicacid-Schiffstainingdenotespolysaccharidestaining,consistentwithmucusproduction.Intheterminalbronchioles,highly metabolic,secretory,andstemcell likeclub cellsaredescribed.Thesenonciliatedcellsare describedasthemainpopulationofsecretory andstemcellsperipherally,wheretheairway epitheliumbecomesthinnerandcuboidalwith progressivelyfewerciliatedcells [12].

Aswellastheregenerativecapabilityofthe classicalairwaybasalandclubcells,ithasbeen increasinglyrecognizedthatcellularplasticity intheairwayexistsandpotentiallycontributes toairwayandlungphysiologyandpathophysiology.Ourgroupmadethefirstdescriptionof epithelial-mesenchymaltransition(EMT)inthe humanairway [41,42],wherebyairwayepithelialcellscanlosetheirepithelialcharacteristics andgainmesenchymalmarkers,withinvasive potentialdemonstratedthroughbioassay [41],

withawiderangeofpotentialintermediary typespossible [43].

BothEMTandendothelial-mesenchymal transitionhavebeenshowntobemodulated bymicro-RNAs [44,45].Newandcomplex insightshavealsobeenrecentlyaffordedby theadventofsingle-cellmRNAanalyses andworkembodiedwithintheHumanTissue AtlasConsortium [46].Single-cellapproaches havedescribednovelpopulationsofepithelial cells.Thisincludesarareionocytecelltype thatexpresseshighlevelsofcysticfibrosis transmembraneconductanceregulator(CFTR) activityintheairwayepithelium [32,47]. DeficienciesinCFTRareresponsibleforhigh ratesofmorbidityandmortalityinpeoplewith cysticfibrosis [47]

Deprezetal.havepublishedasingle-cell atlasofhealthyhumanairways,aconsiderable achievement,withdatafromthenose,trachea, andbronchi [48].Thisyieldeddetailedinformationfromthefirsttothe12thairwaydivisions,showingthatthegreatestchangesin cellularitywereapparentbetweennasaland tracheobronchialsamples,withincreaseddensityofglandsandsecretorycellsinnasal samples.

Thisisarapidlyevolvingfield,andwork atthetimeofwritingisalsobeingdrivenby theCovid-19pandemic [32,46].Overall,anintegrationofnewmolecularandclassicalpathologyapproachesindicatesthatthefunctional lungcontainsadynamicepithelial,resident immune,andneuronalcellcommunity.The single-cellmRNAapproachessupportacore residencyprogramforimmunecells,whichcan beaugmentedbycellsthatarerecruitedfrom theblood.Itisnotablethatmiceseemtolack approximatelyone-thirdofhumanlungcell typesthathavebeenidentifiedaspotentially maintainingmucosalimmunehomeostasisand hostdefense [49].Thisindicatestheimportance ofhumansamplestoinformtranslational researchandprovideinsightsforrebuilding thefunctionalhumanlung [50].

Spatialorganizationofintegratedinnate andadaptiveimmunityinthelung

Tocomplementitsinnateimmunedefenses, therespiratorysystemincludesevolutionary conserved,anatomicallyconstitutive,adaptive immunecapabilityrepresentedbylymphocytic aggregates,sometimeswithgerminalcenters.

Nasal [29,49] andbronchus-associatedlymphoidtissue(BALT) [51,52] hasbeendescribed, withanincreaseddensityofBALTpresent insmokers [51,53].Thereislimitedavailable research,giventhepotentialimportanceof thesesystems,butitisofinterestthatclassical andpainstakinganalysisofwholelungs showedthatBALTwasdetectedthroughout therespiratorysystemintrachea,carinae,main stembronchi,lobarbronchi,andperipheral lungcontainingbronchioles [51,53].

Thedefensesofthenonrespiratoryairway generations,togetherwiththewarmingand humidificationconditioningofatmosphericair, representintegratedexamplesoflungfunctionality.Thisfacilitatesthefirstcoreaspect ofthefunctionallung,namely,conductingthe air,whichwouldneedtobereplicatedfor rebuildingafunctionallung.

Intherespiratorybronchiolesbeyondgeneration15 [39] thereisanincrementalchange infunction,withadevelopingcapabilityfor thesecondcoretaskofthelung,thatis,gas exchange.Thisgasexchangefunctionalityis providedbyanincreasingnumberofthinwalledgasexchangeairsacsoralveoli.After aboutthreefurthergenerationsbeyondgeneration15theairwaywalliscompletelycovered withalveoli,whichformalveolarducts.In thefinalairwaygenerationthealveolarsac endsblindly.Airwaygenerations15 23thereforeformpulmonaryacini,theunitofthe gasexchangerventilatedbyonetransitional bronchiole:oninspirationoxygenatedairflows alongtheconductingairwaysintotheacinus, andaround10,000alveoliinanacinussource, acommonairsupply [39].Theacinitherefore

connecttotheairwayleadingtoandfrom theexternalatmosphere;alveolarpressureis thereforeclosetothatoftheatmospheremost ofthetime.ChangesbroughtaboutbyinspiratoryandexpiratorylungmechanicsareresponsibleforthemovementofO2-richairintothe lungandremovalofCO2 onexpiration.The alveoliallowgasexchange,withthiscoreprocessofthefunctionallungagainenabledby anatomicalform.

Thediameterofthealveoliinhealthylungs isaround200 μm,anddiffusionofairthough thegas-filledalveolioccursinafewmilliseconds [34].Theprocessofdiffusionintoliquid phasesisslowerthanthatingas,butthefunctionallungisanatomicallyoptimizedfor thisprocess.Thewallsofthealveoliareboth thin,lessthan1 μmthick,andarethesole placeinthebodywherecapillariesare exposedtotheair.Thisoccursasaresultof fusionbetweentheendotheliumofpulmonary capillariesandthethinwallsofthetype1 cells.Thehybrid,fusedbarrierofthetype1 cellsandendotheliumofthecapillaryisthereforeaminimizedbarrier,facilitatingdiffusion ofgas.Thetype1alveolarepithelialcellsare thefunctionalunitforgasexchangeandconstitutearound95%ofthealveolarcellsurface throughverythincytoplasmicprocessesthat generateahugearea,ofaround5000 μm 2 associatedwitheachnucleus [39].Type1cells areunabletodividebymitosis,butelectron micrographsofthelungstructurereveala mosaicofalveolarepitheliumthatincludes morphologicallydistinct,rounded,type2alveolarepithelialcellsatthealveolarwall.Type2 cellsproduceandstorephospholipidsurfactant.Thiscruciallydecreasesthesurfacetensionofthealveoli.Thetype2cellsalsoforma keypoolofprogenitorstemcellswithan importantroleintheregenerationoftype1 andtype2epithelialcells [39].Themillionsof alveoliofthefunctionallungprovideamassivesurfaceareaofaround70m2 tofacilitate gasexchange [40].

Thelungcirculation

Thekeyroleofthecirculationinthenormal functionalhumanlungisunderscoredbythe factthatthelungreceivesbloodsupplyfrom twodistinctcirculatorysystems.

Thelow-pressure,low-shear,andhigh-flow systemofthepulmonarycirculationcarries thetotalcardiacoutputfromtherightventricle oftheheart.Thisenablesbloodoxygenationin thelungandnutrientandliquidexchangefor thelungparenchyma.

Thebronchialcirculationisderivedfromthe aortaandsoispartofthesystemiccirculation. Itisofinterestthatthemouselungdoesnot haveaseparatebronchialcirculation [54].The bronchialcirculationconstituteslessthan1%of thelung’sbloodflow,doesnotnormallyparticipateingasexchange,butisthemainsupplier ofnutrientsandO2 fortheairways.Thetwo separatevascularbedsmergeintothepulmonaryvein,andthesmallamountofdeoxygenatedbloodfromthebronchialcirculationleaves thelungviathepulmonaryvenousnetwork. Thisbloodthereforepassesthroughthelungs withoutbeingoxygenated,representingapart ofasmallphysiologicalshuntthatispresentin thenormalfunctionallung [35].

Thelow-pressurepulmonarycirculation flowsfromtherightventricleintothepulmonaryarteryanddividesintotheleftandright pulmonaryarteries,whichthenfurtherdivide intobranchesthatfollowthebronchialtree. Thehighcapillarityofthealveolarwallsand thealveolarcirculationessentiallyprovidesa bloodfilm,coveringthealveoli,withflow occurringthroughthecapillaryinaround 0.8secondsatrest.Oxygenationofthemixed venousbloodoccursinaroundone-thirdof thistime,meaningthatthereiscapacityto accommodatetheeffectsofexercisewhenblood transittimesdecrease [55].Thepulmonary venulescontainingoxygenatedblooddrainlaterallyintofourmainpulmonaryveins,which

emptyintotheleftatriumtoprovideoxygenatedbloodtothesystemiccirculation [35].

Neithertheairofaninspiredbreathorthe distributionofthelow-pressurepulmonary circulationisevenlydistributedinthelung. Humanshaveevolvedasuprightbipeds,afeaturethatexertsgravitationaleffectsonboth thelungandtheassociatedcirculationofthe integratedrespiratorysystem.Thereisregional variationinlungcompliance,andsomeregions arethereforepreferentiallyventilatedwith inspiredair.Alongwiththeregionalvariability incomplianceofthelungs,small-scalevariationsduetotheunevenlengthofairwaysgeneratedbytheasymmetricaldichotomousand fractalbranchingpatternoftheairwaysalso occur [38,39]

Thelungscanbeconsideredtobefreely hanginginsidethethorax.Theresultantgravitationalpullonthelungsmeansthattheupper lobesofthelungarerelativelydistended whilebasallungareasarerelativelysupported bythediaphragm.Duringinspiration,inan uprightindividualthismeansthattheupper partsofthelung,whicharealreadystretched, arelesscompliantandsolessabletofillwith air.Incontrast,thelungbasesarelessstretched andabletofillmoreeasily.Asaresult,more ventilationfromaninspiredbreathtendsto occurinthelowerzonesofthelungs.Ona smallerscale,adjacentlobulesorevenalveoliin thelungmaynothavethesamecompliance, owingtotheeffectsofairwayanatomy,contributingoveralltoheterogeneityofventilation(V) inthelung [35].

Gravityalsoaffectsthelow-pressurepulmonarycirculation,whereatrest,thedriving pressureisaround15mmHg.Thisisnotsufficienttofullyperfusetheupperlung,sothe lungapicesreceivelittleperfusion(Q)fromthe pulmonarycirculation.Althoughventilationis alsodiminishedatthelungapex,ventilation stillexceedsperfusion,andtheV/Qratiois greaterthan1.Bycontrast,atthebasesofthe

lung,theV/Qratioislessthan1.Thedistributionofperfusionisalsoinfluencedbyhypoxia. LowO2 levelsinregionsofthelungexert pulmonaryarteryvasoconstriction,decreasing thebloodsupplytothatregion.Thissystemis akeyhomeostaticandadaptiveprocessthat broadlymaintainsaV/Qbalanceofventilation andperfusion.Ithasbeenshownthatinthe normallungtheoverallV/Qisaround1,and theV/Qrelationshipisacriticaldeterminant oflungphysiology [56,57].

Inhumans,afteradeepinspiration,around 80%ofthetotallungvolumeisair,and 10%isblood.Thefewhundredgramsof tissueandcellsthatmakeupthefunctional lungincludeasophisticatednetworkofconnectivetissue.Thispinnacleofdesignaccommodatesthefunctionsofthelungatdifferent volumes,associatedwithnormalinspiration andexpirationandthedemandsofexercise [5,58]

Ithasbeencalculatedthatalveolarstructuresmustcopewithbreathing-relatedalveolarstrainforupto109 cyclesduringtidal breathingduringtheirlifetime [59].Thecomplexarchitectureofthelungisnotablysupportedbylittletissue,however,with“little wastedstructureandnooverdesign” [59].This isofkeyimportanceinconceptualizingthe rebuildingafunctionallung.

Gasexchange:thecorejobofthelungs

Thelungparenchymaincludesthefunctional gas-exchangingalveoli,which,asdescribedearlier,arelinedbyepithelium,coveredbyathin liquid-phasebloodlayer.Theresultingairliquidinterfaceandsurfacetensioncontribute tothefunctionallyimportantelasticrecoilofthe lung.Thecellsofthealveolarwallscanaffect thelocaltensionoftheextracellularmatrix (ECM).Inturnmechanicalforcesassociated withmovementofthechestwallandbreathing

aretransferredtothecellsthroughintermediary ECMcomponents.

The“connectivetissue”componentsofthe ECMincludecollagenfibers.Therearearound 30differentcollagenmolecules.Theinterstitial collagensaremostlyhelicalstructuresthatconferabasicsupportfunction.Thehelicesform rigidrodlikestructuresabout300nminlength and1.5nmindiameter,whicharecapable ofspontaneousfibrilformation.Thecollagen fibrilscanfurtherorganizeintothickercrosslinkedfibers,andcollagenfibril-fibernetworks mayberandomlyarrangedorformoriented structures.Thelungparenchymainterstitium containsmostlycollagentypesIandIII,with sometypeIVcollageninthebasementmembranesofepithelia [60,61].Collagenisless deformablethanelastinandthereforeprovides astructuralscaffoldforthewallsofalveoli [62]

Variationsinparenchymalcollagencontent indevelopment [63],andfibrosis [64,65] indicatethatcollagencontentisakeydeterminant ofparenchymalbiomechanics.Thisisanincrediblydynamicsystem,andithasbeenshown thataround10%ofthetotallungcollagenin ratsissynthesizedeachday,consistentwitha continuoushigh-volumeturnoverofthelung matrix [66].

Elastinisanotherload-bearingECMcomponent,whichismoreflexiblethancollagens. Elasticfibersarecomposedofelastinandassociatedmicrofibrils.Theseoftenformafibrous outerlayeraroundthelessorganizedelastin. Elasticfibersarestructurallyvariedand mechanicallyinterconnectedwithcollagen [67].

Collagenandelastinthereforeprovidecomplementaryresilienceandbiomechanicalpropertiesoverawidestrainspectrum,accommodating changesinlungvolumeencompassingfunctional residualcapacityandtotallungcapacity,supportingsedentaryworkloads,andenabling extremesofexercise [5,58].Thecollagenand elastinfibersofconnectivetissuesarecontained inahydratedgel.Thematrixcompositionand

ratiooffibertogelvaryamongtissuesin maturationandwithpathophysiology [65]. Glycosaminoglycans(GAGs)arekeyelements ofthismatrix,andthereareseveraldifferent types.Molecularweightsvarywidelyover ordersofmagnitude,andpolymericchainscan containupto100units.Thereistherefore markedvariabilityinsizeandinsecondaryand tertiarystructures,someofwhichcanbevisualizedbyelectronmicroscopy [60].

ProteoglycansformedfromGAGsubunits haveanumberofbiologicalfunctions.These rangefromactingascellsurfacereceptors throughtothebindingofgrowthfactorsand proteins,constitutingafunctionalreservoir thatcouldaffectcellularmigrationandtissue repair.Theorganizationofcollagenandelastin fibersmaybeinfluencedbyproteoglycans [60]

Aswellascollagen,elastin,andproteoglycansthelungparenchymaalsocontainscells thatarebothaffectedbyandcontributetothe biomechanicsofthelung.Priortosingle-cell mRNAstudies,around40differentcelltypes wereidentifiedwithintheparenchyma,with potentialinteractionthroughthestructureof theECM [60].

Contractilecellsthatareknowntobepresentinthelungparenchymaincludefibroblasts andmyofibroblasts [49] andsmoothmuscle cellsthatarepresentinthesmallairways, bloodvessels,andalveolarducts.Itisofinterestthat α-actinhasbeenidentifiedinalveolar septa,consistentwithapotentiallocalized responsetoCO2 levels,promotingefficientgas exchangebymodulatinglocalventilationperfusionrelationshipsinthelung [68]

Traditionally,ithasalsobeenrecognized thatepithelialandendothelialcellsmaycontractbutthattheforcesarerelativelysmall [60] However,thisispotentiallyanoversimplification,giventherecognitionthatendothelial [44] andepithelial-mesenchymaltransition [41 43] mayoccurinthelunganddevelopinginsights fromsingle-cellmRNAstudies [49].Itisincreasinglyrecognizedthatthereisconsiderable

cellularplasticityincellsoftheparenchyma, whichmaybeadeterminantofthebiomechanicsofthefunctionallung.Animportantfunctionofparenchymalcellsistotakepartin growthandintheresponsetoinjuryand repair.Thiscanincludetheproductionof matrixcomponents,includingcollagenfrom fibroblastsandmyofibroblasts.Itisrecognized thattheproductionofkeygrowthfactors,such asthetransforminggrowthfactorbetasuperfamily,arealteredbymechanicalforcessuchas stretch,andstretchhasbeenshowntostimulate EMTintype2alveolarepithelialcells [69].The indirect,longer-termmaintenance,remodeling, andrepairfunctionsofparenchymalcellsare thereforelikelytorepresentanimportantdeterminantoflungmatrixbiomechanics.

Bioengineeringinthelungsiskeyto function

Thestructureoftherespiratorysystem, includingitscellsandmatrix,ismaintained byasupportivenetworkofinterdependent bioengineering.Thisinturncontributestothe inherentelasticpropertyofthelungsandcharacteristicsofairflowduringnormalinspiration andexpiration.

Theelastictendencyofthelung,which favorscollapseofthestructure,isheldincheck bythemechanicsofthechestwall,whichhas anopposingtendencytospringoutwards.At theendofanormaltidalbreath,thereisthereforeabalancebetweenthecontractionof thelungandtheopposingexpansionofthe chestwallwithnomusculareffortrequired. Breathingatthislungvolume,whichisdeterminedbytheintegratedbiomechanicsofthe lungs,isthereforeveryefficient,minimizing theworkofbreathing.

Thebalancedopposingforcesofthelung andchestwallmechanicsgenerateanegative pressurearoundthelung,maintainingitina stretchedstate [35].Thevitalconnections

betweenthechestwallandthelungsare maintainedbythesupportingconnectivetissue structuresofthelung.Thisremarkablethreedimensionalscaffoldisestablishedbyacontinuumoffibersthatinterconnecttheentirelung fromthechestwallandpleuratothemajorairways.Thiscanbeconsideredathree-partintegratedsystem [39].

Theairwayaxialfibersystemisanchoredto theairwaysandextendsfromthehilum,where themainbronchusentersthelung,through tothealveolarductsandacini,forminga branchedaxialscaffoldsupportingtheairways.

Thisiscomplimentedbytheperipheral fibersystem,whichoriginatesfromthevisceral pleuraconnectingthelungparenchymaand theperipheryoftheacini.

Finally,theseptalfibersystemwithinthe alveolarwallsisinterwovenwiththecapillary network,andthisisinterconnectedtoboththe axialandtheperipheralfibersystems.Overall, therefore,thisestablishesacontinuumofstructuralfibersthatphysicallyandfunctionally connectthelungtothemechanicsofthechest wallwhilealsoprovidingincrediblelevelsof structuralintegritythroughoutthemechanical distentionandrelaxationcyclesofthefunctionallung [66].Thisfibersystemisunderconstanttensionthroughtheoutwardpullofthe visceralpleura,whichistransmittedtotheseptalfiberandaxialfibersystems.Thelunghas thereforebeendescribedasatensegritystructure [39,70],inwhichthefunctionalityisintrinsicallydependentonthemechanicaltensions thatarepresentinthefibercontinuum.

Emphysema,commoninpeoplewithchronic obstructivepulmonarydisease(COPD),and recognizablewithlungimaging,isinformative whengaugingthefundamentalimportanceof thesestructurestothefunctionallung.Thecentrilobularformofemphysemaisconsistentwith thesnappingoftheaxialfibersystemofthe normalfunctionallung,leadingtocollapseof theperipheralairwaysandprofoundlydeleteriousairflowlimitation.

Theexquisitebalanceofthissystemandthe importanceofappropriatelyconsideringand researchingtheroleofbiomechanicsinthe functionalhumanlungarefurtherillustrated byotherpathophysiologicalstudiesinpeople withCOPD.Theseindicatethatarelativeloss oftissueelasticityintheabsenceoffrank emphysemacanoccurwithoutcompletefiber breakdown.Carefulmorphometricanalysesof tissueinwhichelasticfiberswerevisualized byusingvanGiesonstaininghaveshoweda quantitativelossofelastinvolumefraction inthesmallairwaysandalveoliofpeople withCOPDandthatthevolumefractionof elastinfiberscorrelatedwithlungfunction. Complementaryconfocalmicroscopyataqualitativelevelshowfibersincontrollungparenchymathatmarkedtherimsofalveoli.In COPDtheseweregenerallyfewer,withthinner elasticfibers [71]

Thestructuralpropertiesofthecollagen andelastinfibernetworkarethereforekey mechanicaldeterminantsofacinarandalveolar mechanicsandthefunctionallung [58].Afurtherimportantcomponentofthisoverall structure-functionrelationshipisrepresented bysurfacetensioninthealveolarspacewhich wouldfavorcollapseofthealveolarcomplex. Thesupportingarchitectureofthecollagen andelastinfibersdoesnotfullyprotectagainst thesurfacetensionsthatformwhenairfilled alveoliaresurroundedbyaliquidfilmof bloodwiththealveoliconnectedtotheairway systemfullofair.Thetendencyforalveolito collapseparticularlyatlowlungvolumesis preventedbythesecretionofanalveolarlining fluid,whichisabilayerofawateryphase toppedbyphospholipidsurfactantsecreted fromtype2alveolarepithelialcells [39,72].The biophysicalpropertiesofsurfactantmeansthat surfacetensionisdecreaseddynamicallyasit becomescompressedatlowlungvolumes [73]. Whenitisneededmostfromthepointofview oflungmechanics,thatis,whenthealveoliare attheirmostvulnerabletocollapse,surface

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.