Instant ebooks textbook Nonlinear continuum mechanics for finite elasticity-plasticity: multiplicati

Page 1


Nonlinear Continuum Mechanics for Finite Elasticity-Plasticity: Multiplicative Decomposition with Subloading Surface Model 1st Edition Koichi Hashiguchi

https://ebookmass.com/product/nonlinear-continuummechanics-for-finite-elasticity-plasticitymultiplicative-decomposition-with-subloadingsurface-model-1st-edition-koichi-hashiguchi/ Download more ebook from https://ebookmass.com

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Free-surface flow: environmental fluid mechanics

Katopodes

https://ebookmass.com/product/free-surface-flow-environmentalfluid-mechanics-katopodes/

Proper orthogonal decomposition methods for partial differential equations Chen

https://ebookmass.com/product/proper-orthogonal-decompositionmethods-for-partial-differential-equations-chen/

Plasticity of Metallic Materials 1st Edition Oana

Cazacu

https://ebookmass.com/product/plasticity-of-metallicmaterials-1st-edition-oana-cazacu/

Brain Plasticity and Learning: Implications for Educational Practice 1st Edition Jennifer Anne Hawkins

https://ebookmass.com/product/brain-plasticity-and-learningimplications-for-educational-practice-1st-edition-jennifer-annehawkins/

Nonlinear

Differential Equations in Micro/Nano

Mechanics: Application in Micro/Nano Structures and Electromechanical Systems 1st Edition Ali Koochi

https://ebookmass.com/product/nonlinear-differential-equationsin-micro-nano-mechanics-application-in-micro-nano-structures-andelectromechanical-systems-1st-edition-ali-koochi/

Mechanics of Hydraulic Fracturing: Experiment, Model, and Monitoring Xin-Rong Zhang

https://ebookmass.com/product/mechanics-of-hydraulic-fracturingexperiment-model-and-monitoring-xin-rong-zhang/

Transport and Surface Phenomena 1st Edition Kamil Wichterle

https://ebookmass.com/product/transport-and-surfacephenomena-1st-edition-kamil-wichterle/

Tissue Elasticity Imaging S. Kaisar Alam

https://ebookmass.com/product/tissue-elasticity-imaging-s-kaisaralam/

Elasticity: theory, applications, and numerics Fourth Edition Sadd

https://ebookmass.com/product/elasticity-theory-applications-andnumerics-fourth-edition-sadd/

NONLINEARCONTINUUM MECHANICSFORFINITE

ELASTICITY-PLASTICITY

NONLINEAR CONTINUUM MECHANICSFOR

MultiplicativeDecompositionWith

SubloadingSurfaceModel

Tokyo,Japan

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,urtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-12-819428-7

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: DennisMcGonagle

EditorialProjectManager: JoshuaMearns

ProductionProjectManager: SojanP.Pazhayattil

CoverDesigner: GregHarris

TypesetbyMPSLimited,Chennai,India

Prefacexi

1. Mathematicalfundamentals1

1.1Matrixalgebra1

1.1.1Summationconvention1

1.1.2Kronecker’sdeltaandalternatingsymbol2

1.1.3Matrixnotationanddeterminant2

1.2Vector6

1.2.1Definitionofvector7

1.2.2Operationsofvector7

1.3Definitionoftensor15

1.4Tensoroperations18

1.4.1Propertiesofsecond-ordertensor18

1.4.2Tensorcomponents19

1.4.3Transposedtensor20

1.4.4Inversetensor21

1.4.5Orthogonaltensor22

1.4.6Tensordecompositions24

1.4.7Axialvector25

1.4.8Determinant27

1.4.9Simultaneousequationforvectorcomponents30

1.5Representationsoftensors31

1.5.1Notationsintensoroperations31

1.5.2Operationaltensors32

1.5.3Isotropictensors34

1.6Eigenvaluesandeigenvectors35

1.6.1Eigenvaluesandeigenvectorsofsecond-ordertensor35

1.6.2Spectralrepresentationandelementarytensorfunctions37

1.6.3Cayley Hamiltontheorem38

1.6.4Scalartripleproductswithinvariants39

1.6.5Second-ordertensorfunctions39

1.6.6Positive-definitetensorandpolardecomposition40

1.6.7Representationtheoremofisotropictensor-valuedtensorfunction42

1.7Differentialformulae43

1.7.1Partialderivativesoftensorfunctions43

1.7.2Time-derivativesinLagrangianandEuleriandescriptions48

1.7.3Derivativesoftensorfield49

1.7.4Gauss’divergencetheorem51

1.7.5Material-timederivativeofvolumeintegration52

1.8Variationsofgeometricalelements53

1.8.1Deformationgradientandvariationsofline,surfaceandvolume elements53

1.8.2Velocitygradientandratesofline,surfaceandvolumeelements56

2. Curvilinearcoordinatesystem61

2.1Primaryandreciprocalbasevectors61

2.2Metrictensorandbasevectoralgebra65

2.3Tensorrepresentations68

3. Tensoroperationsinconvectedcoordinatesystem77

3.1Advantagesofdescriptioninembeddedcoordinatesystem77

3.2Convectedbasevectors79

3.3Deformationgradienttensor80

3.4Pull-backandpush-forwardoperations83

3.5Convectedtime-derivative88

3.5.1Generalconvectedderivative89

3.5.2Corotationalrate92

3.5.3Objectivityofconvectedrate95

4. Deformation/rotation(rate)tensors101

4.1Deformationtensors101

4.2Straintensors106

4.2.1GreenandAlmansistraintensors106

4.2.2Generalstraintensors109

4.2.3Logarithmicstraintensor113

4.3Volumetricandisochoricpartsofdeformationgradienttensor114

4.4Strainrateandspintensors117

4.4.1Strainrateandspintensorsbasedonvelocitygradienttensor117

4.4.2Strainratetensorbasedongeneralstraintensor120

5. Conservationlawsandstresstensors123

5.1Conservationlaws123

5.1.1Conservationlawofphysicalquantity123

5.1.2Conservationlawofmass124

5.1.3Conservationlawoflinearmomentum125

5.1.4Conservationlawofangularmomentum126

5.2Cauchystresstensor127

5.2.1DefinitionofCauchystresstensor127

5.2.2SymmetryofCauchystresstensor130

5.3Balancelawsincurrentconfiguration132

5.3.1Translationalequilibrium133

5.3.2Rotationalequilibrium:symmetryofCauchystresstensor133

5.3.3Virtualworkprinciple134

5.3.4Conservationlawofenergy135

5.4Work-conjugacy135

5.4.1Kirchhoffstresstensorandwork-conjugacy136

5.4.2Work-conjugatepairs137

5.4.3Physicalmeaningsofstresstensors138

5.4.4Relationsofstresstensors141

5.4.5Relationsofstresstensorstotractionvectors142

5.5Balancelawsinreferenceconfiguration145

5.5.1Translationalequilibrium145

5.5.2Virtualworkprinciple146

5.5.3Conservationlawofenergy146

5.6Simpleshear147

6. Hyperelasticequations151

6.1Basichyperelasticequations151

6.2Hyperelasticconstitutiveequationsofmetals155

6.2.1St.Venant Kirchhoffelasticity155

6.2.2ModifiedSt.Venant Kirchhoffelasticity156

6.2.3Neo-Hookeanelasticity157

6.2.4Modifiedneo-Hookeanelasticity(1)157

6.2.5Modifiedneo-Hookeanelasticity(2)158

6.2.6Modifiedneo-Hookeanelasticity(3)158

6.2.7Modifiedneo-Hookeanelasticity(4)159

6.3Hyperelasticequationsofrubbers159

6.4Hyperelasticequationsofsoils160

6.5Hyperelasticityininfinitesimalstrain161

7. Developmentofelastoplasticandviscoplasticconstitutive equations163

7.1Basisofelastoplasticconstitutiveequations163

7.1.1Fundamentalrequirementsforelastoplasticity164

7.1.2Requirementsforelastoplasticconstitutiveequation166

7.2Historicaldevelopmentofelastoplasticconstitutiveequations168

7.2.1Infinitesimalhyperelastic-basedplasticity168

7.2.2Hypoelastic-basedplasticity178

7.2.3Multiplicativehyperelastic-basedplasticity181

7.3Subloadingsurfacemodel182

7.4Cyclicplasticitymodels188

7.4.1Cyclickinematichardeningmodelswithyieldsurface188

7.4.2AdhocChabochemodelandOhno-Wangmodelexcludingyield surface191

7.4.3Extendedsubloadingsurfacemodel192

7.5Formulationof(extended)subloadingsurfacemodel195

7.5.1Normal-yieldandsubloadingsurfaces195

7.5.2Evolutionruleofelastic-core198

7.5.3Plasticstrainrate205

7.5.4Strainrateversusstressraterelations206

7.5.5Calculationofnormal-yieldratio207

7.5.6Improvementofinverseandreloadingresponses208

7.5.7Cyclicstagnationofisotropichardening209

7.6Implicittime-integration:return-mapping213

7.6.1Return-mappingformulation213

7.6.2Loadingcriterion221

7.6.3Initialvalueofnormal-yieldratioinplasticcorrectorstep224

7.6.4Consistenttangentmodulustensor227

7.7Subloading-overstressmodel229

7.7.1Constitutiveequation230

7.7.2Defectsofpastoverstressmodel238

7.7.3Onirrationalityofcreepmodel240

7.7.4Implicitstressintegration243

7.7.5Temperaturedependenceofisotropichardeningfunction249

7.8Fundamentalcharacteristicsofsubloadingsurfacemodel249

7.8.1Distinguishedabilitiesofsubloadingsurfacemodel250

7.8.2Boundingsurfacemodelwithradial-mapping:Misuseofsubloading surfacemodel252

8. Multiplicativedecompositionofdeformationgradienttensor255

8.1Elastic-plasticdecompositionofdeformationmeasure256

8.1.1Necessityofmultiplicativedecompositionofdeformationgradient tensor256

8.1.2Isoclinicconcept259

8.1.3Uniquenessofmultiplicativedecomposition262

8.1.4Embeddedbasevectorsinintermediateconfiguration263

8.2Deformationtensors264

8.2.1ElasticandplasticrightCauchy-Greendeformationtensor264

8.2.2Strainrateandspintensors265

8.3Onlimitationofhypoelastic-basedplasticity269

8.4Multiplicativedecompositionforkinematichardening271

9. Subloading-multiplicativehyperelastic-basedplasticand viscoplasticconstitutiveequations273

9.1Stressmeasures273

9.2Hyperelasticconstitutiveequations275

9.3Conventionalelastoplasticmodel277

9.3.1Flowrulesforplasticstrainrateandplasticspin277

9.3.2Confirmationforuniquenessofmultiplicativedecomposition281

9.3.3Plasticstrainrate281

9.4Continuityandsmoothnessconditions283

9.5Initialsubloadingsurfacemodel284

9.6Multiplicativeextendedsubloadingsurfacemodel286

9.6.1Multiplicativedecompositionofplasticdeformationgradientfor elastic-core286

9.6.2Normal-yield,subloadingandelastic-coresurfaces289

9.6.3Plasticflowrules291

9.6.4Plasticstrainrate294

9.7Materialfunctionsofmetalsandsoils296

9.7.1Metals296

9.7.2Soils300

9.8Calculationprocedure306

9.9Implicitcalculationbyreturn-mapping309

9.9.1Return-mapping309

9.9.2Loadingcriterion312

9.9.3Initialvalueofnormal-yieldratioinplasticcorrectorstep314

9.10Cyclicstagnationofisotropichardening317

9.11Multiplicativesubloading-overstressmodel320

9.11.1Constitutiveequation320

9.11.2Calculationprocedure326

9.11.3Implicitcalculationbyreturn-mapping328

9.12Onmultiplicativehyperelastic-basedplasticequationincurrent configuration330

10. Subloading-frictionmodel:finiteslidingtheory335

10.1Historyoffrictionmodels335

10.2Slidingdisplacementandcontacttractionvectors336

10.3Hyperelasticslidingdisplacement339

10.4Normal-slidingandsubloading-slidingsurfaces340

10.5Evolutionruleoffrictioncoefficient341

10.6Evolutionruleofslidingnormal-yieldratio342

10.7Plasticslidingvelocity344

10.8Calculationprocedure348

10.9Return-mapping349

10.9.1Return-mappingformulation349

10.9.2Loadingcriterion353

10.10Subloading-overstressfrictionmodel356

10.11Implicitstressintegration362

10.12Oncruciallyimportantapplicationsofsubloading-frictionmodel363

10.12.1Looseningofscrew363

10.12.2Deterministicpredictionofearthquakeoccurrence364

11. Commentsonformulationsforirreversiblemechanical phenomena365

11.1Utilizationofsubloadingsurfacemodel365

11.1.1Mechanicalphenomenadescribedbysubloadingsurfacemodel365 11.1.2Standardinstallationtocommercialsoftware367

11.2Disusesofrate-independentelastoplasticconstitutiveequations368

11.3Impertinenceofformulationofplasticflowrulebasedonsecondlawof thermodynamics369

Appendix1:Proofsforformulaofscalartripleproducts withinvariants371

Appendix2:Convectivestressratetensors373

Appendix3:Cauchyelasticandhypoelasticequations377 Bibliography379 Index393 x CONTENTS

Preface

Theelastoplasticitytheoryisnowfacedtotheepoch-makingdevelopmentthattheexactdescriptionofthefiniteirreversible(plasticorviscoplastic)deformation/slidingbehaviorunderthemonotonic/cyclic loadinginthegeneralrateofdeformation/slidingfromthestatictothe impactloadingisattainedasthe subloadingmultiplicativehyperelastic basedplasticity and viscoplasticity.Thisisthefirstbookonthistheory,comprehensivelydescribingtheunderlyingconceptsandthe formulationsforthe subloadingsurfacemodel andforthe multiplicative decompositionofdeformationgradienttensor intotheelasticandtheplastic (orviscoplastic)partsandtheircombination.

Theprecisedescriptionoftheplasticstrainrateinducedbytherate ofstressinsidetheyieldsurfaceisinevitableforthepredictionofcyclic loadingbehavior,whichiscrucialfortheaccuratemechanicaldesignof solidsandstructuresinengineering.Alotofworkshavebeenexecuted andvarious unconventionalplasticconstitutive (cyclicplasticity) models, namedbyDrucker(1998),havebeenproposedaimingatdescribingthe plasticstrainratecausedbytherateofstressinsidetheyieldsurface after1960swhenthedemandsofmechanicaldesignsofsolidsand structuresforthemechanicalvibrationandtheseismicvibrationshave beenhighlyraisedrespondingtothehighdevelopmentofmachine industriesandthefrequentoccurrencesofearthquakes,e.g.Chile(1960) andNiigata(Japan)(1964).Amongvariousunconventionalmodelsthe multisurfacemodel(Mroz,1967;Iwan,1967),thetwosurfacemodel (DafaliasandPopov,1975;Krieg,1975;YoshidaandUemori,2002),and thesuperposed-kinematichardeningmodel(Chabocheetal.,1979; OhnoandWang,1993)arewellknown.However,theyassumeasurfaceenclosingapurelyelasticdomainandarebasedonthepremise thattheplasticstrainratedevelopswiththetranslationofthesmall yieldsurfacesothattheyarecalledthe cyclickinematichardeningmodel. Thereforetheypossessvariousdefects,forexample,(1)theabrupttransitionfromtheelastictotheplasticstateviolatingthecontinuityand thesmoothnessconditions(Hashiguchi,1993a,b,1997,2000),(2)the incorporationoftheoffsetvalueoftheplasticstrainatyield,whichis accompaniedwiththeunrealityandthearbitrariness,(3)theincapabilityofcyclicloadingbehaviorforthestressamplitudelessthanthesmall

surfaceenclosinganelasticdomain,(4)theincapabilityofthenonproportionalloadingbehavior,(5)theincapabilityofextensiontotheratedependencyathighrateofdeformationuptotheimpactloadingbehavior,(6)thelimitationtothedescriptionofdeformationbehaviorin metals,and(7)thenecessityoftheadditionalcumbersomeoperationto pullbackthestresstotheyieldsurfaceorthesmallsurfaceenclosingan elasticdomain.Inparticular,itisquitepitifulfromthescientificpoint ofviewthatthesuperposedcyclicplasticitymodel,i.e.theChaboche modelandtheOhno-Wangmodelarediffusedwidely,whicharethe mostprimitive adhoc cyclicplasticitymodelsignoringthehistorical developmentoftheplasticitybutregressingtotheeasygoingwayby theempiricalmethodaswillbeexplainedinSection7.4.

Now,itshouldbenotedthattheplasticstrainrateisnotinduced abruptlybutdevelopsgraduallyasthestressapproachestheyieldsurface.Infact,themutualslipsofmaterialparticles,forexample,crystal particlesinmetalsandsoilparticlesinsandsandclaysleadingtothe plasticdeformationisnotinducedsimultaneouslybutinducedgraduallyfrompartsinwhichmutualslipscanbeinducedeasily,exhibiting thesmoothtransitionfromtheelastictotheplastictransition.The subloadingsurfacemodel (Hashiguchi,1978,1980,1989,2017a;Hashiguchi andUeno,1997)isfreefromtheexistenceofthestressregionenclosing thepurelyelasticdomain,whiletheexistencehasbeenpostulatedin theotherelastoplasticitymodels.The subloadingsurface,whichpasses throughthecurrentstressandissimilartotheyieldsurface,isassumed insidetheyieldsurface,andthenitispostulatedthattheplasticstrain rateisnotinducedsuddenlyatthemomentwhenthestressreachesthe yieldsurfacebutitdevelopsasthestressapproachestheyieldsurface, thatis,asthesubloadingsurfaceexpands.Thereforethesmoothtransitionfromtheelastictotheplasticstate,thatis,the smoothelastic-plastic transition leadingtothecontinuousvariationofthetangentstiffness modulustensorisdescribedinthismodel.Thesubloadingsurface modelhasbeenappliedtothedescriptionsoftheelastoplasticdeformationbehaviorsofvarioussolids,forexample,metals,soils,concrete,etc. Further,ithasbeenextendedtodescribetheviscoplasticdeformation byincorporatingtheconceptoftheoverstress.Thesubloadingsurface modelwouldberegardedtobethe governinglawoftheirreversible mechanicalphenomenaofsolids

Thesubloadingsurfacemodelhasbeenincorporatedintothecommercialsoftware“Marc”inMSCSoftwareCorporationasthestandard installationbythename“Hashiguchimodel,”whichcanbeusedbyall Marcusers(contractors)sinceOctober,2017.Thereforeitisexplainedin theMarcusermanual(MSCSoftwareCorporation,2017)inbrief. Further,thefunctionfortheautomaticdeterminationofmaterialparameterswasinstalledintotheMarcasthestandardfunctioninJune

2019.Furthermore,thesubloading-frictionmodelwillalsobeincorporatedintotheMarcasthestandardinstallationuntiltheendof2020.

Themechanismsoftheelasticdeformationandtheplasticdeformationinthesolidsconsistingofmaterialparticlesarephysicallydifferent fromeachothersuchthattheformerisinducedbythedeformationof materialparticlesthemselves(e.g.,crystalparticlesinmetalsandsoil particlesinsandsandclays)butthelatterisinducedbythemutual slipsbetweenthematerialparticles.Further,notethatallthedeformationmeasures,forexample,theinfinitesimalandthefinite-straintensors andthestrainratetensor(skew-symmetricpartofvelocitygradienttensor)aredefinedbythedeformationgradienttensor.Thereforetheexact descriptionoffiniteelastoplasticdeformationrequirestheexactdecompositionofthedeformationgradienttensorintotheelasticandtheplasticparts.Furthermore,notethatthedeformationgradienttensoris definedbytheratio(note:notdifference)ofthecurrentinfinitesimal lineelementvectortotheinitialone.Then,themultiplicativedecompositionofthedeformationgradienttensorhasbeenintroducedforthe exactdescriptionoffiniteelastoplasticdeformationbytheleadingscholars(Kroner,1960;LeeandLiu,1967;Lee,1969;Mandel,1971,1972, 1973a;Kratochvil,1973).However,itnowpassedalreadymorethana halfcenturyafterthepropositionofthemultiplicativedecompositionof deformationgradienttensor.Inthemeantime,unfortunatelythe hypoelastic-basedplasticityhasbeenstudiedenthusiasticallybynumerousworkersrepresentedbyRodneyHillandJamesR.Riceafterthe propositionofthehypoelasticitybyTruesdell(1955),whichisnotbased onthemultiplicativedecompositionsothatitislimitedtotheinfinitesimalelasticdeformationandaccompaniedwiththecumbersometimeintegrationprocedureofthecorotationalratesofthestressandtensorvaluedinternalvariables.Inaddition,theconceptofthemultiplicative decompositionhasnotbeendelineatedproperlyeveninthe notablebooksreferringtothisconcept(cf.Lubliner,1990;Simo,1998; SimoandHughes,1998;Lubarda,2002;Haupt,2002;Nemat-Nasser, 2004;AsaroandLubarda,2006;BonetandWood,2008;deSauzaNeto etal.,2008;Gurtinetal.,2010;HashiguchiandYamakawa,2012; Belytshkoetal.,2014,etc.).

Themultiplicativehyperelastic basedplasticityhasbeenstudied centrallybySimoandhiscolleagues(e.g.,Simo,1985,1988a,b,1992; SimoandOrtiz,1985)inthelastcentury,inwhichthelogarithmicstrain hasbeenusedmainlyleadingtothecoaxialityofstressandstrainrate sothatithasbeenlimitedtotheisotropy.Ithasbeendevelopedactively fromthebeginningofthiscenturybyLion(2000),Menzeland Steinmann(2003a,b),Wallinetal.(2003),DettmerandReese(2004), Menzeletal.(2005),WallinandRistinmaa(2005),GurtinandAnand (2005),Sansouretal.(2006,2007),Vladimirovetal.(2008,2010),

HenannandAnand(2009),Brepolsetal.(2014),etc.,inwhichconstitutiverelationsareformulatedintheintermediateconfigurationimagined fictitiouslybytheunloadingtothestress-freestatealongthehyperelasticrelation,basedonthe isoclinicconcept (Mandel,1971).However,the plasticflowrulewiththegeneralityunlimitedtotheelasticisotropy remainsunsolvedandonlythe conventionalplasticitymodel,namedby Drucker(1998),withtheyieldsurfaceenclosingtheelasticdomainhave beenincorporatedsothatonlythemonotonicloadingbehaviorofelasticallyisotropicmaterialsisconcernedinthem.

Thesubloadingmultiplicativehyperelastic basedplasticmodelhas beenformulatedbytheauthorrecently(Hashiguchi,2018c),whichis capableofdescribingthefiniteelastoplasticdeformation/rotationrigorouslyunderthemonotonic/cyclicloadingprocess.Further,ithasbeen extendedtothesubloading-multiplicativehyperelastic-basedviscoplasticityrecently,whichiscapableofdescribingtherate-dependentelastoplasticdeformationbehavioratthegeneralratefromthestatictothe impactloading.Itistobethebestopportunitytoreviewthemultiplicativehyperelastic basedplasticitycomprehensivelyandexplainthe detailedformulationofthesubloadingmultiplicativehyperelastic basedplasticmodelsystematically.Thisisthefirstbookonthesubloadingmultiplicativehyperelastic basedplasticityandviscoplasticity forthedescriptionofthegeneralirreversibledeformation/sliding behavior.

Thesubloadingsurfacemodelandthemultiplicativehyperelastic basedplasticityareexplainedcomprehensivelyprovidingthe detailedphysicalinterpretationsforallrelevantconceptsandthederivingprocessesofallequations.Further,theincorporationofthesubloadingsurfacemodeltothemultiplicativehyperelasticplasticrelationis describedindetail.Further,itisextendedtothedescriptionoftheviscoplasticdeformationbyincorporatingtheconceptofoverstress,which iscapableofdescribingthegeneralrateofdeformationrangingfrom thequasistatictotheimpactloadingbehaviors(Hashiguchi,2016a, 2017a).Inaddition,theexacthyperelastic basedplasticandviscoplastic constitutiveequationoffriction(Hashiguchi,2018c)isformulatedrigorously,whilethehypoelastic-basedplasticconstitutiveequationoffrictionhasbeenformulatedformerly(Hashiguchietal.,2005;Hashiguchi andOzaki,2008;Hashiguchi,2013a).

Theaimofthisbookistogiveacomprehensiveexplanationofthe finiteelastoplasticitytheoryandviscoplasticityunderthemonotonic andthecyclicloadingprocesses.TheincorporationoftheLagrangian tensorsisrequiredoriginallyintheformulationoffiniteelastoplasticity andviscoplasticity,sincethedeformationofthematerialinvolvedin thereferenceconfiguration,whichisinvariantthroughthedeformation, isphysicallyrelevant.Thereforethenecessityandthemeaningsofthe

LagrangiantensorsandthetransformationsrulesbetweentheEulerian andtheLagrangiantensors,thatis,thepull-backandpush-forward operationsareexplainedconcisely.VariousLagrangianstresstensors arederivedbasedontherequirementofthework-conjugacyfromthe Cauchystresstensorinthecurrentconfiguration.Tothisend,the descriptionsofphysicalquantitiesandrelationsintheembedded(convected)coordinatesystem,whichturnsintothecurvilinearcoordinate systemunderthedeformationofmaterial,arerequired,sincetheir physicalmeaningscanbecapturedclearlybyobservingtheminthe coordinatesystemthatnotonlymovesbutalsodeformsandrotates withmaterialitself.Inotherwords,theessentialsofcontinuummechanicscannotbecapturedwithouttheincorporationofthegeneralcurvilinearcoordinatesystem,towhichtheembeddedcoordinatesystem changes,althoughtheexplanationonlyintherectangularcoordinate systemisgiveninalotofbooksentitled“continuummechanics.”

Theauthorexpectsthatthereadersofthisbookwillcapturethefundamentalsinthefinite-strainelastoplasticitytheoryandtheywillcontributetothedevelopmentofmechanicaldesignsofmachineryand structuresinthefieldofengineeringpracticebyapplyingthetheories addressedinthisbook.Areaderisapttogiveupreadingthrougha bookifoneencountersamatterthatisuneasytounderstandbyinsufficientexplanation.Forthisreason,thedetailedexplanationsofphysical conceptsinelastoplasticityaredelineated,andthederivations/transformationprocessesofallequationsaregivenwithdetailedproofsbut withoutabbreviation.

Theauthorwishestoexpresscordialthankstohiscolleaguesat KyushuUniversity,whohavediscussedandcollaboratedoverseveral decades:Prof.M.Ueno(currentlyEmeritusProfessoratUniversityof theRyukyus)inparticular,andDr.T.Okayasu(currentlyAssociate ProfessoratKyushuUniversity),Dr.S.Tsutsumi(currentlyAssociate ProfessoratOsakaUniversity),Dr.T.OzakiofKyushuElectricEng. Consult.Inc.,Dr.S.Ozaki(currentlyAssociateProfessoratYokohama NationalUniversity),andDr.T.MaseofTokyoElectricPowerServices Co.,Ltd.(currentlyProfessorofTezukayamaGakuinUniv.)

Furthermore,theauthoristhankfultoDr.K.Okamura,Dr.N. Suzuki,andDr.R.Higuchi,NipponSteel&SumitomoMetal Corporation,Dr.M.OkaandMr.T.Anjiki,YanmarCo.Ltd.,forthecollaborationsonconstitutiverelationsofmetalsandthenumericalcalculations.Inparticular,thenumericalcalculationsperformedbyMr.T. Anjikiwasquiteeffectivefortheimprovementofthesubloadingoverstressmodel.TheauthorisalsogratefultoMr.T.Kato(President) andDr.M.Tateishi(Fellow),MSCSoftware,Ltd.,Japanforthestandard implementationoftheHashiguchi(subloadingsurface)modeltothe commercialFEM(FiniteElementMethod)software Marc.

Another random document with no related content on Scribd:

If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.

1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.

1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.

1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg™ electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg™ electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg™ work, (b) alteration, modification, or additions or deletions to any Project Gutenberg™ work, and (c) any Defect you cause.

Section 2. Information about the Mission of

Project Gutenberg™ is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.

Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project Gutenberg™’s goals and ensuring that the Project Gutenberg™ collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.

Section 3. Information about the Project

Gutenberg Literary Archive

Foundation

The Project Gutenberg Literary Archive Foundation is a nonprofit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation’s EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state’s laws.

The Foundation’s business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation’s website and official page at www.gutenberg.org/contact

Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation

Project Gutenberg™ depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS.

The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.

While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.

International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and

credit card donations. To donate, please visit: www.gutenberg.org/donate.

Section 5. General Information About Project Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.

Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.

Most people start at our website which has the main PG search facility: www.gutenberg.org.

This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.