Chemical, Gas, and Biosensors for Internet of Things and Related Applications Kohji Mitsubayashi
https://ebookmass.com/product/chemical-gas-andbiosensors-for-internet-of-things-and-relatedapplications-kohji-mitsubayashi/

Download more ebook from https://ebookmass.com
More products digital (pdf, epub, mobi) instant download maybe you interests ...

Internet of Multimedia Things (IoMT): Techniques and Applications Shailendra Shukla
https://ebookmass.com/product/internet-of-multimedia-things-iomttechniques-and-applications-shailendra-shukla/

Enabling the Internet of Things: Fundamentals, Design and Applications Muhammad Azhar Iqbal
https://ebookmass.com/product/enabling-the-internet-of-thingsfundamentals-design-and-applications-muhammad-azhar-iqbal/

Machine Learning and the Internet of Things in Education: Models and Applications John Bush Idoko
https://ebookmass.com/product/machine-learning-and-the-internetof-things-in-education-models-and-applications-john-bush-idoko/

The Internet of Things John Davies
https://ebookmass.com/product/the-internet-of-things-john-davies/

Performance and Security for the Internet of Things: Emerging Wireless Technologies Haya Shajaiah
https://ebookmass.com/product/performance-and-security-for-theinternet-of-things-emerging-wireless-technologies-haya-shajaiah/

Advanced Biosensors for Health Care Applications
Inamuddin
https://ebookmass.com/product/advanced-biosensors-for-healthcare-applications-inamuddin/

MicroPython for the Internet of Things (2nd Edition)
Charles Bell
https://ebookmass.com/product/micropython-for-the-internet-ofthings-2nd-edition-charles-bell/

Internet Of Things 1st Edition Raj Kamal
https://ebookmass.com/product/internet-of-things-1st-edition-rajkamal/

Emerging 2D Materials and Devices for the Internet of Things: Information, Sensing and Energy Applications (Micro and Nano Technologies) 1st Edition Li Tao (Editor)
https://ebookmass.com/product/emerging-2d-materials-and-devicesfor-the-internet-of-things-information-sensing-and-energyapplications-micro-and-nano-technologies-1st-edition-li-taoeditor/

Thispageintentionallyleftblank
Chemical,Gas,and BiosensorsforInternetof ThingsandRelated Applications
Editedby
KohjiMitsubayashi DepartmentofBiomedicalDevicesand Instrumentation,InstituteofBiomaterialsand Bioengineering,TokyoMedicalandDental University,Tokyo,Japan OsamuNiwa SaitamaInstituteofTechnology,Fukaya,Japan
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2019ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationabout thePublisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyright ClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/ permissions.
ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment maybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-12-815409-0
ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: SusanDennis
AcquisitionEditor: KathrynMorrissey
EditorialProjectManager: VincentGabriel
ProductionProjectManager: PremKumarKaliamoorthi
CoverDesigner: GregHarris
TypesetbyMPSLimited,Chennai,India
PartISensorsandDevicesforInternetofThings Applications1
1Portableurineglucosesensor3
NarushiIto,MarikoMiyashitaandSatoshiIkeda
1.1Introduction3
1.2Significanceofurineglucosemeasurement3
1.3Operatingprincipleofurineglucosesensorandlaminatedstructure4
1.3.1Principleofoperation4
1.3.2Laminatedstructureofurineglucosesensor5
1.4Developmentofportableurineglucosemeter6
1.4.1Compositionofurineglucosemeter6
1.4.2Performanceevaluationofurineglucosemeter7
1.5Clinicalapplicationofurineglucosemeter8
1.5.1Relationshipbetweentheamountofboiledriceand urineglucoseconcentrationinimpairedglucosetolerance8
1.5.2Resultsofurineglucosemonitoringonimpairedglucose tolerancecase8
1.5.3Resultsofacaseofself-monitoringofurineglucosein diabetes10 1.6Conclusions11 References11
2Design,application,andintegrationofpaper-basedsensors withtheInternetofThings13 Jen-HsuanHsiao,Yu-TingTsao,Chung-YaoYangandChao-MinCheng 2.1Introduction13
2.2Bioapplicationsofpaper-basedanalyticaldevices14 2.3Environmentalanalysisofpaper-basedanalyticaldevices17 2.4Integrationwithsmartphonedevices19 2.5Conclusion24 Authordisclosurestatement24 References24
3Membrane-typeSurfacestressSensor(MSS)forartificialolfactory system27
HuynhThienNgo,KosukeMinami,GakuImamura,KotaShiba andGenkiYoshikawa
3.1Introduction27
3.2Membrane-typeSurfacestressSensor(MSS)28
3.3Receptormaterials29
3.4Machinelearning33
3.5Applications34
3.6InternetofThingsandMSSAlliance/Forum36
3.7Conclusion37 References37
4Sensingtechnologybasedonolfactoryreceptors39
HidefumiMitsuno,TakeshiSakuraiandRyoheiKanzaki
4.1Olfactorymechanismsinbiologicalsystems39
4.1.1Olfactorymechanismsinvertebrates39
4.1.2Olfactorymechanismsininsects41
4.2Biosensingtechnologiesbasedonodorantreceptors45
4.2.1Mammalianodorantreceptors47
4.2.2Insectodorantreceptors53
4.3Summary58 References59
5Advancedsurfacemodificationtechnologiesforbiosensors65 Chun-JenHuang
5.1Biosensorsandbiointerfaces65
5.2Bindingplatformsbasedonself-assembledmonolayers66
5.2.1Organosulfurderivatives68
5.2.2Organosiliconderivatives69
5.2.3Catecholderivatives70
5.3Bindingmatrixbasedonpolymerichydrogels71
5.3.1Physicochemicalsensingmechanisms71
5.3.2Biochemicalsensingmechanisms72
5.4Couplingchemistriesforimmobilizationofbiorecognitionelements73
5.4.1Physicalimmobilization73
5.4.2Aminechemistry73
5.4.3Thiolchemistry74
5.4.4Carboxylchemistry75
5.4.5Epoxychemistry76
5.4.6Clickchemistry76
5.4.7 α-Oxosemicarbazonechemistry77
5.4.8Bioaffinityconjugation77
5.5Antifoulingmaterials78
5.5.1Poly(ethyleneglycol)antifoulingmaterials78
5.5.2Zwitterionicantifoulingmaterials78 5.6Outlook79 References79
6DevelopmentofportableimmunoassaydeviceforfutureInternet ofThingsapplications87 RyojiKurita,OsamuNiwaandYukoUeno
6.1Introduction87
6.2Portableimmunoassaysystembasedonsurfaceplasmon resonanceforurinaryimmunoassay88
6.3One-chipimmunosensingfabricatedwithnanoimprinting technique92
6.3.1Fabricationoflocalplasmonresonancedeviceswith variousprocesses92
6.3.2Surfaceplasmonresonancebiosensorsfabricatedby nanoimprinttechnique94
6.4Microfluidicbiosensorwithone-stepopticaldetection95
6.4.1Mechanismofgrapheneaptasensor97
6.4.2Multichannellineararrayformultipleproteindetection98
6.4.3Moleculardesignforenhancedsensitivity99 6.5Futuretrend100 References101
7Sensitiveandreusablesurfaceacousticwaveimmunosensorfor monitoringofairbornemiteallergens105 KojiToma,TakahiroArakawaandKohjiMitsubayashi 7.1Introduction105
7.2Surfaceacousticwaveimmunosensorforrepeatedmeasurement ofhousedustmiteallergens106
7.3Sensorcharacteristicsandsemicontinuousmeasurementof Derf 1109
7.4Sensitivityimprovementviagoldnanoparticles111 7.5Conclusion115 References115
8AptamericsensorsutilizingitspropertyasDNA117 KinukoUeno,KaoriTsukakoshiandKazunoriIkebukuro 8.1Introduction117
8.2Aptamer-immobilizedelectrochemicalsensor117
8.3Detectionusingcomplementarychainformation118
8.3.1Stranddisplacementassay119
8.3.2Bound/Freeseparationusingcomplementary chainformation119
8.4Aptamersensorcombinedwithenzymes121
8.5Utilizingstructuralchangeofaptamerstobiosensor121
8.6Utilizingstructuralchangeofaptamerstobiosensor122
8.7Developmentofhighlysensitivesensorsbyamplifying DNAstrands125
8.8Colorimetricdetectionusingaptamericsensorand smartdevices126
8.9Conclusion128 References128
9Electrochemicalsensingtechniquesusingcarbonelectrodes preparedbyelectrolysistowardenvironmentalInternetof Thingssensor133
HiroakiMatsuura
9.1Introduction133
9.1.1ElectrochemicalmonitoringsupportInternetof Thingsservices133
9.1.2Carbonelectrodesurfaceactivation135
9.2Chemicalsensorsusingelectrochemicalactivatedcarbon electrodes136
9.2.1Electrochemicalactivatedtechniquesforaminated electrodepreparation136
9.2.2Electrochemicalactivatedtechniquesfor electrodepositedplatinumparticlesonglassycarbon electrodemodifiedwithnitrogen-containingfunctional groups136
9.3Electrocatalyticactivityandanalyticalperformance136
9.4Conclusionandfutureperspectives143 Acknowledgments143 References144
10Chemicalsensorsforenvironmentalpollutantdetermination147 HongmeiBiandXiaojunHan
10.1Introduction147
10.2Definitionofachemicalsensor147
10.3Classificationofchemicalsensors148
10.3.1Electrochemicalsensors148
10.3.2Opticalsensors152
10.4Conclusion158 Acknowledgments158 References158
PartIIFlexible,Wearable,andMobileSensors andRelatedTechnologies161
11Smartclothingwithwearablebioelectrodes“hitoe”163
HiroshiNakashimaandShingoTsukada
11.1Introduction163
11.2Functionalmaterial“hitoe”165
11.2.1Compositematerialofaconductivepolymerandfibers165
11.2.2Thedevelopmentofhitoesmartclothing166 11.3Applicationexamples168
11.3.1Medicine/rehabilitation168
11.3.2Sports169
11.3.3Workerhealth/safetymanagement172
11.4Stateestimationbasedonheartratevariabilityandotherdata173
11.4.1Estimatingpostureinformationfromaccelerometerdata173
11.4.2Estimatingrespiratoryactivityfrom electrocardiogramdata174
11.4.3Estimatingsleepstates174 11.5Conclusion175 References176
12Cavitasbio/chemicalsensorsforInternetofThingsinhealthcare177
KohjiMitsubayashi,KojiTomaandTakahiroArakawa 12.1Introduction177
12.2Softcontactlenstypebio/chemicalsensors179
12.2.1Tearfluidinconjunctivasac179
12.2.2Flexibleconductivitysensorfortearflowfunction179
12.2.3Softcontactlenstypebiosensorsusingbiocompatible polymers181
12.2.4Transcutaneousgassensorateyelidconjunctiva183 12.3Mouthguardtypebiosensorforsalivabiomonitoring185 12.3.1Salivaryfluidsinoralcavity185
12.3.2Wirelessmouthguardsensorforsalivaryglucose185 12.4Conclusion188 Acknowledgments188 References189
13Pointofcaretestingapparatusforimmunosensing193
TomoyukiYasukawa,FumioMizutaniandMasatoSuzuki 13.1Introduction193
13.2Immunochromatographyassay195
13.3Immunochromatographyassayforinfectiousdiseases197 13.4Reliabilityoftheexaminationkits198
Contents
13.5Signalamplification198
13.6QuantitativeICAbyelectrochemicaldetectionsystems199
13.7RapidandQuantitativeICAbasedondielectrophoresis200 13.8Conclusion202 References203
14IoTsensorsforsmartlivestockmanagement207 WataruIwasaki,NobutomoMoritaandMariaPortiaBrionesNagata
14.1Introduction207
14.2Measurementsiteandfixingmethod209
14.3Sizeandweight209
14.4Powerconsumption210
14.5Frequencybandsofradiowave210
14.6Applicationsofwearablebiosensorsforlivestock211
14.6.1Chickens211
14.6.2Cattle213
14.7Conclusion218 References218
15Compactdisc-typebiosensordevicesandtheirapplications223
IzumiKuboandShunsukeFurutani
15.1Introduction223
15.2CD-shapedmicrofluidicdevicesforcellisolationand singlecellPCR224
15.2.1Singlecellisolation224
15.2.2SinglecellPCRof S.enterica 225
15.2.3Discriminationofmicrobes226
15.2.4SinglecellRT-PCRforJurkatcells227
15.3CD-shapedmicrofluidicdeviceforcellstaining228
15.4CD-shapedmicrofluidicdeviceforELISA230
15.4.1DetectionofbioactivechemicalsbasedonELISA230
15.4.2MultipleELISAfordiagnosisofdiabetes232
15.5Conclusion233 Acknowledgment234 References234
16ACMOScompatibleminiaturegassensingsystem237
Ting-IChou,Shih-WenChiuandKea-TiongTang
16.1Introduction237
16.2Complementarymetal oxide semiconductor-compatible gassensor238
16.2.1Materialsandfabrication238
16.2.2Gasexperimentalresults239
16.3Nose-on-a-chip241
16.3.1Systemblockdiagram241
16.3.2Adaptiveinterfacecircuitry241
16.3.3SARADC242
16.3.4CRBMkernel243
16.3.5Memory244
16.3.6RISCcore245
16.3.7Chipmeasurementresults245
16.4Miniatureelectronicnosesystemprototype247
16.5Applicationexample248
16.6Conclusion250 Acknowledgments251 References251
17Visualizationofodorspaceandquality253
FumihiroSassa,ChuanjunLiuandKenshiHayashi
17.1Introduction253
17.2Fluorescenceimagingforodorvisualization255
17.2.1Principleandsystemoffluorescenceimaging255
17.2.2Fabricationofthevisualizationsystem256
17.2.3Visualizationbasedonsinglefluorescentprobe256
17.2.4Visualizationbasedonmultispectralfluorescence imaging258
17.3Localizedsurfaceplasmonresonancesensorforodorant visualization260
17.4Collectingspatialodorinformationfromon-groundodor sourceswitharobotsystem261
17.5Visualodorrepresentationofavolatilemolecularbased onchemicalpropertybynetworkdiagram264 References266
18Bio-snifferandsniff-cam271
TakahiroArakawa,KojiTomaandKohjiMitsubayashi
18.1Introduction:breathandskingasanalysis271
18.1.1Constructionofbio-sniffer272
18.1.2Acetonebio-sniffer273
18.1.3Isopropanolbio-sniffer276
18.1.4Sniff-camsystemwithchemiluminescence277
18.1.5Biofluorometric“sniff-cam”281
18.2Summary285 Acknowledgments285 References285
PartIIIInformationandNetworkTechnologiesfor Sensor-InternetofThingsApplications289
19FlexibleandprintedbiosensorsbasedonorganicTFTdevices291 KuniakiNagamineandShizuoTokito 19.1Introduction291
19.1.1BiosensorsfortheInternetofThingssociety291
19.1.2Printedorganicbiosensorsforhumanhealthcare applications292
19.2Organicthin-filmtransistor-basedbiosensors293
19.2.1Printingtechniquesfordevicefabrication293
19.2.2Organicthin-filmtransistor-basedbiosensorprinciples293
19.2.3Enzyme-basedbiosensors295
19.2.4Immunosensors297
19.2.5Ion-selectivesensors298
19.2.6Wearablesensorsusingmicrofluidics299
19.3Sensorsystemsusingflexiblehybridelectronics300 19.4Conclusion301 Acknowledgments302 References302
20Self-monitoringoffatmetabolismusingportable/wearable acetoneanalyzers307
SatoshiHiyama
20.1Introduction307
20.2Portablebreathacetoneanalyzer307
20.2.1Prototypedanalyzer308
20.2.2Applicabilitytodietsupport311
20.2.3Applicabilitytodiabetescareathome312
20.2.4Applicabilityto“HealthKiosk”315
20.3Wearableskinacetoneanalyzer316
20.3.1Skinacetoneconcentrator316
20.3.2Prototypedanalyzer318
20.3.3Assumedusagescenario318 20.4Conclusions320 References320
21AirpollutionmonitoringnetworkofPM2.5,NO2 and radiationof 137Cs323
YasukoYamadaMaruo
21.1Introduction323
21.2PM2.5 monitoringsystem324
21.2.1Introduction324
21.3Monitoringdevice(smallPM2.5 sensor)324
21.4MobilesensingofoutsidePM2.5 326
21.5Measurementatseveralpoints327
21.6NO2 monitoringsystem327
21.6.1Introduction327
21.7NO2 monitoringdevice329
21.8MobilesensingofoutsideNO2 331
21.9Radiationof 137Csmonitoringsystem331
21.9.1Introduction331
21.10Radiationof 137Csmonitoringdevice333
21.11FieldtestinFukushimaandotherareas334 Acknowledgment335 References335
22Wirelesssensornetworkwithvarioussensors339
JunichiKodate
22.1Sensingsystemwithnetwork339
22.2Wirelesssensornetworkasasensingsystem339
22.3Wirelesssensingsystemforhealthconditionmonitoring withawearableandflexiblesensor341
22.3.1Wearableandflexibleelectrodewithaconductivefiber342
22.3.2Wirelessdata-transmittingmodulewithmanysensors342 References343
23Dataanalysistargetinghealthcare-supportapplicationsusing Internet-of-Thingssensors345 AkihiroChiba,KanaEguchiandHisashiKurasawa
23.1Motivationfordataanalysis345
23.2Procedureofdataanalysis346
23.2.1Analysisdesign346
23.2.2Datacollection349
23.2.3Datacleansing350
23.2.4Featureextraction351
23.2.5Learning354
23.2.6Evaluation355
23.3Exampleofhealthdataanalysis359
23.4Conclusion360 References361 Summaryandfutureissue363 Index365
Thispageintentionallyleftblank
Another random document with no related content on Scribd:

