Download Complete Emerging carbon materials for catalysis samahe sadjadi PDF for All Chapters

Page 1


https://ebookmass.com/product/emerging-carbonmaterials-for-catalysis-samahe-sadjadi/

Download more ebook from https://ebookmass.com

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Heterogeneous Catalysis: Materials and Applications

Moises Romolos Cesario

https://ebookmass.com/product/heterogeneous-catalysis-materialsand-applications-moises-romolos-cesario/

Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials Sekhar Chandra Ray

https://ebookmass.com/product/magnetism-and-spintronics-incarbon-and-carbon-nanostructured-materials-sekhar-chandra-ray/

Emerging Carbon Capture Technologies: Towards a Sustainable Future Mohammad Khalid

https://ebookmass.com/product/emerging-carbon-capturetechnologies-towards-a-sustainable-future-mohammad-khalid/ Biomass-Derived Carbon Materials: Production and Applications Alagarsamy Pandikumar

https://ebookmass.com/product/biomass-derived-carbon-materialsproduction-and-applications-alagarsamy-pandikumar/

Sustainable Energy: Towards a Zero-Carbon Economy using Chemistry, Electrochemistry and Catalysis Julian R.H. Ross

https://ebookmass.com/product/sustainable-energy-towards-a-zerocarbon-economy-using-chemistry-electrochemistry-and-catalysisjulian-r-h-ross/

Emerging Applications of Carbon Nanotubes in Drug and Gene Delivery Prashant Kesharwani

https://ebookmass.com/product/emerging-applications-of-carbonnanotubes-in-drug-and-gene-delivery-prashant-kesharwani/

Morphological, Compositional, and Shape Control of Materials for Catalysis 1st Edition Edition Paolo Fornasiero And Matteo Cargnello (Eds.)

https://ebookmass.com/product/morphological-compositional-andshape-control-of-materials-for-catalysis-1st-edition-editionpaolo-fornasiero-and-matteo-cargnello-eds/

Carbon Dioxide Capture and Conversion: Advanced Materials and Processes Nanda S.

https://ebookmass.com/product/carbon-dioxide-capture-andconversion-advanced-materials-and-processes-nanda-s/

Actuators and Their Applications: Fundamentals, Principles, Materials, and Emerging Technologies

https://ebookmass.com/product/actuators-and-their-applicationsfundamentals-principles-materials-and-emerging-technologiesabdullah-m-asiri/

EMERGING CARBON MATERIALSFOR CATALYSIS

EMERGING CARBON MATERIALSFOR CATALYSIS

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-817561-3

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: EmilyM.McCloskey

EditorialProjectManager: BillieJeanFernandez

ProductionProjectManager: JoyChristelNeumarin

HonestThangiah

CoverDesigner: MatthewLimbert

TypesetbySPiGlobal,India

Dedication

Tomyfather,wholovedmeunconditionally;thankstohimforsupporting meashecouldreadmywordsinmysilenceandguidedmebyallthemeans athisdisposal.

Contributors

K.S.Adarsh

ElectroplatingMetalFinishingandTechnologyDivision,CSIR-CentralElectrochemical ResearchInstitute,Karaikudi,TamilNadu,India

FranciscoAlcaideMonterrubio CIDETEC,Donostia-SanSebastia ´ n,Spain

C.Alegre

InstitutodeCarboquı´mica,CSIC,Zaragoza,Spain

M.Bernardo

LAQV/REQUIMTE,DepartmentofChemistry,FacultyofScienceandTechnology, NOVAUniversityofLisbon,Caparica,Portugal

NaveenChandrasekaran

ElectroplatingMetalFinishingandTechnologyDivision,CSIR-CentralElectrochemical ResearchInstitute,Karaikudi,TamilNadu,India

CatherineCollett

DepartmentofChemical&BiologicalEngineering,UniversityofSheffield,Sheffield, UnitedKingdom

GarethDavies

DepartmentofChemical&BiologicalEngineering,UniversityofSheffield,Sheffield, UnitedKingdom

C.Dura ´ n-Valle

DepartmentofOrganicandInorganicChemistry,UniversityofExtremadura,Badajoz,Spain

AhmedElSheikh

DepartmentofChemical&BiologicalEngineering,UniversityofSheffield,Sheffield, UnitedKingdom

I.Fonseca

LAQV/REQUIMTE,DepartmentofChemistry,FacultyofScienceandTechnology, NOVAUniversityofLisbon,Caparica,Portugal

JoseM.Fraile

FacultyofSciences,InstituteofChemicalSynthesisandHomogeneousCatalysis(ISQCH), CSIC-UniversityofZaragoza,Zaragoza,Spain

JunkuoGao

InstituteofFiberBasedNewEnergyMaterials,SchoolofMaterialsScienceandEngineering, ZhejiangSci-TechUniversity,Hangzhou,China

GonzaloGarcı ´ a

DepartmentofChemistry,InstituteofMaterialsandNanotechnology,UniversityofLa Laguna,LaLaguna,Tenerife,Spain

EnriqueGarcı´a-Bordeje

InstituteofCarbochemistry(ICB-CSIC),Zaragoza,Spain

GunniyaHariyanandamGunasekar

CleanEnergyResearchCentre,KoreaInstituteofScienceandTechnology,Cheongryang, Seoul,RepublicofKorea

BabakKarimi

DepartmentofChemistry,InstituteforAdvancedStudiesinBasicSciences(IASBS), Zanjan,Iran

M.J.La ´ zaro

InstitutodeCarboquı´mica,CSIC,Zaragoza,Spain

I.Matos

LAQV/REQUIMTE,DepartmentofChemistry,FacultyofScienceandTechnology, NOVAUniversityofLisbon,Caparica,Portugal

E.PerezMayoral

DepartmentofInorganicChemistryandTechnicalChemistry,FacultyofScience,National UniversityofDistanceEducation,UNED,Madrid,Spain

JamesMcGregor

DepartmentofChemical&BiologicalEngineering,UniversityofSheffield,Sheffield, UnitedKingdom

ElenaPastor

DepartmentofChemistry,InstituteofMaterialsandNanotechnology,UniversityofLa Laguna,LaLaguna,Tenerife,Spain

S.Perez-Rodrı ´ guez

InstitutodeCarboquı´mica,CSIC,Zaragoza,Spain

ElisabetPires

FacultyofSciences,InstituteofChemicalSynthesisandHomogeneousCatalysis(ISQCH), CSIC-UniversityofZaragoza,Zaragoza,Spain

SamaheSadjadi

GasConversionDepartment,FacultyofPetrochemicals,IranPolymerandPetrochemical Institute,Tehran,Iran

SodehSadjadi

NuclearScienceandTechnologyResearchInstitute,Tehran,Iran

D.Sebastia ´ n

InstitutodeCarboquı´mica,CSIC,Zaragoza,Spain

YuhangWu

InstituteofOptoelectronicMaterialsandDevices,ChinaJiliangUniversity,Hangzhou, People’sRepublicofChina;InstituteofFiberBasedNewEnergyMaterials,Schoolof MaterialsScienceandEngineering,ZhejiangSci-TechUniversity,Hangzhou,China

HuiXu

InstituteofOptoelectronicMaterialsandDevices,ChinaJiliangUniversity,Hangzhou, People’sRepublicofChina

IbrahimYakub

DepartmentofChemical&BiologicalEngineering,UniversityofSheffield,Sheffield, UnitedKingdom

SunghoYoon

DepartmentofChemistry,Chung-AngUniversity,Dongjak-gu,Seoul,RepublicofKorea

Acknowledgment

“ThesupportofIranPolymerandPetrochemicalInstituteisappreciated.”

Newaspectsofcovalenttriazine frameworksinheterogeneous catalysis

GunniyaHariyanandamGunasekara andSunghoYoonb

aCleanEnergyResearchCentre,KoreaInstituteofScienceandTechnology,Cheongryang, Seoul,RepublicofKorea

bDepartmentofChemistry,Chung-AngUniversity,Dongjak-gu,Seoul,RepublicofKorea

1Introduction

Thecontinuousenvironmentalandeconomicchallengesintheworld stronglyimpulsethechemicalindustriestodevelopsimpleandmoreefficientchemicalprocessesthatutilizeenvironmentallybenigncatalysts,reactants,solvents,andminimumenergyinputstoproduceselectiveproducts withalmostnoorminimalwastes.Todate,mostindustrialchemicalconversions(>90%)usecatalystsatleastinasinglesteptospeedupthereaction rate [1,2],andhenceoneofthemostpromisingstrategywouldbedevelopingeconomicallysimpleandenvironmentallyfriendlyactivecatalyticsystemsforvarioustransformationswithutmost(100%)selectivityand durabilityatminimumenergyinputs.This,ontheotherside,currently drivestheresearchoncatalysisacrosschemistryandchemicalengineering.

Todate,industriesmainlyuse“classic”heterogeneouscatalystsforthe chemicalconversions [3–6],owingtotheirrobustnature,easycatalyst separation,recovery,regenerationandreuse,andtheirfacilepracticalapplicabilityincontinuousoperatingequipmentsystems.However,thesecatalystsusuallyshowlowercatalyticefficiencyandselectivityandusually requireharshreactionconditionsincludinghightemperatureandpressure, etc.Inaddition,thesecatalystsoftenhavemultipleactivesitesinthecatalytic entity,andthus,developingcatalystdesignstrategiesforintroducingspecific activestieswithgreateruniformityisgenerallydifficult.Hence,numerous trial-and-errorexperimentsarehistoricallyrequiredtoproducehighly activeandselectivecatalyticsystems.Suchexperimentshavebeenmainly limitedtoalteringtheparticlesizeofactivemetals,catalystsupportand itsacidity/basicity,theuseofpromotersandalloyformation,etc. [7–9].

Therefore,thedesignanddevelopmentofsingle-sitewell-definedcatalysts thatenablerapidandselectivetransformationwitheasyseparationofcatalyst/productisstillaparamountchallengeinthefieldofcatalysis.

Inthisregard,heterogenizedorimmobilizedcatalystsaregaining increasingattentionacrossthescientificandtechnologicalsocietyowing totheirconceptualviabilityofhavinghighcatalyticactivity,selectivity, finelydistributedandwell-definedactivesingle-sites,andfacilecatalyst handlingandseparation [9–15].Withthisinmind,substantialefforthasbeen focusedtoimmobilizehomogeneouscatalystsontosuitablesolidsupports forprocuringmaximalactivityandstability.Therearefourcommon methodsthatareclassifiedbasedontheinteractionbetweenthecatalyst andthesolidscaffoldfortheheterogenizationofhomogeneouscatalysts ontosolidsupportmaterials:(1)covalentbinding [16–20];(2)electrostatic interaction [21–23];(3)adsorption [24,25];and(4)encapsulation [26–29]. Amongthem,covalentbondingisthemostfrequentlyusedmethodfor theimmobilizationofthehomogeneouscatalysts.Foralongtime,conventionalsolidsupportssuchassilica,zeolite,alumina,polyethyleneglycoland polystyrene,etc.wereappliedtoanchorhomogeneouscomplexes [30–34]. However,theinterestongraftingthecomplexesontheconventionalsolid supportisgraduallyfadingowingtotheirlowstabilityandactivityandhigh cost [35].Themainreasonfortheirlowstabilityistheundesirableinteractionbetweenthesupportscaffoldandthecatalystactivesites,causedfrequentlybytheuseoflinkers.Therefore,theviabilityofimmobilized catalystsinindustrialcatalytictransformationshasbeenquestioned [35] Nevertheless,researchonrealizingthisconceptuallyidealcatalystisstill dynamic,especiallyowingtotherecentemergenceofthermallyandchemicallyrobusthigh-surface-areaporousmaterialsandnovelmethodsforthe immobilization.

Forthepasttwodecades,high-surface-areaporoussolidpolymershave beengainingsignificantinterestacrossdiverseresearchfieldsincludingcatalysis,gascaptureandseparationtechnology,semiconductors,photochemistry,andbiology [36,37].Thesepolymersarebroadlyclassifiedintometal organicframeworks(MOFs)andporousorganicframeworks(POFs). MOFsaregenerallycomposedofinorganicmetalionsorclustersasbuilding unitsandorganicfunctionalgroupsaslinkers,andtheyareconnectedvia coordinationbonds [38–40].POFs,ontheotherhand,aresolelyconstructedfromorganicunitsconnectedviacovalentbonds [41–44].These materialsusuallypossesssurfaceareaintherangefromafewhundredtoseveralthousandsm2 g 1,withuniformandtunableporesizesfrommicro-to

mesopores.Inaddition,awiderangeofchemicalfunctionalities,including organicfunctionalligands,canbeintroducedintheskeletonoftheseframeworks.Generally,MOFsexhibitpoorchemicalstabilityunderharshreactioncondition,suchasunderahighlybasicandacidicsolution,compared toPOFsbecauseoftheirintrinsiccoordinationchemicalbonds [45–48] Ontheotherhand,POFsshowgreaterchemicalstabilitybecauseofthe strongcovalentbondsbetweentheirlightweightelementsandhave,thus, emergedasattractiveandeffectiveporousmaterials,especiallyinthefield ofcatalysis.

DifferenttypesofPOFsthatarecla ssifiedbasedonthestructureof themolecularbuildingblockhavebeendevelopedinrecentyears, includingcovalenttriazineframeworks(CTFs) [49],porousaromatic frameworks(PAFs) [50] ,covalentorganicframeworks(COFs) [51,52], benzimidazole-linkedpolymers(BILPs) [53,54],polymersofintrinsic porosity(PIMs) [55],hyper-cross-linkedpolymers(HCPs) [56,57] ,conjugatedmicroporouspolymers(CMPs) [58,59],andporousiminepolymers(CIFs) [60]

CTFisoneofthemostinterestingclassesofPOFs(Fig.1),receiving intensivelimelightinthefieldofcatalysis.Theyarenitrogen-richporous polymersconstructedusingtriazinebuildingblocks.Theyoftenlack long-rangeorder,buthaveexcellentrobustandrigidstructures,immense thermalandchemicalstability,highacid-baseresistivity,largesurfacearea, andtunableporesizesandstructures [61–64].ContrarytootherPOFs,the porouspropertiesofCTFscanbeeasilytunedbyvaryingtheCTFsynthesis conditions,suchastemperature,time,andcatalyst(zincchloride)ratio. Mostinterestingly,coordinatingfunctionalgroupsincorporatedinthe skeletonofCTFscanenableanchoringtransitionmetalcomplexesonthe robustandhigh-surface-areasolidsupportsandgeneratewell-defined porousimmobilizedmetalcomplexes.Consequently,diffusionofreactants, solvent(s),andproductmolecules,whichplaysakeyroleinheterogeneous catalysis,wouldbefacileandcouldleadtotheactivitiessimilartoorbetter thanhomogeneouscomplexes.Inaddition,thenumerouscoordinatingsites availableintheskeletonofCTFsallowtheimmobilizationofalargenumber ofmolecularcomplexesonthesupport,i.e.,numberofactivesitepergram ofthesupportcanbehigher,whichisalsoimportantfromanindustrial viewpoint [65–69].Finally,theundesirableinteractionscausedbytheuse oflinkersinconventionalimmobilizationmethodcanbeprevented.Hence, CTF-basedheterogenizedcomplexescanofferbothenhancedactivityand stability.

Fig.1 (A)BasicstructureofCTF;(B)IdealporenetworksofCTF;(C)Salientfeatures ofCTF.

Theformationofcross-linkedtriazine-basedpolymerviatransition metal-catalyzedtrimerizationofdinitrileswasfirstreportedin1973 [70]. However,thismaterialgainedsignificantscientificattentionin2008by Kuhn,Antonietti,andThomas,whowereinterestedinthesynthesisof microporousorganicpolymerswithintrinsicporosityandtailor-madefunctionalities [61,62].TheseresearchersdiscoveredCTFsasnewclassofhigh performancepolymerframeworkswithregularandirregularporosity. Avarietyofaromaticdinitrilecompoundsweretrimerizedintheirreport usingZnCl2 athightemperatures,particularlyabovethemoltentemperatureofZnCl2 [61–65].InspiredbytheexcellentcharactersandperformancesofCTFs,severalmethodshavebeendevelopedforthe preparationofCTFs;however,thepropertiesofthefinalproductshave beenstronglyinfluencedbythesyntheticprocess.

Todate,CTFscanbepreparedthrough:(1)ionothermaltrimerizationof carbonitrilegroupsattemperaturesrangingfrom300to600°CusingZnCl2 asacatalystandsaltmelt [61–68];(2)theSchiffbasereactionbetweenmelaminewithdifferentaldehydes [71–77];(3)nucleophilicsubstitutionofcyanuricchloridewithdifferentnucleophiles [78–83];(4)theSonogashira couplingbetweensubstitutedbromoderivativesoftriazineringswithvariousderivativesofterminalalkynes [84];(5)theYamamotoself-coupling reactionofsubstitutedbromoderivativesoftriazinerings [85,86];and(6) theFriedel-Craftsreactionbetweencyanuricchloridewithavarietyof electron-richaromaticcompounds [87–89].Therecentreviewspublished independentlybyPuthiyarajetal. [69] andArtz [90] providedetailedinformationonthesynthesisofCTFs.

Asstated,theneedforhighlyactive,selective,anddurablecatalyststhat withstandaharshreactionatmosphereisdrivingscientiststodevelopthermallyandchemicallystablesolidsupportmaterialsfortheheterogenization ofmolecularcomplexes.Inthisplatform,weintroducetheaspectsofCTFs usedfordevelopingwell-definedheterogenizedcatalystsforvariouscatalytictransformations.Here,welimitourdiscussiontoCTFspreparedby ionothermalsynthesisbecausetheyhavevariedcharacters,includingrobustnessandporerigidity,comparedtothosepreparedbyothermethods,and mostoftheheterogenizedcatalystsemploythissynthetic-basedCTFs.To date,threeclassesofcoordinatingligandsembeddedintotheCTFskeleton viaionothermalsynthesishavebeenemployedassolidchelatingligandsfor thepreparationofheterogenizedcatalysts:Pyridine,Acetylacetone,and N-heterocycliccarbenes.Therefore,wesegmentedthischapteraccording tothecoordinatingligandsincorporatedwithinCTF.

2CTFincorporatedwithpyridinicligands

ThemostwidelyemployedCTFsfortheconstructionofCTF-basedheterogenizedcatalystsarepyridinic-basedCTFs.Therearetwokindsof pyridinicligands-basedCTFsthathavebeenconstructedandusedinthe heterogenizedcatalystpreparation:(1)aCTFconstructedusing2,6dicyanopyridinemonomer(Fig.2),wherethemetalsareexpectedtocoordinateviaonepyridinicnitrogenandonetriazinicnitrogen;(2)aCTF constructedusing5,5-dicyano-2,20 -bipyridinemonomer,wherethemetals areexpectedtocoordinatevia2,20 -bipyridinicnitrogen.Althoughbothare similaratfirstglance,theircharactersincludingporosity,surfacearea,electrondensity,and/orelectron-donatingabilitiesaresupposedlydifferent. 5

Fig.2 RouteofsynthesisofCTFderivedfrom2,6-dicyanopyridinebuildingblock. (AdaptedfromA.V.Bavykina,M.G.Goesten,F.Kapteijn,M.Makkee,J.Gascon,Efficient productionofhydrogenfromformicacidusingacovalenttriazineframeworksupported molecularcatalyst,ChemSusChem8(2015)809–812,withpermissionofJohnWileyand Sons.R.Palkovits,M.Antonietti,P.Kuhn,A.Thomas,F.Sch € uth,Solidcatalystsforthe selectivelow-temperatureoxidationofmethanetomethanol,Angew.Chem.Int.Ed. 48(2009)6909–6912,withpermissionofJohnWileyandSons.)

2.1Pyridinic-CTFderivedfrom2,6-dicyanopyridine buildingblock

ThepotentialviabilityofCTFsfortheimmobilizationofmolecularcatalysts wasfirstdemonstratedbyPalkovitsetal.using2,6-dicyanopyridine-based CTFfortheoxidationofmethanetomethanol(Fig.3) [91].The2,6dicyanopyridine-basedCTFwaspreparedinmoltenZnCl2 throughastepwiseincreaseoftemperature(at400°Cfor40handthen600°Cfor40h). ThedetailsofporouspropertiesafterPtimmobilizationwerenotprovided inthatstudy.AnitrogenbindingsiteofthepyridinicunitandanitrogenbindingsiteofthetriazineunitcooperativelyenabledthecoordinationofPtvia N^Nfashion.Theresultingcomplexwasstructurallysimilartothemolecular Pt-bipyrimidinecomplexreportedbyPerianaetal.,thecommercialapplicationofwhichwasrestrictedbydifficultiesintheseparationandrecyclingof thispreciousmetalcomplex [92].TheimmobilizedPtcatalystefficientlyoxidizedmethaneintomethanolwithalmostsimilaractivityandselectivitytothe molecularcatalystat200°CinthepresenceofSO3 inconcentratedsulfuric acid.TheexactnatureandchemicalenvironmentofthePtsitespriorto andafterthecatalysiswerestudiedusingacombinationofseveralsophisticated analyticalmethodsincludingsolid-state 195PtNMRspectroscopyand aberration-correctedscanningtransmissionelectronmicroscopy(AC-STEM) [93].Althoughthecatalyticreactionwasperformedunderharshreaction

Fig.3 RepresentativestructureofPt-CTF(A)anditshomogeneouscounterpart(Periana Catalyst)(B). (ReproducedfromR.Palkovits,M.Antonietti,P.Kuhn,A.Thomas,F.Schuth, Solidcatalystsfortheselectivelow-temperatureoxidationofmethanetomethanol,Angew. Chem.Int.Ed.48(2009)6909–6912,withpermissionofJohnWileyandSons.)

conditions,theefficiencyoftheimmobilizedPtcatalystwaswell-maintained uponsuccessiveruns.ThisindicatesthattheCTF-basedcatalystisthermally andchemicallystable,andmostimportantly,thecoordinatingabilityofthe nitrogenspecieswiththemetal(Pt)cationintheCTFisremarkablystrong. Inspiredbythisinterestingapproach,Bavykinaetal.employedaCTF constructedbymixing2,6-dicyanopyridineand4,40 -biphenyldicarbonitrile (1:2ratio)buildingblocksfortheimmobilizationofIrCp* unit (Cp* ¼ 1,2,3,4,5-pentamethylcyclopentadient)viaN^Ncoordination (Fig.4A) [94],similartoPtcoordinationstrategyreportedbyPalkovits etal.Mixing4,40 -biphenyldicarbonitrilewith2,6-dicyanopyridinebuildingblockmayfacilitatethediffusionofreactantandproductmolecules. TheimmobilizedIrcomplex,IrCp*@CTF,wasemployedforthecatalyticdehydrogenationofformicacidintoCO 2/H2 underbase-freeconditions.Thecatalystproducedinitia lturnoverfrequencies(TOFs)ofup to27,000h 1 andturnovernumbers(TONs)ofupto1,060,000during continuousoperationsat80° C;thisinitialTOFwasthehighestatthetime ofpublication.TheauthorslinkedtheworkingcapabilityofIrCp * @CTF inabase-freemediumwiththeinherent basicityofthepyridinicsitespresentintheCTFmatrix.Thecatalyst wasrecycledforatleastfourruns withoutanysignificantIrleachingandchangesintheoxidationstateof theIrsites.

Another random document with no related content on Scribd:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.