Download Complete Emerging carbon materials for catalysis samahe sadjadi PDF for All Chapters

Page 1


https://ebookmass.com/product/emerging-carbonmaterials-for-catalysis-samahe-sadjadi/

Download more ebook from https://ebookmass.com

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Heterogeneous Catalysis: Materials and Applications

Moises Romolos Cesario

https://ebookmass.com/product/heterogeneous-catalysis-materialsand-applications-moises-romolos-cesario/

Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials Sekhar Chandra Ray

https://ebookmass.com/product/magnetism-and-spintronics-incarbon-and-carbon-nanostructured-materials-sekhar-chandra-ray/

Emerging Carbon Capture Technologies: Towards a Sustainable Future Mohammad Khalid

https://ebookmass.com/product/emerging-carbon-capturetechnologies-towards-a-sustainable-future-mohammad-khalid/ Biomass-Derived Carbon Materials: Production and Applications Alagarsamy Pandikumar

https://ebookmass.com/product/biomass-derived-carbon-materialsproduction-and-applications-alagarsamy-pandikumar/

Sustainable Energy: Towards a Zero-Carbon Economy using Chemistry, Electrochemistry and Catalysis Julian R.H. Ross

https://ebookmass.com/product/sustainable-energy-towards-a-zerocarbon-economy-using-chemistry-electrochemistry-and-catalysisjulian-r-h-ross/

Emerging Applications of Carbon Nanotubes in Drug and Gene Delivery Prashant Kesharwani

https://ebookmass.com/product/emerging-applications-of-carbonnanotubes-in-drug-and-gene-delivery-prashant-kesharwani/

Morphological, Compositional, and Shape Control of Materials for Catalysis 1st Edition Edition Paolo Fornasiero And Matteo Cargnello (Eds.)

https://ebookmass.com/product/morphological-compositional-andshape-control-of-materials-for-catalysis-1st-edition-editionpaolo-fornasiero-and-matteo-cargnello-eds/

Carbon Dioxide Capture and Conversion: Advanced Materials and Processes Nanda S.

https://ebookmass.com/product/carbon-dioxide-capture-andconversion-advanced-materials-and-processes-nanda-s/

Actuators and Their Applications: Fundamentals, Principles, Materials, and Emerging Technologies

https://ebookmass.com/product/actuators-and-their-applicationsfundamentals-principles-materials-and-emerging-technologiesabdullah-m-asiri/

EMERGING CARBON MATERIALSFOR CATALYSIS

EMERGING CARBON MATERIALSFOR CATALYSIS

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-817561-3

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: EmilyM.McCloskey

EditorialProjectManager: BillieJeanFernandez

ProductionProjectManager: JoyChristelNeumarin

HonestThangiah

CoverDesigner: MatthewLimbert

TypesetbySPiGlobal,India

Dedication

Tomyfather,wholovedmeunconditionally;thankstohimforsupporting meashecouldreadmywordsinmysilenceandguidedmebyallthemeans athisdisposal.

Contributors

K.S.Adarsh

ElectroplatingMetalFinishingandTechnologyDivision,CSIR-CentralElectrochemical ResearchInstitute,Karaikudi,TamilNadu,India

FranciscoAlcaideMonterrubio CIDETEC,Donostia-SanSebastia ´ n,Spain

C.Alegre

InstitutodeCarboquı´mica,CSIC,Zaragoza,Spain

M.Bernardo

LAQV/REQUIMTE,DepartmentofChemistry,FacultyofScienceandTechnology, NOVAUniversityofLisbon,Caparica,Portugal

NaveenChandrasekaran

ElectroplatingMetalFinishingandTechnologyDivision,CSIR-CentralElectrochemical ResearchInstitute,Karaikudi,TamilNadu,India

CatherineCollett

DepartmentofChemical&BiologicalEngineering,UniversityofSheffield,Sheffield, UnitedKingdom

GarethDavies

DepartmentofChemical&BiologicalEngineering,UniversityofSheffield,Sheffield, UnitedKingdom

C.Dura ´ n-Valle

DepartmentofOrganicandInorganicChemistry,UniversityofExtremadura,Badajoz,Spain

AhmedElSheikh

DepartmentofChemical&BiologicalEngineering,UniversityofSheffield,Sheffield, UnitedKingdom

I.Fonseca

LAQV/REQUIMTE,DepartmentofChemistry,FacultyofScienceandTechnology, NOVAUniversityofLisbon,Caparica,Portugal

JoseM.Fraile

FacultyofSciences,InstituteofChemicalSynthesisandHomogeneousCatalysis(ISQCH), CSIC-UniversityofZaragoza,Zaragoza,Spain

JunkuoGao

InstituteofFiberBasedNewEnergyMaterials,SchoolofMaterialsScienceandEngineering, ZhejiangSci-TechUniversity,Hangzhou,China

GonzaloGarcı ´ a

DepartmentofChemistry,InstituteofMaterialsandNanotechnology,UniversityofLa Laguna,LaLaguna,Tenerife,Spain

EnriqueGarcı´a-Bordeje

InstituteofCarbochemistry(ICB-CSIC),Zaragoza,Spain

GunniyaHariyanandamGunasekar

CleanEnergyResearchCentre,KoreaInstituteofScienceandTechnology,Cheongryang, Seoul,RepublicofKorea

BabakKarimi

DepartmentofChemistry,InstituteforAdvancedStudiesinBasicSciences(IASBS), Zanjan,Iran

M.J.La ´ zaro

InstitutodeCarboquı´mica,CSIC,Zaragoza,Spain

I.Matos

LAQV/REQUIMTE,DepartmentofChemistry,FacultyofScienceandTechnology, NOVAUniversityofLisbon,Caparica,Portugal

E.PerezMayoral

DepartmentofInorganicChemistryandTechnicalChemistry,FacultyofScience,National UniversityofDistanceEducation,UNED,Madrid,Spain

JamesMcGregor

DepartmentofChemical&BiologicalEngineering,UniversityofSheffield,Sheffield, UnitedKingdom

ElenaPastor

DepartmentofChemistry,InstituteofMaterialsandNanotechnology,UniversityofLa Laguna,LaLaguna,Tenerife,Spain

S.Perez-Rodrı ´ guez

InstitutodeCarboquı´mica,CSIC,Zaragoza,Spain

ElisabetPires

FacultyofSciences,InstituteofChemicalSynthesisandHomogeneousCatalysis(ISQCH), CSIC-UniversityofZaragoza,Zaragoza,Spain

SamaheSadjadi

GasConversionDepartment,FacultyofPetrochemicals,IranPolymerandPetrochemical Institute,Tehran,Iran

SodehSadjadi

NuclearScienceandTechnologyResearchInstitute,Tehran,Iran

D.Sebastia ´ n

InstitutodeCarboquı´mica,CSIC,Zaragoza,Spain

YuhangWu

InstituteofOptoelectronicMaterialsandDevices,ChinaJiliangUniversity,Hangzhou, People’sRepublicofChina;InstituteofFiberBasedNewEnergyMaterials,Schoolof MaterialsScienceandEngineering,ZhejiangSci-TechUniversity,Hangzhou,China

HuiXu

InstituteofOptoelectronicMaterialsandDevices,ChinaJiliangUniversity,Hangzhou, People’sRepublicofChina

IbrahimYakub

DepartmentofChemical&BiologicalEngineering,UniversityofSheffield,Sheffield, UnitedKingdom

SunghoYoon

DepartmentofChemistry,Chung-AngUniversity,Dongjak-gu,Seoul,RepublicofKorea

Acknowledgment

“ThesupportofIranPolymerandPetrochemicalInstituteisappreciated.”

Newaspectsofcovalenttriazine frameworksinheterogeneous catalysis

GunniyaHariyanandamGunasekara andSunghoYoonb

aCleanEnergyResearchCentre,KoreaInstituteofScienceandTechnology,Cheongryang, Seoul,RepublicofKorea

bDepartmentofChemistry,Chung-AngUniversity,Dongjak-gu,Seoul,RepublicofKorea

1Introduction

Thecontinuousenvironmentalandeconomicchallengesintheworld stronglyimpulsethechemicalindustriestodevelopsimpleandmoreefficientchemicalprocessesthatutilizeenvironmentallybenigncatalysts,reactants,solvents,andminimumenergyinputstoproduceselectiveproducts withalmostnoorminimalwastes.Todate,mostindustrialchemicalconversions(>90%)usecatalystsatleastinasinglesteptospeedupthereaction rate [1,2],andhenceoneofthemostpromisingstrategywouldbedevelopingeconomicallysimpleandenvironmentallyfriendlyactivecatalyticsystemsforvarioustransformationswithutmost(100%)selectivityand durabilityatminimumenergyinputs.This,ontheotherside,currently drivestheresearchoncatalysisacrosschemistryandchemicalengineering.

Todate,industriesmainlyuse“classic”heterogeneouscatalystsforthe chemicalconversions [3–6],owingtotheirrobustnature,easycatalyst separation,recovery,regenerationandreuse,andtheirfacilepracticalapplicabilityincontinuousoperatingequipmentsystems.However,thesecatalystsusuallyshowlowercatalyticefficiencyandselectivityandusually requireharshreactionconditionsincludinghightemperatureandpressure, etc.Inaddition,thesecatalystsoftenhavemultipleactivesitesinthecatalytic entity,andthus,developingcatalystdesignstrategiesforintroducingspecific activestieswithgreateruniformityisgenerallydifficult.Hence,numerous trial-and-errorexperimentsarehistoricallyrequiredtoproducehighly activeandselectivecatalyticsystems.Suchexperimentshavebeenmainly limitedtoalteringtheparticlesizeofactivemetals,catalystsupportand itsacidity/basicity,theuseofpromotersandalloyformation,etc. [7–9].

Therefore,thedesignanddevelopmentofsingle-sitewell-definedcatalysts thatenablerapidandselectivetransformationwitheasyseparationofcatalyst/productisstillaparamountchallengeinthefieldofcatalysis.

Inthisregard,heterogenizedorimmobilizedcatalystsaregaining increasingattentionacrossthescientificandtechnologicalsocietyowing totheirconceptualviabilityofhavinghighcatalyticactivity,selectivity, finelydistributedandwell-definedactivesingle-sites,andfacilecatalyst handlingandseparation [9–15].Withthisinmind,substantialefforthasbeen focusedtoimmobilizehomogeneouscatalystsontosuitablesolidsupports forprocuringmaximalactivityandstability.Therearefourcommon methodsthatareclassifiedbasedontheinteractionbetweenthecatalyst andthesolidscaffoldfortheheterogenizationofhomogeneouscatalysts ontosolidsupportmaterials:(1)covalentbinding [16–20];(2)electrostatic interaction [21–23];(3)adsorption [24,25];and(4)encapsulation [26–29]. Amongthem,covalentbondingisthemostfrequentlyusedmethodfor theimmobilizationofthehomogeneouscatalysts.Foralongtime,conventionalsolidsupportssuchassilica,zeolite,alumina,polyethyleneglycoland polystyrene,etc.wereappliedtoanchorhomogeneouscomplexes [30–34]. However,theinterestongraftingthecomplexesontheconventionalsolid supportisgraduallyfadingowingtotheirlowstabilityandactivityandhigh cost [35].Themainreasonfortheirlowstabilityistheundesirableinteractionbetweenthesupportscaffoldandthecatalystactivesites,causedfrequentlybytheuseoflinkers.Therefore,theviabilityofimmobilized catalystsinindustrialcatalytictransformationshasbeenquestioned [35] Nevertheless,researchonrealizingthisconceptuallyidealcatalystisstill dynamic,especiallyowingtotherecentemergenceofthermallyandchemicallyrobusthigh-surface-areaporousmaterialsandnovelmethodsforthe immobilization.

Forthepasttwodecades,high-surface-areaporoussolidpolymershave beengainingsignificantinterestacrossdiverseresearchfieldsincludingcatalysis,gascaptureandseparationtechnology,semiconductors,photochemistry,andbiology [36,37].Thesepolymersarebroadlyclassifiedintometal organicframeworks(MOFs)andporousorganicframeworks(POFs). MOFsaregenerallycomposedofinorganicmetalionsorclustersasbuilding unitsandorganicfunctionalgroupsaslinkers,andtheyareconnectedvia coordinationbonds [38–40].POFs,ontheotherhand,aresolelyconstructedfromorganicunitsconnectedviacovalentbonds [41–44].These materialsusuallypossesssurfaceareaintherangefromafewhundredtoseveralthousandsm2 g 1,withuniformandtunableporesizesfrommicro-to

mesopores.Inaddition,awiderangeofchemicalfunctionalities,including organicfunctionalligands,canbeintroducedintheskeletonoftheseframeworks.Generally,MOFsexhibitpoorchemicalstabilityunderharshreactioncondition,suchasunderahighlybasicandacidicsolution,compared toPOFsbecauseoftheirintrinsiccoordinationchemicalbonds [45–48] Ontheotherhand,POFsshowgreaterchemicalstabilitybecauseofthe strongcovalentbondsbetweentheirlightweightelementsandhave,thus, emergedasattractiveandeffectiveporousmaterials,especiallyinthefield ofcatalysis.

DifferenttypesofPOFsthatarecla ssifiedbasedonthestructureof themolecularbuildingblockhavebeendevelopedinrecentyears, includingcovalenttriazineframeworks(CTFs) [49],porousaromatic frameworks(PAFs) [50] ,covalentorganicframeworks(COFs) [51,52], benzimidazole-linkedpolymers(BILPs) [53,54],polymersofintrinsic porosity(PIMs) [55],hyper-cross-linkedpolymers(HCPs) [56,57] ,conjugatedmicroporouspolymers(CMPs) [58,59],andporousiminepolymers(CIFs) [60]

CTFisoneofthemostinterestingclassesofPOFs(Fig.1),receiving intensivelimelightinthefieldofcatalysis.Theyarenitrogen-richporous polymersconstructedusingtriazinebuildingblocks.Theyoftenlack long-rangeorder,buthaveexcellentrobustandrigidstructures,immense thermalandchemicalstability,highacid-baseresistivity,largesurfacearea, andtunableporesizesandstructures [61–64].ContrarytootherPOFs,the porouspropertiesofCTFscanbeeasilytunedbyvaryingtheCTFsynthesis conditions,suchastemperature,time,andcatalyst(zincchloride)ratio. Mostinterestingly,coordinatingfunctionalgroupsincorporatedinthe skeletonofCTFscanenableanchoringtransitionmetalcomplexesonthe robustandhigh-surface-areasolidsupportsandgeneratewell-defined porousimmobilizedmetalcomplexes.Consequently,diffusionofreactants, solvent(s),andproductmolecules,whichplaysakeyroleinheterogeneous catalysis,wouldbefacileandcouldleadtotheactivitiessimilartoorbetter thanhomogeneouscomplexes.Inaddition,thenumerouscoordinatingsites availableintheskeletonofCTFsallowtheimmobilizationofalargenumber ofmolecularcomplexesonthesupport,i.e.,numberofactivesitepergram ofthesupportcanbehigher,whichisalsoimportantfromanindustrial viewpoint [65–69].Finally,theundesirableinteractionscausedbytheuse oflinkersinconventionalimmobilizationmethodcanbeprevented.Hence, CTF-basedheterogenizedcomplexescanofferbothenhancedactivityand stability.

Fig.1 (A)BasicstructureofCTF;(B)IdealporenetworksofCTF;(C)Salientfeatures ofCTF.

Theformationofcross-linkedtriazine-basedpolymerviatransition metal-catalyzedtrimerizationofdinitrileswasfirstreportedin1973 [70]. However,thismaterialgainedsignificantscientificattentionin2008by Kuhn,Antonietti,andThomas,whowereinterestedinthesynthesisof microporousorganicpolymerswithintrinsicporosityandtailor-madefunctionalities [61,62].TheseresearchersdiscoveredCTFsasnewclassofhigh performancepolymerframeworkswithregularandirregularporosity. Avarietyofaromaticdinitrilecompoundsweretrimerizedintheirreport usingZnCl2 athightemperatures,particularlyabovethemoltentemperatureofZnCl2 [61–65].InspiredbytheexcellentcharactersandperformancesofCTFs,severalmethodshavebeendevelopedforthe preparationofCTFs;however,thepropertiesofthefinalproductshave beenstronglyinfluencedbythesyntheticprocess.

Todate,CTFscanbepreparedthrough:(1)ionothermaltrimerizationof carbonitrilegroupsattemperaturesrangingfrom300to600°CusingZnCl2 asacatalystandsaltmelt [61–68];(2)theSchiffbasereactionbetweenmelaminewithdifferentaldehydes [71–77];(3)nucleophilicsubstitutionofcyanuricchloridewithdifferentnucleophiles [78–83];(4)theSonogashira couplingbetweensubstitutedbromoderivativesoftriazineringswithvariousderivativesofterminalalkynes [84];(5)theYamamotoself-coupling reactionofsubstitutedbromoderivativesoftriazinerings [85,86];and(6) theFriedel-Craftsreactionbetweencyanuricchloridewithavarietyof electron-richaromaticcompounds [87–89].Therecentreviewspublished independentlybyPuthiyarajetal. [69] andArtz [90] providedetailedinformationonthesynthesisofCTFs.

Asstated,theneedforhighlyactive,selective,anddurablecatalyststhat withstandaharshreactionatmosphereisdrivingscientiststodevelopthermallyandchemicallystablesolidsupportmaterialsfortheheterogenization ofmolecularcomplexes.Inthisplatform,weintroducetheaspectsofCTFs usedfordevelopingwell-definedheterogenizedcatalystsforvariouscatalytictransformations.Here,welimitourdiscussiontoCTFspreparedby ionothermalsynthesisbecausetheyhavevariedcharacters,includingrobustnessandporerigidity,comparedtothosepreparedbyothermethods,and mostoftheheterogenizedcatalystsemploythissynthetic-basedCTFs.To date,threeclassesofcoordinatingligandsembeddedintotheCTFskeleton viaionothermalsynthesishavebeenemployedassolidchelatingligandsfor thepreparationofheterogenizedcatalysts:Pyridine,Acetylacetone,and N-heterocycliccarbenes.Therefore,wesegmentedthischapteraccording tothecoordinatingligandsincorporatedwithinCTF.

2CTFincorporatedwithpyridinicligands

ThemostwidelyemployedCTFsfortheconstructionofCTF-basedheterogenizedcatalystsarepyridinic-basedCTFs.Therearetwokindsof pyridinicligands-basedCTFsthathavebeenconstructedandusedinthe heterogenizedcatalystpreparation:(1)aCTFconstructedusing2,6dicyanopyridinemonomer(Fig.2),wherethemetalsareexpectedtocoordinateviaonepyridinicnitrogenandonetriazinicnitrogen;(2)aCTF constructedusing5,5-dicyano-2,20 -bipyridinemonomer,wherethemetals areexpectedtocoordinatevia2,20 -bipyridinicnitrogen.Althoughbothare similaratfirstglance,theircharactersincludingporosity,surfacearea,electrondensity,and/orelectron-donatingabilitiesaresupposedlydifferent. 5

Fig.2 RouteofsynthesisofCTFderivedfrom2,6-dicyanopyridinebuildingblock. (AdaptedfromA.V.Bavykina,M.G.Goesten,F.Kapteijn,M.Makkee,J.Gascon,Efficient productionofhydrogenfromformicacidusingacovalenttriazineframeworksupported molecularcatalyst,ChemSusChem8(2015)809–812,withpermissionofJohnWileyand Sons.R.Palkovits,M.Antonietti,P.Kuhn,A.Thomas,F.Sch € uth,Solidcatalystsforthe selectivelow-temperatureoxidationofmethanetomethanol,Angew.Chem.Int.Ed. 48(2009)6909–6912,withpermissionofJohnWileyandSons.)

2.1Pyridinic-CTFderivedfrom2,6-dicyanopyridine buildingblock

ThepotentialviabilityofCTFsfortheimmobilizationofmolecularcatalysts wasfirstdemonstratedbyPalkovitsetal.using2,6-dicyanopyridine-based CTFfortheoxidationofmethanetomethanol(Fig.3) [91].The2,6dicyanopyridine-basedCTFwaspreparedinmoltenZnCl2 throughastepwiseincreaseoftemperature(at400°Cfor40handthen600°Cfor40h). ThedetailsofporouspropertiesafterPtimmobilizationwerenotprovided inthatstudy.AnitrogenbindingsiteofthepyridinicunitandanitrogenbindingsiteofthetriazineunitcooperativelyenabledthecoordinationofPtvia N^Nfashion.Theresultingcomplexwasstructurallysimilartothemolecular Pt-bipyrimidinecomplexreportedbyPerianaetal.,thecommercialapplicationofwhichwasrestrictedbydifficultiesintheseparationandrecyclingof thispreciousmetalcomplex [92].TheimmobilizedPtcatalystefficientlyoxidizedmethaneintomethanolwithalmostsimilaractivityandselectivitytothe molecularcatalystat200°CinthepresenceofSO3 inconcentratedsulfuric acid.TheexactnatureandchemicalenvironmentofthePtsitespriorto andafterthecatalysiswerestudiedusingacombinationofseveralsophisticated analyticalmethodsincludingsolid-state 195PtNMRspectroscopyand aberration-correctedscanningtransmissionelectronmicroscopy(AC-STEM) [93].Althoughthecatalyticreactionwasperformedunderharshreaction

Fig.3 RepresentativestructureofPt-CTF(A)anditshomogeneouscounterpart(Periana Catalyst)(B). (ReproducedfromR.Palkovits,M.Antonietti,P.Kuhn,A.Thomas,F.Schuth, Solidcatalystsfortheselectivelow-temperatureoxidationofmethanetomethanol,Angew. Chem.Int.Ed.48(2009)6909–6912,withpermissionofJohnWileyandSons.)

conditions,theefficiencyoftheimmobilizedPtcatalystwaswell-maintained uponsuccessiveruns.ThisindicatesthattheCTF-basedcatalystisthermally andchemicallystable,andmostimportantly,thecoordinatingabilityofthe nitrogenspecieswiththemetal(Pt)cationintheCTFisremarkablystrong. Inspiredbythisinterestingapproach,Bavykinaetal.employedaCTF constructedbymixing2,6-dicyanopyridineand4,40 -biphenyldicarbonitrile (1:2ratio)buildingblocksfortheimmobilizationofIrCp* unit (Cp* ¼ 1,2,3,4,5-pentamethylcyclopentadient)viaN^Ncoordination (Fig.4A) [94],similartoPtcoordinationstrategyreportedbyPalkovits etal.Mixing4,40 -biphenyldicarbonitrilewith2,6-dicyanopyridinebuildingblockmayfacilitatethediffusionofreactantandproductmolecules. TheimmobilizedIrcomplex,IrCp*@CTF,wasemployedforthecatalyticdehydrogenationofformicacidintoCO 2/H2 underbase-freeconditions.Thecatalystproducedinitia lturnoverfrequencies(TOFs)ofup to27,000h 1 andturnovernumbers(TONs)ofupto1,060,000during continuousoperationsat80° C;thisinitialTOFwasthehighestatthetime ofpublication.TheauthorslinkedtheworkingcapabilityofIrCp * @CTF inabase-freemediumwiththeinherent basicityofthepyridinicsitespresentintheCTFmatrix.Thecatalyst wasrecycledforatleastfourruns withoutanysignificantIrleachingandchangesintheoxidationstateof theIrsites.

Another random document with no related content on Scribd:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Download Complete Emerging carbon materials for catalysis samahe sadjadi PDF for All Chapters by Education Libraries - Issuu