Download Peridynamic modeling, numerical techniques, and applications erkan oterkus ebook All Chapte

Page 1


https://ebookmass.com/product/peridynamic-

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Multiphysics Modeling: Numerical Methods and Engineering Applications: Tsinghua University Press

Computational Mechanics Series 1st Edition Cen

https://ebookmass.com/product/multiphysics-modeling-numericalmethods-and-engineering-applications-tsinghua-university-presscomputational-mechanics-series-1st-edition-cen/

Advances in Engineered Cementitious Composite Materials, Structures, and Numerical Modeling Y. X. Zhang

https://ebookmass.com/product/advances-in-engineeredcementitious-composite-materials-structures-and-numericalmodeling-y-x-zhang/

Deterministic Numerical Modeling of Soil Structure Interaction 1st Edition Stephane Grange

https://ebookmass.com/product/deterministic-numerical-modelingof-soil-structure-interaction-1st-edition-stephane-grange/

Image Segmentation: Principles, Techniques, and Applications Tao Lei

https://ebookmass.com/product/image-segmentation-principlestechniques-and-applications-tao-lei/

Highway Safety Analytics and Modeling: Techniques and Methods for Analyzing Crash Data Dominique Lord

https://ebookmass.com/product/highway-safety-analytics-andmodeling-techniques-and-methods-for-analyzing-crash-datadominique-lord/

Rainfall: Modeling, Measurement and Applications 1st Edition Renato Morbidelli (Editor)

https://ebookmass.com/product/rainfall-modeling-measurement-andapplications-1st-edition-renato-morbidelli-editor/

Cyclic Plasticity of Metals: Modeling Fundamentals and Applications Hamid Jahed

https://ebookmass.com/product/cyclic-plasticity-of-metalsmodeling-fundamentals-and-applications-hamid-jahed/

Gas-Particle

and Granular Flow Systems: Coupled Numerical Methods and Applications 1st Edition Nan Gui

https://ebookmass.com/product/gas-particle-and-granular-flowsystems-coupled-numerical-methods-and-applications-1st-editionnan-gui/

Water Risk Modeling: Developing Risk-Return Management Techniques in Finance and Beyond Dieter Gramlich

https://ebookmass.com/product/water-risk-modeling-developingrisk-return-management-techniques-in-finance-and-beyond-dietergramlich/

TheMechanicsofAdvancedMaterials bookseriesfocusesonmaterials-andmechanics-relatedissuesaroundthebehaviorofadvancedmaterials,includingthemechanicalcharacterization,mathematical modeling,andnumericalsimulationsofmaterialresponsetomechanicalloads,variousenvironmental factors(temperaturechanges,electromagneticfields,etc.),aswellasnovelapplicationsofadvanced materialsandstructures.

Volumesintheseriescoveradvancedmaterialstopicsandnumericalanalysisoftheirbehavior,bringing togetherknowledgeofmaterialbehaviorandthetoolsofmechanicsthatcanbeusedtobetterunderstand,and predictmaterialsbehavior.Itpresentsnewtrendsinexperimental,theoretical,andnumericalresultsconcerningadvancedmaterialsandprovidesregularreviewstoaidreadersinidentifyingthemaintrendsin researchinordertofacilitatetheadoptionofthesenewandadvancedmaterialsinabroadrangeofapplications.

Serieseditor-in-chief:VadimV.Silberschmidt

VadimV.SilberschmidtisChairofMechanicsofMaterialsandHeadoftheMechanicsofAdvanced MaterialsResearchGroup,LoughboroughUniversity,UnitedKingdom.HewasappointedtotheChairof MechanicsofMaterialsattheWolfsonSchoolofMechanicalandManufacturingEngineeringatLoughboroughUniversity,UnitedKingdomin2000.Priortothis,hewasaSeniorResearcherattheInstituteAfor MechanicsatTechnischeUniversitatMuncheninGermany.EducatedintheUSSR,heworkedattheInstitute ofContinuousMediaMechanicsandInstituteforGeosciences[both theUSSR(later Russian)Academy ofSciences].In1993 94,heworkedasavisitingresearcher,FellowoftheAlexander-von-Humboldt FoundationatInstituteforStructureMechanicsDLR(GermanAerospaceAssociation),Braunschweig, Germany.In2011 14,hewasAssociateDean(Research).HeisaChartedEngineer,FellowoftheInstitution ofMechanicalEngineersandInstituteofPhysics,wherehealsochairedAppliedMechanicsGroupin 2008 11.HeservesasEditor-in-Chief(EiC)oftheElsevierbookserieson MechanicsofAdvancedMaterials.He isalsoEiC,associateeditor,and/orservesontheboardofanumberofrenownedjournals.Hehascoauthoredfourresearchmonographsandover550peer-reviewedscientificpapersonmechanicsandmicromechanicsofdeformation,damage,andfractureinadvancedmaterialsundervariousconditions.

Serieseditor:ThomasBo ¨ hlke

ThomasBo ¨ hlkeisProfessorandChairofContinuumMechanicsattheKarlsruheInstituteofTechnology(KIT),Germany.HepreviouslyheldprofessorialpositionsattheUniversityofKasselandatthe Otto-von-GuerickeUniversity,Magdeburg,Germany.HisresearchinterestsincludeFE-basedmultiscale methods,homogenizationofelastic,brittle-elastic,andvisco-plasticmaterialproperties,mathematical descriptionofmicrostructures,andlocalizationandfailuremechanisms.Hehasauthoredover130peerreviewedpapersandhasauthoredorcoauthoredtwomonographs.

DavidL.McDowellisRegents’ProfessorandCarterN.Paden,Jr.DistinguishedChairinMetalsProcessingatGeorgiaTechUniversity,UnitedStates.HejoinedGeorgiaTechin1983andholdsadual appointmentintheGWWSchoolofMechanicalEngineeringandtheSchoolofMaterialsScienceandEngineering.HeservedastheDirectoroftheMechanicalPropertiesResearchLaboratoryfrom1992to2012.In 2012hewasnamedFoundingDirectoroftheInstituteforMaterials(IMat),oneofGeorgiaTech’sInterdisciplinaryResearchInstituteschargedwithfosteringaninnovationecosystemforresearchandeducation. HehasservedasExecutiveDirectorofIMatsince2013.Hisresearchfocusesonnonlinearconstitutive modelsforengineeringmaterials,includingcellularmetallicmaterials,nonlinearandtime-dependent fracturemechanics,finitestraininelasticityanddefectfieldmechanics,distributeddamageevolution, constitutiverelations,andmicrostructure-sensitivecomputationalapproachestodeformationanddamage ofheterogeneousalloys,combinedcomputationalandexperimentalstrategiesformodelinghighcyclefatigueinadvancedengineeringalloys,atomisticsimulationsofdislocationnucleationandmediationatgrain boundaries,multiscalecomputationalmechanicsofmaterialsrangingfromatomisticstocontinuum,and system-basedcomputationalmaterialsdesign.AFellowofSES,ASMInternational,ASME,andAAM,heis therecipientofthe1997ASMEMaterialsDivisionNadaiAwardforcareerachievementandthe2008Khan InternationalMedalforlifelongcontributionstothefieldofmetalplasticity.Hecurrentlyservesonthe editorialboardsofseveraljournalsandiscoeditorofthe InternationalJournalofFatigue

ZhongChenisaProfessorintheSchoolofMaterialsScienceandEngineering,NanyangTechnological University,Singapore.InMarch2000,hejoinedNanyangTechnologicalUniversity(NTU),Singaporeasan AssistantProfessorandhassincebeenpromotedtoAssociateProfessorandProfessorintheSchoolofMaterials ScienceandEngineering.SincejoiningNTU,hehasgraduated30PhDstudentsand5MEngstudents.Hehas alsosupervisedover200undergraduateresearchprojects(FYP,URECA,etc.).Hisresearchinterestincludes(1) coatingsandengineerednanostructuresforcleanenergy,environmental,microelectronic,andotherfunctional surfaceapplicationsand(2)mechanicalbehaviorofmaterials,encompassingmechanicsandfracturemechanicsofbulk,compositeandthinfilmmaterials,materialsjoining,andexperimentalandcomputational mechanicsofmaterials.Hehasservedasaneditor/editorialboardmemberforeightacademicjournals.Hehas alsoservedasareviewerformorethan70journalsandanumberofresearchfundingagenciesincludingthe EuropeanResearchCouncil(ERC).Heisanauthorofover300peer-reviewedjournalpapers.

ELSEVIERSERIESINMECHANICS OFADVANCEDMATERIALS

PERIDYNAMIC MODELING, NUMERICAL TECHNIQUES,AND APPLICATIONS

ERKAN OTERKUS

DepartmentofNavalArchitecture,OceanandMarineEngineering, UniversityofStrathclyde,Glasgow,UnitedKingdom

SELDA OTERKUS

DepartmentofNavalArchitecture,OceanandMarineEngineering, UniversityofStrathclyde,Glasgow,UnitedKingdom

ERDOGAN MADENCI

DepartmentofAerospaceandMechanicalEngineering,TheUniversityofArizona, Tucson,AZ,UnitedStates

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,orany informationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchasthe CopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatour website: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedunder copyrightbythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledge inevaluatingandusinganyinformation,methods,compounds,orexperiments describedherein.Inusingsuchinformationormethodstheyshouldbemindfulof theirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-820069-8

ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: DennisMcGonagle

EditorialProjectManager: ChiaraGiglio

ProductionProjectManager: SojanP.Pazhayattil

CoverDesigner: MatthewLimbert

TypesetbyTNQTechnologies

Contributors

SundaramVinodK.AnicodeDepartmentofAerospaceandMechanical Engineering,TheUniversityofArizona,Tucson,AZ,UnitedStates

AtilaBarutDepartmentofAerospaceandMechanicalEngineering,The UniversityofArizona,Tucson,AZ,UnitedStates

TinhQuocBuiDepartmentofCivilandEnvironmentalEngineering,Tokyo InstituteofTechnology,Tokyo,Japan

CaganDiyarogluDepartmentofNavalArchitecture,OceanandMarine Engineering,UniversityofStrathclyde,Glasgow,UnitedKingdom

MehmetDorduncuMechanicalEngineeringDepartment,ErciyesUniversity, Kayseri,Turkey

YakubuKasimuGaladimaDepartmentofNavalArchitecture,Oceanand MarineEngineering,UniversityofStrathclyde,Glasgow,UnitedKingdom

UgoGalvanettoIndustrialEngineeringDepartment,UniversityofPadova, Padova,Italy;CISAS“G.Colombo”,UniversityofPadova,Padova,Italy

XiaoqiaoHeDepartmentofArchitectureandCivilEngineering,CityUniversity ofHongKong,HongKongSAR,China

MasakiHojoDepartmentofMechanicalEngineeringandScience,Kyoto University,Kyoto,Japan

MichiyaImachiGraduateSchoolofAdvancedScienceandEngineering, HiroshimaUniversity,Higashihiroshima,Japan

AliJaviliDepartmentofMechanicalEngineering,BilkentUniversity,Ankara, Turkey

LeiJuCollegeofShipBuildingEngineering,HarbinEngineeringUniversity, China

EmmaLejeuneDepartmentofMechanicalEngineering,BostonUniversity, Boston,MA,UnitedStates

ChristianLinderDepartmentofCivilandEnvironmentalEngineering,Stanford University,Stanford,CA,UnitedStates

XuefengLiuDepartmentofMechanicsandAerospaceEngineering,Southern UniversityofScienceandTechnology,Shenzhen,Guangdong,China

ChunLuDepartmentofMechanicsandAerospaceEngineering,Southern UniversityofScienceandTechnology,Shenzhen,Guangdong,China

ErdoganMadenciDepartmentofAerospaceandMechanicalEngineering,The UniversityofArizona,Tucson,AZ,UnitedStates

NaokiMatsudaDepartmentofMechanicalEngineeringandScience,Kyoto University,Kyoto,Japan

AndrewMcBrideGlasgowComputationalEngineeringCentre,Schoolof Engineering,UniversityofGlasgow,Glasgow,UnitedKingdom

CodyMittsDepartmentofAerospaceandMechanicalEngineering,The UniversityofArizona,Tucson,AZ,UnitedStates

CongTienNguyenDepartmentofNavalArchitecture,OceanandMarine Engineering,UniversityofStrathclyde,Glasgow,UnitedKingdom

MasaakiNishikawaDepartmentofMechanicalEngineeringandScience,Kyoto University,Kyoto,Japan

ErkanOterkusDepartmentofNavalArchitecture,OceanandMarine Engineering,UniversityofStrathclyde,Glasgow,UnitedKingdom

SeldaOterkusDepartmentofNavalArchitecture,OceanandMarine Engineering,UniversityofStrathclyde,Glasgow,UnitedKingdom

MuratOzdemirDepartmentofNavalArchitectureandMarineEngineering, OrduUniversity,Ordu,Turkey

AnilPathrikarCentreofExcellenceinAdvancedMechanicsofMaterials,Indian InstituteofScience,Bangalore,Karnataka,India

TimonRabczukInstituteofStructuralMechanics,BauhausUniversityWeimar, Weimar,Germany

DebasishRoyCentreofExcellenceinAdvancedMechanicsofMaterials,Indian InstituteofScience,Bangalore,Karnataka,India

PraneshRoyCentreofExcellenceinAdvancedMechanicsofMaterials,Indian InstituteofScience,Bangalore,Karnataka,India

ArmanShojaeiInstituteofMaterialSystemsModeling,Helmholtz-Zentrum Geesthacht,Geesthacht,Germany

StewartA.SillingSandiaNationalLaboratories,Albuquerque,NewMexico, UnitedStates

PaulSteinmannGlasgowComputationalEngineeringCentre,Schoolof Engineering,UniversityofGlasgow,Glasgow,UnitedKingdom;Instituteof AppliedMechanics,Friedrich-Alexander-UniversitatErlangen-Nurnberg, Erlangen,Germany

SatoyukiTanakaGraduateSchoolofAdvancedScienceandEngineering, HiroshimaUniversity,Higashihiroshima,Japan

BozoVazicDepartmentofNavalArchitecture,OceanandMarineEngineering, UniversityofStrathclyde,Glasgow,UnitedKingdom

QingWangCollegeofShipBuildingEngineering,HarbinEngineering University,China

WenxuanXiaDepartmentofNavalArchitecture,OceanandMarine Engineering,UniversityofStrathclyde,Glasgow,UnitedKingdom

YanzhuoXueCollegeofShipBuildingEngineering,HarbinEngineering University,China

ZhenghaoYangDepartmentofNavalArchitecture,OceanandMarine Engineering,UniversityofStrathclyde,Glasgow,UnitedKingdom

MircoZaccariottoIndustrialEngineeringDepartment,UniversityofPadova, Padova,Italy;CISAS“G.Colombo”,UniversityofPadova,Padova,Italy XiaoyingZhuangChairofComputationalScienceandSimulationTechnology, InstituteofPhotonics,LeibnizUniversityHannover,Hannover,Germany; DepartmentofGeotechnicalEngineering,CollegeofCivilEngineering,Tongji University,Shanghai,China

Preface

AlthoughperidynamicswasoriginallyintroducedbyDr.StewartA. SillingfromSandiaNationalLaboratoriesin2000forpredictingand simulatingthefailureresponseofstructures,ithasbeenextendedand appliedtomanychallengingproblemsfromdifferentdisciplines.Ithas becomeauniqueapproachformultiphysicsanalysiswithdamagepredictioncapabilityacrossvaryinglengthscales.Sinceitsinception,peridynamicsisgrowingexponentiallybycontributionsandpublicationsof researchersfromdifferentpartsoftheworld.

Thisbookbringstogetherawiderangeofrecentcontributionsinthe areaofperidynamics.Wehopethatitoffersnewideasandmotivatesperidynamicresearcherstoexplorenewapplications.Thebookstartswithan introductorychapterauthoredbyDr.StewartSilling.Theremainingnineteenchaptersinthebookaredividedintotwosections:newconceptsin peridynamicsandnewapplicationsinperidynamics.Itpresentsnewtechniquessuchasdualhorizonperidynamics,damagemodelingusingthe phase-fieldapproach,peridynamicsforaxisymmetricanalysis,beam andplatemodelsinperidynamics,coupledperidynamicsandXFEM,fracturemechanicsevaluationwithperidynamics,andcontactanalysisof rigidanddeformablebodies.Also,itpresentscutting-edgeapplications ofperidynamicssuchasicemodeling,compositesdelaminationanddamageinceramics,modelingatnanoscale,andmore.

Weprofuselyappreciateandthanktherenownedauthorsfortheircontributionsandcommitmentfordifferentchaptersofthisbook.Wehope thatthisbookfurtheracceleratesthegrowthofperidynamicsbyproviding thebeginneraswellasthecurrentperidynamicresearcherswithrecent progressandnovelapplicationsofperidynamics.

Lastly,weappreciatetheencouragementandsupportofmanycolleaguesinthefieldofperidynamicsinthepreparationofthisbook,programmanagersatAFOSRfortheMURICenterforMaterialFailure PredictionthroughPeridynamicsattheUniversityofArizona(AFOSR GrantNo.FA9550-14-1-0073),andprogrammanagersatEOARDforthe financialsupporttotheUniversityofStrathclyde(AFOSRGrantNo. FA9550-18-1-7004).

ErkanOterkus, SeldaOterkus, and ErdoganMadenci

1.Whatisperidynamics?2

2.Peridynamicsobtainedfromthesmoothingofanatomicsystem3

3.Materialmodels5

3.1Linearmicroelasticmodel6

3.2Prototypemicroelasticbrittlemodel8

3.3Microelasticnucleationandgrowthmodel10

3.4Nonlinearandrate-dependentbond-basedmodels11

3.5Ordinarystate-basedmaterialmodels12

3.6Non-ordinarystate-basedmaterialsandthecorrespondencemodel15

4.Relationtothelocaltheory18

5.Simplemeshlessdiscretization19

6.Someresearchtrendsintheperidynamictheory20 6.1Specialpurposematerialmodels21 6.2Wavedispersion21 6.3Materialstability21 6.4Micropolartheories22

1.Whatisperidynamics?

Theperidynamictheoryisanalternativeformofcontinuummechanics thatismorecompatiblethanthestandard(local)theorywithdiscontinuitiessuchasgrowingcracks.Intheperidynamictheory,theequationof motionandmaterialmodelsuseintegralsratherthanpartialdifferential equations.Thisallowstheperidynamicequationstobeapplieddirectly onthesurfaceofacrack.Theequationofmotionreplacestheterminthe localtheorythatcharacterizestheinternalforceswithinamaterial.

where s isthestresstensorand f(q,x,t)isaforcedensity(perunitvolume squared)thataneighboringpoint q exertson x.Thisforcedensityis determinedbythedeformationaccordingtothematerialmodel.Itis alwaysrequiredasaconsequenceofNewton’slawsthat

forall x, q, t.Theregionofintegrationin Eq.(1.1) isthe family of x,which isaneighborhoodwhoseradius d > 0iscalledthe horizon (Fig.1.1).

Thehorizonisacutoffdistanceforforceinteractions.

Using Eq.(1.1),theperidynamicequationofmotionisasfollows:

where r isthemassdensity, y isthedeformationmap,and b isthe externalbodyforcedensityfield.Theattributeofthetheorythatallows interactionsbetweenpointssuchas x and q directlyacrossafinitedistanceissometimescalled strongnonlocality.

Inintroducingperidynamics,thebasic Eq.(1.3) isusuallypresentedas anassumptionthatiselaboratedupontoshowthatithasdesirable properties,suchasbeingabletosustaingrowingcracks,andnotviolating anylawsofphysics(Silling,2000).Thisleavessomepeoplewondering, “Wheredoesthiscomefrom?”Inparticular,thestronglynonlocalnature of Eq.(1.3) isperceivedaslackingmotivation.Withthisinmind,Ihope

thatthediscussioninthenextsectionhelpstomotivatetheperidynamic continuumtheoryespeciallywithregardtononlocality.

2.Peridynamicsobtainedfromthesmoothingofanatomic system

Afundamentalconceptincontinuummechanicsistherepresentation ofamaterialasamathematicallycontinuousfield,eventhoughinreality anymaterialismadeofatomsandmolecules.Onewaytojustifythe assumptionofacontinuumistoapplyasmoothingfunctiontothesystem ofparticles.Inthefollowing,wedefineacontinuousdisplacementfieldin thiswayandinvestigatetheevolutionequationthatthiscontinuousfield obeys.Theevolutionequationturnsouttobetheperidynamicequationof motion.

Consideranassemblyofmutuallyinteractingparticles(pointmasses) inacrystalwithmass Mk, k ¼ 1,2, ,N.Letthereferencepositionsofthese particlesbedenoted xk,andthedisplacementvectors uk(t).Forsimplicity, thermaloscillationswillbeneglectedinthefollowingdiscussion.

Supposeanyparticle [ exertsaforceFk[ ðtÞ onanyparticle k.Asa notationalconvenience,set Fkk ¼ 0 forany k.Theseforcesareassumedto havetheantisymmetrygivenby

Bond
ℋ = family of
FIGURE1.1 Thehorizonandfamilyofamaterialpoint x

forall k, [,and t.Itisalsoassumedthatthereisacutoffdistance d forthe atomicinteractionssuchthat Fk[ ¼ 0if jx[ xk j > d.

Additionally,particle k issubjecttoaprescribedexternalforce Bk(t).For any x˛R3,defineasmoothingfunction U(x, $)suchthatthefollowing normalizationholds:

foranypoint p.Itisconvenienttoassumethatatany x, U(x, $)vanishes outsideaneighborhoodofradius R,where R isapositivenumber.Define thesmoothedmassdensityandbodyforcedensityfieldsby

Definethesmootheddisplacementfieldby

Nowweinvestigatetheevolutionequationfor u.Theparticlesobey Newton’ssecondlaw, Mk € uk ðtÞ¼ X [ Fk[ ðtÞþ Bt ðtÞ.(1.8)

Differentiating Eq.(1.7) twicewithrespecttotimeyields rðxÞuðx; tÞ¼ X k Uðx; xk ÞMk uk ðtÞ (1.9)

From Eqs.(1.6),(1.8),and(1.9),

rðxÞ € uðx; tÞ¼ X k Uðx; xk Þ"X [ Fk[ ðtÞþ Bk ðtÞ# ¼ X k X [ Uðx; xk ÞFk[ ðtÞþ bðx; tÞ (1.10)

From Eqs.(1.5)and(1.10),

rðxÞuðx; tÞ¼ X k X [ Uðx; xk ÞFk[ ðtÞ Z Uðq; x[ Þdq þ bðx; tÞ (1.11)

Eq.(1.11) canberewrittenasfollows:

rðxÞuðx; tÞ¼ Z fðq; x; tÞdq þ bðx; tÞ (1.12)

where

and b isgivenby Eq.(1.6).Itiseasilyshownfrom Eqs.(1.4)and(1.13) that f hastheantisymmetry Eq.(1.2).Thevectordefinedby x ¼ q x (1.14) iscalleda bond.(Whentalkingaboutbonds,itisalwaysassumedthat x s 0,withoutexplicitlystatingthis.)Thefunction f iscalledthe pairwise bondforcedensity andhasdimensionsofforce/volume2.From Eq.(1.13), thepoints x and q interactonlyif

Thelength d isthehorizonforthecontinuummodel(Fig.1.1).

Insummary,wedefinedaweightingfunction U andusedittodefine smoothedfields r, b,and u.Withthesedefinitions,andNewton’ssecond lawappliedtotheparticles,thesmootheddisplacementfieldwasfound toobeytheperidynamicequationofmotion Eq.(1.12).Theperidynamic bondforcesthatappearinthisequationofmotionaredefinedby Eq. (1.13).Conceptually,theequationofmotionis,andshouldbe,nonlocal becausechangingthedisplacementofasingleparticle k directlyaffects thesmootheddisplacementsatallthepoints x whosesmoothingfunction U(x, $)havenonzerovaluesat xk.Amorecompletederivationofthe peridynamicequationswasobtainedfromstatisticalmechanicsby LehoucqandSears(2011).

Thedefinitionofthepairwisebondforcedensity Eq.(1.13) isnotvery practicalasamaterialmodelbecauseitdoesnotdirectlyrelatethevalues of u near x tothebondforces f.Morepracticalmethodsofdetermining f arediscussedin Section3.

3.Materialmodels

Thepurposeofamaterialmodelinperidynamicsistodeterminethe valuesofthepairwisebondforcedensity f(q,x,t)intermsofthesmoothed displacementsinthevicinityof x and q andanyotherphysicallyrelevant fieldssuchastemperature.(Theword“smoothed”willbeomittedfrom nowon,sincewearenolongerconcernedwiththeunderlyingatomic system.)Itisassumedthatthereisahorizon d,suchthat

forall x,q,t.Thefollowingdiscussionstartswiththeconceptually simplestmaterialmodelandprogressestomoreadvancedmodels.

3.1Linearmicroelasticmodel

Thesimplesttypeofmaterialmodeliscalled linearmicroelastic.Inthis model,eachbondactslikealinearspring,andthebodycanbethoughtof asanetworkcomposedofaninfinitenumberofthesesprings.Todefine thepairwisebondforcedensityinalinearmicroelasticmaterial,wefirst definetheunitvector M inthedirectionofadeformedbond x ¼ q x:

Alsodefinethe bondelongatione andthe bondstrains by

Thebondelongationisthereforethechangeinlengthofabondasit deforms.Thepairwisebondforcedensityisthengivenby

where c(x)isthe springconstant forthebond x and b f isascalarvalued functionthatgivesthemagnitudeoftheforcedensity.

Thelinearmicroelasticmaterialmodeliselasticintheusualsenseof continuummechanics.Abodycomposedoflinearmicroelasticmaterial storesstrainenergyduetoquasi-staticloadingfromexternalforces.This energystorageisreversible,sinceitcanallberecoveredbyreversingthe externalforcesandunloadingthebodytoitsoriginalcondition.Inother words,thereisnoenergydissipation.

Thestoredenergycanbeidentifiedwithindividualbonds.Eachbond x hasa micropotentialw(s)suchthat

Hence,forthelinearmicroelasticmaterial,

Themicropotentialisrelatedtothestrainenergydensityatanypoint x bysummingupthecontributionsfromallthebondsconnectedto x:

Thefactorof1/2appearsin (1.22) becauseeachendpointofabond “owns”onlyhalfofthebonds’smicropotential.

Thestrainenergydensitygivenby (1.22) hasthesamemeaningasin thelocaltheory,sinceitrepresentsthepotentialenergyperunitvolume thatisstoredat x duetodeformationofthenearbymaterial.Ifthematerialisisotropicaswellaslinearmicroelastic,thisinterpretationprovidesaneasywaytocalibrate c(x)ifthegeneralformofthedependenceof c onbondlengthisgiven.Foranisotropicmaterial, c(x)dependsonlyon thebondlength, x ¼ |x|.Byrequiringtheperidynamicstrainenergy densitygivenby (1.22) toequalitsvalueinthelocaltheoryforanisotropic expansion,itiseasilyshownthat c isrelatedtothebulkmodulus k bythe followingexpression(SillingandAskari,2005):

Asaspecialcase,if c(x)hastheform

ðxÞ¼

forany0 <x d,where c0 isaconstant,then Eq.(1.23) yields

Thus,withthesimplifyingassumption Eq.(1.24),ifthehorizon d is given,theonlyparameterinthelinearmicroelasticmaterialmodelis easilycomputedfromthebulkmodulus.

Thelinearmicroelasticisanexampleof bond-based peridynamicmaterialmodels.Thisclassofmaterialmodelshasthepropertythatthe pairwiseforcedensityinthebond x ¼ q x isfullydeterminedbythe deformationofthatparticularbond,anddoesnotdependonwhathappensinotherbonds.

Bond-basedmaterialshavetheadvantageofbeingsimpletounderstandandcalibrate.Theyallowforgeometricnonlinearity,becausethe bondsrotatealongwiththebondsastheydeform.Theyconserveangular momentum,becauseregardlessofthedeformation,eachpairwisebond forceexertszeromomentontheendpointsofthebond.Bond-based materialmodelscanincludematerialnonlinearity,aswellasgeometric nonlinearity,byusingafunction b f in Eq.(1.19) thatincludesnonlinear dependenceonthebondstrain.

3.2Prototypemicroelasticbrittlemodel

Bond-basedmaterialsalsolendthemselvestoasimplewaytomodel damage. Eq.(1.19) ismodifiedtoincludeahistory-dependenttermthat reflects bondbreakage:

where m isabinary-valuedfunctionthatstartsat1anddropsto0accordingtosomeprescribeddamagecriterion.Thesimplestsuchcriterion breaksabondwhenitsstrainexceedssomepredefinedvalue s0:

where H istheHeavisidestepfunctionand tbreak istheearliesttimeat which s(x,t) s0.Thelinearmicroelasticmaterialusing Eq.(1.24) and equippedwiththebondbreakagecriteriongivenby Eqs.(1.26)and(1.27) iscalledthe prototypemicroelasticbrittle (PMB)materialmodel.

WiththePMBmodel,thecriticalbondstrain s0 canbecalibratedto matchagivencriticalenergyreleaserateforarealbrittlematerial.Thisis donebysumminguptheworkrequiredtobreakallthebonds(which equalsthemicropotentialatbreakage)amongallthebondsthatinitially connectedonsideofacracksurfacetotheother.Thisprocedureallows s0 tobecomputedexplicitlytoreproduceagivencriticalenergyreleaserate G0,thebulkmodulus,andthehorizonforthePMBmaterialmodel.Detailsofthiscalculationaregivenin SillingandAskari(2005).

Theresultinthreedimensionsisgivenby

ThePMBmodelislimitedinthetypesofmaterialsitcanrepresent(see Section3.5);notablythePoissonratioisrestrictedto1/4inthreedimensions.Nevertheless,thePMBmodelhasfoundmanyapplications andoftengivesgoodresultsforproblemsinwhichthisrestrictionis tolerable.Forexample, Fig.1.2 showsasimulationoftheimpactofa brittlecylinderagainstarigidwall. Fig.1.3 showsthecross-sectionofa glassrodthatundergoesfractureintension.Thefracturestartsatasmall defectattheloweredgeofthecross-section.Asthefracturegrowsand speedsup,itstrajectorybecomesunstable,resultinginfeaturesresemblingthefamous“mirror-mist-hackle”transitionindynamicbrittle fracture.Thesefiguresillustrate autonomouscrackgrowth inperidynamics, whichmeansthatcracks“dowhattheywant”:theirevolutionisnot controlledbyanysupplementalmathematicalrelations.

Another random document with no related content on Scribd:

Project Gutenberg™ is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.

Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project Gutenberg™’s goals and ensuring that the Project Gutenberg™ collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.

Section 3. Information about the Project

Gutenberg Literary Archive

Foundation

The Project Gutenberg Literary Archive Foundation is a nonprofit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation’s EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state’s laws.

The Foundation’s business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation’s website and official page at www.gutenberg.org/contact

Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation

Project Gutenberg™ depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS.

The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.

While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.

International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and

credit card donations. To donate, please visit: www.gutenberg.org/donate.

Section 5. General Information About Project Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.

Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.

Most people start at our website which has the main PG search facility: www.gutenberg.org.

This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.