[FREE PDF sample] Introductory statistics using spss 2nd edition, (ebook pdf) ebooks

Page 1


Introductory Statistics Using SPSS 2nd Edition, (Ebook PDF)

Visit to download the full and correct content document: https://ebookmass.com/product/introductory-statistics-using-spss-2nd-edition-ebook-p df/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Discovering Statistics Using IBM SPSS Statistics: North American Edition 5th Edition, (Ebook PDF)

https://ebookmass.com/product/discovering-statistics-using-ibmspss-statistics-north-american-edition-5th-edition-ebook-pdf/

Practical Statistics for Nursing Using SPSS 1st Edition, (Ebook PDF)

https://ebookmass.com/product/practical-statistics-for-nursingusing-spss-1st-edition-ebook-pdf/

Statistics Using IBM SPSS: An Integrative Approach –Ebook PDF Version

https://ebookmass.com/product/statistics-using-ibm-spss-anintegrative-approach-ebook-pdf-version/

eTextbook 978-9351500827 Discovering Statistics Using IBM SPSS Statistics, 4th Edition

https://ebookmass.com/product/etextbook-978-9351500827discovering-statistics-using-ibm-spss-statistics-4th-edition/

Using IBM SPSS Statistics: An Interactive Hands On Approach 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/using-ibm-spss-statistics-aninteractive-hands-on-approach-3rd-edition-ebook-pdf/

Using Statistics in the Social and Health Sciences with SPSS Excel 1st…

https://ebookmass.com/product/using-statistics-in-the-social-andhealth-sciences-with-spss-excel-1st/

(eTextbook PDF) for Introductory Statistics Exploring the World Through Data 2nd

https://ebookmass.com/product/etextbook-pdf-for-introductorystatistics-exploring-the-world-through-data-2nd/

Using SPSS for Windows and Macintosh 8th Edition, (Ebook PDF)

https://ebookmass.com/product/using-spss-for-windows-andmacintosh-8th-edition-ebook-pdf/

A Guide to Doing Statistics in Second Language Research

Using SPSS and R (Second Language Acquisition Research Series) – Ebook PDF Version

https://ebookmass.com/product/a-guide-to-doing-statistics-insecond-language-research-using-spss-and-r-second-languageacquisition-research-series-ebook-pdf-version/

DetailedContents

Preface

Acknowledgments

AbouttheAuthor

PARTI:STATISTICALPRINCIPLES

1 ResearchPrinciples

LearningObjectives

Overview ResearchPrinciples

RationaleforStatistics

ResearchQuestions

TreatmentandControlGroups

RationaleforRandomAssignment

HypothesisFormulation

ReadingStatisticalOutcomes

AcceptorRejectHypotheses

VariableTypesandLevelsofMeasure

Continuous Interval Ratio

Categorical Nominal Ordinal

GoodCommonSense

KeyConcepts

PracticeExercises

2.Sampling

LearningObjectives

Overview Sampling

RationaleforSampling

Time

Cost

Feasibility

Extrapolation

SamplingTerminology

Population

SampleFrame

Sample

RepresentativeSample

ProbabilitySampling

SimpleRandomSampling

StratifiedSampling

ProportionateandDisproportionateSampling

SystematicSampling

AreaSampling

NonprobabilitySampling

ConvenienceSampling

PurposiveSampling

QuotaSampling

SnowballSampling

SamplingBias

OptimalSampleSize

GoodCommonSense

KeyConcepts

PracticeExercises

3 WorkinginSPSS

LearningObjectives

Video Overview SPSS

TwoViews:VariableViewandDataView

VariableView Name Type Width Decimals Label Values Missing Columns Align Measure Role

DataView

ValueLabelsIcon Codebook

SavingDataFiles

GoodCommonSense

KeyConcepts

PracticeExercises

PARTII:STATISTICALPROCESSES

4 DescriptiveStatistics

LearningObjectives

Videos

Overview DescriptiveStatistics

DescriptiveStatistics

Number(n)

Mean(μ)

Median Mode

StandardDeviation(SD)

Variance

Minimum Maximum Range

SPSS LoadinganSPSSDataFile RunSPSS DataSet

TestRun

SPSS DescriptiveStatistics:ContinuousVariables(age) StatisticsTables

HistogramWithNormalCurve SkewedDistribution

SPSS DescriptiveStatistics:CategoricalVariables(gender) StatisticsTables BarChart

SPSS DescriptiveStatistics:ContinuousVariable(age)SelectbyCategoricalVariable (gender) FemaleorMaleOnly

SPSS (Re)SelectingAllVariables

GoodCommonSense

KeyConcepts

PracticeExercises

5 tTestandMann-WhitneyUTest

LearningObjectives

Videos Overview tTest Example ResearchQuestion Groups Procedure

Hypotheses

DataSet

PretestChecklist

PretestChecklistCriterion1 Normality

PretestChecklistCriterion2 nQuota

PretestChecklistCriterion3 HomogeneityofVariance

TestRun

Results

PretestChecklistCriterion2 nQuota

PretestChecklistCriterion3 HomogeneityofVariance

pValue

HypothesisResolution

αLevel

DocumentingResults

TypeIandTypeIIErrors

TypeIError

TypeIIError

Overview Mann-WhitneyUTest

TestRun

Results

GoodCommonSense

KeyConcepts

PracticeExercises

6 ANOVAandKruskal-WallisTest

LearningObjectives

Videos

LayeredLearning

Overview ANOVA

Example

ResearchQuestion

Groups

Procedure

Hypotheses

DataSet

PretestChecklist

PretestChecklistCriterion1 Normality

PretestChecklistCriterion2 nQuota

PretestChecklistCriterion3 HomogeneityofVariance

TestRun

Results

PretestChecklistCriterion2 nQuota

PretestChecklistCriterion3 HomogeneityofVariance

Comparison1

Text:TextWithIllustrations

Comparison2 Text:Video

Comparison3

HypothesisResolution

TextWithIllustrations:Video

DocumentingResults

Overview Kruskal-WallisTest

TestRun

Results

GoodCommonSense

KeyConcepts

PracticeExercises

7 PairedtTestandWilcoxonTest

LearningObjectives

Videos

Overview PairedtTest

Pretest/PosttestDesign

Step1:Pretest

Step2:Treatment

Step3:Posttest

Example

ResearchQuestion

Groups

Procedure

Step1:Pretest

Step2:Treatment

Step3:Posttest

Hypotheses

DataSet

PretestChecklist

PretestChecklistCriterion1 NormalityofDifference

TestRun

Results

HypothesisResolution

DocumentingResults

Δ%Formula

Overview WilcoxonTest

TestRun

Results

GoodCommonSense

KeyConcepts

PracticeExercises

8.CorrelationandRegression PearsonandSpearman

LearningObjectives

Videos

Overview PearsonCorrelation

Example1 PearsonRegression

ResearchQuestion

Groups

Procedure

Hypotheses

DataSet

PretestChecklist

PretestChecklistCriterion1 Normality

TestRun

Correlation

Regression(ScatterplotWithRegressionLine)

Results

ScatterplotPoints

ScatterplotRegressionLine

PretestChecklistCriterion2 Linearity

PretestChecklistCriterion3 Homoscedasticity

Correlation

HypothesisResolution

DocumentingResults

NegativeCorrelation

NoCorrelation

Overview SpearmanCorrelation

Example2 SpearmanCorrelation

ResearchQuestion

Groups

Procedure

Hypotheses

DataSet

PretestChecklist

TestRun

Results

HypothesisResolution

DocumentingResults

AlternativeUseforSpearmanCorrelation

CorrelationVersusCausation

Overview OtherTypesofStatisticalRegression:MultipleRegressionandLogistic

Regression

MultipleRegression(R2)

LogisticRegression

GoodCommonSense

KeyConcepts

PracticeExercises

9 Chi-Square

LearningObjectives

Video

Overview Chi-Square

Example

ResearchQuestion Groups

Procedure

Hypotheses

DataSet

PretestChecklist

PretestChecklistCriterion1 n≥5perCell

TestRun

Results

PretestChecklistCriterion1 n≥5perCell

HypothesisResolution

DocumentingResults

GoodCommonSense

KeyConcepts

PracticeExercises

PARTIII:DATAHANDLING

10 SupplementalSPSSOperations

LearningObjectives

DataSets

Overview SupplementalSPSSOperations

GeneratingRandomNumbers

SortCases

DataSet

SelectCases

DataSet

Recoding

DataSet

ImportingData

ImportingExcelData

DataSet

ImportingASCIIData(GenericTextFile)

DataSet

SPSSSyntax

DataSet

DataSets

GoodCommonSense

KeyConcepts

PracticeExercises

Glossary Index

Preface

Somewhere,somethingincredibleiswaitingtobeknown

DownloadableDigitalLearningResources

Download(andunzip)thedigitallearningresourcesforthisbookfromthewebsite study.sagepub.com/knappstats2e.Thiswebsitecontainstutorialvideos,prepareddatasets,andthesolutions toalloftheodd-numberedexercises.Theseresourceswillbediscussedinfurtherdetailtowardtheendofthe Preface

OverviewoftheBook

Thisbookcoversthestatisticalfunctionsmostfrequentlyusedinscientificpublications Thisshouldnotbe consideredacompletecompendiumofusefulstatistics,however.Inothertechnologicalfieldsthatyouare likelyalreadyfamiliarwith(e.g.,wordprocessing,spreadsheetcalculations,presentationsoftware),youhave probablydiscoveredthatthe“90/10rule”applies:Youcanget90%ofyourworkdoneusingonly10%ofthe functionsavailable.Forexample,ifyouweretothoroughlyexploreeachsubmenuofyourwordprocessor,you wouldlikelydiscovermorethan100functionsandoptions;however,intermsofactualproductivity,90%of thetime,youareprobablyusingonlyabout10%ofthemtogetallofyourworkdone(eg,load,save,copy, delete,paste,font,tab,center,print,spell-check).Backtostatistics:Ifyoucanmasterthestatisticalprocesses containedinthistext,itisexpectedthatthiswillarmyouwithwhatyouneedtoeffectivelyanalyzethe majorityofyourowndataandconfidentlyinterpretthestatisticalpublicationsofothers

Thisbookisnotaboutabstractstatisticaltheoryorthederivationormemorizationofstatisticalformulas; rather,itisaboutappliedstatistics.Thisbookisdesignedtoprovideyouwithpracticalanswerstothe followingquestions:(a)WhatstatisticaltestshouldIuseforthiskindofdata?(b)HowdoIsetupthedata?(c) WhatparametersshouldIspecifywhenorderingthetest?and(d)HowdoIinterprettheresults?

Intermsofperformingtheactualstatisticalcalculations,wewillbeusingIBM® SPSS® *Statistics,anefficient statisticalprocessingsoftwarepackage Thisfacilitatesspeedandaccuracywhenitcomestoproducingquality statisticalresultsintheformoftablesandgraphs,butSPSSisnotanautomaticprogram.Inthesameway thatyourwordprocessordoesnotwriteyourpapersforyou,SPSSdoesnotknowwhatyouwantdonewith yourdatauntilyoutellit Fortunately,thoseinstructionsareissuedthroughclearmenus Yourjobwillbeto learnwhatstatisticalproceduresuitswhichcircumstance,toconfigurethedataproperly,toorderthe appropriatetests,andtomindfullyinterprettheoutputreports

The10chaptersaregroupedintothreeparts:

PartI:StatisticalPrinciples

Thissetofchaptersprovidesthebasisforworkinginstatistics.

Chapter1:ResearchPrinciplesfocusesonfoundationalstatisticalconcepts,delineatingwhatstatistics are,whattheydo,andwhattheydonotdo

Chapter2:Samplingidentifiestherationaleandmethodsforgatheringarelativelysmallbundleofdata tobettercomprehendalargerpopulationoraspecializedsubpopulation

Chapter3:WorkinginSPSSorientsyoutotheSPSS(alsoknownasPASW,orPredictiveAnalytics Software)environment,sothatyoucancompetentlyloadexistingdatasetsorconfigureittocontaina newdataset

PartII:StatisticalProcesses

Thesechapterscontaintheactualstatisticalproceduresusedtoanalyzedata.

Chapter4:DescriptiveStatisticsprovidesguidanceoncomprehendingthevaluescontainedin continuousandcategoricalvariables

Chapter5:tTestandMann-WhitneyUTest:Thettestisusedintwo-groupdesigns(e.g.,treatment vs control)todetectifonegroupsignificantlyoutperformedtheother Intheeventthatthedataarenot fullysuitabletorunattest,theMann-WhitneyUtestprovidesanalternative

Chapter6:ANOVAandKruskal-WallisTest:AnalysisofVariance(ANOVA)issimilartothettest, butitiscapableofprocessingmorethantwogroups Intheeventthatthedataarenotfullysuitableto runanANOVA,theKruskal-Wallistestprovidesanalternative

Chapter7:PairedtTestandWilcoxonTest:Thepairedttestisgenerallyusedtogatherdataona variablebeforeandafteraninterventiontodetermineifperformanceontheposttestissignificantly betterthanthatonthepretest Intheeventthatthedataarenotfullysuitabletorunapairedttest,the Wilcoxontestprovidesanalternative.

Chapter8:CorrelationandRegression PearsonandSpearmanusesthePearsonstatistictoassessthe relationshipbetweentwocontinuousvariables Intheeventthatthedataarenotfullysuitabletoruna Pearsonanalysis,theSpearmantestprovidesanalternative.TheSpearmanstatisticcanalsobeusedto assesstherelationshipbetweentwoorderedlists.

Chapter9:Chi-Squareassessestherelationshipbetweencategoricalvariables

PartIII:DataHandling

ThischapterdemonstratessupplementaltechniquesinSPSStoenhanceyourcapabilities,versatility,anddata processingefficiency

Chapter10:SupplementalSPSSOperationsexplainshowtogeneraterandomnumbers,sortandselect cases,recodevariables,importnon-SPSSdata,andpracticeappropriatedatastorageprotocols.

AfteryouhavecompletedChapters4through9,thefollowingtablewillhelpyounavigatethisbookto efficientlyselectthestatisticaltest(s)bestsuitedtoyour(data)situation Fornow,itisadvisedthatyouskip thistable,asitcontainsstatisticalterminologythatwillbecoveredthoroughlyinthechaptersthatfollow

ParametricVersusNonparametric(Pronouncedpair-uh-metric)

Inthepriortable(“OverviewofStatisticalFunctions”),youmayhavenoticedthatChapters5through8each containtwostatisticaltests

Thefirst(parametric)statisticaltestisusedwhenthedataarenormallydistributed,meaningthatthevariable(s) beingprocessedcontainsomeverylowvaluesandsomeveryhighvalues,butmostofthedatalandsomewhere inthemiddle inmostinstances,dataarearrangedinthisfashion Incaseswhereoneormoreofthe variablesinvolvedarenotnormallydistributed,orotherpretestcriteriaarenotmet,thesecond (nonparametric)statistictestisthebetterchoice.

Theprocedurefordeterminingifavariablecontainsdatathatarenormallydistributediscoveredthoroughly inChapter4(“DescriptiveStatistics”)

LayeredLearning

Thisbookisarrangedinaprogressivefashion,witheachconceptbuildingonthepreviousmaterial As discussed,Chapters5,6,7,and8containtwostatisticseach:Thefirst(parametric)statisticisexplainedand demonstratedthoroughly,followedbythesecond(nonparametric)versionofthestatistic,sothatafter comprehendingthefirststatistic,thesecondisonlyashortstepforward;itshouldnotfeellikeadouble workload.

Additionally,Chapter5providestheconceptualbasisforChapter6.Specifically,Chapter5(“tTestand Mann-WhitneyUTest”)showshowtoprocessatwo-groupdesign(eg,Treatment:Control)todetermine ifonegroupoutperformedtheother Chapter6buildsonthatconcept,butinsteadofcomparingjusttwo groupswitheachother(e.g.,Treatment:Control),theANOVAandtheKruskal-Wallistestscancompare threeormoregroupswitheachother(eg,Treatment1 :Treatment2 :Control)todeterminewhichgroup(s) outperformedwhich.Essentially,thisisjustonestepupfromwhatyouwillalreadyunderstandfromhaving masteredthettestandMann-WhitneyUtestinChapter5,sothelearningcurveisnotassteep

Thepointis,youwillnotbestartingfromsquareoneasyouenterChapter6;youwillseethatyouarealready morethanhalfwaytheretounderstandingthenewstatistics,basedonyourcomprehensionoftheprior chapter.Thisformoflayeredlearningisakintosimplyaddingonemorelayertoanalreadyexistingcake, hencethelayercakeicon

DownloadableLearningResources

TheexercisesinChapter3(“WorkinginSPSS”)includethedatadefinitions(codebooks)andcorresponding concisedatasetsprintedinthetextformanualentry;thiswillenableyoutolearnhowtosetupSPSSfrom thegroundup Thisisanessentialskillforconductingoriginalresearch

Chapters4through10teacheachstatisticalprocessusinganappropriateexampleandacorrespondingdata set Thepracticeexercisesattheendofthesechaptersprovideyouwiththeopportunitytomastereach statisticalprocessbyanalyzingactualdatasets Forconvenienceandaccuracy,thesepreparedSPSSdatasets areavailablefordownload.

Thewebsiteforthisbookisstudy.sagepub.com/knappstats2e,whichcontainsthefullydevelopedsolutionsto alloftheodd-numberedexercisessothatyoucanself-checkthequalityofyourlearning,alongwiththe followingresources

Videos

The(mp4)videosprovideanoverviewofeachstatisticalprocess,alongwithdirectionsforprocessingthe pretestchecklistcriteria,orderingthestatisticaltest,andinterpretingtheresults.

DataSet

Thedownloadablefilesalsocontainsprepareddatasetsforeachexampleandexercisetofacilitatepromptand accurateprocessing.

TheexamplesandexercisesinthistextwereprocessedusingVersion18ofthesoftwareandshouldbe compatiblewithmostotherversions

ResourcesforInstructors

Password-protectedinstructorresourcesareavailableonthewebsiteforthisbookat studysagepubcom/knappstats2eandincludethefollowing:

Allstudentresources(listedabove)

Fullydevelopedsolutionstoallexercises

EditablePowerPointpresentationsforeachchapter

MarginIcons

Thefollowingiconsprovidechapternavigation(inthisorder)inChapters4to9:

Video†

TutorialvideodemonstratingtheOverview,PretestChecklist,TestRun,andResults

Overview Summaryofwhatastatisticaltestdoesandwhenitshouldbeused

DataSet† Specifieswhichprepareddatasettoload

PretestChecklist Instructionstocheckthatthedatameetthecriterianecessarytorunastatisticaltest

TestRun Proceduresandparametersforrunningastatisticaltest

Results InterpretingtheoutputfromtheTestRun

HypothesisResolution Accepting/rejectinghypothesesbasedontheResults

DocumentingResults Write-upbasedontheHypothesisResolution

Thefollowingiconsareusedonanas-neededbasis:

ReferencePoint Thispointisreferencedelsewhereinthetext(thinkofthisasabookmark)

KeyPoint Importantfact

LayeredLearning Identifieschaptersandstatisticalteststhatareconceptuallyconnected

TechnicalTip Helpfuldataprocessingtechnique

Formula UsefulformulathatSPSSdoesnotperformbutcanbeeasilyprocessedonanycalculator

*SPSSisaregisteredtrademarkofInternationalBusinessMachinesCorporation.

†Gotostudy.sagepub.com/knappstats2eanddownloadthetutorialvideos,prepareddatasets,andsolutions toalloftheodd-numberedexercises.

Intheelectroniceditionofthebookyouhavepurchased,thereareseveraliconsthatreferencelinks(videos,journalarticles)toadditional content Thoughtheelectroniceditionlinksarenotlive,allcontentreferencedmaybeaccessedatstudysagepubcom/knappstats2e ThisURLisreferencedatseveralpointsthroughoutyourelectronicedition

Acknowledgments

SAGEandtheauthoracknowledgeandthankthefollowingreviewers,whosefeedbackcontributedtothe developmentofthistext:

MikeDuggan–EmersonCollege

TinaFreiburger–UniversityofWisconsin–Milwaukee

LydiaEcksteinJackson–AlleghenyCollege

JavierLopez-Zetina–CaliforniaStateUniversity,LongBeach

LinaRacicot,EdD–AmericanInternationalCollege

LindaM Ritchie–CentenaryCollege

ChristopherSalvatore–MontclairStateUniversity

BarbaraTeater–CollegeofStatenIsland,CityUniversityofNewYork

WeextendspecialthankstoAnnBagchiforherskillfultechnicalproofreading,tobetterensuretheprecision ofthistext WealsogratefullyacknowledgethecontributionofDeanCameron,whosecartoonsenliventhis book.

AbouttheAuthor

HerschelKnapp,PhD,MSSW, hasmorethan25yearsofexperienceasahealthscienceresearcher;hehasprovidedprojectmanagement forinnovativeinterventionsdesignedtoimprovethequalityofpatientcareviamultisitehealthscience implementations.Heteachesmaster’s-levelcoursesattheUniversityofSouthernCalifornia;hehasalso taughtattheUniversityofCalifornia,LosAngeles,andCaliforniaStateUniversity,LosAngeles.Dr. Knapphasservedastheleadstatisticianonalongitudinalcancerresearchprojectandmanagedthe programevaluationmetricsforamultisitenonprofitchildren’scenter.Hisclinicalworkincludes emergency/traumapsychotherapyinhospitalsettings.Dr.Knapphasdevelopedandimplemented innovativetelehealthsystems,usingvideoconferencingtechnologytofacilitateoptimalhealthcare servicedeliverytoremotepatientsandtocoordinatespecialtyconsultationsamonghealthcareproviders, includinginterventionstodiagnoseandtreatpeoplewithHIVandhepatitis,withspecialoutreachto thehomeless Heiscurrentlyleadinganursingresearchmentorshipprogramandprovidingresearch andanalyticservicestopromoteexcellencewithinahealthcaresystem Theauthorofnumerousarticles inpeer-reviewedhealthsciencejournals,heisalsotheauthorofIntermediateStatisticsUsingSPSS (2018),PracticalStatisticsforNursingUsingSPSS(2017),IntroductoryStatisticsUsingSPSS(1sted, 2013),TherapeuticCommunication:DevelopingProfessionalSkills(2nded,2014),andIntroductionto SocialWorkPractice:APracticalWorkbook(2010).

PartIStatisticalPrinciples

Chapter1ResearchPrinciples

Thescientificminddoesnotsomuchprovidetherightanswersasasktherightquestions

ClaudeLévi-Strauss

LearningObjectives

Uponcompletingthischapter,youwillbeableto:

Discusstherationaleforusingstatistics

Identifyvariousformsofresearchquestions

Differentiatebetweentreatmentandcontrolgroups

Comprehendtherationaleforrandomassignment

Understandthebasisforhypothesisformulation

Understandthefundamentalsofreadingstatisticaloutcomes

Appropriatelyacceptorrejecthypothesesbasedonstatisticaloutcomes

Understandthefourlevelsofmeasure

Determinethevariabletype:categoricalorcontinuous

Overview ResearchPrinciples

Thischapterintroducesstatisticalconceptsthatwillbeusedthroughoutthisbook Applyingstatisticsinvolves morethanjustprocessingtablesofnumbers;itinvolvesbeingcuriousandassemblingmindfulquestionsinan attempttobetterunderstandwhatisgoingoninasetting.Asyouwillsee,statisticsextendsfarbeyondsimple averagesandheadcounts Justasatoolboxcontainsavarietyoftoolstoaccomplishavarietyofdiversetasks (e.g.,ascrewdrivertoplaceorremovescrews,asawtocutmaterials),thereareavarietyofstatisticaltests, eachsuitedtoaddressadifferenttypeofresearchquestion.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.