Download full Gravitational-wave astronomy: exploring the dark side of the universe nils andersson e

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/gravitational-wave-astronomy-exploring-the-dark-side -of-the-universe-nils-andersson/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Long Non-Coding RNA: The Dark Side of the Genome

Morillon Antonin

https://ebookmass.com/product/long-non-coding-rna-the-dark-sideof-the-genome-morillon-antonin/

Horizons : Exploring the Universe Fourteenth Edition

Michael A. Seeds

https://ebookmass.com/product/horizons-exploring-the-universefourteenth-edition-michael-a-seeds/

The Dark Side of the Hive The Evolution of the Imperfect Honey Bee Robin Moritz

https://ebookmass.com/product/the-dark-side-of-the-hive-theevolution-of-the-imperfect-honey-bee-robin-moritz/

The Structure of Tort Law Nils Jansen

https://ebookmass.com/product/the-structure-of-tort-law-nilsjansen/

Antioxidants Effects

in Health: The Bright and the Dark Side Seyed Mohammad Nabavi

https://ebookmass.com/product/antioxidants-effects-in-health-thebright-and-the-dark-side-seyed-mohammad-nabavi/

The Other Side of the River Alda P. Dobbs

https://ebookmass.com/product/the-other-side-of-the-river-alda-pdobbs-2/

The Other Side Of Night Adam Hamdy

https://ebookmass.com/product/the-other-side-of-night-adam-hamdy/

The Other Side of the River Alda P. Dobbs

https://ebookmass.com/product/the-other-side-of-the-river-alda-pdobbs/

The Politics of Social Cohesion: Immigration, Community, and Justice Nils Holtug

https://ebookmass.com/product/the-politics-of-social-cohesionimmigration-community-and-justice-nils-holtug/

GRAVITATIONAL-WAVEASTRONOMY

Gravitational-WaveAstronomy

ExploringtheDarkSideoftheUniverse

MathematicalSciencesandSTAGResearchCentre, UniversityofSouthampton,Southampton,UK

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©NilsAndersson2020

Themoralrightsoftheauthorhavebeenasserted

FirstEditionpublishedin2020 Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2019945425

ISBN978–0–19–856803–2

DOI:10.1093/oso/9780198568032.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

Preface

Wheneveryouarewritingabook,peopleareboundtoask:‘Whatkindofbookisit?Who isitfor?’Thesequestionsarereasonable,buttheanswersmaynotbethatobvious.You may,forexample,haveembarkedontheprojectsimplybecauseitseemedlikeagood ideaatthetime.So,withthisinmind,whatkindofabookisthis?Havinglivedwithit forlongerthanIcaretofigureout,Istillfinditdifficulttogiveaclearanswer.Itismuch easiertoexplainwhatitisnot.Thisbookisnotanexhaustivereviewofgravitationalwaveastronomy.Atleastnotinthesensethatitprovidesa‘complete’referencelistand adetailedaccountofthehistoricaldevelopmentsoftheideasandthescopeofthefield. Itismuchmore‘subjective’thanthat.Thismaybefrustratingtocolleaguesthathave contributedtothedevelopmentsoverthelastseveraldecades,buttherealityisthatIhad tomakechoices.Itwassimplynotmanageabletopeekinto(andreportbackon)every nookandcranny,nomatterhowfascinatingthismighthavebeen.Instead,Ihavetried toprovideanentrypointtothevast(andrapidlygrowing!)literatureonthedifferent aspectsofgravitationalwavesandrelatedastrophysics.

Inessence,Ihavetriedtobuildabridgeacrossdifferentareasofphysicsthathave fascinatedmeforalongtime.Ontheonehand,wehavegravity—withEinstein’swarped spacetimeprovidinganastonishingexampleofwhatthehumanmindiscapableof.On theotherhand,thereistheextraordinaryrangeofastrophysicsandcosmologythatcomes intoplaywhenwetrytounderstandthegravitational-wavesky.Andfinally,weneedto considerthesublimetechnologythatwasdevelopedtocatchthesefaintwhispersfrom thedistantUniverse.Thisbookmapsoutajourneythroughthiscomplexlandscape— introducingacombinationofoverlappingareasofresearch,manyofwhichrequiretheir separatebooksforafairtreatment.Thedifferentchapters(especiallyinthesecondpart) areintendedtonarrowthegapbetweenabasicunderstandingandcurrentresearch.An importantpartofthisinvolvesintroducingtherelevantlanguage—makingtheinvolved conceptsless‘mysterious’.

Thebookisintendedtoworkasaplatform,sufficientlylowthatanyonewithan interestingravitationalwavescanscrambleontoit,butatthesametimehighenough thatitconnectswithcurrentresearch—andexcitingdiscoveriesthatarehappeningright now.Itmayonlybeanintroduction,butIthinkithaspotential...Ifyouareanastronomer andyouwantabasicunderstandingofthisnewwindowtotheUniverse,includinga brief(relativelyself-contained)glimpseatEinstein’stheory,thenthisbookmaywork foryou.Similarly,ifyouspendmostofyourtimeanalysingdatafromgravitationalwavedetectorsandyouwouldlikeabetterpictureofwhatyouarelookingfor(and perhapswhytheoristsfinditsodifficulttomakefirmpredictions)thenotherpartsof thebookcouldworkforyou.Finally,thereisaconnectiontonuclearphysics—whichis natural,sincegravitational-wavesignalsfromneutronstarsmayhelpconstrainourideas

formatteratextremedensities.Relevantaspectsareaddressedatvariousplacesinthe book,whichmayhelpnuclearandparticlephysicistsappreciatehowtheirworkfitsinto thebiggerpicture.Whicheverdirectionyouarecomingfrom,andregardlessofwhere youaregoing,thisbookmaybeofinteresttoyou.

Intermsofteaching,thescopeofthebookislikelytoovastforasingleundergraduate ormasters-levelcourse.Butthematerialisflexible.Thefirstpartintroducesthekey ideas,followingageneraloverviewchapterandincludingabriefreminderofEinstein’s theory.Thispartcanbetaughtasa(fairly)self-containedundergraduateonesemester course.Infact,thematerialisbasedonacoursewehavehadonthebooksforovera decade.SoIknowitworks.Dependingonthebackgroundandinterestofthestudents, Iwouldselecttopicsfromthesecond(muchlonger)partofthebooktoconnectwiththe actualstateoftheart.Thechaptersarewrittentoworkas‘setpieces’withcorematerial thatcanbeadaptedtospecificlecturesandadditionalmaterialthatprovidecontextand depth.Atleastthat’sthewayIliketothinkaboutit.Someofthechaptershavebeen road-testedatsummerschoolsandothereventssoIamconfidenttheywork.Theone thingthatismissingintermsofteachingmaterialisexercises.However,itisquiteeasy toidentifystepsthatneedfillinginandtocomeupwithquestionsthatgobeyondthe material,sothisshouldnotbeamajorissue.

Beforeweembarkonthejourney,itisusefultomakeafewcommentsonnotationand conventions.ThroughoutthebookIhavechosentoworkwithaspacetimemetricwith signature +2.Thereisoneexception:ThediscussionoftheNewman–Penroseformalism usedtodiscussthedynamicsofspinningblackholes.Ihaveadoptedtheconventionthat spacetimeindicesaregivenbylettersfromthebeginningofthealphabet, a, b, c,...,while spatialindicesstartwith i , j , k,... .ManytextbooksuseGreeklettersfortheformer. Repeatedindices(spacetimeorspatial)indicatesummation.

Withtheseformalitiesoutoftheway,let’sgetstarted.

1Openingthewindow 1

1.1Thebeginning1

1.2Anewkindofastronomy3

1.3Audionotvideo6

1.4Onthebackofanenvelope7

1.5Binaryinspiralandmerger10

1.6Supernovae14

1.7Spinningneutronstars15

1.8Fundamentalphysics18

1.9Manydifferentmessengers18

1.10Thegoldenbinary19

Part1Fromtheorytoexperiment

2Abriefsurveyofgeneralrelativity

25

2.1Asimplethoughtexperiment27

2.2Thetidaltensor28

2.3Introducingthemetric31

2.4Thefour-velocity34

2.5Thecovariantderivative39

2.6Thegeodesicequation41

2.7Curvature43

2.8Alittlebitofmatter45

2.9GeodesicdeviationandEinstein’sequations47

3Gravitationalwaves 51

3.1Weakwavesinanotherwiseflatspacetime52

3.2Effectonmatter54

3.3Thewaveequation56

3.4Transverse-traceless(TT)gauge58

3.5Thequadrupoleformula61

3.6Theenergycarriedbygravitationalwaves64

3.7Theradiationreactionforce67

3.8Theradiatedangularmomentum70

3.9Astabatperturbationtheory71

4Fromblackholestostars andtheUniverseatlarge 73

4.1TheSchwarzschildsolution73

4.2Relativisticfluids75

4.3Howtobuildastar77

4.4TheNewtonianlimit78

4.5ModellingtheUniverse82

4.6WasEinsteinright?85

5Binaryinspiral 90

5.1Basiccelestialmechanics90

5.2Circularorbits95

5.3TheBinaryPulsar98

5.4Eccenticorbits99

5.5Theorbitalevolution102

6Spinningstarsandcosmicrecycling 105

6.1Rotatingdeformedstars105

6.2TheCrabPulsar110

6.3Contactbinaries112

6.4Cosmicrecycling116

6.5Spin–orbitevolution119

7Catchingthewave 125

7.1Resonantmassdetectors126

7.2Gravitationalwavesandlightbeams128

7.3Advancedinterferometers133

7.4Aninternationalnetwork137

7.5Theantennapattern140

7.6Theroadtothefuture142

7.7Dopplertracking148

7.8Pulsartimingarrays149

8Miningthedata 150

8.1Randomnoise151

8.2Matchedfilteringandtheoptimalsignal-to-noiseratio153

8.3Applicationsofmatchedfiltering157

8.4Burstssearches161

8.5Stochasticbackgrounds163

8.6Avoidingfalsealarms165

8.7Bayesianinference167

8.8Geometryinsignalanalysis171

12.1Matteratsupranucleardensities250 12.2Asimplemodelfornpematter252 12.3Determiningtheequationofstate254 12.4Observationalconstraints259 12.5Theslow-rotationapproximation260 12.6Thevirialtheorem262

x Contents

12.7TheKeplerlimit266 12.8Rotatingrelativisticstars268 12.9Thequasiradialinstability272 12.10Superfluidsandglitches274

13Fromoscillationstoinstabilities 282

13.1Thefundamentalf-mode282

13.2Generalnon-rotatingstars:p/g-modes287

13.3Calculatingstellaroscillationmodes292

13.4Ther-modes295

13.5Gravitational-waveemission298 13.6Whatdowelearnfromtheellipsoids?299

13.7Lagrangianperturbationtheoryforrotatingstars305 13.8TheCFSinstability309

14Buildingmountains 312

14.1Thecrust312 14.2Energetics316 14.3Modellingelasticdeformations320 14.4Searchesforknownpulsars327 14.5All-skysearches329 14.6Themagneticfield333 14.7Thebirthofamagnetar337 14.8Modellingaccretion339

14.9Thelow-massX-raybinaries344 14.10Magneticfieldburialandconfinement348 14.11Persistentsources351 14.12Freeprecession353 14.13Evolutionofthewobbleangle357

15Ther-modeinstability 361

15.1Theinstabilitywindow362 15.2Complicatingfactors367 15.3Asimplespin-evolutionmodel372 15.4Nonlinearsaturation377

15.5Arethegravitationalwavesdetectable?381 15.6Astrophysicalconstraintsforyoungneutronstars383 15.7r-modesinaccretingsystems387

16Black-holedynamics 391

16.1Issuesofstability391 16.2Scalarfielddynamics392

16.3Gravitationalperturbations400 16.4Quasinormalmodes405 16.5Testparticlemotion407 16.6Takingtheplunge410 16.7Theself-forceproblem412

17Spinningblackholes 418

17.1TheKerrsolution418 17.2Inertialframedragging419 17.3Kerrgeodesics421

17.4TheNewman–Penroseformalism428 17.5TheTeukolskyequation434 17.6Kerrquasinormalmodes439 17.7GW150914:Afaintfingerprint440

18Relativisticasteroseismology 443

18.1Relativisticfluidperturbations443 18.2f-andp-modesinrelativity447 18.3Theinverseproblem451 18.4Thew-modes454

18.5Theevolvingspectrumofadolescentneutronstars457 18.6Magnetarseismology461

18.7Therelativisticr-modes466

18.8Theunstablef-modes470

19Collidingblackholes 479

19.1The3+1decomposition482 19.2Evolvingthespacetime484 19.3Initialdata486

19.4Slicingconditions489 19.5Waveextraction491

19.62 + 2andtheBondinews493

19.7Milestonesandbreakthroughs496 19.8Recoilandkicks502

20Cosmicfireworks 508

20.1Simulatingfluids508

20.2Thebar-modeinstability513 20.3Tidaldisruption516

20.4Blackhole–neutronstarmergers519 20.5Magnetohydrodynamics522 20.6Themagnetorotationalinstability525

Contents

20.7Gravitationalcollapse528

20.8Supernovacorecollapse531 20.9Hypernovae539

21Anatomyofamerger 541

21.1GW170817541

21.2Tidaldeformation543

21.3TherelativisticLovenumber551

21.4Dynamicaltides:resonances556

21.5Shatteringthecrust563

21.6Mergerdynamics565

21.7Gamma-raybursts572

21.8Thesignatureofakilonova578

22WhispersfromtheBigBang 581

22.1Thestandardmodelofcosmology583 22.2Thecosmologicalredshift587

22.3Scalingthedistanceladder589 22.4Standardsirens591

22.5Geometricalopticsandlensing594 22.6Astrophysicalbackgrounds598 22.7Pulsartimingarrays602 22.8AC/DC609

22.9Astrometry609

22.10Detectingaprimordialbackground611

22.11Parametricamplificationofquantumfluctuations613 22.12Phasetransitions616

22.13Cosmicstrings617

22.14E/B-modes619

22.15Twenty-ninedecadesoffrequency620 Apologiesandthanks

Alongtimeago,inagalaxyfaraway,thetwoblackholesedgedcloser.Dancingaroundeach otherinanearlyperfectcircle.Drawntogetherbygravity,throughtheemissionofgravitational waves.Faintripplesencodedthechangeingravityovereons.Inthelastfewmomentsthemotion grewfrantic.Astormofwarpedspaceandtimeragedasthetwoobjectscametogether.Anenergy equaltotheobliterationofseveralsunswasreleasedinafractionofasecond.Thenitwasover. Allthatremainedwasasingleblackhole.Andemptyspace.

Thesignalmovedunchangedoverthevastdistancesofspaceuntil,aftermorethana billionyears,itreachedtheEarth.Whenthesignalwascreated,thisinsignificantblueplanet hostedsinglecellorganisms.Whenthesignalarrived,therewasanadvancedcivilization.A civilizationcuriousabouttheUniverse.Acivilizationwithtechnologytocatchtheelusive spacetimewhisper.Theiradvanceddetectorsregisteredadisturbance.

Thiswasthebeginning.

1

Openingthewindow

1.1Thebeginning

Thefirstdirectdetectionofgravitationalwaveswasannouncedtotheworldonthe11th ofFebruary2016withatriumphant‘Wedidit!’.Thesignal,whichhadbeenpicked upbythetwoLIGOdetectorsonthe14thofSeptember2015,matchedthepredictions fromnumericalsimulationsofthemergerofapairofblackholeswithmasses 36M and 29M ,formingalargerblackholewithmass 62M (Abbott etal.,2016b).Themissing mass—theequivalentofabout3solarmasses—hadbeenradiatedasgravitationalwaves. Thisextraordinaryevent,whichonlylastedafractionofasecond,wasthemostpowerful astronomicaleventeverobserved.Itwasthebeginningofanewkindofastronomy.

ThebreakthroughdetectioncamenearlyacenturyafterEinstein’spredictionthat changesingravityshouldpropagateaswaves(Einstein,1916).Itwasanextraordinary momentofsuccess,followingdecadesoftechnologydevelopment,politicalwranglingto securefunding,andseveralfalsestarts.Itwasamomentofglory,rewardinganenormous amountofpatientandhardworkfromalotofpeople.

TheLIGOprojectwasinitiatedintheearly1990sAbramovici etal. (1992)and thefirstgenerationofkilometre-scalegravitational-waveinterferometersreachedtheir initialdesignsensitivityinabroadfrequencywindowinNovember2005(duringthe fifthsciencerun,S5).Morethanoneyear’sworthofqualitydatawastakenduring thefollowingsciencerun(S6)in2009–10.Manyresearchpaperswerewritten,butno signalswerefound.Afteracoupleofyears’downtimetoimprovethetechnology,the first‘observingrun’(O1)oftheadvancedinterferometersstartedinSeptember2015. Theimmediatedetectionoftheblack-holesignalledtoacollectivesighofrelief.Ithad beenalongjourney.

Thefirstdetectionbroughtthepromiseofgravitational-waveastronomyintosharp focus.Itwasmuchmorethanaconfirmationthatgravitationalwavesexistandthatwe cancatchthem.Welearnedthattherearedoubleblack-holesystemsintheUniverseand thattheymergeduetotheemissionofgravitationalradiation.Theobservedsignalagreed withthepredictionsfromgeneralrelativity,showingtheexpectedinspiral,merger,and ringdownphasesseeninnumericalsupercomputersimulations(Chapter19).Itwasthe firsttestofEinstein’stheoryinadynamical,strong-fieldsetting.Thesignalallowedusto identifymoremassiveblackholesthansofarfoundinX-raybinaries,anditalsoprovided interestingconstraintsonthespinoftheindividualblackholes.

Openingthewindow

Theunderlyingtheorymaybecomplex,buttheobservedsignalwassimple.Itswept upwardsinamplitudeandfrequencyfrom30to250Hzinaperfectexampleofthe anticipatedchirp(seethetime-frequencyplotsinthelowerpanelsofFigure1.1).Atits peak,thegravitational-wavestrain, h ≈ 1021 ,correspondedtoaluminosityequivalentto emittingthemass-energyofabout200sunsinasecond.Theeventtookplace1.3billion lightyearsfromtheEarth(Abbott etal.,2016b).IntermsoftheUniverse,itwasancient history.

Binarysignals,likeGW150914,carryuniqueinformationonthemassesandspins ofthesources.Inthecaseofneutronstars,thegravitationalwavesalsoencodethe internalstructure,whichdependsonthestateofmatteratextremedensities.Inessence, gravitational-waveobservationshavethepotentialtoprobemanyfundamentalphysics issues.Giventheweaklyinteractingnatureofgravitationalwaves,theinformationthey carryprovidesanimportantcomplementtoelectromagneticobservations.Infact,they 1.0

Figure1.1 Thefirstgravitational-wavesignal(GW150914)observedbytheLIGOHanford(H1,left) andLivingston(L1,right)interferometers.Thetoprowshowshowthegravitational-wavestrainvaried withtimeinthetwodetectors(withadirectcomparisonafteratimeshiftof10mscorrespondingtothe traveltime—atthespeedoflight—betweenthetwoinstruments).Themiddlerowcomparesthesignalto resultsfromnumericalrelativitysimulations,showinginspiral,merger,andringdownoftwocoalescing blackholes.Thebottomrowgivesatime-frequencyrepresentationofthegravitational-wavestrain, againshowingthesignalfrequencyandstrengthincreasingwithtime.(ReproducedfromAbbottetal. (2016b),CreativeCommonsAttribution3.0License.)

shedlightonaspectsthatcannotbeprobedbytraditionalmeans,liketheinternal dynamicsofasupernovaexplosionorquantumfluctuationsintheveryearlyUniverse justaftertheBigBang.Inordertounderstandthewiderangeofpossibilities,weneed toexplorethemechanismsthatgenerategravitationalwavesinthefirstplace.Weneed tobeabletopredictthecharacterofthesignalsandconsiderthechallengesassociated withdetectingthem.Asthisinvolvesmanycomplexquestions,anditisimportantto appreciatethecontext,weneedtostartfromthebeginning.

1.2Anewkindofastronomy

Withhistheoryofgeneralrelativity,Einsteinrevolutionizedourviewofspaceandtime (Einstein,1915).Byexplaininggravityintermsofthegeometryofacombinedspacetime heprovidedafreshperspectiveontheUniverse.Thisledtotheintroductionofexciting conceptsthathavebecomepartofmainstreamculture.Mostnotably, blackholes,formed whenmassivestarsdie,andthe BigBang,theexplosionwhichgavebirthtotheUniverse some14billionyearsago.Moreover,Einstein’sgeneralrelativityisa dynamic theoryof gravity,wherespaceandtimeareflexibleconcepts.Thetheorypredictsthatchanges ingravitypropagateaswaves,ripplesinspacetimemovingatthespeedoflight.These gravitationalwaves areelusive.Fordecadestheycauseddebateandcontroversy1 and, untilrecently,attemptstodetectthemprovedfutile.

Itisnotreallysurprisingthatthedetectionofgravitationalwavesprovedsucha challenge.Earlygenerationsofinstrumentsmayhavebeenremarkablysensitive—from aneverydaylifepointofview—buttheywouldstillonlyhavebeenabletocatchunique eventsinourownGalaxyanditsimmediateneighbourhoodandsucheventsarerare. Takesupernovaexplosions,whichoccuronlyafewtimespercenturyinatypicalgalaxy, asanexample.Populationmodellingandourunderstandingofstellarevolutiontellus thatweneedtoreachfurtheroutintotheUniverseifwewanttodetectsuchevents. Exactlyhowfar,wedonotknowatthispoint.Itisrelativelyeasytoworkouttheenergy thatmustbereleasedinorderforagivensourcetobedetectable,butverydifficultto provideareliablemodelofthecomplexphysicsassociatedwithmostgravitational-wave scenarios.Yet,itisclearthatwewillalwaysbedealingwithfaintsignals.Thisisinsharp contrastwithmainstreamastronomy,whereobservationsaretraditionallymadeatlarge signal-to-noiseratios.

Asthesensitivityoftheavailabledetectorsimproved—gradually—welearnedvaluable lessons.Itisfairlyeasytoidentify‘milestone’resultsleadinguptothebreakthroughin 2015.Forexample,theinitialLIGO–Virgodetectorsweresensitiveenoughthatthey wouldhavebeenabletocatchagravitational-waveburstfromaMilkyWaysupernova, shouldonehaveoccurredduringtheseriesofscienceruns(Abadie etal.,2012).The absenceofdetectionshardlychallengedourviewoftheUniverse,butitwasnevertheless animportantstep.Thefactthatthegravitational-wavecontributiontothespin-downof

1 AmeetingatChapelHillinJanuary1957isoftenseenastheturningpoint.Inparticular,RichardFeynman famouslyprovideda‘stickybead’argumenttodemonstratethatgravitationalwavesmustcarryenergy.

theCrabPulsar—aneutronstarborninasupernovarecordedbyChineseastronomers in1054—canbeconstrainedtobelessthanafractionofapercentoftheobservedrate (Abbott etal.,2008a)mayonlybemildlyinterestingfromtheastrophysicspointofview, butitwasneverthelessamilestoneachievementasitconstrainedtheasymmetryofa distantastronomicalobjectinawaythatcouldnotbedonebyothermeans.

Gravitational-waveastronomyisafascinatingareathatinvolvesarangeofcomplex issues,fromthedevelopmentofdetectortechnologytodata-handlingtechniquesand theorymodelling.Inordertoprogress,weneedtoimproveonalltheseaspects.Aswe celebratethefirstsuccessfuldetections,itisusefultokeepinmindtheeffortbehindthe success.Overdecades,generationsofscientiststurnedanimpressiveengineeringproject intoanastronomicalobservatory.Thiswasaspectacularachievement,butwearefar fromdone.Futureobservingrunswillprobeamuchlargervolumeofspace.Wewillhave more,betterquality,data.Conservativepopulationsynthesismodelssuggestthatwewill detectmanyinspirallingcompactbinaries(consistingofblackholesand/orneutronstars) everyyear.Giventhatsuch‘breadandbutter’binarysignalsarewellunderstood(and dependverylittleonthecompositionofthebinarycompanions)andthedataanalysis algorithmsare(moreorless)developed,thisshouldallowustoprobetheparametersof suchsystems,sheddinglightonthecosmiccompactbinarypopulationandtherelevant formationchannels.

Thewiderrangeofgravitational-wavesourcesputmoreemphasisontheinvolved physicsandhigh-qualitymodellingofrelevantastrophysicalscenarios.Inevitably,this requiresanexchangeofexpertisewithmainstreamastronomers.Foralongtimethe emphasiswasondetectordevelopmentanddataanalysisstrategies.Asweestablish thisnewareaofastronomy,weneedrapidchange.Weneedtoaddresschallenging modellingproblems.Manyrelevantgravitational-wavescenariosinvolveextremephysics thatcannotbetestedinthelaboratoryandprecisionsearchesrequireanunderstanding beyond‘orderofmagnitude’precision.

Thefutureis,ofcourse,bright.Oncethird-generationdetectors,liketheEinstein Telescope(Punturo etal.,2010;Sathyaprakash etal.,2012)ortheCosmicExplorer (Abbott etal.,2017c),comeon-linewewillfirmlybeintheeraofgravitational-wave astronomy.Theseinstrumentswillimprovethebroadbandsensitivitybyanotherorderof magnitude,reachinganotherfactorof1,000involumeofspace.Thismayseemremote, giventhatsuchdetectorsarestillatthedesignstage,butweneedtoconsidertheirpromise now.Wearetalkingabout‘bigscience’andweneedtounderstanditspotentialinorderto arguethecaseforbuildingsuchhugelyexpensiveinstruments.Itisrelevanttoaskwhat wecanhopetoachievewithanEinsteinTelescope,butnot(necessarily)withAdvanced LIGO.Howmuchbettercanwedowith(roughly)anorderofmagnitudeimprovement insensitivity?Aretheresituationswherethisimprovementisneededtoseethesignalsin thefirstplace,orisitamatterofdoingbetterastrophysicsbygettingimprovedstatistics andmorepreciseparameterextraction?Therearemanyinterestingandcomplicated issuestoconsider.

Perhapsincontrast,itisstraightforwardtoarguethecaseforaspace-baseddetector, liketheLISAprojectwhichisexpectedtolaunchin2034toaddresstheEuropean

SpaceAgency’ssciencethemeoftheGravitationalUniverse(Amaro-Seoane etal., 2017).Sensitivetolow-frequencygravitationalwaves,LISAisperfectlytunedtotypical astronomicaltimescales(hourstominutes).Iftheinstrumentworksasplanned—and thereisnoreasontothinkthatitshouldnot,giventheimpressiveresultsfromtheLISA Pathfinder(Armano etal.,2018)—detectionisguaranteed.Infact,manyknownbinary systemscanbeusedtoverifythatthedetectorisworkingasintended.Thechallenges thattheLISAprojectfacesaredifferent.Giventhenumberof,inprinciple,detectable binariesintheGalaxy,thedataanalystmaysufferanembarrassmentofriches.The sciencemay(tosomeextent)beconfusionlimited.However,thefactthatLISAis sensitivetosignalsfromsupermassiveblackholes(eithermergingorcapturingsmaller objects)throughouttheUniversemakesitanextremelyexcitingmission.

Onatimescaleof20yearsorsoweshouldhaveanetworkofhigh-precision instrumentssearchingtheskiesforgravitational-wavesignalsoverarangeofuptoeight decadesinfrequency;seeFigure1.2.Thesedetectorswillprovideuswithunprecedented insightsintothedarksideoftheUniverse,andallowustoprobemuchexcitingphysics. Furtherimprovementsindataqualitymayallowustoextractthegravitational-wave componentinthecosmicmicrowavebackground.Inaddition,ultra-low-frequency gravitationalwavesarelikelytohavebeendetectedbypulsartimingarrays.Inparallel, wecanexpecttoseebreakthroughsinrelatedareasofphysics.Followingthedetectionof theHiggsbosonbytheLargeHadronCollider,thecollidersprobehigherenergiesand mayeventuallyfindevidenceforsupersymmetry.Experimentsaimedatdetectingdark

Figure1.2 Thespectrumofanticipatedgravitational-wavesourcesandthedifferentmethodsthatmay beusedtodetectthem,acrossmorethan20decadesinfrequency.Thephysicaltimescalesrangefromthe ageoftheUniversetoafractionofamillisecond.

mattersignalsmayprovideindisputabledata.Weoughttohaveabetterunderstanding ofdarkenergy,e.g.aconstraintonthecosmic‘equationofstate’.Thesedevelopments willstimulatetheoristsaswellasexperimenters,leadingtodramaticimprovementsin ourunderstandingoftheUniverseinwhichwelive.

1.3Audionotvideo

MostoftheinformationwehaveabouttheUniversewasgleanedfromelectromagnetic signals;frombeautifulhigh-resolutionimagesfromtheHubbleSpaceTelescopetoX-ray timingwiththeRossiX-rayTimingExplorer(RXTE)andspectrafromChandra, frompulsartimingwithradiodishestothecosmicmicrowavedatafromtheWilkinson MicrowaveAnisotropyProbe(WMAP)andthePlanckexperiment,theSloaneDigital SkySurvey,andsoon.Inthepast50yearswehavelearnedthattheUniverseisaviolent placewherestarsexplodeandgalaxiescollide.Therearemassiveblackholesatthecentre ofmostgalaxies,andtheirevolution(throughaccretionormergers)maybecloselylinked totheformationoflarge-scalestructuresinthefirstplace.Theamountofinformation wehavegatheredistrulyawesome.Yet,ourcurrentUniverseisnolessmysteriousthan thatoftheearly1960s.Asweimproveourunderstanding,therearesurprisesandnew questions.Atthepresenttime,specificquestionsconcernthedynamicsofblackholesand theirroleinevolutionaryscenarios,andthestateofmatterundertheextremeconditions inaneutronstarcore.Thebigpuzzlesconcerndarkenergyand(obviously)thestill uncomfortablemarriagebetweengravityandphysicsatthequantumscale.

Thegravitational-waveeffortshouldbeviewedfromthisperspective.Itisnaturalto startbycomparingandcontrastingsignalscarriedbygravityandelectromagneticones. Fromthetheorypointofview,thereisacloseanalogybetweenelectromagneticand gravitationalwaves.However,onemustnotpushthistoofar.Thetwoproblemsare conceptuallyratherdifferent.Electromagneticradiationcorrespondstooscillationsof electricandmagneticfieldspropagating in agivenspacetime,whilegravitationalwaves areoscillations of thespacetimeitself.Inordertoidentifyagravitationalwaveonemust identifyanoscillatingcontributiontospacetime,varyingonalengthscalemuchsmaller thanthatofthe‘background’curvature(whichweexperienceasoureverydaygravity). Thisdistinctioncanbeconfusing.Otherdifferenceshintatthepromisesandchallenges ofgravitational-waveastronomy:

(i)Whileelectromagneticwavesareradiatedwhenindividualparticlesareaccelerated,gravitationalwavesareduetoasymmetricbulkmotionofmatter.Inessence, theincoherentelectromagneticradiationgeneratedbymanyparticlescarry informationaboutthethermodynamicsofthesource.Gravitationalradiation probeslarge-scaledynamics.

(ii)Theelectromagneticwavesthatreachourtelescopeswillhavebeenscattered manytimessincetheirgeneration.Incontrast,gravitationalwavescoupleweakly tomatterandarriveattheEarthinpristinecondition.Theycarrykeyinformationaboutviolentprocessesthatotherwiseremainhidden,e.g.associatedwith

theheartofasupernovacorecollapseormergingblackholes.Ofcourse,the wavesalsointeractweaklywithourdetectors,makingtheirdetectionachallenge.

(iii)Mainstreamastronomyisbasedondeepimagingofsmallfieldsofview,while gravitational-wavedetectorscovervirtuallytheentiresky.Aconsequenceofthis isthattheabilitytopinpointasourceintheskyisnotparticularlygood.On theotherhand,anysourceintheskywillinprinciplebedetectable,notjust onestowardswhichweaimthedetector(whichwecannotdoanyway!).This couldleadtodifficultiesifthesourcesareplentiful,whichmaybeaproblemfor space-basedinstrumentslikeLISA.

(iv)Electromagneticradiationtypicallyhasawavelengthmuchsmallerthanthesize oftheemitter.Meanwhile,thewavelengthofagravitationalwaveisusually comparabletoorlargerthanthesizeoftheradiatingsource.Hence,gravitational wavescannotbeusedfor‘imaging’.Gravitational-waveastronomyismorelike listeningtotheradiothanwatchingtelevision.Itmaybeamatteroftaste,butlet usnotforgetthatradiooffersqualityentertainment...

Thebottomlineisthat,gravitationalwavescarryinformationaboutthemostviolent phenomenaintheUniverse;informationthatiscomplementaryto(infact,verydifficult toobtainfrom)electromagneticdata.

1.4Onthebackofanenvelope

Without(atthispoint)gettingimmersedintechnicaldetail,letusoutlinethekey ideasinvolvedinmodellinggravitational-wavesourcesandatthesametimetakethe opportunitytogetaroughideaofthestrengthandcharacteroftypicalastrophysical signals.Aswewillderivethekeyresultslater—afterdevelopingtherequiredtools—this alsoprovidesuswithanideaoftheroadahead.

Westartbynotingthat,sincegravitational-wavesignalstendtobeweak,itisoften sufficienttoworkattheleveloflinearperturbationsofagivenspacetime.Inessence, onemakesadistinctionbetweena(known)backgroundspacetimeandadeviationthat livesinthisspacetime.Intermsofthemetric gab ,whichprovidesdistancemeasurements inthecurvedspacetime,wethenhave gab = g B ab + hab ,(1.1)

where g B ab issomeknownbackgroundmetricand |hab | issuitablysmall.Themetricis, ofcourse,atensorandeachindexrunsfrom0to3torepresentthefourdimensions ofspacetime.ItmustalsosatisfyEinstein’sfieldequations,essentiallyasetof10 couplednonlinearpartialdifferentialequations.Massagingtheseequations(bychoosing aparticularlyusefulsetof‘coordinates’)onecanshowthat hab satisfiesawaveequation. Changesinthegravitationalfieldpropagateaswaves,travellingatthespeedoflight.

Ifweconsidertheeffectthatthewavesofgravityhaveonmatter,wefindthatthey aretransverseandhavetwopossiblepolarizations.Theyactlikeatidalforce,which meansthattheychangealldistancesbythesameratio.Ifweconsidertwo‘freemasses’ adistance L apart,thenthegravitational-waveinducedstrain h ∼|hab | leadstoachange L suchthat

Thisallowsustoquantifytheeffectthatapassingwavewillhaveonadetector(see Figure1.3forasimplethoughtexperiment).Ofcourse,todothisweneedanestimate ofthetypicalmagnitudeof h.Wegetthisfromawell-knownformulathatrelatesthe gravitational-waveluminosity(theenergyradiatedperunittime)tothestrain h

where G isNewton’sgravitationalconstant, c isthespeedoflight, d isthedistancetothe source,andthedotsrepresenttimederivatives.Thisrelationisexactfortheweakwaves thatbathetheEarth.

Supposewecharacterizeagiveneventbyatimescale τ andassumethatthesignalis monochromatic,withfrequency f .Thenwecanuse ˙ E ≈ E /τ and ˙ h ≈ 2π fh.Introducing therelevantscalesintheproblem,wefindthat

Figure1.3 Inordertoillustratetheeffectthatagravitationalwavehasonmatter,letusconsidera simplethoughtexperiment.Paintacrossonacoinandplaceitonatable.Thenwaituntila gravitationalwavepassesthroughthecoin.Somewhatsimplistically,thegravitationalwavewill alternatelystretchandsqueezethecoin(asshownintheillustration)andweshouldbeabletomonitor howthecrosschangesshapeasaresult.Ofcourse,theimpactofgravitationalwavesfromastrophysical sourcesisfartoominusculetobedetectedthisway.Nevertheless,theprinciplebehindthisexperimentis thesameasthatusedinbardetectors.(IllustrationbyO.Dean.)

wherewehavescaledthedistancetotheVirgocluster,thenearestsuperclusterofgalaxies about15Mpcawayfromus.Thiskindofscalingisnecessarytoensureareasonableevent rateformanyastrophysicalscenarios.Forexample,atthisdistanceonewouldexpectto seeseveralsupernovaeperyear,whichmeansthatonecanhopetocatchthebirthofa fewneutronstars/blackholesduringoneyearofobservation.Wehavetakentheenergy radiatedtobeathousandthoftheenergyequivalentofthemassoftheSun(M c2 ), whichwouldrepresentaverypowerfulevent,andassumedthatthetypicaltimescaleof thedynamicsthatgeneratedthegravitationalwavesisamillisecond.

Welearnthattheeffectthewaveswillhaveonaterrestrialdetectorisminuscule. Theywouldstretchaonemetrerulerbyapuny 1022 m,muchlessthanthediameter ofthenucleithatmakeuptheatomsoftheruler.Thishighlightstheseverechallenge associatedwithdetectingthiskindofsignal.Fortunately,wecandobetter.Wecandefine an‘effectiveamplitude’thatreflectsthefactthatdetailedknowledgeofthesignalcanbe usedtodigdeeperintothedetectornoise.Atypicalexampleisbasedontheuseof matchedfiltering(seeChapter8),forwhichtheeffectiveamplitudeimprovesroughlyas thesquarerootofthenumberofobservedsignalcycles, N .Thisisagoodapproximation when N islarge,sotheestimatewillbereliableforpersistentsources(likeaslowly evolvingsource)butobviouslylesssoforshortburstsassociatedwithexplosiveevents. Anyway,using N ≈ f τ wearriveat

Thisrelationshowsusthattheeffectivegravitational-wavestrain,essentiallythe ‘detectability’ofthesignal,dependsonlyontheradiatedenergyandthecharacteristic frequency.Thisallowsustoassesstherelevanceofarangeofproposedsourceswithout havingtoworkoutthedetailedsignals.

Tomakeprogressweneedabetterideaofthetypicalfrequenciesassociatedwith differentclassesofsources.Luckily,thisisstraightforward.Weonlyhavetonotethat thedynamicalfrequencyofanyself-boundsystemwithmass M andradius R canbe approximatedby

Giventhis,thenaturalfrequencyofa(non-rotating)blackhole(forwhich R = 2GM /c2 ) shouldbe

Openingthewindow immediatelysuggestingthatmedium-sizedblackholes,withmassesintherange 10100M ,shouldbeprimesourcesforground-basedinterferometerssincethe “sweetspot”ofthesedetectorstendstobelocatedaround100Hz;seeFigure1.4. Basically,theseinstrumentsareperfectlytunedtoeventslikeGW150914.Wealsosee thatneutronstars,withatypicalmassof 1.4M compressedinsidearadiusof10kmor so,wouldbeexpectedtoradiateat

Inotherwords,theyrequiredetectorsthataresensitiveathighfrequencies.Thisisakey sciencetargetforfutureground-basedinstruments.

Compactobjectbinaries—involvingblackholes,neutronstars,orwhitedwarfs— provideparticularlypromisingsources.Onereasonforthisisthatthesignalstrength iscalibratedbythemasses,soitisfairlyeasytoassessthedetectability.Wehavealready seenthatthesignalfromapairofblackholeswithmassoforder 10M arewithin reachoftoday’sground-baseddetectors.Asimplescalingargumentthentellsusthat supermassiveblack-holebinaries—resultingfromgalaxymergers—radiateintheLISA frequencyband.Infact,thefrequencyrangeofthespace-basedinterferometer(down to 104 Hz)isagoodmatchtothetimescaleofmanyknownastronomicalsystems. DifferentclassesofgalacticbinarysystemsradiategravitationallyintheLISAbandand shouldleadtodetectablesignals.Themostcommonsuchsystemsare(i)binarywhite dwarfs,(ii)binariescomprisinganaccretingwhitedwarfandaheliumdonorstar,and (iii)low-massX-raybinaries.Theremaybemorethanabilliongalacticbinariesinthe LISArange.Finally,pulsartimingarraysallowustoprobeultra-lowfrequencies(nanoHz)forsignalsfromtrulygiganticblackholes.

Theseback-of-the-envelopeestimatesprovideasketchofthegravitational-wavesky. Theydonottellusthewholetruthbutservetomotivatemoredetailedthinking. Unfortunately,thenextsteptendstobedifficult,eitherinvolvingpoorlyunderstood physics(asinthecaseofneutronstars)orcomplexnonlineardynamics(asforblackholecollisions),orboth(asinthecaseofneutronstarmergersandsupernovacore collapse).Theserequirementshaveledtothedevelopmentofnumericalrelativityas ahigh-poweredtoolforastrophysicalsimulations(seeChapters19and20).Atthe sametime,arangeofissuesbridgingnuclearphysics,particlephysicsandquantum fieldtheory,low-temperaturephysics,andhydrodynamicsrelevantforneutronstarsare beinginvestigated.FundamentalphysicsassociatedwiththeearlyUniverseandthedark matter/energymodelsinmoderncosmologyisalsoundervigorousscrutiny.

1.5Binaryinspiralandmerger

Beforeweturntothedetailedtheory,letussketchasetofproblemsthatprovide interestingmodellingchallenges.Theseproblems(obviously)donotprovideacomplete listinanysense.Rather,theyhavebeenselectedtoillustrateparticularaspectsand provideanideaofthebiggerpicture.

Binaryinspiralandmerger 11

Itisnaturaltostartwithinspirallingbinaries.Longbeforethefirstdetectionof gravitationalwaves,compactbinariesprovidedconvincing—althoughindirect—support forEinstein’stheory.DetailedmonitoringofthefamousBinaryPulsarPSRB1913+16, discoveredindatafromtheAreciboradiotelescopein1974(HulseandTaylor,1975), andthemorerecentlyfound(andmorerelativistic)DoublePulsarPSRJ0737-3039 (Lyne etal.,2004),providesclearevidenceoforbitsdecayingataratethatagreeswith thepredictionsofgeneralrelativity.

However,incontrasttoNewtoniangravity,thetwo-bodyproblemremains‘unsolved’ ingeneralrelativity.GiventhelackofsuitablesolutionstotheEinsteinfieldequations, significantefforthasgoneintodevelopingapproximationsandnumericalapproachesto theproblem.Fortheinspiralphaseofabinarysystem,thepost-Newtonianexpansion (essentiallyalow-velocityexpansion;seeChapter11)isparticularlyuseful.Withinthe post-Newtonianscheme,theleadingorderradiationeffectsaredescribedbytheso-called quadrupoleformula,accordingtowhichthegravitational-wavestrainfollowsfromthe secondtimederivativeofthesource’squadrupolemoment

where xi isthepositionvectorand ρ isthemassdensity.Ifweconsiderthesimplesituation oftwo(effectively)pointmasseswithmass M separatedbyadistance a (seeChapter5 foradetaileddiscussion),thenweseethat

Thegravitational-wavestrainfollowsfrom

where d isthedistancetothesourceandwehaveusedthefrequencyforaKeplerian orbit f ∼ M /a3

Asthesystememitsgravitationalwaves,itlosesenergyandtheorbitshrinks.From (1.3) weseethat

Balancingtherateofenergylosstotheorbitalenergy, E

a,wearriveatan evolutionarytimescaleforthedecay

Assumingthatthistimescaleisshorterthantheobservationtime(whichobviouslymeans thatweareconsideringthefinalstagesbeforemerger),wecanuse (1.6) toestimatethe effectiveamplitudeofthebinarysignal

Thisestimateshowsthat,eventhoughtherawsignalgetsstrongerasthefrequency chirps uptowardsitscut-offvalueatplungeandmerger,thedetectabilitydecreasesastheorbit shrinks.Hence,weneedtomakesureourdetectorsaresensitiveatlowfrequencies, wherethebinarysystemspendsmoretime.Thisis,however,problematicdueto gravitygradientnoise(earthquakes,humanactivity,clouds,younameit ... )belowa fewhertz.

Ground-baseddetectorsshould(eventually)beabletotrackaneutronstarbinaryasit evolvesallthewayfromafewhertzthroughtocoalescence,radiatingaround 104 cycles intheprocess.Inprinciple,onecanenhancethedetectabilitybyroughlyafactorof100 ifonecanfollowthesignalthroughtheentireevolution(withoutlosingasinglecycle ofthewave-train).Thisinfluencesdetectordesign.Italsomotivatesthedevelopmentof high-orderpost-Newtonianapproximationstothewaveforms(especiallythephase),as wellasfine-tunedsignalanalysisalgorithms(seeChapter8).

Theestimatedinspiraltime, tD ,tellsusthatanybinarysystemwhichisobservable fromthegroundwillcoalescewithinhours.Statisticsbasedontheknownradiopulsar population(seeChapter9)thentellsusthattheseeventsshouldhappenlessregularly thanonceevery 105 yrsinourGalaxy.Hence,weneedtodetecteventsfromavolume ofspacecontainingatleast 106 galaxiesinordertoseeafewsuchmergerseveryyear. Translatingthisintodistance,usingourunderstandingofthemassdistributioninthe Universe,welearnthatadetectormustbesensitiveenoughtoseecoalescingbinaries beyondafewhundredmegaparsecinorderfortheeventratetobereasonable.

Thisexplainswhy,firstofall,itwouldhavebeensurprisingtofindabinarysignalin initialLIGOdata.Giveneventhemostoptimisticrateestimatefrompopulationsynthesis models,sucheventswouldbeextremelyrareintheobservablevolumeofspace.The situationisdrasticallydifferentgivenAdvancedLIGOlevelsensitivitysoitis(perhaps) notsurprisingthatthefirstdetectioncameimmediatelyafterthedetectorupgradein 2015.Itmayhavebeenasurprisethatthefirstobservedsignalcamefrommergingblack holes,butgivenourignoranceabouttheblack-holebinarypopulation(withsomemodels suggestingtheyshouldnotformatallandothersstatingtheywouldbeplentiful)thismay beoverstatingthecase.

Third-generationdetectorsmaystillberequiredifwewanttoconsiderpopulation statistics.Theyarealsolikelytobeneededifwewanttostudythefinalstagesof neutron-starbinaryinspiral,includingthemerger.Thisisaveryinterestingphaseof theevolutionsincethemergerwillleadtotheformationofahotcompactremnantwith violentdynamics(seeChapter20),generatingarelativelyhigh-frequencygravitationalwavesignalthatshouldberichininformation.Inparticular,itmaytelluswhethera

massiveneutronstarorablackholewasformed.Asneutronstarsaremagnetized,the mergermayalsotriggeragamma-rayburst.Asaroughrule-of-thumb,iftheinspiral phaseisobservablewithAdvancedLIGOthentheEinsteinTelescopeshouldbeable todetectthemerger(Andersson etal.,2011).Inotherwords,thedevelopmentofthirdgenerationdetectorsislikelytobeessentialifwewanttostudytheseevents.Inparallel, weneedtoimproveourmodelsofthemergerphase.Thisrequiresnonlinearsimulations infullgeneralrelativity,accountingforthecomplexphysicsassociatedwithahighdensity/extremelyhotremnant.Realisticmodelsneedtoincludemagneticfieldsand accountforenergylossduetoneutrinoemission.Progressisbeingmadetowardsthis goal,butmanychallengesremain.

Thesituationisquitedifferentforblack-holebinaries.Thelastdecadehasseen abreakthroughinnumericalrelativity,tothepointwheretheproblemofinspiralling andmergingblackholesisconsidered‘solved’(seeChapter19).Thisprogresswasof immenseimportanceasitprovidedexperimenterswithreliabletemplatesthatcouldbe usedtodevelopoptimaldataanalysisstrategies,impressivelydemonstratedinthecase ofGW150914.Sinceablack-holebinaryshouldbemoremassivethanonecomprising neutronstars,itwillleadtoastrongergravitational-wavesignal.Thismeansthatwe expecttoseemoredistantblack-holebinaries,ultimatelyreachingouttocosmological distanceswithinstrumentsliketheEinsteinTelescopeandLISA.

Detailedcalculationsshowthat,inthecaseofunequalmassestheleadingordersignal dependsonlyontheso-called‘chirp-mass’;thecombination M = μ3/5 M 2/5 where μ is thereducedmassand M thetotalmass.Ifoneobservesthedecayoftheorbitaswell asthegravitational-waveamplitude,thenonecaninferthechirpmassandthedistance tothesource.Thismeansthatcoalescingbinariesare‘standardsirens’whichmaybe usedtoinfertheHubbleconstantandothercosmologicalparameters(seeChapter22). Byextractinghigher-orderpost-Newtoniantermsonecanhopetoinfertheindividual masses,thespinsandmaybealsoputconstraintsonthegravitonmass(thespeedofthe wavescomparedtothespeedoflight).

InthecaseofLISA,onewouldexpecttobeabletoobservemergersofsupermassive blackholeswithveryhighsignal-to-noiseratio(several1,000s;seeFigure1.4).This meansthatonemaybeabletoseesucheventsnomatterwheretheyoccurinthe Universe.Theinformationgainedfromsuchobservationswillshedlightontheevolution ofthesegiganticblackholes,viaasequenceofmergersoraccretion,andimproveour understandingofthedevelopmentoflarge-scalestructuresintheUniverse.

AnotherkeyproblemforLISAconcernsthecaptureofsmallerbodiesbylargeblack holes.Aspace-baseddetectorshouldbeabletodetectmanysuchevents.Theirdetailed signatureprovidesinformationaboutthenatureofthespacetimeinthevicinityofthe blackhole.Tomodelthesesystemsis,however,farfromtrivial,inparticularsince theorbitsmaybehighlyeccentric.Themainchallengeconcernsthecalculationof theeffectsofradiationreactiononthesmallerbody(seeChapter16).Inadditionto accountingforthegravitationalself-forceandtheradiationreaction,onemustdevelop acomputationallyefficientschemeformodellingactualorbits.Thisisnoteasy,butat leastweknowwhatthekeyissuesare.

Figure1.4 Comparingthetypicalgravitational-wavestrainforvariousclassesofbinarysystemsto thesensitivityofcurrentandfuturedetectors(showingdimensionlesscharacteristicstrainamplitudeas functionoffrequency).Thecurrentground-baseddetectors,AdvancedLIGOandVirgo,aresensitive above10Hz.Thirdgenerationinstruments(liketheEinsteinTelescope,notshown)areexpectedto improvethesensitivitybyanorderofmagnitudeacrossasimilarfrequencyrange.Thespace-based interferometerLISA(Amaro-Seoaneetal.,2017)willbeasupremeinstrumentfordetectingsignalsfrom massiveblackholesintherange 104 107 M .Thereisalsoexpectedtobeapopulationofextreme mass-ratioinspiralsarisingfromthegravitationalcaptureofsmallerobjectsbysupermassiveblackholes. Themostmassiveblack-holebinariesintheUniverse,radiatingatnanohertzfrequencies,maybe detectableviapulsartimingarrays.Inspirallingblackholeswithmass 109 1010 M leadtotoa stochasticlow-frequencybackgroundwithafewindividual,loudsources.(FigureprovidedbyA.Sesana.)

1.6Supernovae

Atthispointawordofcautionisinorder.Ourexpectationsarenotalwaysbroughtout bymoredetailedmodelling.Sometimesthedevilisinthedetailandourintuitionfalters. Forexample,onemightexpectapparentlypowerfuleventslikesupernovaexplosionsand theensuinggravitationalcollapsetoleadtoverystronggravitational-wavesignals.This was,indeed,firstthoughttobethecase(Thorne,1979).However,theoutcomedepends entirelyontheasymmetryofthecollapseprocess.Thatthisisthecaseisclearfrom (1.11).Thedifferencebetweentheinitialandthefinalstatedoesnotmatter.Itistheroute

Spinningneutronstars 15 thesystemtakes—howitevolves—thatdeterminesthestrengthofthegravitational-wave signal.Unfortunately,numericalsimulationssuggestthatthelevelofradiationfromcore collapseeventsislow.Typicalresultssuggestthatanenergyequivalentto ∼ 107 M c2 (orless!)willberadiated(seeChapter20).

Combiningthisanticipatedlevelofenergyreleasewiththetypicaldynamicaltimescale foracollapsingcompactcore,aroundamillisecond(frequency ∼1kHz),weseefrom Eq.(1.5)thatthegravitational-waveamplitudemaybeontheorderof hc ∼ 1022 for asourceintheVirgocluster.Thisestimate(whichaccordsreasonablywellwithfull numericalsimulations)suggeststhatthesesourcesareunlikelytobedetectablebeyond thelocalgroupofgalaxies.Thiswouldmakeobservableeventsrare.Itisexpected thatonlythreetofoursupernovaewillgooffeverycenturyinatypicalgalaxysowe wouldbeveryluckytoseeoneinourGalaxygivenonlyadecadeorsoofobservation. However,asinglestand-outeventcouldprovidegreatinsightintosupernovaphysics. Thegravitationalwavescarryuniqueinformationandthedetailedsignaturemayallowus todistinguishbetweendifferentproposedexplosionmechanisms.Whiletheopticalsignal emergeshours,andtheneutrinoburstseveralsecondsafterthecollapse,thegravitational wavesaregeneratedduringthecollapseitself.Asaresult,theycarryacleansignatureof thecollapsedynamics.Thisinformationmaybeimpossibletoextractinanyotherway.

1.7Spinningneutronstars

Whenthedustsettlesfromthesupernovaeventweareleftwithacompactremnant,either aneutronstarorablackhole.Aswehavealreadyseen,bothsetsofobjectsarerelevant tothegravitational-wavephysicist.Blackholesinvolveextremespacetimecurvature,and allowustoprobestrongfieldaspectsofEinstein’stheory,whileneutronstarsarecosmic laboratoriesofexcitingphysicsthatcannotbetestedbyterrestrialexperiments.With amassofmorethanthatoftheSuncompressedinsidearadiusofabout10km,their densityreachesbeyondthatoftheatomicnucleus(∼ 1014 g/cm3 ).Wealreadyhave awealthofdatafromradio,X-ray,andgamma-rayobservations,providingevidence ofanincrediblyrichphenomenology.Weknowthatneutronstarsappearinmany differentguises,fromradiopulsarsandmagnetarstoaccretingmillisecondpulsars,radio transients,andintermittentpulsars.Ourmodelsforthesesystemsremainsomewhat basic,despite40yearsofobservationsandattemptstounderstandthephysicsofthe pulsaremissionmechanism,glitches,andtheevolutionofaccretingsystems.

Importantly,neutronstarscanradiategravitationallythroughanumberofdifferent mechanisms.Relevantscenariosincludethebinaryinspiralandmergerthatwehave alreadydiscussed,rotatingstarswithdeformedelasticcrusts(Chapter14),various modesofoscillation,andarangeofassociatedinstabilities(Chapter13).Modelling thesedifferentscenariosisnoteasysincethephysicsofneutronstarsisfarfrom wellknown.Tomakeprogresswemustcombinesupranuclearphysics(theelusive equationofstate)withmagnetohydrodynamics,thecrustelasticity,adescriptionof superfluids/superconductors,andpotentiallyalsoexoticphasesofmatterinvolvinga

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Download full Gravitational-wave astronomy: exploring the dark side of the universe nils andersson e by Education Libraries - Issuu