Download Complete Concepts of elementary particle physics first edition peskin PDF for All Chapters

Page 1


Concepts of elementary particle physics First Edition Peskin

Visit to download the full and correct content document: https://ebookmass.com/product/concepts-of-elementary-particle-physics-first-edition-p eskin/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Concepts of Elementary Particle Physics Michael E. Peskin

https://ebookmass.com/product/concepts-of-elementary-particlephysics-michael-e-peskin/

Elementary Particle Physics John Iliopoulos

https://ebookmass.com/product/elementary-particle-physics-johniliopoulos/

Elementary Particle Physics -The Standard Theory J. Iliopoulos And T.N. Tomaras

https://ebookmass.com/product/elementary-particle-physics-thestandard-theory-j-iliopoulos-and-t-n-tomaras/

A Modern Primer in Particle and Nuclear Physics

Francesco Terranova

https://ebookmass.com/product/a-modern-primer-in-particle-andnuclear-physics-francesco-terranova/

Mathematical physics in theoretical chemistry First Edition Blinder S.M.

https://ebookmass.com/product/mathematical-physics-intheoretical-chemistry-first-edition-blinder-s-m/

Moving particle semi-implicit method: a meshfree particle method for fluid dynamics Kondo

https://ebookmass.com/product/moving-particle-semi-implicitmethod-a-meshfree-particle-method-for-fluid-dynamics-kondo/

Universal Gravitation (Concepts and Problems in Physics Book 10) Sanjay Kumar

https://ebookmass.com/product/universal-gravitation-concepts-andproblems-in-physics-book-10-sanjay-kumar/

eTextbook Elementary Statistics 13th Edition

https://ebookmass.com/product/etextbook-elementarystatistics-13th-edition/

Elementary Statistics (13th Edition ) 13th Edition

https://ebookmass.com/product/elementary-statistics-13thedition-13th-edition/

Conceptsof ElementaryParticlePhysics

(versionofDecember4,2017)

Preface

Thisisatextbookofelementaryparticlephysics,intendedforstudents whohaveasecureknowledgeofspecialrelativityandhavecompleted anundergraduatecourseinquantummechanics.

Particlephysicshasnowreachedtheendofamajorstageinitsdevelopment.Theprimaryforcesthatactwithintheatomicnucleus,the strongandweakinteractions,nowhaveafundamentaldescription,with equationsthataresimilarinformtoMaxwell’sequations.Theseforces arethussummarizedinacompactmathematicaldescription,calledthe StandardModelofparticlephysics.ThepurposeofthisbookistoexplainwhattheStandardModelisandhowitsvariousingredientsare requiredbytheresultsofelementaryparticleexperiments.

Increasingly,thereisagapbetweenthestudyofelementaryparticles andotherareasofphysicalscience.Whileotherareasofphysicsseemto applydirectlytomaterialsscience,modernelectronics,andevenbiology, particlephysicsdescribesanincreasinglyremoteregimeofverysmall distances.Physicistsinotherareasareputoffbythesheersizeand expenseofelementaryparticleexperiments,andbytheesoterictermsby whichparticlephysicistsexplainthemselves.Particlephysicsisbound upwithrelativisticquantumfieldtheory,ahighlytechnicalsubject,and thisaddstothedifficultyofunderstandingit.

Still,thereismuchtoappreciateinparticlephysicsifitcanbemade accessible.Particlephysicscontainsideasofgreatbeauty.Itreveals someofthemostdeepandsurprisingideasinphysicsthroughdirect connectionsbetweentheoryandexperimentalresults.Inthistextbook, IattempttopresentparticlephysicsandtheStandardModelinaway thatbringsthekeyideasforward.Ihopethatitwillgivestudentsan entrywayintothissubject,andwillhelpothersgainabetterunderstandingoftheintellectualvalueofourrecentdiscoveries.

Thepresentationofelementaryparticlephysicsinthisbookhasbeen shapedbymanyyearsofdiscussionwithexperimentalandtheoretical physicists.Particlephysicistsformaglobalcommunitythatbringstogethermanydifferentpointsofviewanddifferentnationalstyles.This diversityhasbeenakeysourceofnewideasthathavedriventhefield forward.Ithasalsobeenasourceofintuitivepicturesthatmakeitpossibletovisualizephysicalprocessesinthedistantandabstractdomainof thesubnuclearforces.Ihavetriedtobringasmanyofthesepicturesas possibleintomydiscussionhere.Myownwayofthinkingaboutparticle physicshasbeenshapedbymyconnectionwiththegreatlaboratories atCornellUniversityandSLAC.Iamindebtedtomanycolleaguesat

vi Preface theselaboratoriesforcentralpartsofthedevelopmentgivenhere.

Thecoreofthispresentationwasdevelopedasasetoflecturesfor CERNsummerstudentsin1997;IthankLuisAlvarez-Gaum´eforthe invitationtopresenttheselectures.Ihavepresentedpartsofthismaterialatanumberofsummerschoolsandcourses,inparticular,thecourse onelementaryphysicsatthePerimeterScholarsInternationalprogram atthePerimeterInstitute.Mostrecently,Ihavepolishedthismaterial bymyteachingofthecoursePhysics152/252atStanfordUniversity.I amgratefultoPatriciaBurchatforgivingmethisopportunity,andfor muchadviceonteachingacourseatthislevel.Ithankthestudentsinall ofthesecoursefortheirpatiencewithpreliminaryversionsofthisbook andtheirattentiontoerrorstheycontained.IthankSonkeAdlung, HarrietKonishi,andtheirteamatOxfordUniversityPressfortheir interestinthisproject.IthankTimCohen,ChristopherHill,Andrew Larkoski,AaronPierce,DanielSchroeder,BruceSchumm,andAndr´e DavidTinocoforvaluablecommentsonthepresentation,andJongmin Yoonforanespeciallycarefulreadingofthemanuscript.Mostofall, IthankmycolleaguesintheSLACTheoryGroupfortheiradviceand criticismthathasbenefitedmyunderstandingofelementaryparticle physics.

MichaelE.Peskin Sunnyvale,CA November,2017

IPreliminariesandTools1

1Introduction3

2SymmetriesofSpace-Time7

2.1Relativisticparticlekinematics

2.2Naturalunits

2.3Alittletheoryofdiscretegroups

2.4Alittletheoryofcontinuousgroups

2.5Discretespace-timesymmetries

3RelativisticWaveEquations23

3.1TheKlein-Gordonequation

3.2Fieldsandparticles

3.3Maxwell’sequations

3.4TheDiracequation

3.5Relativisticnormalizationofstates

3.6Spinandstatistics

4TheHydrogenAtomandPositronium39

4.1Theidealhydrogenatom

4.2Finestructureandhyperfinestructure

4.3Positronium

5TheQuarkModel49

5.1Thediscoveryofhadrons

5.2Charmonium

5.3Thelightmesons

5.4Theheavymesons

5.5Thebaryons

6DetectorsofElementaryParticles71

6.1Energylossbyionization

6.2Electromagneticshowers

6.3Furthereffectsofnuclearscattering

6.4Energylossthroughmacroscopicpropertiesofthemedium

7ToolsforCalculation89

IITheStrongInteraction103

8Electron-PositronAnnihilation105

9DeepInelasticElectronScattering121

10TheGluon141

11QuantumChromodynamics161

12PartonsandJets179

12.2Thestructureofjets 183 Exercises 188

13QCDatHadronColliders191

13.1Hadronscatteringatlowmomentumtransfer 191

13.2Hadronscatteringatlargemomentumtransfer 197

13.3Jetstructureobservablesforhadroncollisions 201

13.4Thewidthofajetinhadron-hadroncollisions 203

13.5Productionofthetopquark 205 Exercises 207

14ChiralSymmetry209

14.1SymmetriesofQCDwithzeroquarkmasses 209

14.2Spontaneoussymmetrybreaking 211

14.3Goldstonebosons 215

14.4Propertiesof π mesonsasGoldstonebosons 216 Exercises 220

IIITheWeakInteraction223

15TheCurrent-CurrentModeloftheWeakInteraction225

15.1DevelopmentoftheV Atheoryoftheweakinteraction 226

15.2PredictionsoftheV Atheoryforleptons 227

15.3PredictionsoftheV Atheoryforpiondecay 235

15.4PredictionsoftheV Atheoryforneutrinoscattering 237 Exercises 240

16GaugeTheorieswithSpontaneousSymmetryBreaking243

16.1Fieldequationsforamassivephoton 243

16.2Modelfieldequationswithanon-Abeliangaugesymmetry 245

16.3TheGlashow-Salam-Weinbergelectroweakmodel 247

16.4Theneutralcurrentweakinteraction 251 Exercises 255

17TheWandZBosons257

17.1Propertiesofthe W boson 257

17.2 W productionin pp collisions 260

17.3Propertiesofthe Z boson 262

17.4Precisiontestsoftheelectroweakmodel 263 Exercises 272

18QuarkMixingAnglesandWeakDecays273

18.1TheCabibbomixingangle 273

18.2QuarkmasstermsintheStandardModel 275

18.3Discretespace-timesymmetriesandtheStandardModel 277

18.4TheStandardModelofparticlephysics 279

18.5Quarkmixingincludingheavyquarks 280 Exercises 283

20NeutrinoMassesandMixings303

20.1Neutrinomassand β decay

20.2AddingneutrinomasstotheStandardModel

20.3Measurementsofneutrinoflavormixing

21TheHiggsBoson315

21.1ConstraintsontheHiggsfieldfromtheweakinteraction

21.2ExpectedpropertiesoftheHiggsboson

21.3MeasurementsofHiggsbosonpropertiesattheLHC

DMasterformulaeforthecomputationofcrosssections andpartialwidths345

PartI

PreliminariesandTools

Introduction

Theaimofthisbookistodescribetheinteractionsofnaturethatact onelementaryparticlesatdistancesofthesizeofanatomicnucleus.

Atthistime,physicistsknowaboutfourdistinctfundamentalinteractions.Twoofthesearemacroscopic—gravityandelectromagnetism. GravityhasbeenknownsincethebeginningofhistoryandhasbeenunderstoodquantitativelysincethetimeofNewton.Electricalandmagneticphenomenahavealsobeenknownsinceancienttimes.Theunified theoryofelectromagnetismwasgivenitsdefinitiveformbyMaxwellin 1865.Throughallofthesedevelopments,therewasnosignthatthere couldbeadditionalfundmentalforces.Thesewouldappearonlywhen physicistscouldprobematteratverysmalldistances.

ThefirstevidenceforadditionalinteractionsofnaturewasBequerel’s discoveryofradioactivityin1896.In1911,Rutherforddiscoveredthat theatomconsistsofelectronssurroundingaverytiny,positivelycharged nucleus.Asphysicistslearnedmoreaboutatomicstructure,itbecame increasinglyclearthattheknownmacroscopicforcesofnaturecouldnot givethefullexplanation.Bythemiddleofthe20thcentury,experiments hadrevealedaseriesofquestionsthatcouldnotberesolvedwithoutnew particlesandinteractions.Theseincluded: Thesesimplequestionsgivethestarting pointfortheexplorationofsubnuclear physics.

• Whatisradioactivity?Whydosomeatomicnucleiemithighenergyparticles?Whatspecificreactionsareresponsible?What aretheparticlesthatareemittedinradioactivedecay?

• Whatholdstheatomicnucleustogether?Thenucleusismadeof positivelychargedprotonsandneutralneutrons.Electromagnetic forcesdestabilizethenucleus—asweseefromthefactthatheavy nucleiareunstablewithrespecttofission.Whatisthecounterbalancingattractiveforce?

• Whatareprotonsandneutronsmadeof?Theseparticleshave propertiesthatindicatethattheyarenotelementarypointlike particles.Whatgivesthemstructure?Whatkindsareparticles areinside?

Experimentsdesignedtostudytheseissuesproducedmoreconfusion beforetheyproducedmoreunderstanding.Theprotonandtheneutron turnedouttobethefirstofhundredsofparticlesinteractingthrough thenuclearforce.Theelectronturnedouttobeonlyoneofthreeapparentlypointlikeparticleswithelectricchargebutnostronginteractions. Alloftheseparticleswereobservedtointeractwithoneanotherthrough awebofnew,short-rangedinteractions.Finally,asthe1960’sturnedto

Itisimportanttorememberthetheory ofparticlephysicsmustbestudiedtogetherwiththeunderstandingofhow experimentsaredoneandhowtheirresultsareinterpreted.

the1970’s,thenewinteractionsweresortedintotwobasicforces—called thestrongandtheweakinteraction—andsimplemathematicalexpressionsfortheseforceswereconstructed.Today,physicistsrefertothese expressionscollectivelyas“theStandardModelofparticlephysics”.

Sometimes,authorsorlecturerspresentthetableofelementaryparticlesoftheStandardModelandimplythatthisisallthereistothe story.Itisnot.Thewaythattheforcesofnatureactontheelementary particlesisbeautifulandintricate.Often,thetellingdetailsofthese interactionsshowupthroughremarkableaspectsofthedatawhenwe examineelementaryparticlebehaviorexperimentally.

Theseideaselicitarelatedquestion:Ofallthewaysthatnaturecould bebuilt,howdoweknowthattheStandardModelisthecorrectone? Itseemshardlypossiblethatwecouldpindowntheexactnatureofnew fundamentalinteractionsbeyondgravityandelectromagnetism.Allof thephenomenaassociatedwiththenewforcesoccuratdistancessmaller thananatomicnucleus,andinaregimewherebothspecialrelativity andquantummechanicsplayanessentialrole.

Inthisbook,Iwillexplaintheanswerstothesequestions.Itturns outthatthenewforceshavecommonpropertiesandcanbebuiltup fromsimpleingredients.Thepresenceoftheseingredientsisrevealed bywell-chosenexperiments.Thedynamicsofthenewinteractionsbecomesmoreclearathigherenergies.Withthebenefitofhindsight,we canbeginourstudytodaybystudyingthesedynamicalingredientsin theirsimplestform,workingouttheconsequencesoftheselaws,and comparingtheresultingformulaetodatafromhighenergyaccelerator experimentsthatillustratethecorrectnessoftheseformulaeinavery directway.

Ourquestforafundamentaltheoryofnatureisfarfromcomplete. Inthefinalchapterofthebook,Iwilldiscussanumberofissuesabout fundamentalforcesforwhichwestillhavenounderstanding.Itisalso possible,asweprobemoredeeplyintothestructureofnature,thatwe willuncovernewinteractionsthatworkatevensmallerdistancesthan thosecurrentlyexplored.But,atleast,onechapterofthestory,open since1896,isnowfinished.Ihopethat,workingthroughthisbook, youwillnotonlyunderstandhowtoworkwiththeunderlyingtheories describingthestrongandweakinteractions,butalsothatyouwillbe amazedatthewealthofevidencethatsupportstheconnectionofthese theoriestotherealworld.

ThebookisorganizedintothreeParts.PartIintroducesthebasic Outlineofthebook. materialsthatwewillusetoprobethenatureofnewforcesatshort distances.PartsIIandIIIwillusethisasafoundationtobuildupthe StandardModeltheoriesofthestrongandweakinteractions. PartIbeginswithbasictheorythatunderliesthesubjectofparticle PartI physics.Evenbeforeweattempttowritetheoriesofthesubnuclear forces,weexpectthatthosetheorieswillobeythelawsofquantum mechanicsandspecialrelativity.Iwillprovidesomemethodsforusing theseimportantprinciplestomakepredictionsabouttheoutcomeof elementaryparticlecollisions.

Inaddition,Iwilldescribetheactorsinthetheoriesofstrongand weakinteractions,thebasicelementaryparticlesonwhichtheseforces act.Itturnsoutthattherearetwotypesofmatterparticlesthatare elementaryatthelevelofourcurrentunderstanding.Ofthese,onetype, the leptons,areseeninourexperimentsasindividualparticles.There aresixknownleptons.Threehaveelectriccharge:theelectron(e),the muon(µ),andthe τ lepton.Theotherthreearethe neutrinos,particles thatareelectricallyneutralandextremelyweaklyinteracting.Despite this,theevidenceforneutrinosasordinaryrelativisticsparticlesisvery persuasive;IwilldiscussthisinPartIII.

Matterparticlesoftheothertype,the quarks,arehiddenfromview. Quarksappearasconstituentsofparticlessuchasprotonsandneutrons thatinteractthroughthestronginteraction.Therearemanyknown stronglyinteractingparticles,collectivelycalled hadrons.Iwillexplain thepropertiesofthemostprominentones,andshowthattheyarenaturallyconsideredinfamilies.Ontheotherhand,noexperimenthas everseenanisolatedquark.ItisactuallyapredictionoftheStandard Modelthatquarkscanneverappearsingly.Thismakesitespecially challengingtolearntheirproperties.Onepieceofevidencethatthe descriptionofquarksintheStandardModeliscorrectisfoundfromthe factitgivesasimpleexplanationforthequantumnumbersofobserved hadronsandtheirassortmentintofamilies.Iwilldiscussthisalsoin PartI.Intheprocess,Iwillgivenamestothehadronsthatappear mostofteninexperiments,sothatwecandiscussexperimentalmethods moreconcretely.

Tounderstandexperimentalfindingsaboutelementaryparticles,we willneedtoknowatleastthebasicsofhowexperimentsonelementary particlesaredone,andwhatsortsofquantitiesdescribingtheirpropertiesaremeasureable.IwilldiscussthismaterialalsoinPartI.

PartIIbeginswithadiscussionofthemostimportantexperiments PartII thatgiveinsightintotheunderlyingcharacterofthestronginteraction. Onemightguessintuitivelythatthemostconvincingdataonthestrong interactioncomesfromthestudyofcollisionsofhadronswithother hadrons.Thatisincorrect.Theexperimentsthatweremostcrucialin understandingthenatureofstronginteractioninvolvedelectronscatteringfromprotonsandtheannihilationofelectronsandpositronsathigh energy.Thislatterprocesshasainitialstatewithnohadronsatall. IwillbeginPartIIwithadiscussionofthefeaturesoftheseprocesses athighenergy.Ouranalsyswillintroducetheconceptofthe currentcurrentinteraction,whichisanessentialpartofthephysicsofboththe strongandweakinteractions.Then,throughaseriesofargumentsthat passbackandforthbetweentheoryandexperiment,wewillexplorethe natureofhadron-hadroncollisionsathighenergy,asrevealedtodayin experimentsattheLargeHadronCollider.

ThefinalchapterofPartIIpresentsourcurrentunderstandingofthe massesofquarks.Itmightseemthatitisstraightforwardtomeasure themassofaquark,butinfactthisquestionbringsinanumberof new,subtleconcepts.Thischapterintroducestheimportantideaof

spontaneoussymmetrybreaking,andotherideasthatwillprovetobe essentialpartsofthetheoryoftheweakinteraction.

PartIIIwillpresentthedescriptionoftheweakinteraction.HereI

willbeginfromaproposalforthenatureoftheweakinteractionthatuses theconceptofthecurrent-currentinteractionthathasalreadyproven itsworthinthedescriptionofthestronginteraction.Iwillpresent somequitecounterintuitive,andevenstartling,predictionsofthattheoryandshowthattheyareactuallyreproducedbyexperiment.From thisstartingpoint,againindialoguebetweentheoryandexperiment, wewillbuildupthefulltheory.Mydiscussionwillincludetheprecision studyofthecarriersoftheweakinteraction,the W and Z bosons,and thenewestingredientsinthistheory,themassesofneutrinosandthe propertiesoftheHiggsboson.

Thisisnotacompletetextbookofelementaryparticlephysics.In general,IwillconcentrateonthesimplestapplicationsoftheStandard Model,theapplicationsthatmaketheunderlyingstructureofthemodel mostclear.MostoftheprocessesthatIwillconsiderwillbestudiedin thelimitofveryhighenergies,wherethemathematicalanalysiscanbe simplifiedasmuchaspossible.Afulldiscussionofthesubjectwould coveramorecompletelistofreactions,includingsomewhosetheoretical analysisisquitecomplex.Suchafulltreatmentofparticlephysicsis beyondthescopeofthisbook.

Inparticular,manyaspectsofthetheoryofelementaryparticlescannotbeunderstoodwithoutadeepunderstandingofquantumfieldtheory.Thisbookwillexplainthoseaspectsofquatumfieldtheorythat areabsolutelynecessaryforthepresentation,butwillomitanysophisticateddiscussionofthissubject.Afulldescriptionofthepropertiesof elementaryparticlesneedsmore.

Forstudentswhowouldliketostudyfurtherinparticlephysics,there aremanyexcellentreferenceswrittenfromdiferentandcomplementary pointsofview.Ihaveputalistofthemostusefultextsatthebeginning oftheReferences.

Aparticularlyusefulreferenceworkisthe ReviewofParticlePhysics assembledbytheParticleDataGroup(Patrignani etal. 2016).This volumecompilesthebasicpropertiesofallknownelementaryparticles andprovidesup-to-datereviewsofthemajortopicsinthissubject.All elementaryparticlemassesandotherphysicalquantitiesquotedinthis bookbutnotexplicitlyreferencedaretakenfromthesummarytables giveninthatsource.

SymmetriesofSpace-Time 2

Wedonothavecompletefreedominpostulatingnewlawsofnature.Any lawsthatwepostulateshouldbeconsistentwithwell-establishedsymmetriesandinvarianceprinciples.Ondistancescalessmallerthananatom, space-timeisinvariantwithrespecttotranslationsofspaceandtime. Space-timeisalsoinvariantwithrespecttorotationsandboosts,the symmetrytransformationsofspecialrelativity.Manyaspectsofexperimentsonelementaryparticlestesttheprinciplesofenergy-momentum conservation,rotationalinvariance,theconstancyofthespeedoflight, andthespecial-relativityrelationofmass,momentum,andenergy.So far,nodiscrepancyhasbeenseen.Soitmakessensetoapplythesepowerfulconstrantstoanyproposalforelementaryparticleinteractions. Perhapsyouconsiderthisstatementtoostrong.Asweexplorenew realmsinphysics,wemightwelldiscoverthatthebasicprinciplesapplied inmorefamiliarsettingsarenolongervalid.Intheearly20thcentury, realcrisesbroughtonbytheunderstandingofatomsandlightforced physiciststoabandonNewtonianspace-timeinfavorofthatofEinstein andMinkowski,andtoabandontheprinciplesofclassicalmechanicsin favoroftheverydifferenttoolsofquantummechanics.Bysettingrelativityandquantummechanicsasabsoluteprinciplestoberespectedin thesubnuclearworld,wearemakingaconservativechoiceoforientation.Therehavebeenmanysuggestionsofmoreradicalapproachesto formulatinglawsofelementaryparticles.Someofthesehaveevenledto newinsights:The bootstrap ofGeoffreyChew,inwhichthereisnofundamentalHamiltonian,isstillfindingnewapplicationsinquantumfield theory(Simmons-Duffin2017); stringtheory,whichradicallymodifies space-timestructure,isacandidatefortheoverallunificationofparticleinteractionswithquantumgravity(Zwiebach2004,Polchinski2005). However,themostsuccessfulroutestothetheoryofsubnuclearinteractionshavetakentranslationinvariance,specialrelativity,andstandard quantummechanicsasabsolutes.Inthisbook,Iwillmaketheassumptionthatspecialrelativityandquantummechanicsarecorrectinthe realmofelementaryparticleinteractions,andIwillusethetheirprinciplesinastrongwaytoorganizemyexplorationofelementaryparticle forces.

Thisbeingso,itwillbeusefultoformulatetheconstraintsfromspacetimesymmetriesinsuchawaythatwecanapplythemeasily.Wewould liketousetheactualtransformationlawsassociatedwiththesesymmetriesaslittleaspossible.Instead,wewouldliketoformulatequestionsin suchawaythattheanswersareexpressions invariant underspace-time

symmetries.Generally,therewillbeasmallandwell-constrainedsetof possibleinvariants.Ifwearelucky,onlyoneofthesewillbeconsistent withexperiment.

2.1Relativisticparticlekinematics

Asafirststepinsimplifyingtheuseofconstraintsfromspecialrelativity,Iwilldiscussthekinematicsofparticleinteractions.Anyisolatedparticleischaracterizedbyanenergyandavectormomentum.In specialrelativity,theseareunifiedintoa4-vector.Iwillwriteenergymomentum4-vectorsinenergyunitsandnotatethemwithanindex µ =0, 1, 2, 3, Representationoftheenergyandmomentumofaparticlein4-vectornotation.

Iwillnowreviewaspectsoftheformalismofspecialrelativity.Probablyyouhaveseentheseformulaebeforeintermsofrulers,clocks,and movingtrains.Nowwewillneedtousetheminearnest,becauseelementaryparticlecollisionsgenerallyoccuratenergiesatwhichitisessential touserelativisticformulae.

Underaboostby v alongthe 3direction,theenergy-momentum 4-vectortransformsas p → p ,with

Itisconvenienttowritethisasamatrixtransformation

Inthisbook,unlessitisexplicitlyindicatedotherwise,repeatedindicesare summedover.Thisconventionisone ofEinstein’slesser,butstillmuchappreciated,innovations.

Inmultiplyingmatricesandvectorsinthisbook,Iwillusetheconventionthatrepeatedindicesaresummedover.Then,forexample,I willwrite(2.3)as

omittingtheexplicitsummationsignfortheindex ν.Lorentztrans-

formationsleaveinvarianttheMinkowskispacevectorproduct

Tokeeptrackoftheminussigninthisproduct,Iwillmakeuseof raisedandloweredLorentzindices.Lorentztransformationspreserve themetrictensor

2.1 Relativisticparticlekinematics 9

Usingthismatrix,andthesummationconvention,wecanwrite(2.6)as

Alternatively,let q withaloweredindexbedefinedby

Thetheinvariantproductof p and q iswritten

Toformaninvariant,wealwayscombinearaisedindexwithalowered index.Astheequationsinthisbookbecomemorecomplex,wewill findthistrickveryusefulinkeepingtrackoftheMinkowskispaceminus signs.

AparticularlyimportantLorentzinvariantisthesquareofaLorentz vector,

Beinganinvariant,thisquantityisindependentofthestateofmotion oftheparticle.Intherestframe

Iwilldefinethemassofaparticleasitsrest-frameenergy

Since p2 isaninvariant,theexpression

istrueinanyframeofreference.

Inthisbook,Iwillwriteparticlemomentaintwostandardways

where

Especially,thesymbol Ep willalwaysbeusedinthisbooktorepresent thisstandardfunctionofmomentumandmass.Iwillrefertoa4-vector with E = Ep asbeing“onthemassshell”.

Toillustratetheseconventions,Iwillnowworkoutsomesimplebut importantexercisesinrelativistickinematics.Imaginethataparticleof mass M ,atrest,decaystotwolighterparticles,ofmasses m1 and m2.In thesimplestcase,bothparticleshavezeromass: m1 = m2 =0.Then, energy-momentumconservationdictatesthatthetwoparticleenergies

IwilluseraisedandloweredLorentz indicestokeeptrackoftheminus signintheMinkowskivectorproduct.Pleasepayattentiontothepositionofindices—raisedorlowered— throughoutthisbook.

ThemassofaparticleisaLorentzinvariantquantitythatcharacterizes thatparticleinanyreferenceframe.

Definitionsofthequantities Ep, β, γ associatedwithrelativisticparticlemotion.

SymmetriesofSpace-Time

areequal,withthevalue Mc2/2.Then,ifthefinalparticlesmoveinthe ˆ 3direction,wecanwritetheir4-vectorsas

Thenextcase,whichwillappearoftenintheexperimentswewill consider,isthatwith m1 nonzerobut m2 =0.Intherestframeof Thesekinematicformulaewillbeused veryofteninthisbook. theoriginalparticle,themomentaofthetwofinalparticleswillbeequal andopposite.Withalittlealgebra,onecandetermine

(formotioninthe 3direction),where

Itisalsoeasytocheckthattheseformulaestatisfytheconstraintsof totalenergy-momentumconservationandthemass-shellconstraintthat p1 satisfies(2.14).

Finally,wemightconsiderthegeneralcaseofnonzero

and m2 Here,ittakesalittlemorealgebratoarriveatthefinalformulae

with

wherethekinematic λ functionisdefinedby

Thesethreesetsofformulaeapplyequallywelltoreactionswithtwo particlesintheinitialstateandtwoparticlesinthefinalstate.Itis onlynecessarytoreplace Mc2 withthecenterofmassenergy ECM of thereaction.

2.2Naturalunits

Inthediscussionofthepreviouschapter,Ineededtointroducemany factorsof c inordertomakethetreatmentofenergy,momentum,and massmoreuniform.Thisisafactoflifeinthedescriptionofhigh energyparticles.Ideally,weshouldtakeadvantageoftheworldviewof relativitytopassseamlesslyamongtheseconcepts.Equallywell,our discussionsofparticledynamicswilltakeplaceinaregimeinwhich quantummechanicsplaysanessentialrole.Tomakethebestuseof

quantumconcepts,weshouldbeabletopasseasilybetweentheconcepts ofmomentumandwavenumber,orenergyandfrequency.

Tomakethesetransitionsmosteasily,Iwill,inthisbook,adopt naturalunits,

h = c =1 (2.24)

Thatis,Iwillmeasuremomentumandmassinenergyunits,andIwill measuredistancesandtimesininverseunitsofenergy.Forconvenience indiscussingelementaryparticlephysics,IwilltypicallyusetheenergyunitsMeVorGeV.Thiswilleliminateagreatdealofunnecessary baggagethatwewouldotherwiseneedtocarryaroundinourformulae.

Forexample,towritethemassoftheelectron,Iwillwrite not me =0.91 × 10 27gbutrather me =0.51MeV . (2.25)

Anelectronwithamomentumoftheorderofitsrestenergyhas,accordingtotheHeisenberguncertaintyprinciple,apositionuncertainty h mec =3 9 × 10 11 cm , (2.26)

whichIwillequallywellwriteas

Naturalunitsmakeitveryintuitivetoestimateenergies,lengths,and timesintheregimeofelementaryparticlephysics.Forexample,the

Naturalunitsareusefulforestimation. lighteststronglyinteractingparticle,the π meson,hasamass

Thiscorrespondstoadistance

mπc =1 4 × 10 13 cm

andatime h

Thesegive—withinafactor2orso—thesizeoftheprotonandthe lifetimesoftypicalunstablehadrons.So,theuseof mπ givesagood firstestimateofalldimensionfulstronginteractionquantities.Toobtain anestimateinthedesiredunits—MeV,cm,sec—wewoulddecorate thesimpleexpression mπ withappropriatefactorsof¯h and c andthen evaluateasabove.

Itmaymakeyouuncomfortableatfirsttodiscardfactorsof¯h and c Getusedtoit.Thatwillmakeitmucheasierforyoutoperformcalcu-

Thematerialinthisbookwillbeeasier tograspifyoumakeyourselfcomfortablewiththeuseofnaturalunits.This willbothsimplifyformulaeandsimplify manyestimatesofenergies,distances, andtimes. lationsofthesortthatwewilldointhisbook.Someusefulconversion factorsformovingbetweendistance,time,andenergyunitsaregivenin AppendixB.

SymmetriesofSpace-Time

Theintrinsicstrengthsofthebasicelementaryparticleinteractionsarenot apparentfromthesizeoftheireffect— orfromtheirnames.Hereisapreview.

Oneinterestingquantitytoputintonaturalunitsisthestrengthof theelectricchargeoftheelectronorproton.TheCoulombpotentialis giveninstandardnotationby

Grouptheoryplaysanimportantrole inelementaryparticlephysics.Especiallyifyouareuncomfortablewith mathematicalabstraction,pleaseread Sections2.3and2.4carefully.You havealreadymadeuseofgrouptheory inyourstudyofquantummechanics. Inthissections,Iintroduceterminologythatwillallowyoutoextendthis understandingtotheapplicationsdiscussedinthisbook.

Iwilluseunitsforelectromagnetisminwhichalso

ThentheCoulombpotentialreads

Since r,innaturalunits,hasthedimensionsof(energy) 1,thevalue oftheelectricchargemusthaveanforminwhichitisdimensionless. Indeed,

isadimensionlessnumber,calledthe finestructureconstant,withthe value

Therearetworemarkablethingsaboutthisequation.First,itissurprisingthatthereisadimensionlessnumber α thatcharacterizesthe strengthoftheelectromagneticinteraction.Second,thatnumberis small,signallingthattheelectromagneticinteractionisaweakinteraction.Oneofourgoalswillbetodeterminewhetherthestrongand

weaksubnuclearinteractionscanbecharacterizedinthesameway,and whethertheseinteractions—lookingbeyondtheirnames—areintrinsicallystrongorweak.Iwilldiscussestimatesofthestrongandweak interactioncouplingstrengthsatappropriatepointsinthecourse.It willturnoutthatthestronginteractionisweak,atleastwhenmeasuredunderthecorrectconditions.Itwillalsoturnoutthattheweak interactionisalsoweakindimensionlessterms.Itisweakerthanthe stronginteractions,butnotasweakaselectromagnetism.

2.3Alittletheoryofdiscretegroups

Grouptheoryisaveryimportanttoolforelementaryparticlephysics.

Inthissectionandthenext,Iwillreviewhowgrouptheoryisusedin quantummechanics,andIwilldiscusssomepropertiesofgroupthat wewillmeetinthisbook.Forthemostpart,thesesectionswillreview materialthatyouhaveseeninyourquantummechanicscourse.But, becausetherewillbemanyappealstogrouptheoryconceptsinthis book,itwillbebesttoputtheseconceptsclearlyinorder.Forthis reason,thesetwosectionswillberatherpreciseandformal.Thislevel ofprecisionwillpayoffasweusetheseideasinmanyexamples.

2.3 Alittletheoryofdiscretegroups 13

Inquantummechanics,wedealwithgroupsontwolevels.First, thereareabstractgroups.Inmathematics,a group isasetofelements G = {a,b,...} withamultiplicationlawdefined,sothat ab isdefinedand isanelementof G.Themultiplicationlawsatisfiesthethreeproperties Herearetheaxiomsthatdefinea group.

(1) Multiplicationisassociative: a(bc)=(ab)c

(2) G containsan identityelement 1suchthat,foranyelementof G, 1a = a1= a

(3) Foreach a in G,thereisanotherelement a 1 suchthat aa 1 = a 1a =1.

Everysymmetriesofnaturenormallyencounteredinphysicssatisies theseaxiomsandisdescribedbyanabstractgroup.

interestedinisdescribedbyaHamiltonian H whoseeigenvaluesgive theenergylevels.Asymmetryoftheproblemisimplementedbya unitarytransformation U.If[U ,H]=0,stateslinkedby U havethe sameenergy.

Inquantummechanics,thebasicelementsarevectors(or,quantum states)inaHilbertspace.Symmetriesconvertoneofthesestatesto anotherbyaunitarytransformation.Thephysicsproblemweare TheactionofagroupontheHilbert spaceofstatesinquantummechanicsis describedthroughunitaryrepresentationsofthegroup.Thus,unitarygroup representationswillbeusedinmanyaspectsofthephysicsdiscussedinthis book.

Todescribetheactionofagroup G inquantummechanics,weassociatewith G a representation ofthegroupintermsofunitarymatrices thatactonthisHilbertspace.Aunitaryrepresentation GR of G isa setofmatrices {Ua} suchthat,if ab = c,then UaUb = Uc bymatrix multiplication.Theabstractgroupelement1isrepresentedbytheunitarymatrix U =1.The Ua mightbematricessuchas U abovethatact onthewholeHilbertspace.Moreoften,though,weworkwithfinitedimensionalmatricesthatactonasubspaceofthefullHilbertspace.

Symmetriesthatinvolvetransformationsofspace-timecoordinates, suchasthespecialrelativitytransformationsdiscussedinSection2.1, arecalled space-timesymmetries.Wewillencounterothersymmetry transformationsthatdonotinvolvespace-time.Thesearecalled internal symmetries

Forexample,therearetwoparticles π+ and π thathaveequalmasses andequallifetimes.Wemightpostulateasymmetryoperationcalled C thattransforms

Theactionof C onthis2-dimensionalsubspaceisrepresentedbythe matrix

If[C,H]=0,thatwouldimplythatthemassesanddecayratesof π+ and π mustbeequal.OnthesameHilbertspace,wecandefinethe trivialoperation

SymmetriesofSpace-Time

Thisisrepresentedby

Thereisasimplediscretegroup Z2 withelements {1, ( 1)} andthe multiplicationlaw

Thematrices(2.39)and(2.37)formaunitaryrepresentationofthis abstractgroup,with(2.39)representing1and(2.37)representing( 1). Thisrepresentationactsasaninternalsymmetryonthetheoryof π+ and π .Itisaninterestingquestion,takenupinSection2.5,whether thissymmetrycanbeextendedtoanexactsymmetryofallofparticle physics.

Agroup G iscalled Abelian if,forall a, b in G, ab = ba.Otherwise,itis non-Abelian.AunitarityrepresentationofanAbeliangroup G consists ofunitarymatricesthatcommutewithoneanother.Thismeansthat theycanbesimultaneouslydiagonalized.Theoperationofthegroupis thenreducedtosimplenumbers.Intheexampleabove,thematrices AnAbeliangroupisdescribedbyits eigenstatesandtheireigenvalues.The eigenvaluesarepreciselywhatphysicistscallthe quantumnumbers ofa state.

Theconceptofan irreducible group representation.Manyphysicsproblems inquantummechanicsaresolvedby breakingupalargerHilbertspaceinto irreduciblerepresentationsofanappropriatesymmetrygroup.

(2.39)and(2.37)arediagonalizedinacommonbasis,andweuse C to refertotheeigenvalueofthematrixrepresenting C,

Because C 2 =1,operationtwicewiththematrix C mustgivebackthe originalstate: C C |ψ = |ψ .Thismust,inparticular,betrueforan eigenstate,sotheeigenvaluesof C canonlybe ±1.Itisconventionalto use C alsoasasymbolfortheeigenvalueof C ononeofitseigenstates. Thoughinthisusage, C isapurenumber,wedosaythatthefirststate in(2.41)has C =+1andthesecondhas C = 1.

Ifthegroup G isnon-Abelian,and GR isaunitaryrepresentationof G,itisgenerallynotpossibletosimultaneouslydiagonalizeallofthe unitarymatricesin GR.However,byachangeofbasis,wecanreduce thesematricestoacommonblock-diagonalform

wheretheblocks U1,U2,U3, areassmallaspossible.Theseminimal-

sizeunitarytransformationsrepresenting G arecalled irreducibleunitary representationsof G.Foranirreduciblerepresentation {Ui},thesizeof thematricesiscalledthe dimension di oftherepresentation.Thenotion ofirreduciblerepresentationsisprobablymorefamiliartoyouinthe contextofcontinuousgroups.Iwillputyourknowledgeoftherotation groupintothiscontextinthenextsection.

Itisastandardproblemingrouptheorytoworkoutthesetofirreduciblerepresentationsthatareinequivalentbyunitarytransformations.

Itcanbeprovedthat,foradiscretegroup G with n elements,theinequivalentunitarytransformationssatisfy

d2 i = n. (2.43)

AnexampleisgivenbythegroupofΠ3 ofpermutationsonthree elements.Wecanrepresentsuchapermutationastheresultoftransformingthesetoflabels[123]toasetoflabelsinanotherorder.With thisrepresentation,thegrouphas6elementsthatcanbewritten

{ [123] , [231] , [312] , [132] , [321] , [213] } . (2.44)

Permutationsmultiply a · b = c bycomposition,forexample, [231] [231]=[312] [132] [312]=[321] (2.45)

Thatis,applyingthetwopermutationsinorder(righttoleft)givesthe resultingpermutationasshown.

The6permutationsin(2.44)canbeassociatedwith6statesina Hilbertspace.Inthisrepresentation,therepresentationmatricesare 6 × 6matriceswithentries0and1.Itcanbeshownthatthisisa reduciblerepresentation.Itcontainstwo1-dimensionalirreduciblerepresentations.Oneoftheseisthetrivialrepresentationthatmultiplies eachelementby1.Anotheristherepresentationthatmultipliesastate by+1foranevenorcyclicpermutation—thefirstthreeelementsof (2.44)—andmultipliesastateby 1fortheanoddpermutation—the lastthreeelementsof(2.44).Thereisalsoone2-dimensionrepresentation.Thesethreeirreduciblerepresentationstogethersatisfy(2.43).

2.4Alittletheoryofcontinuousgroups

Theconceptsreviewedintheprevioussectionextendtothesituation ofgroupswithacontinoussetofelements.Importantexamplesare thebasicspace-timesymmetries:thegroupofspatialtranslations,the groupofspatialrotations,andthegroupofLorentztransformations, whichincludesrotationsandboosts.

Thegroupofspacetranslationshasthesimpleststructure.All Theactionofaspacetranslationin quantummechanicsgivesasimpleexampleofaunitaryrepresentationofan Abeliangroup. translationscommutewithoneanother.Youlearnedinquantummechanicsthattranslationsareimplementedbyunitarytransformations. Fortranslationsby a inonedimension

U (a)=exp[ iaP ] (2.46) where P istheoperatormeasuringthetotalmomentumofthesystem. Thisismademostclearbyconsideringthewavefunctionofaplane waveofmomentum p, x|p = eipx (2.47)

Inquantummechanics,everysymmetrythatleavestheHamiltonianinvariantisassociatedwithaconservedquantity.Thisfollowsfromtheconnection betweenHermitanoperatorsandunitarysymmetrytransformations.

Actingonthestate |p with(2.46),wefind x| U (a) |p = eip(x a) , (2.48)

whichisthesamewavefunctiondisplacedby a.Weexpresstherelationshipbetween U (a)and P bysayingthat P isthe generator of U (a)or thegeneratoroftranslations.

Thestatementthat P isHermitianisequivalenttothestatementthat the U (a)areunitary, U (a)† =exp[+iaP †]=exp[+iaP ]= U (a) 1 (2.49)

Then,continuousunitarytransformationsaregeneratedbyHermitian operators.Inquantummechanics,Hermitianoperatorscorrespondto observables.

Observableshavetime-independentvaluesifthecorrespondingoperatorscommutewiththeHamiltonianofthequantummechanicsproblem. Inthisexample,momentumisconservedif[P,H]=0.Throughthecorrespondence(2.46),thisstatementisexactlyequivalenttothestatement that[U (a),H]=0,thatis,thattheequationsofmotionofthesystem areinvariantundertranslations.Thisrelationiscompletelygeneral.If

Q isaHermitianoperatorontheHilbertspace,thestatementthat Q is aconservedquantity,

[Q,H]=0 (2.50) isequivalenttothestatementthat Q generatesasymmetryoftheequationsofmotion,

[UQ(a),H]=0for UQ(a)exp[ iaQ] . (2.51)

Thisisthequantum-mechanicalversionof Noether’sTheorem inclassical mechanics:Everysymmetryoftheequationsofmotionisassociated withaconservationlaw,andviceversa.

Theexpression(2.46)isaunitaryrepresentationofanabstractgroup oftranslationsalongaline.Alltranslationscommute,sothegroupis Abelian.Theeigenstatesof U (a)aretheeigenstatesof P ,thatis,states ofdefinitemomentum.Eacheigenstateof P givesaone-dimensional unitaryrepresentationofthetranslationgroup.

Anon-Abeliancontinuousgroupthatshouldbefamiliartoyouisthe rotationgroupin3dimensions.Inquantummechanics,rotationsare

Theactionofrotationsinquantummechanicsgivesanexampleoftheunitary representationofanon-Abeliangroup. implementedontheHilbertspacebytheunitaryoperators

U (α)=exp[ iα J] (2.52)

where α givestheaxisandangleoftherotationand J aretheoperatorsofangularmomentum.Theseoperatorssatisfythecommutation

Asinthepreviousexample,theconservationlawofangularmomentumis associatedwiththesymmetryofinvarianceunderrotations. relation

[J i,J j ]= i ijkJ k . (2.53)

Itcanbeshownthat,ifHermitianoperators J i satisfy(2.53),theunitary operatorsconstructedfromthemsatisfythecompositionrulesof3d rotations.Thatis,if

U (β)U (α)= U (γ) , (2.54)

2.4 Alittletheoryofcontinuousgroups 17

thentherotation γ istheonethatresultsfromrotatingfirstthrough α andthenthrough β.Theoperators J i arethusthegeneratorsof rotations.Infactthecompletestructureofthegroupofrotationsis specifiedbythecommutationrelation(2.53).

Inquantummechanics,finite-dimensionalmatrixrepresentationsof therotationgroupplayanimportantrole.Thequantumstatesofatoms areorganizedintomultipletsofdefiniteangularmomentum,forexample, the2Por3Dstatesofthehydrogenatom.Statesofdefiniteangularmomentumgivethefinite-dimensionalirreduciblematrixrepresentationsof therotationgroup.Throughthecorrespondence(2.52),sucharepresentationisgeneratedbyasetoffinite-dimensionalmatricesthatsatisfy (2.53).Thesimplestsuchrepresentationsarethetrivial,1-dimensional representation

the2-dimensionalrepresentation

where σi arethePaulisigmamatrices

andthe3-dimensionalrepresentation

Itisinstructivetocheckexplicitlythat(2.56)and(2.58)satisfy(2.53). Similarly,foreveryintegerorhalf-integervalue j,thereisasetofthree (2j +1) × (2j +1)matricessatisfyingthesecommutationrelations.This isthespin j representationoftherotationgroup.Thethreerepresentationsgivenexplicitlyherearethoseofspin0,spin 1 2 ,andspin1.

angularmomentum andspinangularmomentum s.Thisgivesaset ofstateswith(2 +1)(2s +1)elements.Thetotalangularmomentum j takesvalues

| s|≤ j ≤ ( + s) (2.59)

Oneofthestandardproblemsinatomicphysicsistodecomposea setofquantumstatesintoirreduciblerepresentationsoftherotation group.Forexample,statesofanatommaybelabelledbyorbital Thereductionofasetofstatesofan atomwithorbitalandspinangularmomenta( ,s)intostatesoftotalangularmomentum j isanexampleofthe reductionofareduciblerepresentation ofacontinuousgroup—inthiscase, therotationgroup—intoasumofirreduciblerepresentations.

Since[J,H]=0,eachvalueof j givesasetof(2j +1)stateswiththe sameenergy.InSection4.1,wewilltranslatethisgrouptheoryexercise intoastatementabouttheenergylevelsofthehydrogenatom.

Wecanconsiderthegroupofrotationsin3dimensionsasanabstract groupwhosemultiplicationlawisdefinedbythecompositionofrotations.Thisgroupiscalled SO(3).Similarly,thereisanabstractgroup ofrotationsin d dimensions,called SO(d).Thecase d =2issimple;itis

thegroupofrotationsofacircle,anAbeliangroupoftranslationsofan angle φ,with φ identifiedwith(φ +2π).Thisabstractgroupisthesame onethatwemeetwhenweconsiderthegroupofphasetransformations e iφ → e iα e iφ . (2.60)

Thisisatransformationbya1 × 1unitarymatrix,sowealsocallthis group U (1).

General n × n unitarymatricesformarepresentationofanabstract groupcalled U (n).Any n × n unitarymatrixcanbewrittenintheform of(2.46)asgeneratedbyan n × n Hermitianmatrix U =exp[ iαata] . (2.61)

Thesumover a runsoverabasisof n × n Hermitianmatrices,which contains n2 elements.Oneoftheseelementsistheunitmatrix, t0 =1 (2.62)

Definitionofthegroup SU (n). fromthesetofHermitianmatrices,weobtainanon-Abeliangroupof matriceswith n2 1generators,the n × n Hermitianmatriceswithzero trace.Thisgroupiscalled SU (n).Itisthegroupof n × n unitary matriceswithdeterminant1.

Thisequation,whichexpressesthenoncommutingnatureofthegeneratorsof aLiegroup,containsthefullinformationabouttherepresentationsandthe geometryofthegroup.

Thismatrixcommuteswithalloftheother ta.Ifweomitthiselement

For n =2,thePaulisigmamatrices(2.57)formabasisforthe2 × 2 tracelessHermitianmatrices.Thus, SO(3)and SU (2)arenamesforthe sameabstractgroup.(Mathematiciansmakeadistinctionbetweenthese groups,butthedifferencewillnotberelevanttothecalculationsdonein thistextbook.)Thisabstractgroupdescribesrotationsinthreedimensions,butitwillalsodescribesomeinternalsymmetriesofelemementary particlesthatwewillmeetinthecourseofourdiscussion.

AcontinuousgroupoftransformationsgeneratedbyHermitianmatrices,intheform(2.61),iscalleda Liegroup.Thecommutationalgebra ofthegenerators ta

[ta,tb]= if abctc (2.63) iscalledthe Liealgebra ofthegroup.Theconstants f abc arecalled the structureconstants oftheLiealgebra.Itcanbeshownthatwecan alwayschooseabasisforthe ta suchthatthestructureconstants f abc are completelyantisymmetricin[abc].Inthesamewayasfortherotation group,theLiealgebraofthegeneratorsdeterminesthemultiplication lawofthegroupelements.

Inthisbook,wewillmeetonlyspecialcasesofLiegroups,inparticular,thegroups U (1)= SO(2), SU (2)= SO(3),and SU (3).Still,these abstractpropertiesofLiegroupswillbeusefultousinunderstanding howtoapplythesegroupsinphysics.Iwillintroducesomefurther formalismofLiegroupswhenwewillneeditinChapter11.

2.5Discretespace-timesymmetries

ThesymmetriesofspecialrelativityincludethecontinuoussymmetriesofrotationsandLorentztransformations.Buttheyalsoincludetwo

distinctspace-timetransformationsthatleavethemetrictensor(2.7)invariantbutcannotbeconstructedasaproductofcontinuousrotations andboosts.Thiswillturnsouttobeanimportantissueforelementaryparticlephysics.AccordingtoNoether’stheorem,conservationof energy-momentumisequivalenttotheinvarianceoftheequationsof motionwithrespecttospace-timetranslations,andtheconservationof angularmomentumisequivalenttotheinvarianceoftheequationsof motionwithrespecttorotationsandboosts.However,thereisnofundamentalprinciplethatimpliesthatextra,discretespace-timetransformationsmustbesymmetriesoftheHamiltonianorthattheconservation ofquantitiesassociatedwiththeseextradiscretesymmetriesmustbe conserved.Thisisaseparatequestionthatinprinciplecanonlybeansweredbyexperiment.WewillseeinPartIIIthattheanswergivento thisquestionisquitesurprising.

Thetwospace-timetransformationsthatarenotpartofthecontinuousLorentzgroupare parity (P )and timereversal (T ).These Minkowskispacehastwoextraspacetimesymmetries: parity P and timereversal T space-timeoperationssatisfy

Inquantummechanics,thesetransformationsareimplementedbyoperatorswitheigenvalues ±1.Iwillalsorefertotheeigenvalueofaquantum stateasthevalue P or T forthatstate.ContinuousLorentzinvariance doesnotimplythatthesevalues P and T areconserved.However, P and T areobservedtobeconservedinelectromagnetismandatomic physics.Thestudyofenergylevelsofnucleiconfirmsthat P and T are alsoconservedbythestrongnuclearinteraction.

Parityisdefinedastheoperationon4-vectors

Arotationmatrix,forexample,

or,indeed,anymatrixthatimplementsacontinuousLorentztransformation,has detΛ=+1 , (2.67) while(2.65)isimplementedbyamatrixwithdetΛ= 1.Thus,this matrixcannotbegeneratedasaproductofcontinuousrotations.Time reversalisdefinedsimilarlyastheoperation

µ =(x 0, x)µ → ( x 0, x)µ (2.68)

Bythesamelogic,timereversalcannotbecontinuouslygenerated.

Inquantummechanics,anisolatedparticlecanalsohavean intrinsic parity.Thatis,underparity,itsquantumstateofmomentum k can Aquantumparticlecanhave intrinsic parity +1or 1.

Werefertothesetwocasesasintrinsicparity(+1)or( 1).Aparticle canalsohaveanintrinsicquantumnumberundertimereversal.

Inquantummechanics,timereversalisimplementedbyan anti-unitary operator.Inthisbook,Iwillavoiddetailedanalysisoftime-reversal propertiesasmuchaspossible.

Thereisonemorediscretetransformationthatiscloselyrelatedto thesespace-timeoperations.Aswewillseeinthenextchapter,quantum fieldtheoryimpliesthat,foreachparticleinnature,theremustexistan antiparticle withthesamemassandoppositevaluesofallconserved charges.Wecanthendefineanoperationcalled chargeconjugation (C) thatconvertseachparticletoitsantiparticleandviceversa. C then

Itisusefultoconsider chargeconjugation C asadiscretespace-timetransformationonaparwith P and T alsonaturallysatisfies

C 2 =1 . (2.70)

Quantumstatescanhaveintrinsicvaluesof C equalto+1or 1. C isobservedtobeconservedinelectromagneticandstrongnuclearreactions.

Ihavealreadyexplainedthatitisaquestionforexperimentwhether P , C,and T areconservedbyallinteractionsinnature.However,itis atheoreminquantumfieldtheorythatthecombination CPT mustbe asymmetryofallparticleinteractions.Thisstatementcanbetested experimentallyand,sofar,itholdsup.Wewilltakeuptheissueof theseparateconservationof P , C,and T inourdiscussionoftheweak interactioninPartIII.

Exercises

(2.1) Considerthedecayofaparticleofmass M ,at rest,intotwoparticleswithmasses m1 and m2, bothnonzero.Withanappropriatechoiceofaxes, themomentumvectorsofthefinalparticlescanbe written

p1 =(E1, 0, 0,k) p2 =(E2, 0, 0, k) (2.71) with E2 1

(a) Showthat

(b) Takethelimit m2 → 0andshowthatthis reproducestheresultforthedecayintoone

massiveandonemasslessparticle,discussed inclass.

(c) Findformulaefor E1 and E2 intermsof M , m1, m2

(2.2) Usingnaturalunits,estimatethefollowingquantities:

(a) Ifthephotonhasamass,theelectricfields generatedbychargeswillfalloffexponentially atdistanceslargerthanthephotonCompton wavelength.Itispossibletoobtainlimitson thephotonmassbylookingforthiseffectin thesolarsystem.Forexample,themagnetic fieldofJupiterisfoundtobeaconventional dipolefieldouttomanytimestheradiusof

P A(k) =+ A( k) or A( k) (2.69)

theplanet.Estimatethecorrespondingupper limitonthephotonmassinMeV.

(b) Therangeoftheweakinteractionisgivenby Comptonwavelengthofthe W boson,which hasamassof80.4GeV.Estimatethislength incm.

(c) Iftheelectronisacompositeparticlewith anonzerosize,thatwillaffecttheobservedrateforelectron-electronandelectronpositronscattering.Giventhattheserates areingoodagreementwiththepredictions forpointlikeelectronsuptoacenterofmass energyof200GeV,estimatetheupperlimit onthesizeoftheelectron,incm.

(2.3) Showthatthefollowingareunitaryrepresentations ofthepermutationgroupΠ3 byverifyingthatthey satisfythemultiplicationlawofΠ3:

(a) The1-dimensionrepresentationinwhichall sixpermutationsin(2.44)arerepresentedby 1.

(b) The1-dimensionrepresentationinwhich [123],[231],and[312]arerepresentedby1 and[213],[321],and[132]arerepresentedby 1.

(c) The2-dimensionalrepresentationthatassigns

(2.5) Consideraneventinwhichanunstableparticle H decaysintotwophotons.Workintherestframe oftheunstableparticle.Thephotonsareemitted back-to-back.Takethe ˆ 3axistobealignedwith thedirectionofthephotons.Letphoton1bethe onetravellinginthe+3directionandphoton2be theonetravellingthe ˆ 3direction.

(a) Arguethatthespinof H mustbeinteger,not half-integer.

(b) Possiblepolarizationvectorsforthephoton1 are

(2.74)

Rotatethesevectorsby φ aboutthe ˆ 3axis.A stateofangularmomentum J 3 =+1getsa phase e iφ.Showthatthetwochoicescorrespondtophotonstatesofangularmomentum J 3 =+1and 1,respectively,aboutthe 3 axis.

(c) Writethecorrespondingpolarizationvectors forphoton2,byrotatingthevectorsin(1)by 180◦ about 2.Thesehave J 3 =+1, 1about thedirectionofmotionofthephoton(which isnow ˆ 3).

(d) Thewavefunctionofthe2-photonstateis thenasumoftermsoftheform

1X 2Y (2.75)

where X,Y = R,L.Therearefourpossible valuesfor(X,Y ).Foreach,computethetotal J 3 forthestate(2).Showthat,inthestates with X = R,Y = L or X = L,Y = R,the spinoftheoriginalparticle H mustbe ≥ 2.

(2.4) Thisproblemexploresthenon-Abeliannatureof theLorentzgroup.

(a) The4×4matrix B3(β)thatrepresentsaboost by β inthe 3directionisgivenby(2.3).Write thecorresponding4×4matrix B1(β)thatrepresentsaboostby β inthe ˆ 1direction.

(b) Multiply B1(β)B3(β).Showthatthisisa boostby β = β(2 β2)1/2.Findthedirection oftheboostandthecorresponding γ

(c) Writethe4 × 4matrix B(β)thatrepresents aboostby β inthedirectionfoundin(b).

(d) Multiply B(β)intothematrixfoundin(b). Showthattheresultisnot1butratherisa rotation aboutthe ˆ 2axis.Thisiscalledthe Wignerrotation

(e) Considerthestatewith X = Y = R.Show thatthisstateistransformedintoitselfbya rotationby180◦ about ˆ 2.Thesameistrue forthestate X = Y = L

(f) Iftheoriginalparticle H hasspin J anddecaystothestate X = Y = R,itmusthave beeninthestate |J0 ,with J 3 =0.How doesthisstatetransformwhenrotatedby 180◦ about 2?(Thetransformationmustbe thesameasthatofthesphericalharmonic YJ 0(θ,φ).)

(g) Concludethatanunstableparticleofspin1 maynotdecaytotwophotons.Thisresultis calledthe Landau-Yangtheorem.(Notethat invarianceunderparityhasnotbeenusedin thisargument.)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.