Electromagnetic radiation richard freeman 2024 Scribd Download

Page 1


Electromagnetic radiation Richard Freeman

Visit to download the full and correct content document: https://ebookmass.com/product/electromagnetic-radiation-richard-freeman/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Radiation Therapy Study Guide: A Radiation Therapistu2019s Review

https://ebookmass.com/product/radiation-therapy-study-guide-aradiation-therapists-review/

Electromagnetic Shielding Salvatore Celozzi

https://ebookmass.com/product/electromagnetic-shieldingsalvatore-celozzi/

Integral Equations for Real-Life Multiscale

Electromagnetic Problems (Electromagnetic Waves) Francesca Vipiana

https://ebookmass.com/product/integral-equations-for-real-lifemultiscale-electromagnetic-problems-electromagnetic-wavesfrancesca-vipiana/

Liberalism and Distributive Justice Samuel Freeman

https://ebookmass.com/product/liberalism-and-distributivejustice-samuel-freeman/

Shakespeare and Disability Studies Sonya Freeman Loftis

https://ebookmass.com/product/shakespeare-and-disability-studiessonya-freeman-loftis/

Thermal Radiation Heat Transfer, 5th Edition

https://ebookmass.com/product/thermal-radiation-heattransfer-5th-edition/

Practical Radiation Oncology Physics: A Companion to Gunderson & Tepper's Clinical Radiation Oncology, 1e Sonja Dieterich Phd

https://ebookmass.com/product/practical-radiation-oncologyphysics-a-companion-to-gunderson-teppers-clinical-radiationoncology-1e-sonja-dieterich-phd/

The Use and Abuse of Stories Mark P. Freeman

https://ebookmass.com/product/the-use-and-abuse-of-stories-markp-freeman/

Handbook of Palliative Radiation Therapy 1st Edition

https://ebookmass.com/product/handbook-of-palliative-radiationtherapy-1st-edition/

ElectromagneticRadiation

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

©RichardFreeman,JamesKing,GregoryLafyatis2019

Themoralrightsoftheauthorshavebeenasserted

FirstEditionpublishedin2019

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2018953425 ISBN978–0–19–872650–0 DOI:10.1093/oso/9780198726500.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

PartIIIElectromagnetismandSpecialRelativity

5IntroductiontoSpecialRelativity

5.1Historicalintroduction–1666to1905

5.1.1Thenatureofspaceandtime

5.1.2Thenatureoflight

5.1.3Michelson–Morleyexperiments

5.2EinsteinandtheLorentztransformation

5.2.1Einstein’sapproach

5.2.2TheLorentztransformation:covarianceamonginertialframes

5.3Theinvariantintervalandthegeometryofspace-time

5.3.1Minkowskispace-timediagrams

5.3.2Physicalconsequencesofspecialrelativity

5.4Vectorspaceconcepts

5.4.1Contravariantandcovariantvectors

5.4.2Themetrictensor

5.4.3Generationofother4-vectorsand4-tensors

5.5Someimportantgeneral4-vectors

5.5.1The4-gradientoperator

5.5.2The4-vectorvelocity

5.5.3The4-vectormomentum

5.5.4The4-vectorforce

5.6Someimportant“E&M”4-vectors

5.6.1The4-wavevector

5.6.2The4-currentdensity

5.6.3The4-potential(inLorenzGauge)

5.7Othercovariantandinvariantquantities

5.7.1Theangularmomentum4-tensor

5.7.2Space-timevolume

5.7.3Space-timedeltafunction

5.8Summaryof4-vectorresults

5.9Maxwell’sequationsandspecialrelativity

5.9.1ManifestcovarianceofMaxwell’sequations

5.9.2Theelectromagneticfieldtensor

5.9.3Simplefieldtransformationexamples

5.10TheEinsteinstress-energytensor

5.11Discussions

6.1Lienard–Wiechertpotentials

6.1.1Derivationbyintegraltransform

6.1.2Derivationbygeometricconstruction

6.2Radiationfieldsfromasinglechargeundergoingacceleration

6.3Powerradiatedfromanacceleratedcharge

6.3.1LowvelocitiesandclassicalLarmor’sformula

6.3.2Radiatedpowerforrelativisticparticles

6.4Accelerationparallelandperpendiculartovelocity

6.4.1Angulardistributionforacceleration

6.6Synchrotronradiation

6.7Fieldsfromasinglechargemovingwithconstantvelocity

6.7.1Parametrizationofthefields

6.7.2Spectralenergydensityofthefields

6.7.3Numberofphotonsassociatedwithfieldsofapassingcharge

7.3.1Equationsofmotion

7.4TheHamiltoniandensityandcanonicalstress-energytensor

7.4.1FromtheMaxwellstresstensortothe4Dstress-energytensor

7.4.2Hamiltoniandensity:the“00”canonicalstress-energytensorcomponent255

7.4.3Canonicalstress-energytensorandconservationlaws

7.4.4Canonicalelectromagneticstress-energytensor

7.4.5Symmetricelectromagneticstress-energytensor

7.4.6Angularmomentumdensityoffields

7.4.7Electromagneticstress-energytensorincludingsourceterms

8FieldReactionstoMovingCharges

8.2.2Somequalitativeargumentsfortheself-force

8.3Abraham–Lorentzformulaandtheequationsofmotion

8.3.1Theequationsofmotion

8.3.2Landau–Lifshitzapproximation

9.9.1Measuringtheopticalconstantsofamaterial

10.1.1TheDrudemodeloffreeelectrons

12.3.1Kirchhoff’sintegraltheorem

12.3.2Kirchhoff’sdiffractiontheory:boundaryconditions

12.3.3Alternateboundaryconditions:Rayleigh–Sommerfelddiffraction

12.3.4Babinet’sprinciple

12.3.5Fresnelapproximation

12.3.6Fraunhofer(far-field)diffraction

12.3.7Fresneldiffractionofrectangularslit:thenear-field

12.4.2Fourieroptics(far-field)

12.4.3Tightfocusingoffields

12.4.4Diffractionlimitsonmicroscopy

13.7.1Generalfeaturesofwaveguides

13.7.3Transmissionlinesandcoaxialcables:TEMmodes

13.8One-dimensionalopticalwaveguides:therayopticpicture

13.8.1Thethree-layerplanarwaveguide:thewavesolutionsofMaxwell’sequations553

13.8.2Fiberoptics:thestep-indexcircularwaveguide

13.8.3Higherordermodes,singlemodefibers,anddispersion

AVectorMultipoleExpansionoftheFields

A.1Vectorsphericalharmonics

A.1.1VSHexpansionofgeneralradiationfields

A.2Multipoleexpansionofelectromagneticradiation

A.2.1Non-homogeneousfieldwaveequations

A.2.2VSHexpansionofthefieldwaveequations

A.2.3Parityconsiderations

A.2.4Multipoleexpansioninasource-freeregion

A.3Multipoleradiation:energyandangularmomentum

A.3.1EnergydensityandthePoyntingvector

PartI IntroductoryFoundations

EssentialsofElectricity andMagnetism

• ReviewofMaxwell’ssteady-stateequationsinvacuum

• ModificationsofMaxwell’ssteady-stateequationsinthepresenceofmatter:electricandmagneticpolarization

• GeneralizationofMaxwell’sequationsinthepresenceoftime varyingsourcesleadingtoacausalunificationoffieldsinthe formofadditionalsources

• OriginofelectromagneticradiationdirectlyfromtimedependentMaxwell’sequationsandtheresponseofmaterials toelectromagneticradiation

• Electromagneticconservationlaws,includingelectromagneticenergy,momentumandangularmomentum

1.1Maxwell’sstaticequations invacuum

Maxwell’sequationsarethefoundationalequationsofclassicalelectromagneticphenomena.Theyarecomprisedoffour1storderlinear partialdifferentialequationsandareessentiallystatementsthatdefine theelectricandmagneticvectorfields(e.g.,specifytheirdivergence andcurl)intermsofspecificboundaryconditionsandelectriccharge andcurrentdistributions.ThemathematicaloriginsofMaxwell’s equationscanbefoundinthebasicinversesquarelawsofelectrostaticsandmagnetostatics,whichweremainlyformulatedinthelate eighteenththroughearlynineteenthcenturies,butfarfromexclusively, throughtheobservationsandworkofCoulomb,Ampere,Biot,and Savart.WhencoupledwithFaraday’sconceptofafieldandthe generalmathematicaltheoremsofGauss,Laplace,andPoisson,we begintoseetheformalmoderndescriptionofelectricandmagnetic phenomena–atleastforsteady-stateconditionsinvacuum.

ElectromagneticRadiation.RichardFreeman,JamesKing,GregoryLafyatis, OxfordUniversityPress(2019).©RichardFreeman,JamesKing,GregoryLafyatis. DOI:10.1093/oso/9780198726500.001.0001

1.1.1Electrostaticequations

TheintegralformofthelawofelectrostaticsorCoulomb’slawis:

wherethepositionvectors r and r o refertothesourceandobserver locations,respectively,and ρ isthe(static)chargedensity.Wenote fromthisequationanumberofimportantfeatures:first,thestatic electricfieldfallsoffastheinversesquareofthedistancetothe observerandisproportionaltothechargedensity;second,acontributiontothefieldat r o duetoanelementofcharge ρ (r ) dV willpoint along R = r o − r ,thedirectionfromsourcetoobserver,withapolarity dependentonthechargesign;andthird,thefield E (r o ) isalinear vectorsuperpositionofcontributionsfromchargeelementsintegrated overallspace,independentoftime.Ifwenowlookatthedivergence takenwithrespectto ro ofthisfield,

wherewehaveused ∇· ( ˆ R/R2 ) = 4πδ(R).Thisisthedifferentialform ofwhatisknownasGauss’lawandisequivalenttoCoulomb’slaw. ItisthefirstofMaxwell’sequations.Inthisform,weseethatany divergenceinthefieldislocaltoandproportionaltothechargedensity. Initsintegralform,whichcanbedirectlyobtainedfromEq.1.2using thedivergencetheorem,itstatesthattheintegralofthe E fieldover anarbitraryclosedsurfaceisequaltothechargeenclosedwithinthat surfacedividedby εo .Notingthat R/R3 =−∇ (1/R),Eq.1.1canbe rewrittenasagradient

where φ (r o ) isthescalarpotential.Becauseingeneralthecurlofa gradientvanishes,itfollowsfromEq.1.3that ∇× E (r o ) = 0 (1.4)

whichisthesecondofthetwoelectrostaticMaxwell’sequationsand statesthatelectrostaticfieldsareirrotational(curlless)everywhere. TheintegralformofEq.1.4,whichcanbedirectlyobtainedusing Stokes’stheorem,statesthatthelineintegralofthe E fieldaroundan arbitraryclosedcurveiszero,thusconfirmingitsstatusasagradient.

Becausethecurlofagradientisalwayszero,Eqs.1.2and1.4can bemorecompactlyexpressedintermsof φ as ∇ 2 φ = ρ/εo (Poisson’s equation)or ∇ 2 φ = 0(Laplace’sequation)inchargefreeregions.

1.1.2Magnetostaticequations

TheintegralformofthelawofmagnetostaticsortheBiot–Savart lawis:

where,asbefore,thedistanceanddirectionfromasourceelementto theobservationpointisrepresentedby R = r o − r butthesourceis nowadistributionofsteady-statecurrentdensityelements, J (r ) dV , eachcontributingto B (r o ) anamountproportionalto J (r ),inthe direction, J (r ) × (r o − r ),givenbytheright-handrule.Also,aswith theelectricfield,thestaticmagneticfield(duetoeachcurrentelement) fallsoffastheinversesquareofthedistance.Following,analogously, theelectrostaticdevelopmentofSection1.1.1toobtainadifferential form,weconsiderthecurlof B

which,withsomemanipulation(see Discussion1.1),canbewritten

where,again,wehaveused ∇· ( ˆ R/R2 ) = 4πδ(R).ThisisthedifferentialformofwhatisknownasAmpere’slawandisequivalenttothe Biot–Savartlaw.ItisthethirdofMaxwell’sequations.Theintegral formofEq.1.7,whichcanbedirectlyobtainedusingStokes’stheorem, statesthatthelineintegralofthe B fieldaroundanarbitraryclosed curveisequaltothecurrentenclosedbythatcurvemultipliedby μo .

ToobtainthefourthdifferentialformofMaxwell’sequationsunder steady-stateconditionsintheabsenceofmatter,wetakethedivergence ofEq.1.5toobtain1

∇· B (r o ) = 0 (1.8)

whichisthesecondofthetwomagnetostaticMaxwell’sequations andstatesthatmagnetostaticfieldsaresolenoidal(divergenceless) everywhere.TheintegralformofEq.1.8,whichcanbedirectly

1 Expandthedivergenceoftheintegrand ofEq.1.6

wherethefirsttermvanishesbecausethe J isnotafunctionoftheobservercoordinates. Forthesecondterm,weagainnotethat R R3 = −∇ 1 R andthecurlofagradientvanishes.

2 Thomson,J.J.Ontheelectricand magneticeffectsproducedbythemotion ofelectrifiedbodies. PhilosophicalMagazine,11,229–249,https://doi.org/10.1080/ 14786448108627008(1881).

3 Heaviside,Oliver.Ontheelectromagneticeffectsduetothemotionofelectrificationthroughadielectric. Philosophical Magazine 324(April1889).

4 TherelativisticformulationofEq.1.13 isthesame,withtheprovisothattheforceis relatedtothevelocityby

obtainedusingthedivergencetheorem,statesthatthesurfaceintegral ofthenormalcomponentof B fieldaroundanarbitraryclosedsurface iszero.Because B hasnodivergencevalue,itcanbewrittenasthecurl ofanotherfield, A.Thisvectorfield,knownasthe“vectorpotential”, isanalogoustothescalarpotential, φ ,encounteredinelectrostatics. So,continuingincloseanalogywithelectrostatics,wearetemptedto writeEqs.1.7and1.8intermsofasinglesecondorderdifferential equationofthepotentialsuchasthePoissonorLaplaceequations. Thus,wenotethatmuchlikewriting E as −∇ φ automaticallysatisfies ∇× E = 0andturns ∇· E = ρ/εo intothePoissonequation,writing B as ∇× A automaticallysatisfies ∇· B = 0andturns ∇× B = μo J into ∇× ∇× A =∇ ∇· A −∇ 2 A = μo J .Thisisamorecompactway ofexpressingEqs.1.7and1.8.Insummary,Maxwell’sequationsfor steadystateandintheabsenceofmatterare:

1.1.3Lorentzforce

Theeffectsofmagneticandelectricfieldsonacharge q weregiven theirmodernformbyLorentzin1892,buildingontheworkofThomson’s(1881)2 andHeaviside’s(1889)3 extrapolationsofMaxwell’s

expositionofhisequations(1865):

Thisdescriptionofthetotalforceonachargeinthepresenceof externalfields E and B hasbeensowellverifiedexperimentally,even forchargevelocitiesapproachingthespeedoflight,thatitisusedas anempiricaldefinitionof E and B atanyspace-timepointwhen q, F , v areknown.4

1.2Maxwell’sstaticequationsinmatter

Withinmatter,wheretherearechargesthatrespondtoexternalfields bymovingfreely,orchargesboundtootherchargedobjectsthat orientordisplaceinresponsetoexternalfields,Maxwell’sequations becomeexceedinglydifficulttosolveexactly.Itisusefulthen,when

workingwithfieldsinmatter,todividetheproblemconceptuallyinto microscopicandmacroscopicfieldswiththemicroscopicfields,ina sense,beingthetrueyetpracticallyintractablefieldsinalltheirgrainy detail,whilethemacroscopicfieldsarespatialandtemporalaverages ofthemicro-fieldsoverregionsandtimesthataremicroscopically largeyetmacroscopicallysmall.Inthissubsectionitwillbeshownthat theresponseofmattertoappliedfieldsgenerallyresultsinso-called “bound”sourcesofchargeandcurrentdensityandformaterialswith acomponentoffreeelectrons,anadditionalsourceof“free”current. WhilethiswillmodifythetwoinhomogenousMaxwell’sequations,it will,inthesteady-statecase,leaveunaffectedthetwohomogeneous equations.Asaconsequenceofthis,wecanimmediatelyseethat themacroscopicversionsofthetwohomogeneousequationswillbe identicaltothemicroscopicversions.Thatis,

1.2.1Responseofmaterialtofields

Polarization,eitherelectric P (r ) ormagnetic M (r ),isdefinedmacroscopicallyasdipolemomentperunitvolumeanditsexistencewithin amaterialisaresultofthelocalalignmentofatomicormolecular electric p ormagnetic m dipolemomentswithinamacroscopically smallbutmicroscopicallylargevolumeabouttheevaluationpoint, r Thisalignmentcanbepermanentlyfrozenintothematerialasinthe caseofferromagnetsandthelessoftenencounteredelectricanalogs knownaselectrets.Alignmentofdipolesresultinginpolarizationis, however,morecommonlyaresponsetothepresenceofelectricand magneticfields.Twobasictypesofdipoleresponsehavebeenfound: Eitherpre-existingdipolemomentsarerotatedintoalignmentbythe fieldsordipolemomentsareinducedbytheappliedfieldswithin thematerial.Awellknownexampleofthefirsttypeofresponseto electricfieldsoccurswithinwaterbecausethepositiveandnegative chargecentersofthe“polar”H2 Omoleculeareintrinsicallyseparate. Similarly,thepre-existingmagneticatomicdipoles(duetounpaired electrons)withinparamagneticmaterialswillalignwithanapplied magneticfield.Thesecondtypeofresponseinwhichdipolemoments areinducedoccursinallmaterialsbutismostnoticeablewithin“nonpolar”materialsdevoidofpre-existingdipoles.Aclassicalpictureof suchamaterialresponsetoanelectricfieldisthatofneutralatomswith initiallyoverlappingpositive(nuclear)andnegative(electron)charge centersthat,uponapplicationofthefield,getstretchedinopposite directionstothemechanicallimitsoftheirbonds,thusformingelectric dipolemoments.Theinductionofmagneticdipolemomentsbya

magneticfieldisknownasdiamagnetism.Inthiscase,thereisno stretchingbutrathercurrentswithinatomicormolecularstructures areinducedviaFaradayslaw(Section1.4.1)resultinginanantialignmentofthedipolestothefield.Macroscopicpolarizationinterms ofthemicroscopicelectricdipolemomentsisgivenas:

where < p (r ) > istheaverageofalltheelectricdipolemomentsin amacroscopicallysmallbutmicroscopicallylargevolumecentered atthelocation r ,and N (r ) isthenumberofsuchobjectsperunit volume.Inthecaseofmagneticallyactivematerials,whetherthereisan orientationofmagneticobjects,orinducedcurrentscenteredaround atomsormolecules,thecorrespondingexpressionisthegenerationof amacroscopicmagneticpolarizationor“magnetization”:

whereinthesameway < m (r ) > istheaveragemagneticdipole centeredatthelocation r and N (r ) isthenumberofobjectsperunit volumeatthatlocation.

Themostgeneralinstanceofmaterialresponsetoafieldisnot linear,isotropicorhomogeneousandthereforerequiresanon-linear, spatiallydependenttensorforitsmathematicaldescription.Inthe presentcase,wewillinitiallyassumeasimplermaterialthatislinear andisotropicbutnotnecessarilyhomogeneous.Inthiscase,for example,theaveragedipolemomentandthepolarizingelectricfield E p withinthematerialarerelatedbyacoefficient, α ,knownasthe polarizability:

where εo isgenerallyincludedforlaterconvenience.Combining Eq.1.17withEq.1.15givesusanexpressionforthepolarizationin termsofthepolarizingfield:

Now,itisaneasilyoverlookedbutimportantpointthatthemacroscopicappliedfieldamplitude, E ,withinthematerialisnotnecessarily theaverageamplitudeofthepolarizingfield, E p ,feltbytheatoms andmoleculesinthematter.Indeed,bothfieldamplitudesareaverage values,however,whiletheappliedfieldresultsfrommacroscopically averagedsurfaceandvolumechargedensitiesexternaltothematerial, thepolarizingfieldrefersspecificallytovolumeslocaltotheatomsand

moleculesandsoadditionallytakesintoaccountthefieldsofallnearby dipoles.Thesourceoftheseadditionallocalfieldsarerepresented intheformofboundchargesthat,alongwithboundcurrents,are discussednext.

1.2.2Boundchargesandcurrents

Thepresenceofpolarizationormagnetizationindielectricandmagneticallyactivematerialsischaracterizedbytheexistenceof“bound” chargesandcurrents.Forthecaseofpolarizedmaterial,thiscanbe shownbyconsideringthepotential atapoint r o duetoallthe electricdipolemomentswithinanon-uniformlypolarizedmaterialin avolume, V

where P (r ) dV = d p isamacroscopicallysmallbutmicroscopically largeelementofdipolemomentwithinthematerialandasusual, r is asourcepointand R = r o − r isthevectorpointingfromthesourceto theobservationpoint.Throughtheuseofintegrationbypartsandthe divergencetheorem,thisequationcanbere-expressedas5

where S isthesurfaceboundingthematerialand ˆ n istheoutward surfacenormalatpointsofintegralevaluation.Thenumeratorstimes theirrespectivedifferentialshavetheformandunitsofelementsof chargesothatweequatethemtosurfacechargeandvolumecharge densities.Thatis,

Physically,thisisnothardtovisualize.Forexample,toseethe latterequivalence,considerasmall,yetstillmacroscopicvolume withinthenon-uniformlypolarizedmaterialandinthisregionlet therebegenerallypositivedivergence.Considerjustthe x direction. Becausealargerpolarizationmeansmorepositivechargedisplaced inthepositive x directionandmorenegativechargedisplacedin thenegative x direction,apositivedivergencemeansthatmorepositivechargesarepushedoutoftherightboundingsurfacethan negativechargesarepushedoutoftheleftboundary,thusleavinga netnegativechargedensity.

andthenusethedivergencetheoremonthe firstterm.

6 Thevectorpotential,atafieldpoint ro , resultingfromasuperpositionofallthelittle magneticdipolemomentswithinavolumeis:

Bysimilarconsiderationsofthevectorpotentialatapoint r o dueto allthemagneticdipolemomentswithinanon-uniformlymagnetized materialitcanbeshownthat

Usingtheidentity

,andintegrating byparts,

whichistosaythatthecurlofthemagnetization ∇× M (r ) ina magnetizablematerialcanbeidentifiedwithareal,yetbound,current density, J b ,withinthevolumeand M (r ) ׈ n canbeidentifiedasa boundsurfacecurrentdensity, K b ,onthesurface.6

Thephysicalinterpretationofthiscanbeseenbyimagininga uniformlymagnetizedmaterialinwhicheachlittlemagneticdipole hasanassociatedcurrentloop.Becauseoftheuniformity,allthe neighboringdipolecurrentloopscancelout.However,atsurfacesnot perpendicularto M ,orequivalently,where M (r ) ׈ n = 0,thereare missingneighborsandsothereisnetboundcurrentonthesurface. Ontheotherhand,ifthemagnetizationisnotuniforminsucha waythat ∇× M (r ) = 0withinthevolume,thenthemagnitudeof M variesinadirectionperpendicularto M soneighboringdipolesdonot completelycancelandagainthereisanetcurrentinthedirectionof ∇× M (r )

1.2.3Macroscopicfields

Wehaveseenthatthepresenceofpolarizationandmagnetization withinmatterisequivalenttoadistributionof“bound”chargeand currentdensitiesasgivenby

Intermsofthetotal(freeplusbound)chargeandcurrentdensities, thetwoinhomogeneousMaxwell’sequationsinamaterialpossessing bothapolarizationandamagnetizationcannowbewritten:

wecanthendefinetwonewmacroscopicfields

D = εo E + P (1.27) H = 1 μo B M (1.28)

Sothatintermsofthesenewfields,whichrepresentthefundamental fieldspluspolarizationandmagnetizationeffectsduetothe material,thesteady-statemacroscopicMaxwell’sequationsthen simplifyto: ∇· D = ρf (1.29)

∇× E = 0 (1.30) ∇· B = 0 (1.31)

∇× H = J f (1.32)

Itisimportanttoemphasizethatwhileboth D and H haveonly thefreechargesandcurrentsassources,bothofthesequantitiesare justconvenientconstructsintroducedtopermitacompactmethod ofaccountingfortheresponseofthematerialtothefundamental fields, E and B.Itisalsoimportanttokeepinmindthatwhile P and M ,like E and B,aremacroscopicallyaveragedvectorfieldswithin matter(i.e.,theyarethesametypeofmathematicalobject),theydiffer substantiallyinthat E and B representthefundamentalfieldsinthe purestetherealsenseasenvisionedbyFaraday,while P and M are essentiallyrepresentationsofchargeandcurrentdistributionswithin matter.Fromthisperspective,wecanseetheconceptualdifference between,forexample,thetwoequations ∇· E = ρ/εo and −∇· P = ρb : Wereadthefirstequationas“acollectionofcharge(anycharge) actsasasourceoftheelectricfield”whilethesecondequationreads “acollectionofcharge(boundcharge)resultsfromadistortionof chargedistributioninamaterial”Implicitinthesestatementsisthat inthefirstcasethesourcesomehow“causes”oratleastaccompanies thefieldbutthetwothingsarenotphysicallythesamewhereasinthe secondcasethechargedistributionisequivalenttoadistortionin P Finally, D and H ,whileoftentreatedmorelikefieldsakinto E and B, arecompositevectorfieldsthatarepartpurefieldandpartmaterial response.

1.2.4PolarizabilityandSusceptibility

Earlier,inourdiscussionoftheresponseofmattertoelectricfields,we obtainedanexpression(Eq.1.18)forthepolarization P intermsof thepolarizability α andthepolarizingfield, E p .Wefurthernotedthat

thepolarizingfield, E p ,feltbytheatomsandmoleculesinthematter, wasnotgenerallyofthesameamplitudeasthemacroscopicapplied fieldamplitude, E ,withinamaterialandthiswassaidtobeduetothe specificaccounting,by E p ,offieldsfromothernearbydipoles.Ascan beimagined,thisdifferenceisdensitydependentandinfact,forthe caseofgases,thematerialistenuousenoughthatwecanapproximate E p E .However,thisisnotthecasefordenserliquidsandsolids andwewouldthereforeliketofindtherelationbetweenthesetwo fieldamplitudessowecanthenwriteanexpressionrelatingthe macroscopicappliedfieldamplitude, E ,tothepolarization P interms ofthemicroscopicpolarizability, α .Thisconstantofproportionality isknownasthe(DC)electricsusceptibility, χe = χe (α ),andcanbe seenasthemacroscopicequivalenttothemicroscopicpolarizability, α .Theelectricsusceptibilityisthusdefinedby

(r ) = εo χe

where,forexample,inthecaseofgases,thisconnectionistrivial: χe = N (r ) α (r ).Ananalogousrelationexiststhatexpressesthemagnetizationresponse, M ,ofamagneticmaterialtothemacroscopic field, H .Themagneticsusceptibility, χm ,isthussimilarlydefinedas,

Fortheelectricfieldcase,toseehowthedifferencebetweenthe appliedandpolarizingfields(E and E p )comesabout,wedivideour treatmentofthematerialintotworegions:(a)amacroscopicallysmall butmicroscopicallylargesphericalcavity,centeredonthepointin question,inwhichwemustaccountforthespecificchargeconfigurationsofthesurroundingatomsandmoleculesand(b)alltherest ofthematerialoutsidethecavitythatwecansafelytreatassmooth andmacroscopicallyaveraged.Letusexpresstherelationbetweenthe twoaveragefieldsas E p = E + E .Wefirstnotethatifregion(a)were tobetreatedlike(b),smoothandmacroscopicallyaveraged,thenwe wouldessentiallybeeliminatinganyreferencetospecificfields,which isrequiredfortheevaluationof E p ,andourresultwouldyield E = 0. So, E iswhatwegetwhenwereplacethefieldresultingfroma smoothandmacroscopicallyaveragedtreatmentofregion(a)witha moredetailedandaccuratetreatmentoftheregion.Tworesultsare important:(a)Itisawell-knownresultfromelectrostaticsinmatter7

7 Jackson,J.D., ClassicalElectrodynamics, 3rdedition,Wiley,NewYork(1999). thattheelectricfieldwithinadielectricsphereofuniformpolarization P isalsouniformandgivenby E =−P /3εo and(b)itcanbeshown thatinmateriallatticesofsufficientsymmetry,thetotalcontribution totheelectricfieldatagivenlatticepointduetoatomsatallnearby latticepoints(i.e.,withinthesmallcavityregioninourproblem)

1.2Maxwell’sstaticequationsinmatter

goestozero.8 Now,withtheadditionalassumptionsthatwithinthe

smallcavityregion(a)thepolarizationisconstantandthematerialis sufficientlysymmetric,theseresultscanbeusedtowrite E = P /3εo Thenletting

thesubstitutionofthisresultintoEq.1.18,withsomerearranging, yieldsthepolarizationintermsoftheappliedfield:

which,asmentioned,givesthemacroscopicsusceptibility (χe ) interms ofthemicroscopicpolarizabilty (α) fordensematerials.Thisisknown astheClausius–Mossottiequation.

1.2.5Thecanonicalconstitutiverelations

NotethatEqs.1.27and1.28makenoassumptionaboutwhether thepolarizationormagnetizationisfrozenintothematerialoris,for example,alinearresponsetoanappliedfield.Ifweconsiderthelatter case,thenfollowingfrom P = εo χe E oftheprevioussectionalongwith theanalogousresultof M = χm H forthemacroscopicmagnetization response,Eqs.1.27and1.28leadto9

= ε E (1.37) B = μH (1.38)

inwhich ε = ε (r ) = εo (1 + χe ) and μ = μ (r ) = μo (1 + χm ) arethe permittivityandpermeability,respectively,ofthematerial(see Discussion1.2).

1.2.6Electricfieldsandfreecharges inmaterials

Ifamaterialhasfreechargesthereisafurtherpotentialrelation betweenthefreecurrentdensitiesdiscussedbeforeandtheapplied electricfield:

J f = σ E (1.39)

where σ istheconductivityofthematerial.Theintroductionofconductivityhereisproperlya“constitutive”relation,becausetheconcept

8 Purcell,E.M.andMorin,D.J. Electricity andMagnetism,3rdedition,CambridgeUniversityPress,2013.

9 Themacroscopicderivedfieldsare givenbyEqs.1.27and1.28as

Forlinearresponses(P = εo χe E and M = χm H )toanappliedfield,thesebecome

= εo (1 + χe ) E = ε E

= μo (1 + χm ) H = μH

isinherentlymacroscopic.Theconductivity,asexpressedinEq.1.39, isarelationshipthatessentiallysaysthatinamacroscopicregionof thematerialunderconsideration,afreecurrentisassociatedwithan appliedelectricfield,andthemagnitudeofthecurrentdependsupon macroscopicparametersofthematerial,inthiscasetheresistivity ρ Formaterialswithinherentlylargeresistivity,theconductivity(σ = 1/ρ )issmallenoughthatanappliedfieldcanexistinthematerialwith noexcitationofafreecurrent.Ontheotherhand,iftheresistivityis extremelylow(inasuperconductor,e.g.,),therecanbenoequilibrium appliedfieldforthentherewouldbeextremelylargecurrentflow.This ideaisperhapsbestunderstoodbyconsideringthefreecurrenttobe theflowofindividualfreecharges.Inamaterialwithextremelylow resistivity,thefreechargeswillmovetocancelouttheappliedfield; thatis,thecurrentdescribedbyEq.1.39willbeextremelyhighuntil thefreeelectronshavearrangedthemselvestoelectrostaticallycancel theappliedfield.

1.3Energyofstaticchargeand currentconfigurations

1.3.1Electrostaticfieldenergy

Thesimpleststartingpointforthecalculationofthefieldenergy arisingfromastaticplacementofchargesistoconsideracollectionof charges, qi .Theelectrostaticenergyofthe i th chargeisgivenby

where ϕ s i = n j ϕ s ij isthesummedelectrostaticpotentialfromallthe othercharges, qj ,( j = i ),evaluatedatthepositionof qi .Thetotal energyof n assembledcharges(so-called“configurationenergy”) isthen

wherethefactorof1/2arisesinthissummationbecausewehave essentiallycountedthepotentialenergyfromeachchargepairtwice. Also,wehavebeencarefultospecifythatEq.1.40isonlytheenergy ofassemblingthecharges(relativetotheirbeinginfinitelyseparated); thatis,theenergytoassembletheindividualchargesthemselvesisnot

1.3Energyofstaticchargeandcurrentconfigurations

included.Tocalculatethetotalelectrostaticenergyofachargedistribution,weproceedformallybyrestatingEq.1.40foracontinuous chargedistribution

Ifwenotethatthechargedensityisgivenateachlocationby ρ = εo ∇· E andthattheelectricfieldwithinthevolumeisgivenateach locationby E =−∇ ϕ s c ,thenwithsomemanipulation,10 Eq.1.40can

bewritten

TomakecontactwiththeexpressioninEq.1.40,nowimaginethe continuouschargedistributiontobemadeupofalargecollection ofindividualchargesandthatatanylocationinthevolumethetotal electricfieldisgivenby11

wherethevectors E j (r ) aretheCoulombfieldsofeachindividual chargeevaluatedatthefieldpointofinterest.12 Then,Eq.1.42can

s c = E s o + E s I

wherethefirsttermdoesnotdependupontherelativepositionofthe chargesunderconsiderationandisgivenby13 :

10 Express ρ intermsof E inEq.1.41 thenusethevectoridentity ∇· E ϕ s c = E ∇ ϕ s c +∇· ϕ s c E andthen ∇ ϕ s c =−E ; usethedivergencetheoremandnotethatthe productoftheelectricfieldandthepotential tendstozerofasterthan1/R2

12 Hereandinwhatfollows,thenumber ofindividualchargesisconsideredtobeso verylargesothattheideaofanapproximate continuouschargedistributionisreasonable. bewritten

whilethesecondonedoes,andisgivenby:

whichclearlyvanishesfor j = i .Wecananalyze E s I furtherbyusing therelation

11 ThisargumentfollowsthatofPanofsky andPhillips(Panofsky,W.K.H.andPhillips, M., ClassicalElectricityandMagnetism.2nd edition,Addison-Wesley,1962.).

13 Ifthesumofthefields,Eq.1.43,is insertedintoEq.1.42,wehave

whichcanbeseparatedintoasuminwhich

where ϕ s j (r ) isthepotentialatthefieldpointofinterestduetothe j th charge.ThenEq.1.45canbewritten14

Nowthevolumeisoccupiedbypointcharges, ρ(r ) = i qi δ(r − r i ) so that ∇· Ei (r ) = (qi /εo )δ(r − r i ).InsertingthisintoEq.1.46andusing thedivergencetheoremwhilenotingthattheproductofthefieldtimes thepotentialgoestozerofasterthan R 2 ,yields

Ifwenotethat

s ij ,thentheportionofthe electrostaticenergythatdependsuponthearrangementofthefinite pointchargesexpressedintermsofthefieldsinEq.1.42isgivenby

whichisinagreementwiththe“configurationenergy”wenotedin Eq.1.40.Themeaningofthisresultisthatwhenthetotalelectrostatic energyofacollectionofchargesiscalculatedbythesumofthe electrostaticfieldenergies,thereisatermthatdoesnotdependonthe relativepositionsandonethatdoes.Theonethatdoesisexactlyequal totheenergywewouldhavecalculatedbyassumingtheenergywas containedinthechargesastheyarebroughttogether.Theportionof theelectrostaticenergycalculatedinEq.1.44isevidentlytheenergy associatedwithcreatingthefinitechargesthemselves.Itisnotpossible todetermineinanymeaningfulmannerwhethertheelectrostatic energyis“inthefields”or“inherentinthecharges.”

1.3.2Magneticfieldenergy

Inthissection,wewillshowthatinthesamewaytheelectrostatic energyofasystemofchargescanberepresentedasavolumeintegral oftheproductofchargedensityandelectricpotential(Eq.1.41), themagneticenergyofasystemofcurrentscanberepresented byavolumeintegralofthescalarproductofcurrentdensityand thevectorpotential.Inthecaseofcurrents,unlikeforchargesand electrostaticenergy,thereversibleworkofassemblingthesystemdoes

notincludebringingthecomponentsinfrominfinity.Rather,thefinal magneticenergyofthesystemcanbeobtainedbystartingataninitial situationinwhichallthecurrentsarezeroandrampinguptothefinal systemvalues.

Aswesaw,forasystemofchargesthepotentialatthelocationof charge i duetoalltheotherchargesis φ s i = n j φ s ij where ϕ s ij islinearly proportionaltothevalueofcharge qj .Likewise,forasystemofcurrent loops,themagneticfluxpassingthroughthe i th currentloopdueto alltheotherloopsis φ s i = n j φ s ij where φ s ij islinearlyproportionalto currentinthe j th loop, Ij .Ifthe j th currentincreasesby dIj intime dt , thentheassociatedfluxthroughthe i th currentloopincreasesanda backemf, Vij =−d φ s ij /dt ,isinducedbyFaraday’slawofinduction.To maintainthecurrentduringthistime,theexternalsourcemustthen provideanequalandoppositeemf, Vij .Ifanamountofcharge dqi haspassedthroughthesourceduringthistimethentheworkdone bytheexternalsourceforthe i th currentloopasaresultofacurrent changeinthe j th loopis,

dWij =−Vij dqi = Ii d φ s ij

Andifthecurrentsarenowallincreasedtotheirfinalvaluesandwe sumover j allthefluxcontributionstothe i th currentloop,wefind thatthemagneticenergyofthe i th currentloopisgivenby

B s i = n j Wij = Ii φ s i

where φ s i = n j φ s ij isthemagneticfluxduetoalltheothercurrents, Ij , (j = i ),passingthroughthecurrentloopof Ii .Thetotalenergyofthe n fullyenergizedcurrentloopsisthen

B s i = 1 2 n i Ii φ s i (1.47)

where,again,thefactorof1/2arisesinthissummationbecausewe haveessentiallycountedtheenergyfromeachcurrentpairtwice. Tocalculatethetotalmagneticenergyofacurrentdistribution,we proceedbyrewritingthetotalfluxinthe i th loop, φ s i ,intermsofthe vectorpotential A (r i ) = Ai .Weknowthat

φ s i = S ∇× Ai d a = C Ai d s

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Electromagnetic radiation richard freeman 2024 Scribd Download by Education Libraries - Issuu