Concepts of elementary particle physics michael e. peskin download pdf

Page 1


Concepts of Elementary Particle Physics Michael E. Peskin

Visit to download the full and correct content document: https://ebookmass.com/product/concepts-of-elementary-particle-physics-michael-e-pe skin/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Concepts of elementary particle physics First Edition

Peskin

https://ebookmass.com/product/concepts-of-elementary-particlephysics-first-edition-peskin/

Elementary Particle Physics John Iliopoulos

https://ebookmass.com/product/elementary-particle-physics-johniliopoulos/

Elementary Particle Physics -The Standard Theory J. Iliopoulos And T.N. Tomaras

https://ebookmass.com/product/elementary-particle-physics-thestandard-theory-j-iliopoulos-and-t-n-tomaras/

A Modern Primer in Particle and Nuclear Physics

Francesco Terranova

https://ebookmass.com/product/a-modern-primer-in-particle-andnuclear-physics-francesco-terranova/

Physics and Technology of Sustainable Energy E. L. Wolf

https://ebookmass.com/product/physics-and-technology-ofsustainable-energy-e-l-wolf/

Concepts Of Chemical Dependency 10th Edition Edition

Harold E. Doweiko

https://ebookmass.com/product/concepts-of-chemicaldependency-10th-edition-edition-harold-e-doweiko/

Management of Information Security 6th Edition

Michael E. Whitman

https://ebookmass.com/product/management-of-informationsecurity-6th-edition-michael-e-whitman/

Principles of Information Security 7th Edition

Michael E. Whitman

https://ebookmass.com/product/principles-of-informationsecurity-7th-edition-michael-e-whitman/

Moving particle semi-implicit method: a meshfree particle method for fluid dynamics Kondo

https://ebookmass.com/product/moving-particle-semi-implicitmethod-a-meshfree-particle-method-for-fluid-dynamics-kondo/

OXFORDMASTERSERIESINPHYSICS

TheOxfordMasterSeriesisdesignedforfinalyearundergraduateandbeginninggraduatestudentsinphysicsand relateddisciplines.Ithasbeendrivenbyaperceivedgapintheliteraturetoday.Whilebasicundergraduatephysics textsoftenshowlittleornoconnectionwiththehugeexplosionofresearchoverthelasttwodecades,moreadvanced andspecializedtextstendtoberatherdauntingforstudents.Inthisseries,alltopicsandtheirconsequencesare treatedatasimplelevel,whilepointerstorecentdevelopmentsareprovidedatvariousstages.Theemphasisison clearphysicalprincipleslikesymmetry,quantummechanics,andelectromagnetismwhichunderliethewholeof physics.Atthesametime,thesubjectsarerelatedtorealmeasurementsandtotheexperimentaltechniquesand devicescurrentlyusedbyphysicistsinacademeandindustry.Booksinthisseriesarewrittenascoursebooks,and includeampletutorialmaterial,examples,illustrations,revisionpoints,andproblemsets.Theycanlikewisebeused aspreparationforstudentsstartingadoctorateinphysicsandrelatedfields,orforrecentgraduatesstartingresearch inoneofthesefieldsinindustry.

CONDENSEDMATTERPHYSICS

1.M.T.Dove: Structureanddynamics:anatomicviewofmaterials

2.J.Singleton: Bandtheoryandelectronicpropertiesofsolids

3.A.M.Fox: Opticalpropertiesofsolids,secondedition

4.S.J.Blundell: Magnetismincondensedmatter

5.J.F.Annett: Superconductivity,superfluids,andcondensates

6.R.A.L.Jones: Softcondensedmatter

17.S.Tautz: Surfacesofcondensedmatter

18.H.Bruus: Theoreticalmicrofluidics

19.C.L.Dennis,J.F.Gregg: Theartofspintronics:anintroduction

21.T.T.Heikkila: Thephysicsofnanoelectronics:transportandfluctuationphenomenaatlowtemperatures

22.M.Geoghegan,G.Hadziioannou: Polymerelectronics

25.R.Soto: Kinetictheoryandtransportphenomena

ATOMIC,OPTICAL,ANDLASERPHYSICS

7.C.J.Foot: Atomicphysics

8.G.A.Brooker: Modernclassicaloptics

9.S.M.Hooker,C.E.Webb: Laserphysics

15.A.M.Fox: Quantumoptics:anintroduction

16.S.M.Barnett: Quantuminformation

23.P.Blood: Quantumconfinedlaserdevices

PARTICLEPHYSICS,ASTROPHYSICS,ANDCOSMOLOGY

10.D.H.Perkins: Particleastrophysics,secondedition

11.Ta-PeiCheng: Relativity,gravitationandcosmology,secondedition

24.G.Barr,R.Devenish,R.Walczak,T.Weidberg: ParticlephysicsintheLHCera

STATISTICAL,COMPUTATIONAL,ANDTHEORETICALPHYSICS

12.M.Maggiore: Amodernintroductiontoquantumfieldtheory

13.W.Krauth: Statisticalmechanics:algorithmsandcomputations

14.J.P.Sethna: Statisticalmechanics:entropy,orderparameters,andcomplexity

20.S.N.Dorogovtsev: Lecturesoncomplexnetworks

Conceptsof ElementaryParticlePhysics

(versionofApril2,2019) CLARENDONPRESS . OXFORD

Preface

Thisisatextbookofelementaryparticlephysics,intendedforstudents whohaveasecureknowledgeofspecialrelativityandhavecompleted anundergraduatecourseinquantummechanics.

Particlephysicshasnowreachedtheendofamajorstageinitsdevelopment.Theprimaryforcesthatactwithintheatomicnucleus,the strongandweakinteractions,nowhaveafundamentaldescription,with equationsthataresimilarinformtoMaxwell’sequations.Theseforces aresummarizedinacompactmathematicaldescription,calledtheStandardModelofparticlephysics.Thepurposeofthisbookistoexplain whattheStandardModelisandhowitsvariousingredientsarerequired bytheresultsofelementaryparticleexperiments.

Increasingly,thereisagapbetweenthestudyofelementaryparticles andotherareasofphysicalscience.Whileotherareasofphysicsseemto applydirectlytomaterialsscience,modernelectronics,andevenbiology, particlephysicsdescribesanincreasinglyremoteregimeofverysmall distances.Physicistsinotherareasareputoffbythesheersizeand expenseofelementaryparticleexperiments,andbytheesoterictermsby whichparticlephysicistsexplainthemselves.Particlephysicsisbound upwithrelativisticquantumfieldtheory,ahighlytechnicalsubject,and thisaddstothedifficultyofunderstandingit.

Still,thereismuchtoappreciateinparticlephysicsifitcanbemade accessible.Particlephysicscontainsideasofgreatbeauty.Itreveals someofthemostdeepandsurprisingideasinphysicsthroughdirect connectionsbetweentheoryandexperimentalresults.Inthistextbook, IattempttopresentparticlephysicsandtheStandardModelinaway thatbringsthekeyideasforward.Ihopethatitwillgivestudentsan entrywayintothissubject,andwillhelpothersgainabetterunderstandingoftheintellectualvalueofourrecentdiscoveries.

Thepresentationofelementaryparticlephysicsinthisbookhasbeen shapedbymanyyearsofdiscussionwithexperimentalandtheoretical physicists.Particlephysicistsformaglobalcommunitythatbringstogethermanydifferentpointsofviewanddifferentnationalstyles.This diversityhasbeenakeysourceofnewideasthathavedriventhefield forward.Ithasalsobeenasourceofintuitivepicturesthatmakeitpossibletovisualizephysicalprocessesinthedistantandabstractdomainof thesubnuclearforces.Ihavetriedtobringasmanyofthesepicturesas possibleintomydiscussionhere.Myownwayofthinkingaboutparticle physicshasbeenshapedbymyconnectionwiththegreatlaboratories atCornellUniversityandSLAC.Iamindebtedtomanycolleaguesat

theselaboratoriesforcentralpartsofthedevelopmentgivenhere.

Ihavebeenremindedoftenduringthewritingofthisbookthatmany ofthegreatfiguresresponsiblefortheformulationoftheStandardModel havepassedontothatsymposiuminthebeyond.Inonlythepastfew years,wehavelostSidneyDrell,MartinPerl,RichardTaylor,Kenneth Wilson,and,mostrecently,BurtonRichter.Allofthesepeopleinfluencedmepersonallyandprofoundlyaffectedmythinkingaboutparticle physics.Itisachallengeforuswhofollowthemnotonlytofinishtheir workbutalsotoopennewchaptersinthedevelopmentoffundamental physics.Ihopethatthisbookwillprovideusefulbackgroundforthose whowishtodoso.

Thecoreofthispresentationwasdevelopedasasetoflecturesfor CERNsummerstudentsin1997;IthankLuisAlvarez-Gaum´eforthe invitationtopresenttheselectures.Ihavepresentedpartsofthismaterialatanumberofsummerschoolsandcourses,inparticular,thecourse onelementaryphysicsatthePerimeterScholarsInternationalprogram atthePerimeterInstitute.Mostrecently,Ihavepolishedthismaterial bymyteachingofthecoursePhysics152/252atStanfordUniversity.I amgratefultoPatriciaBurchatforgivingmethisopportunity,andfor muchadviceonteachingacourseatthislevel.Ithankthestudentsin allofthesecoursesfortheirpatiencewithpreliminaryversionsofthis bookandtheirattentiontoerrorstheycontained.IthankSonkeAdlung,HarrietKonishi,SalMoore,andtheirteamatOxfordUniversity Pressfortheirinterestinthisproject.IthankTimCohen,SergeDendas,ChristopherHill,SunghoonJung,AndrewLarkoski,AaronPierce, DanielSchroeder,BruceSchumm,andAndr´eDavidTinocoforvaluable commentsonthepresentation,andJongminYoonforanespeciallycarefulreadingofthemanuscript.Mostofall,Ithankmycolleaguesinthe SLACTheoryGroupfortheiradviceandcriticismthathasbenefited myunderstandingofelementaryparticlephysics.

MichaelE.Peskin Sunnyvale,CA August,2018

IPreliminariesandTools1

3RelativisticWaveEquations23

3.1TheKlein-Gordonequation

4TheHydrogenAtomandPositronium39

5TheQuarkModel49

5.1Thediscoveryofthehadrons

6DetectorsofElementaryParticles71

11QuantumChromodynamics165

12.2Thestructureofjets 187 Exercises 192

13QCDatHadronColliders195

13.1Hadronscatteringatlowmomentumtransfer 195 13.2Hadronscatteringatlargemomentumtransfer 200

13.3Jetstructureobservablesforhadroncollisions 205

13.4Thewidthofajetinhadron-hadroncollisions 206 13.5Productionofthetopquark 210 Exercises 212

14ChiralSymmetry215

14.1SymmetriesofQCDwithzeroquarkmasses 215 14.2Spontaneoussymmetrybreaking 217 14.3Goldstonebosons 221

14.4Propertiesof π mesonsasGoldstonebosons 222 Exercises 226

IIITheWeakInteraction229

15TheCurrent-CurrentModeloftheWeakInteraction231

15.1DevelopmentoftheV Atheoryoftheweakinteraction 232 15.2PredictionsoftheV Atheoryforleptons 233 15.3PredictionsoftheV Atheoryforpiondecay 241 15.4PredictionsoftheV Atheoryforneutrinoscattering 243 Exercises 246

16GaugeTheorieswithSpontaneousSymmetryBreaking249 16.1Fieldequationsforamassivephoton 249 16.2Modelfieldequationswithanon-Abeliangaugesymmetry 251 16.3TheGlashow-Salam-Weinbergelectroweakmodel 253 16.4Theneutralcurrentweakinteraction 258 Exercises 261

17The W and Z Bosons263

17.1Propertiesofthe W boson 263

17.2 W productionin pp collisions 266 17.3Propertiesofthe Z boson 268 17.4Precisiontestsoftheelectroweakmodel 269 Exercises 278

18QuarkMixingAnglesandWeakDecays281

18.1TheCabibbomixingangle 281

18.2QuarkandleptonmasstermsintheStandardModel 283

18.3Discretespace-timesymmetriesandtheStandardModel 285 18.4TheStandardModelofparticlephysics 287 18.5Quarkmixingincludingheavyquarks 289 Exercises 291

PartI

PreliminariesandTools

Introduction

Theaimofthisbookistodescribetheinteractionsofnaturethatact onelementaryparticlesatdistancesofthesizeofanatomicnucleus.

Atthistime,physicistsknowaboutfourdistinctfundamentalinteractions.Twoofthesearemacroscopic—gravityandelectromagnetism. GravityhasbeenknownsincethebeginningofhistoryandhasbeenunderstoodquantitativelysincethetimeofNewton.Electricalandmagneticphenomenahavealsobeenknownsinceancienttimes.Theunified theoryofelectromagnetismwasgivenitsdefinitiveformbyMaxwellin 1865.Throughallofthesedevelopments,therewasnosignthatthere couldbeadditionalfundamentalforces.Thesewouldappearonlywhen physicistscouldprobematteratverysmalldistances.

ThefirstevidenceforadditionalinteractionsofnaturewasBequerel’s discoveryofradioactivityin1896.In1911,Rutherforddiscoveredthat theatomconsistsofelectronssurroundingaverytiny,positivelycharged nucleus.Asphysicistslearnedmoreaboutatomicstructure,itbecame increasinglyclearthattheknownmacroscopicforcesofnaturecouldnot givethefullexplanation.Bythemiddleofthe20thcentury,experiments hadrevealedaseriesofquestionsthatcouldnotberesolvedwithoutnew particlesandinteractions.Theseincluded:

• Whatisradioactivity?Whydosomeatomicnucleiemithighenergyparticles?Whatspecificreactionsareresponsible?What aretheparticlesthatareemittedinradioactivedecay?

• Whatholdstheatomicnucleustogether?Thenucleusismadeof positivelychargedprotonsandneutralneutrons.Electromagnetic forcesdestabilizethenucleus—asweseefromthefactthatheavy nucleiareunstablewithrespecttofission.Whatisthecounterbalancingattractiveforce?

• Whatareprotonsandneutronsmadeof?Theseparticleshave propertiesthatindicatethattheyarenotelementarypointlike particles.Whatgivesthemstructure?Whatkindsofparticlesare inside?

Experimentsdesignedtostudytheseissuesproducedmoreconfusion beforetheyproducedmoreunderstanding.Theprotonandtheneutron turnedouttobethefirstofhundredsofparticlesinteractingthrough thenuclearforce.Theelectronturnedouttobeonlyoneofthreeapparentlypointlikeparticleswithelectricchargebutnostronginteractions. Alloftheseparticleswereobservedtointeractwithoneanotherthrough awebofnew,short-rangedinteractions.Finally,asthe1960’sturnedto

Thesesimplequestionsgivethestarting pointfortheexplorationofsubnuclear physics.

Itisimportanttorememberthetheory ofparticlephysicsmustbestudiedtogetherwiththeunderstandingofhow experimentsaredoneandhowtheirresultsareinterpreted.

the1970’s,thenewinteractionsweresortedintotwobasicforces—called thestrongandtheweakinteraction—andsimplemathematicalexpressionsfortheseforceswereconstructed.Today,physicistsrefertothese expressionscollectivelyas“theStandardModelofparticlephysics”.

Sometimes,authorsorlecturerspresentthetableofelementaryparticlesoftheStandardModelandimplythatthisisallthereistothe story.Itisnot.Thewaythattheforcesofnatureactontheelementary particlesisbeautifulandintricate.Often,thetellingdetailsofthese interactionsshowupthroughremarkableaspectsofthedatawhenwe examineelementaryparticlebehaviorexperimentally.

Theseideaselicitarelatedquestion:Ofallthewaysthatnaturecould bebuilt,howdoweknowthattheStandardModelisthecorrectone? Itseemshardlypossiblethatwecouldpindowntheexactnatureofnew fundamentalinteractionsbeyondgravityandelectromagnetism.Allof thephenomenaassociatedwiththenewforcesoccuratdistancessmaller thananatomicnucleus,andinaregimewherebothspecialrelativity andquantummechanicsplayanessentialrole.

Inthisbook,Iwillexplaintheanswerstothesequestions.Itturns outthatthenewforceshavecommonpropertiesandcanbebuiltup fromsimpleingredients.Thepresenceoftheseingredientsisrevealed bywell-chosenexperiments.Thedynamicsofthenewinteractionsbecomesmoreclearathigherenergies.Withthebenefitofhindsight,we canbeginourstudytodaybystudyingthesedynamicalingredientsin theirsimplestform,workingouttheconsequencesoftheselaws,and comparingtheresultingformulaetodatafromhighenergyaccelerator experimentsthatillustratethecorrectnessoftheseformulaeinavery directway.

Ourquestforafundamentaltheoryofnatureisfarfromcomplete. Inthefinalchapterofthebook,Iwilldiscussanumberofissuesabout fundamentalforcesforwhichwestillhavenounderstanding.Itisalso possible,asweprobemoredeeplyintothestructureofnature,thatwe willuncovernewinteractionsthatworkatevensmallerdistancesthan thosecurrentlyexplored.But,atleast,onechapterofthestory,open since1896,isnowfinished.Ihopethat,workingthroughthisbook, youwillnotonlyunderstandhowtoworkwiththeunderlyingtheories describingthestrongandweakinteractions,butalsothatyouwillbe amazedatthewealthofevidencethatsupportstheconnectionofthese theoriestotherealworld.

ThebookisorganizedintothreeParts.PartIintroducesthebasic Outlineofthebook. materialsthatwewillusetoprobethenatureofnewforcesatshort distances.PartsIIandIIIusethisasafoundationtobuildupthe StandardModeltheoriesofthestrongandweakinteractions.

PartIbeginswithbasictheorythatunderliesthesubjectofparticle

PartI physics.Evenbeforeweattempttowritetheoriesofthesubnuclear forces,weexpectthatthosetheorieswillobeythelawsofquantum mechanicsandspecialrelativity.Iwillprovidesomemethodsforusing theseimportantprinciplestomakepredictionsabouttheoutcomeof elementaryparticlecollisions.

Inaddition,Iwilldescribethetypesofmatterinthetheoriesof strongandweakinteractions,thebasicelementaryparticlesthatinteractthroughtheseforces.Itturnsoutthattherearetwotypesof matterparticlesthatareelementaryatthelevelofourcurrentunderstanding.Ofthese,onetype,the leptons,areseeninourexperimentsas individualparticles.Therearesixknownleptons.Threehaveelectric charge:theelectron(e),themuon(µ),andthe τ lepton.Theotherthree arethe neutrinos,particlesthatareelectricallyneutralandextremely weaklyinteracting.Despitethis,theevidenceforneutrinosasordinary relativisticparticlesisverypersuasive;IwilldiscussthisinPartIII.

Matterparticlesoftheothertype,the quarks,arehiddenfromview. Quarksappearasconstituentsofparticlessuchasprotonsandneutrons thatinteractthroughthestronginteraction.Therearemanyknown stronglyinteractingparticles,collectivelycalled hadrons.Iwillexplain thepropertiesofthemostprominentones,andshowthattheyarenaturallyconsideredinfamilies.Ontheotherhand,noexperimenthas everseenanisolatedquark.ItisactuallyapredictionoftheStandard Modelthatquarkscanneverappearsingly.Thismakesitespecially challengingtolearntheirproperties.Onepieceofevidencethatthe descriptionofquarksintheStandardModeliscorrectisfoundfromthe factitgivesasimpleexplanationforthequantumnumbersofobserved hadronsandtheirassortmentintofamilies.Iwilldiscussthisalsoin PartI.Intheprocess,Iwillgivenamestothehadronsthatappear mostofteninexperiments,sothatwecandiscussexperimentalmethods moreconcretely.

Inarelativisticquantumtheory,forcesarealsoassociatedwithparticlesthatcanbethoughttotransmitthem.TheStandardModelcontains fourtypesofsuchparticles.Thesearethe photon,thecarrieroftheelectromagneticinteraction,the gluon,thecarriersofthestronginteraction, the W and Z bosons,thecarriersoftheweakinteraction,andthe Higgs boson,whichplaysamoresubtlerole.Youwillhavealreadyencounteredthephotoninyourstudyofquantummechanics.Iwillintroduce thegluoninPartIIandthe W , Z,andHiggsbosonsinPartIII.

Tounderstandexperimentalfindingsaboutelementaryparticles,we willneedtoknowatleastthebasicsofhowexperimentsonelementary particlesaredone,andwhatsortsofquantitiesdescribingtheirpropertiesaremeasureable.IwilldiscussthismaterialalsoinPartI.

PartIIbeginswithadiscussionofthemostimportantexperiments PartII thatgiveinsightintotheunderlyingcharacterofthestronginteraction. Onemightguessintuitivelythatthemostconvincingdataonthestrong interactioncomesfromthestudyofcollisionsofhadronswithother hadrons.Thatisincorrect.Theexperimentsthatweremostcrucialin understandingthenatureofstronginteractioninvolvedelectronscatteringfromprotonsandtheannihilationofelectronsandpositronsathigh energy.Thislatterprocesshasainitialstatewithnohadronsatall. IwillbeginPartIIwithadiscussionofthefeaturesoftheseprocesses athighenergy.Ouranalysiswillintroducetheconceptofthe currentcurrentinteraction,whichisanessentialpartofthephysicsofboththe

strongandweakinteractions.Then,throughaseriesofargumentsthat passbackandforthbetweentheoryandexperiment,wewillexplorethe natureofhadron-hadroncollisionsathighenergy,asrevealedtodayin experimentsattheLargeHadronCollider.

ThefinalchapterofPartIIpresentsourcurrentunderstandingofthe massesofquarks.Itmightseemthatitisstraightforwardtomeasure themassofaquark,butinfactthisquestionbringsinanumberof new,subtleconcepts.Thischapterintroducestheimportantideaof spontaneoussymmetrybreaking,andotherideasthatwillprovetobe essentialpartsofthetheoryoftheweakinteraction.

PartIIIpresentsthedescriptionoftheweakinteraction.HereIwill

beginfromaproposalforthenatureoftheweakinteractionthatuses theconceptofthecurrent-currentinteractionthathasalreadyproven itsworthinthedescriptionofthestronginteraction.Iwillpresent somequitecounterintuitive,andevenstartling,predictionsofthattheoryandshowthattheyareactuallyreproducedbyexperiment.From thisstartingpoint,againindialoguebetweentheoryandexperiment, wewillbuildupthefulltheory.Mydiscussionwillincludetheprecision studyofthecarriersoftheweakinteraction,the W and Z bosons,and thenewestingredientsinthistheory,themassesofneutrinosandthe propertiesoftheHiggsboson.

Thisisnotacompletetextbookofelementaryparticlephysics.In general,IwillconcentrateonthesimplestapplicationsoftheStandard Model,theapplicationsthatmaketheunderlyingstructureofthemodel mostclear.MostoftheprocessesthatIwillconsiderwillbestudiedin thelimitofveryhighenergies,wherethemathematicalanalysiscanbe simplifiedasmuchaspossible.Afulldiscussionofthesubjectwould coveramorecompletelistofreactions,includingsomewhosetheoretical analysisisquitecomplex.Suchafulltreatmentofparticlephysicsis beyondthescopeofthisbook.

Inparticular,manyaspectsofthetheoryofelementaryparticlescannotbeunderstoodwithoutadeepunderstandingofquantumfieldtheory.Thisbookwillexplainthoseaspectsofquantumfieldtheorythat areabsolutelynecessaryforthepresentation,butwillomitanysophisticateddiscussionofthissubject.Afulldescriptionofthepropertiesof elementaryparticlesneedsmore.

Forstudentswhowouldliketostudyfurtherinparticlephysics,there aremanyexcellentreferenceswrittenfromdifferentandcomplementary pointsofview.Ihaveputalistofthemostusefultextsatthebeginning oftheReferences.

Aparticularlyusefulreferenceworkisthe ReviewofParticlePhysics assembledbytheParticleDataGroup(Patrignani etal. 2016).This volumecompilesthebasicpropertiesofallknownelementaryparticles andprovidesup-to-datereviewsofthemajortopicsinthissubject.All elementaryparticlemassesandotherphysicalquantitiesquotedinthis bookbutnotexplicitlyreferencedaretakenfromthesummarytables giveninthatsource.

SymmetriesofSpace-Time 2

Wedonothavecompletefreedominpostulatingnewlawsofnature.Any lawsthatwepostulateshouldbeconsistentwithwell-establishedsymmetriesandinvarianceprinciples.Ondistancescalessmallerthananatom, space-timeisinvariantwithrespecttotranslationsofspaceandtime. Space-timeisalsoinvariantwithrespecttorotationsandboosts,the symmetrytransformationsofspecialrelativity.Manyaspectsofexperimentsonelementaryparticlestesttheprinciplesofenergy-momentum conservation,rotationalinvariance,theconstancyofthespeedoflight, andthespecial-relativityrelationofmass,momentum,andenergy.So far,nodiscrepancyhasbeenseen.Soitmakessensetoapplythesepowerfulconstraintstoanyproposalforelementaryparticleinteractions.

Perhapsyouconsiderthisstatementtoostrong.Asweexplorenew realmsinphysics,wemightwelldiscoverthatthebasicprinciplesapplied inmorefamiliarsettingsarenolongervalid.Intheearly20thcentury, realcrisesbroughtonbytheunderstandingofatomsandlightforced physiciststoabandonNewtonianspace-timeinfavorofthatofEinstein andMinkowski,andtoabandontheprinciplesofclassicalmechanicsin favoroftheverydifferenttoolsofquantummechanics.Bysettingrelativityandquantummechanicsasabsoluteprinciplestoberespectedin thesubnuclearworld,wearemakingaconservativechoiceoforientation.Therehavebeenmanysuggestionsofmoreradicalapproachesto formulatinglawsofelementaryparticles.Someofthesehaveevenledto newinsights:The bootstrap ofGeoffreyChew,inwhichthereisnofundamentalHamiltonian,isstillfindingnewapplicationsinquantumfield theory(Simmons-Duffin2017); stringtheory,whichradicallymodifies space-timestructure,isacandidatefortheoverallunificationofparticleinteractionswithquantumgravity(Zwiebach2004,Polchinski2005). However,themostsuccessfulroutestothetheoryofsubnuclearinteractionshavetakentranslationinvariance,specialrelativity,andstandard quantummechanicsasabsolutes.Inthisbook,Iwillmaketheassumptionthatspecialrelativityandquantummechanicsarecorrectinthe realmofelementaryparticleinteractions,andIwillusetheirprinciples inastrongwaytoorganizemyexplorationofelementaryparticleforces. Thisbeingso,itwillbeusefultoformulatetheconstraintsfromspacetimesymmetriesinsuchawaythatwecanapplythemeasily.We wouldliketousetheactualtransformationlawsassociatedwiththese symmetriesaslittleaspossible.Instead,weshouldformulatequestions insuchawaythattheanswersareexpressions invariant underspacetimesymmetries.Generally,therewillbeasmallandwell-constrained

Representationoftheenergyandmomentumofaparticlein4-vectornotation.

setofpossibleinvariants.Ifwearelucky,onlyoneofthesewillbe consistentwithexperiment.

2.1Relativisticparticlekinematics

Asafirststepinsimplifyingtheuseofconstraintsfromspecialrelativity,Iwilldiscussthekinematicsofparticleinteractions.Anyisolatedparticleischaracterizedbyanenergyandavectormomentum.In specialrelativity,theseareunifiedintoa4-vector.Iwillwriteenergymomentum4-vectorsinenergyunitsandnotatethemwithanindex µ =0, 1, 2, 3,

(2.1)

Iwillnowreviewaspectsoftheformalismofspecialrelativity.Probablyyouhaveseentheseformulaebeforeintermsofrulers,clocks,and movingtrains.Nowwewillneedtousetheminearnest,becauseelementaryparticlecollisionsgenerallyoccuratenergiesatwhichitisessential touserelativisticformulae.

Underaboostby v alongthe ˆ 3direction,theenergy-momentum 4-vectortransformsas p → p ,with

Itisconvenienttowritethisasamatrixtransformation

Inthisbook,unlessitisexplicitlyindicatedotherwise,repeatedindicesare summedover.Thisconventionisone ofEinstein’slesser,butstillmuchappreciated,innovations.

Inmultiplyingmatricesandvectorsinthisbook,Iwillusetheconventionthatrepeatedindicesaresummedover.Then,forexample,I willwrite(2.3)as

omittingtheexplicitsummationsignfortheindex ν.Lorentztrans-

formationsleaveinvarianttheMinkowskispacevectorproduct

Tokeeptrackoftheminussigninthisproduct,Iwillmakeuseof raisedandloweredLorentzindices.Lorentztransformationspreserve themetrictensor

Usingthismatrix,andthesummationconvention,wecanwrite(2.6)as

Alternatively,let q withaloweredindexbedefinedby

Theinvariantproductof p and q iswritten

Toformaninvariant,wealwayscombinearaisedindexwithalowered index.Astheequationsinthisbookbecomemorecomplex,wewill findthistrickveryusefulinkeepingtrackoftheMinkowskispaceminus signs.

AparticularlyimportantLorentzinvariantisthesquareofaLorentz vector,

Beinganinvariant,thisquantityisindependentofthestateofmotion oftheparticle.Intherestframe

IwilluseraisedandloweredLorentz indicestokeeptrackoftheminus signintheMinkowskivectorproduct.Pleasepayattentiontothepositionofindices—raisedorlowered— throughoutthisbook.

Iwilldefinethemassofaparticleasitsrest-frameenergy

ThemassofaparticleisaLorentzinvariantquantitythatcharacterizes thatparticleinanyreferenceframe. (mc 2) ≡ E0 (2.13)

Since p2 isaninvariant,theexpression

istrueinanyframeofreference.

Inthisbook,Iwillwriteparticlemomentaintwostandardways pµ =(Ep,pc)µ or pµ = mc 2 γ(1,β)µ , (2.15) where

Ep = c(|p|2 +(mc)2)1/2 ,β = |p|c Ep ,γ =(1 β2)1/2 . (2.16)

Especially,thesymbol Ep willalwaysbeusedinthisbooktorepresent thisstandardfunctionofmomentumandmass.Iwillrefertoa4-vector with E = Ep asbeing“onthemassshell”.

Toillustratetheseconventions,Iwillnowworkoutsomesimplebut importantexercisesinrelativistickinematics.Imaginethataparticleof mass M ,atrest,decaystotwolighterparticles,ofmasses m1 and m2.In thesimplestcase,bothparticleshavezeromass: m1 = m2 =0.Then, energy-momentumconservationdictatesthatthetwoparticleenergies

Definitionsofthequantities Ep, β, γ associatedwithrelativisticparticlemotion.

Thesekinematicformulaewillbeused veryofteninthisbook.

areequal,withthevalue Mc2/2.Then,ifthefinalparticlesmoveinthe ˆ 3direction,wecanwritetheir4-vectorsas

Thenextcase,whichwillappearoftenintheexperimentswewill consider,isthatwith m1 nonzerobut m2 =0.Intherestframeofthe originalparticle,themomentaofthetwofinalparticleswillbeequal andopposite.Withalittlealgebra,onecandetermine

(formotioninthe ˆ 3direction),where

Itiseasytocheckthattheseformulaesatisfytheconstraintsoftotalenergy-momentumconservationandthat p

satisfiesthemass-shell constraint(2.14).

Finally,wemightconsiderthegeneralcaseofnonzero m1 and m2 Here,ittakesalittlemorealgebratoarriveatthefinalformulae

with

and

wherethekinematic λ functionisdefinedby

Thesethreesetsofformulaeapplyequallywelltoreactionswithtwo particlesintheinitialstateandtwoparticlesinthefinalstate.Itis onlynecessarytoreplace Mc2 withthecenterofmassenergy ECM of thereaction.

2.2Naturalunits

Inthediscussionofthepreviouschapter,Ineededtointroducemany factorsof c inordertomakethetreatmentofenergy,momentum,and massmoreuniform.Thisisafactoflifeinthedescriptionofhigh energyparticles.Ideally,weshouldtakeadvantageoftheworldviewof relativitytopassseamlesslyamongtheseconcepts.Equallywell,our discussionsofparticledynamicswilltakeplaceinaregimeinwhich quantummechanicsplaysanessentialrole.Tomakethebestuseof

quantumconcepts,weshouldbeabletopasseasilybetweentheconcepts ofmomentumandwavenumber,orenergyandfrequency.

Tomakethesetransitionsmosteasily,Iwill,inthisbook,adopt naturalunits, h = c =1 (2.24)

Thatis,Iwillmeasuremomentumandmassinenergyunits,andIwill measuredistancesandtimesininverseunitsofenergy.Forconvenience

Theconventionsthatdefine natural units indiscussingelementaryparticlephysics,IwilltypicallyusetheenergyunitsMeVorGeV.Thiswilleliminateagreatdealofunnecessary baggagethatwewouldotherwiseneedtocarryaroundinourformulae.

Forexample,towritethemassoftheelectron,Iwillwrite not me =0 91 × 10 27gbutrather me =0 51MeV (2.25)

Anelectronwithamomentumoftheorderofitsrestenergyhas,accordingtotheHeisenberguncertaintyprinciple,apositionuncertainty

h mec =3 9 × 10 11 cm , (2.26) whichIwillequallywellwriteas

Naturalunitsmakeitveryintuitivetoestimateenergies,lengths,and timesintheregimeofelementaryparticlephysics.Forexample,the

Naturalunitsareusefulforestimation. lighteststronglyinteractingparticle,the π meson,hasamass mπc 2 =140MeV (2.28)

Thiscorrespondstoadistance h mπc =1 4 × 10 13 cm (2.29) andatime h mπ

Thesegive—withinafactor2orso—thesizeoftheprotonandthe

Thematerialinthisbookwillbeeasier tograspifyoumakeyourselfcomfortablewiththeuseofnaturalunits.This willbothsimplifyformulaeandsimplify manyestimatesofenergies,distances, andtimes. lifetimesoftypicalunstablehadrons.So,theuseof mπ givesagood firstestimateofalldimensionfulstronginteractionquantities.Toobtain anestimateinthedesiredunits—MeV,cm,sec—wewoulddecorate thesimpleexpression mπ withappropriatefactorsof¯h and c andthen evaluateasabove.

Itmaymakeyouuncomfortableatfirsttodiscardfactorsof¯h and c. Getusedtoit.Thatwillmakeitmucheasierforyoutoperformcalculationsofthesortthatwewilldointhisbook.Someusefulconversion factorsformovingbetweendistance,time,andenergyunitsaregivenin AppendixB.

Theintrinsicstrengthsofthebasicelementaryparticleinteractionsarenot apparentfromthesizeoftheireffect— orfromtheirnames.Hereisapreview.

Oneinterestingquantitytoputintonaturalunitsisthestrengthof theelectricchargeoftheelectronorproton.TheCoulombpotentialis giveninstandardnotationby

Iwilluseunitsforelectromagnetisminwhichalso

ThentheCoulombpotentialreads

Since r,innaturalunits,hasthedimensionsof(energy) 1,thevalueof theelectricchargemusthaveaforminwhichitisdimensionless.Indeed,

isadimensionlessnumber,calledthe

,withthe value

Therearetworemarkablethingsaboutthisequation.First,itissurprisingthatthereisadimensionlessnumber α thatcharacterizesthe strengthoftheelectromagneticinteraction.Second,thatnumberis small,signallingthattheelectromagneticinteractionisaweakinteraction.Oneofthegoalsofthisbookwillbetodeterminewhetherthe

strongandweaksubnuclearinteractionscanbecharacterizedinthesame way,andwhethertheseinteractions—lookingbeyondtheirnames—are intrinsicallystrongorweak.Iwilldiscussestimatesofthestrongand weakinteractioncouplingstrengthsatappropriatepointsinthecourse. Itwillturnoutthatthestronginteractionisweak,atleastwhenmeasuredunderthecorrectconditions.Itwillalsoturnoutthattheweak Grouptheoryplaysanimportantrole inquantummechanics,andthisimportanceextendstothestudyofelementaryparticlephysics.Youhave encounteredgrouptheoryconceptsin yourquantummechanicscourse,butit islikelythatthoseargumentsdidnot makeexplicitreferencetogrouptheoryconcepts.Inparticlephysics,we leanmuchmoreheavilyongrouptheory,andsoitisbesttodiscussthese conceptsformallyandgivethemtheir propernames.Please,then,studySections2.3and2.4carefully,especially ifyouareuncomfortablewithmathematicabstraction.Withcarefulreading,youwillseethattheconceptsI describegeneralizephysicalarguments thatarealreadyfamiliartoyou.

interactionisalsoweakindimensionlessterms.Itisweakerthanthe stronginteractions,butnotasweakaselectromagnetism.

2.3Alittletheoryofdiscretegroups

Grouptheoryisaveryimportanttoolforelementaryparticlephysics. Inthissectionandthenext,Iwillreviewhowgrouptheoryisusedin quantummechanics,andIwilldiscusssomepropertiesofgroupsthat wewillmeetinthisbook.Forthemostpart,thesesectionswillreview materialthatyouhaveseeninyourquantummechanicscourse.But, becausetherewillbemanyappealstogrouptheoryconceptsinthis book,itwillbebesttoputtheseconceptsclearlyinorder.Forthis reason,thesetwosectionswillberatherpreciseandformal.Thislevel ofprecisionwillpayoffasweusetheseideasinmanyexamples.

Inquantummechanics,wedealwithgroupsontwolevels.First, thereareabstractgroups.Inmathematics,a group isasetofelements G = {a,b,...} withamultiplicationlawdefined,sothat ab isdefinedand isanelementof G.Themultiplicationlawsatisfiesthethreeproperties Herearetheaxiomsthatdefinea group.

(1) Multiplicationisassociative: a(bc)=(ab)c.

(2) G containsan identityelement 1suchthat,foranyelementof G, 1a = a1= a

(3) Foreach a in G,thereisanotherelement a 1 suchthat aa 1 = a 1a =1.

Everysymmetryofnaturenormallyencounteredinphysicssatisfiesthese axiomsandisdescribedbyanabstractgroup.

Inquantummechanics,thebasicelementsarevectors(or,quantum states)inaHilbertspace.Symmetriesconvertoneofthesestatesto anotherbyaunitarytransformation.Thephysicsproblemweare TheactionofagroupontheHilbert spaceofstatesinquantummechanicsis describedthroughunitaryrepresentationsofthegroup.Thus,unitarygroup representationswillbeusedinmanyaspectsofthephysicsdiscussedinthis book. interestedinisdescribedbyaHamiltonian H whoseeigenvaluesgive theenergylevels.Asymmetryoftheproblemisimplementedbya unitarytransformation U.If[U ,H]=0,stateslinkedby U havethe sameenergy.

ThisrelationbetweensymmetriesoftheHamiltonianandunitaryoperatorsgivesspecialimportancetothefollowingconstruction:Forany group G withelements {a},wecanfindunitarymatrices Ua thatobey themultiplicationlawofthegroup.Thatis,if a,b,c areelementsof G with ab = c,thenthecorrespondingmatricesobey UaUb = Uc (2.36)

bymatrixmultiplication.Inparticular,theunitarymatrixcorrespondingto1isthematrix 1,andtheunitarymatrixcorrespondingto a 1 isthematrix U 1 = U †.Thesetofmatrices {Ua} iscalleda unitary matrixrepresentation ofthegroup G.Thegroup G isasymmetryofthe Hamiltonian H ifthisgrouphasaunitaryrepresentation {Ua} acting ontheHilbertspacesuchthat,forall a,[Ua,H]=0.

Theseideasareeasiesttounderstandinthecontextofasmallset ofquantumstatesthatformafinite-dimensionalHilbertspace.The simplestexampleinvolvestheabstractgroupcalled Z2 thatcontains twoelements {1, 1} satisfyingthemultiplicationlaw

1 1=( 1)( 1)=11 ( 1)=( 1) 1=( 1) . (2.37)

Consider,then,aquantummechanicalsystemwithtwoparticles π+ and π .Definetheoperator C totransform Cπ+ = π,Cπ = π+ (2.38)

Theactionof C onthis2-dimensionalsubspaceisrepresentedbythe matrix

If H istheHamiltonianforthisquantum-mechanicalsystemand[C,H]= 0,thatwouldimplythatthemassesanddecayratesof π+ and π must beequal.OnthesameHilbertspace,wecandefinethetrivialoperation

Thisisrepresentedby

Theunitarymatrices {1,C} formaunitaryrepresentationofthegroup Z2.Ifthesematricescommutewith H,wesaythat H has Z2 symmetry. Wecandiscusstherelationof C to H anditseigenstateswithout makingexplicitreferencetothefactthattheunitarymatrix C represents agroup.However,usingthelanguageofgrouptheoryconnectsthis exampletoothersthatwemighthavestudied.Notallgroupsareas simpletounderstandas Z2,and,themorecomplicatedthegroup,the moreusefulthisconnectionis.

Agroup G iscalled Abelian if,forall a, b in G, ab = ba.Aunitarity representationofanAbeliangroup G consistsofunitarymatricesthat commutewithoneanother.Thismeansthattheycanbesimultaneously diagonalized.Theoperationofthegroupisthenreducedtosimple numbers.Intheexampleabove,thematrices(2.41)and(2.39)are AnAbeliangroupisdescribedbyits eigenstatesandtheireigenvalues.The eigenvaluesarepreciselywhatphysicistscallthe quantumnumbers ofa state.

diagonalizedinacommonbasis.Itisconventionaltouse C alsoasa symbolfortheeigenvalueof C ononeofitseigenstates.Inthiscase, theeigenstatesare

Because C 2 =1,operatingtwicewiththematrix C mustgivebackthe originalstate: CC |ψ = |ψ .Thismust,inparticular,betrueforan eigenstate.Thentheeigenvaluesof C canonlybe ±1.Wesaythatthe firststatein(2.42)has C =+1andthesecondhas C = 1. SymmetriesoftheHamiltonianmayinvolvetransformationsofspacetimecoordinates,suchasthespecialrelativitytransformationsdiscussed inSection2.1.Thesearecalled space-timesymmetries.Intheexamples liketheoneabove,thesymmetryrelatedifferentparticlesorquantum stateswithoutreferencetospace-time.Thesearecalled internalsymmetries.Agivenabstractgroupsuchas Z2 maydescribeaspace-time oraninternalsymmetry.

If G containstwoelements a,b thatdonotcommute, ab = ba,itis calleda non-Abelian group.If G isnon-Abelian,and {Ua} isaunitary representationof G,itisgenerallynotpossibletosimultaneouslydiagonalizealloftheunitarymatricesin {Ua}.However,byachangeof basis,wecanreducethesematricestoacommonblock-diagonalform

C =+1:[ π+ + π ]/√2
C = 1:[ π+ π ]/√2 . (2.42)

wheretheblocks U1,U2,U3, ··· areassmallaspossible.Theseminimalsizeunitarytransformationsrepresenting G arecalled irreducibleunitary representationsof G.Foranirreduciblerepresentation {Ui},thesizeof thematricesiscalledthe dimension di oftherepresentation.Thenotion ofirreduciblerepresentationsisprobablymorefamiliartoyouinthe contextofcontinuousgroups.Iwillputyourknowledgeoftherotation

Theconceptofan irreducible group representation.Manyphysicsproblems inquantummechanicsaresolvedby breakingupalargerHilbertspaceinto irreduciblerepresentationsofanappropriatesymmetrygroup. groupintothiscontextinthenextsection.

Itisastandardmathematicalproblemingrouptheorytoworkout thesetofirreduciblerepresentationsofagroup G thatareinequivalent byunitarytransformations.Itcanbeprovedthat,foradiscretegroup G with n elements,theinequivalentunitarytransformationssatisfy

AnexampleisgivenbythegroupofΠ3 ofpermutationsonthree elements.Wecanrepresentsuchapermutationastheresultoftransformingthesetoflabels[123]toasetoflabelsinanotherorder.With thisrepresentation,thegrouphas6elementsthatcanbewritten

{ [123] , [231] , [312] , [132] , [321] , [213] } (2.45)

Permutationsmultiply ab = c bycomposition,forexample,

[231] · [231]=[312]

[132] · [312]=[321] . (2.46)

Thatis,applyingthetwopermutationsinorder(righttoleft)givesthe resultingpermutationasshown.

The6permutationsin(2.45)canbeassociatedwith6statesina Hilbertspace.Inthisrepresentation,therepresentationmatricesare 6 × 6matriceswithentries0and1.Itcanbeshownthatthisisa reduciblerepresentation.Itcontainstwo1-dimensionalirreduciblerepresentations.Oneoftheseisthetrivialrepresentationthatmultiplies eachelementby1.Anotheristherepresentationthatmultipliesastate by+1foranevenorcyclicpermutation—thefirstthreeelementsof (2.45)—andmultipliesastateby 1foranoddpermutation—thelast threeelementsof(2.45).Thereisalsoone2-dimensionrepresentation, presentedinProblem2.3.Thesethreeirreduciblerepresentationstogethersatisfy(2.44).

2.4Alittletheoryofcontinuousgroups

Theconceptsreviewedintheprevioussectionextendtothesituation ofgroupswithacontinoussetofelements.Importantexamplesare thebasicspace-timesymmetries:thegroupofspatialtranslations,the groupofspatialrotations,andthegroupofLorentztransformations, whichincludesrotationsandboosts.

Theactionofaspacetranslationin quantummechanicsgivesasimpleexampleofaunitaryrepresentationofan Abeliangroup.

Thegroupofspacetranslationshasthesimpleststructure.Alltranslationscommutewithoneanother.Youlearnedinquantummechanicsthattranslationsareimplementedbyunitarytransformations.For translationsby a inonedimension

where P istheoperatormeasuringthetotalmomentumofthesystem. Thisismademostclearbyconsideringthewavefunctionofaplanewave ofmomentum p,

Actingonthestate |p with(2.47),wefind

whichisthesamewavefunctiondisplacedby a.Usingthelanguageintroducedintheprevioussection,wesaythatthesetofunitaryoperators {U (a)} isaunitaryrepresentationofthegroupofspacetranslations.

Theexpressionofeach U (a)asanexponentialimpliesarelationbetweenthegroupoftranslationsandtheHermitianoperator P .We describethisrelationshipbysayingthat P isthe generator of {U (a)} or thegeneratorofthegroupoftranslations.

Thestatementthat P isHermitianisequivalenttothestatementthat the U (a)areunitary, U (a)† =exp[+iaP †]=exp[+iaP ]= U (

Then,continuousunitarytransformationsaregeneratedbyHermitian operators.Inquantummechanics,Hermitianoperatorscorrespondto observables.

Inquantummechanics,everysymmetrythatleavestheHamiltonianinvariantisassociatedwithaconservedquantity.Thisfollowsfromtheconnection betweenHermitanoperatorsandunitarysymmetrytransformations.

Observableshavetime-independentvaluesifthecorrespondingoperatorscommutewiththeHamiltonianofthequantummechanicsproblem. Inthisexample,momentumisconservedif[P,H]=0.Throughthecorrespondence(2.47),thisstatementisexactlyequivalenttothestatement that[U (a),H]=0,thatis,thattheequationsofmotionofthesystem areinvariantundertranslations.Thisrelationiscompletelygeneral.If

Q isaHermitianoperatorontheHilbertspace,thestatementthat Q is aconservedquantity, [Q,H]=0 . (2.51)

isequivalenttothestatementthat Q generatesasymmetryoftheequationsofmotion,

[UQ(a),H]=0for UQ(a)=exp[ iaQ] . (2.52)

Thisisthequantum-mechanicalversionof Noether’stheorem inclassical mechanics:Everysymmetryoftheequationsofmotionisassociated withaconservationlaw,andviceversa.

ThegroupoftranslationsisanAbeliangroup,sincealltranslations commutewithoneanother.Thisimpliesthatallofthematrices U (a)

canbesimultaneouslydiagonalized.Actually,forevery U (a),theeigenstatesof U (a)aretheeigenstatesof P ,thatis,statesofdefinitemomentum.Eacheigenstateof P givesaone-dimensionalunitaryrepresentationofthetranslationgroup.

Anon-Abeliancontinuousgroupthatshouldbefamiliartoyouisthe rotationgroupin3dimensions.Inquantummechanics,rotationsare Theactionofrotationsinquantummechanicsgivesanexampleoftheunitary representationofanon-Abeliangroup. implementedontheHilbertspacebytheunitaryoperators

U (α)=exp[ iα · J] (2.53)

where α givestheaxisandangleoftherotationand J aretheoperatorsofangularmomentum.Theseoperatorssatisfythecommutation

Asinthepreviousexample,theconservationlawofangularmomentumis associatedwiththesymmetryofinvarianceunderrotations. relation

[J i,J j ]= i ijkJ k (2.54)

Itcanbeshownthat,ifHermitianoperators J i satisfy(2.54),theunitary operatorsconstructedfromthemsatisfythecompositionrulesof3d rotations.Thatis,if

(β)U (α)= U (γ) , (2.55) thentherotation γ istheonethatresultsfromrotatingfirstthrough α andthenthrough β.Theoperators J i arethusthegeneratorsof rotations.Infactthecompletestructureofthegroupofrotationsis specifiedbythecommutationrelation(2.54).

Inquantummechanics,finite-dimensionalmatrixrepresentationsof therotationgroupplayanimportantrole.Thequantumstatesofatoms areorganizedintomultipletsofdefiniteangularmomentum,forexample, the2Por3Dstatesofthehydrogenatom.Statesofdefiniteangularmomentumgivethefinite-dimensionalirreduciblematrixrepresentationsof therotationgroup.

Throughthecorrespondence(2.53),afinite-dimensionalrepresentationoftherotationgroupisgeneratedbyasetoffinite-dimensional matricesthatsatisfy(2.54).Thesimplestsuchrepresentationsarethe trivial,1-dimensionalrepresentation

the2-dimensionalrepresentation

where σi arethePaulisigmamatrices σ 1 = 01 10 ,σ 2 = 0 i i

andthe3-dimensionalrepresentation

Thereductionofasetofstatesofan atomwithorbitalandspinangularmomenta( ,s)intostatesoftotalangularmomentum j isanexampleofthe reductionofareduciblerepresentation ofacontinuousgroup—inthiscase, therotationgroup—intoasumofirreduciblerepresentations.

Itisinstructivetocheckexplicitlythat(2.57)and(2.59)satisfy(2.54). Thethreerepresentationsgivenherearethoseofspin0,spin 1 2 ,and spin1.WewillmeettheserepresentationsagainandagainintheapplicationsIwilldiscussinthisbook.Similarly,foreveryintegeror half-integervalue j,thereisasetofthree(2j +1) × (2j +1)matrices satisfyingthesecommutationrelations.Thisisthespin j representation oftherotationgroup.

Oneofthestandardproblemsinatomicphysicsistodecomposea setofquantumstatesintoirreduciblerepresentationsoftherotation group.Forexample,statesofanatommaybelabelledbyorbital

angularmomentum andspinangularmomentum s.Thisgivesaset ofstateswith(2 +1)(2s +1)elements.Thetotalangularmomentum j takesvalues

Since[J,H]=0,eachvalueof j givesasetof(2j +1)stateswiththe sameenergy.InSection4.1,wewilltranslatethisgrouptheoryexercise intoastatementabouttheenergylevelsofthehydrogenatom.

Wecanconsiderthegroupofrotationsin3dimensionsasanabstract groupwhosemultiplicationlawisdefinedbythecompositionofrotations.Thisgroupiscalled SO(3).Similarly,thereisanabstractgroup ofrotationsin d dimensions,called SO(d).Thecase d =2issimple;itis thegroupofrotationsofacircle,anAbeliangroupoftranslationsofan angle φ,with φ identifiedwith(φ +2π).Thisabstractgroupisthesame onethatwemeetwhenweconsiderthegroupofphasetransformations

Thisisatransformationbya1 × 1unitarymatrix,sowealsocallthis group U (1).

General n × n unitarymatricesformarepresentationofanabstract groupcalled U (n).Any n × n unitarymatrixcanbewrittenintheform of(2.47)asgeneratedbyasetof n × n Hermitianmatrices U =exp[ iαata] (2.62)

Thesumover a runsoverabasisof n × n Hermitianmatrices,which contains n2 elements.Oneoftheseelementsistheunitmatrix,

Thismatrixcommuteswithalloftheother ta.Ifweomitthiselement

Definitionofthegroup SU (n). fromthesetofHermitianmatrices,weobtainanon-Abeliangroupof matriceswith n2 1generators,the n × n Hermitianmatriceswithzero trace.Thegroupgeneratedbythese n2 1matricesiscalled SU (n).It isthegroupof n × n unitarymatriceswithdeterminant1.

For n =2,thePaulisigmamatrices(2.58)formabasisforthe2 × 2 tracelessHermitianmatrices.Thus, SO(3)and SU (2)arenamesforthe sameabstractgroup.(Mathematiciansmakeadistinctionbetweenthese groups,butthedifferencewillnotberelevanttothecalculationsdone

inthisbook.)Thisabstractgroupdescribesrotationsinthreedimensions,butitwillalsodescribesomeinternalsymmetriesofelemementary particlesthatwewillmeetinthecourseofourdiscussion.

AcontinuousgroupoftransformationsgeneratedbyHermitianmatrices,intheform(2.62),iscalleda Liegroup.Thecommutationalgebra ofthegenerators ta , Thisequation,whichexpressesthenoncommutingnatureofthegeneratorsof aLiegroup,containsthefullinformationabouttherepresentationsandthe geometryofthegroup.

[ta,tb]= if abctc

(2.64) iscalledthe Liealgebra ofthegroup.Theconstants f abc arecalled the structureconstants oftheLiealgebra.Itcanbeshownthatwecan alwayschooseabasisforthe ta suchthatthestructureconstants f abc are completelyantisymmetricin[abc].Thesedefinitionsstraightforwardly generalizethepresentationthatIhavegivenoftherotationgroupin3 dimension.Inthecaseoftherotationgroup, f abc = abc . (2.65)

Inthesamewayasfortherotationgroup,theLiealgebraofthegeneratorsdeterminesthemultiplicationlawofanytwoelementsofthe group.

Inthisbook,wewillmeetonlyspecialcasesofLiegroups.The particulargroups U (1)= SO(2), SU (2)= SO(3),and SU (3)will haveimportantrolesinourstory.Still,theabstractpropertiesofLie groupswillbeusefultousinunderstandinghowtoapplythesegroups toparticlephysics.IwillintroducesomefurtherformalismofLiegroups whenwewillneeditinChapter11.

2.5Discretespace-timesymmetries

ThesymmetriesofspecialrelativityincludethecontinuoussymmetriesofrotationsandLorentztransformations.Buttheyalsoincludetwo distinctspace-timetransformationsthatleavethemetrictensor(2.7)invariantbutcannotbeconstructedasaproductofcontinuousrotations andboosts.Thiswillturnouttobeanimportantissueforelementaryparticlephysics.AccordingtoNoether’stheorem,conservationof energy-momentumisequivalenttotheinvarianceoftheequationsof motionwithrespecttospace-timetranslations,andtheconservationof angularmomentumisequivalenttotheinvarianceoftheequationsof motionwithrespecttorotationsandboosts.However,thereisnofundamentalprinciplethatimpliesthatextra,discretespace-timetransformationsmustbesymmetriesoftheHamiltonianorthattheconservation ofquantitiesassociatedwiththeseextradiscretesymmetriesmustbe conserved.Thisisaseparatequestionthatinprinciplecanonlybeansweredbyexperiment.WewillseeinPartIIIthattheanswergivento thisquestionisquitesurprising.

Thetwospace-timetransformationsthatarenotpartofthecontinuousLorentzgroupare parity (P )and timereversal (T ).These Minkowskispacehastwoextraspacetimesymmetries: parity P and timereversal T space-timeoperationssatisfy

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.