Download Complete Fluid dynamics part 4: hydrodynamic stability theory anatoly ruban PDF for All Cha

Page 1


Fluid Dynamics Part 4: Hydrodynamic Stability Theory Anatoly Ruban

Visit to download the full and correct content document: https://ebookmass.com/product/fluid-dynamics-part-4-hydrodynamic-stability-theory-a natoly-ruban/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Fluid Dynamics: Part 3 Boundary Layers Anatoly I. Ruban

https://ebookmass.com/product/fluid-dynamics-part-3-boundarylayers-anatoly-i-ruban/

Incompressible Fluid Dynamics P. A. Davidson

https://ebookmass.com/product/incompressible-fluid-dynamics-p-adavidson/

Computational fluid dynamics : a practical approach

Third Edition Liu

https://ebookmass.com/product/computational-fluid-dynamics-apractical-approach-third-edition-liu/

Hydrodynamic Cavitation Vivek V. Ranade

https://ebookmass.com/product/hydrodynamic-cavitation-vivek-vranade/

FLUIDDYNAMICS

DedicatedtoProf.P.Hall,Prof.F.T.SmithFRS,Prof.J.T.StuartFRS, andalsotoJosephandIsaac, andAndrei.

Preface

ThisisPart4ofabookseriesonfluiddynamicsthatiscomprisedofthe following fourparts:

Part1. ClassicalFluidDynamics

Part2. AsymptoticProblemsofFluidDynamics

Part3. BoundaryLayers

Part4. HydrodynamicStabilityTheory

Theseriesisdesignedtogiveacomprehensiveandcoherentdescriptionoffluiddynamics,startingwithchaptersonclassicaltheorysuitableforanintroductoryundergraduatelecturecourse,andthenprogressingthroughmoreadvancedmaterialuptothe levelofmodernresearchinthefield.Ourmainattentionisonhigh-Reynolds-number flows,bothincompressibleandcompressible.Correspondingly,the targetreadergroups areundergraduateandmastersstudentsreadingmathematics, aeronauticalengineering,orphysics,aswellasdoctoralstudentsandestablishedresearchersworkinginthe field.

InPart1,westartedwithadiscussionofthefundamentalconceptsoffluiddynamics,basedonthe continuumhypothesis.Wethenanalysedtheforcesactinginside afluid,anddeducedtheNavier–StokesequationsforincompressibleandcompressiblefluidsinCartesianandcurvilinearcoordinates.Theseweredeployedtostudythe propertiesofanumberofflowsthatarerepresentedbytheso-called exactsolutions oftheNavier–Stokesequations.Thiswasfollowedbyadetaileddiscussionofthetheoryofinviscidflowsforincompressibleandcompressiblefluids.Whendealingwith incompressibleinviscidflows,particularattentionwaspaidtotwo-dimensionalpotentialflows.Thesecanbedescribedintermsofthe complexpotential,allowingforthe fullpowerofthetheoryoffunctionsofacomplexvariabletobeemployed.Wedemonstratedhowthemethodofconformalmappingcanbeusedtostudyvariousflowsof interest,suchasflowspast Joukovskiiaerofoils andseparatedflows.Forthelatterthe Kirchhoffmodel wasadopted.ThefinalchapterofPart1wasdevotedtocompressible flowsofaperfectgas,includingsupersonicflows.Particularattentionwasgiventothe theoryofcharacteristics,whichwasused,forexample,toanalysethe Prandtl–Meyer flow overabodysurfacewithabendoracorner.Thepropertiesofshockwaveswere alsodiscussedindetailforsteadyandunsteadyflows.

InPart2weintroducedthereaderto asymptoticmethods.Alsotermed perturbation methods,theyarenowaninherentpartoffluiddynamics.Westartedwithadiscussion ofthemathematicalaspectsofasymptotictheory.Thiswasfollowedbyanexposition oftheresultsofapplicationofthetheorytovariousfluid-dynamicproblems.Thefirst ofthesewasthe thinaerofoiltheory forincompressibleandsubsonicflows,bothsteady andunsteady.Inparticular,itwasshownthatthistheoryallowedustoreducethe taskofcalculatingtheliftforcetotheevaluationofasimpleintegral. Wethenturned

Preface vii

ourattentiontosupersonicflows.Wefirstanalysedthelinearapproximationtothe governingEulerequations,whichledtoaremarkablysimplerelationshipbetweenthe slopeoftheaerofoilsurfaceandthepressure,knownasthe Ackeretformula.Wethen consideredthesecond-order Buzemannapproximation,andperformedtheanalysisof aratherslowprocessofattenuationoftheperturbationsinthefar-field.Part2also containedadetaileddiscussionofthepropertiesofinviscid transonic and hypersonic flows.WeconcludedPart2withanalysisofviscouslow-Reynolds-numberflows.Two classicalproblemsofthelow-Reynolds-numberflowtheorywereconsidered:theflow pastasphereandtheflowpastacircularcylinder.Inbothcasestheflowanalysis ledtoadifficulty,knownas Stokesparadox.Weshowedhowthisparadoxcouldbe resolvedusingtheformalismofmatchedasymptoticexpansions.

Part3wasdevotedtohigh-Reynolds-numberflows.Webeganwiththeanalysis oftheflowsthatcouldbedescribedintheframeworkofthe classicalboundary-layer theory putforwardbyPrandtlin1904.TothiscategorybelongtheBlasius boundary layeronaflatplateandtheFalkner–Skansolutionsfortheboundarylayeronawedge surface.WealsopresentedSchlichting’ssolutionforthelaminarjet andTollmien’s solutionfortheviscouswake.ThesewerefollowedbyanalysisofChapman’sshear layerthatwasperformedwiththehelpofPrandtl’stranspositiontheorem.Wealso consideredtheboundarylayeronthesurfaceofarapidlyrotating cylinderwiththe purposeoflinkingthecirculationaroundthecylinderwiththespeedofitsrotation.We concludedthediscussionofclassicalboundary-layertheorywithanalysisofcompressibleboundarylayers,includingtheinteractiveboundarylayersinhypersonicflows. Wethenturnedourattentiontoseparatedflows.Thesecouldnot bedescribedinthe frameworkofclassicalboundary-layertheory.Insteadtheconceptof viscous-inviscid interaction shouldbeused.Westartedwiththeso-called self-inducedseparation in supersonicflow.Thetheoryofself-inducedseparationwasdevelopedbyStewartson andWilliams(1969)andNeiland(1969),andledtotheformulationofthe triple-deck model.WethenpresentedSychev’s(1972)theoryoftheboundary-layerseparationin anincompressiblefluidflowpastacircularcylinder.Thiswasfollowedby adiscussion ofthetriple-deckflownearthetrailingedgeofaflatplatefirstinvestigatedbyStewartson(1969)andMessiter(1970).Thentheincipienceoftheseparationatcornerpoints ofthebodysurfacewasanalysedbasedontriple-decktheory.Part3concludeswith analysisoftheformationandburstingofshortseparationbubbles attheleadingedge ofathinaerofoil,forwhichpurposeaspecialversionoftriple-deck theory,referredto as marginalseparationtheory,wasdevelopedbyRuban(1981,1982)andStewartson etal. (1982).

Part4isdevotedto hydrodynamicstabilitytheory whichservestopredicttheonset of laminar-turbulenttransition influidflows.Westartwiththeclassicalresultsofthe theory.InChapter1weintroducetheconceptoflinearinstabilityoffluidflows,and formulatethe Orr–Sommerfeldequation describingthestabilitypropertiesof parallel and quasi-parallel flows.Inthelattercategoryaretwo-dimensionalboundarylayers wheretheOrr–Sommerfeldequationdescribestheinstabilityintheformof Tollmien–Schlichtingwaves.Wethenconsiderthestabilityof‘inviscidflows’governedbythe Rayleighequation.InadditiontodescribingthegeneralpropertiesoftheRayleigh equation,wepresentanumericalsolutionofthisequationforalaminarjet.Thisis

followedbyadiscussionoftheKelvin–Helmholtzinstabilityoftheshear layersthat form,forexample,whentheboundarylayerseparatesfromarigid bodysurface. WeconcludeChapter1withadiscussionoftwoothermodesofinstability,first, the Cross-Flowinstability thatisknowntodominatelaminar-turbulenttransitionon sweptwingsand,second,thecentrifugalinstabilityonaconcavesurface,takingthe formof Taylor–G¨ortlervortices.

InChapter2weconcentrateourattentiononparallelshearflows.ThelinearstabilityofsuchflowsisgovernedbytheOrr–Sommerfeldequation.Typically,computational solutionsofthisequation,whenplottedinthewavenumber–Reynoldsnumberplane, demonstratetheexistenceoftwodistinctbranchesalongwhichdisturbancesneither grownordecaybutremaininaso-calledneutralstate,withthesebranchesbounding aregionofinstability.InChapter2weemployasymptoticanalysis,andthemethodof matchedasymptoticexpansions,touncoverthenatureofthese modesinthevicinity ofthetwobranchesinthelimitoflargeReynoldsnumber.Theanalysis,inspiredby theworkofLin(1946),iscarriedoutspecificallyforboundary-layerflowsunderthe parallelflowassumption,andalsoforplanePoiseuilleflow.Forthelowerbranchwe recoverthe triple-deck flowmodeldiscussedindetailinPart3ofthisbookseries. Themodestructureinthevicinityoftheupperbranchisparticularly complicated, withviscouseffectsnotsimplyconfinedtonear-wallregions,butalsoplayingavital rolewithinaninternallayercentredaroundthelocationwherethedisturbancephase speedisequaltothebasicflowunderconsideration.Thislayerisknownasa critical layer anditspropertiesarestudiedinsomedetail,includingthechangesintheinternaldynamicsthatariseasthedisturbancesizeisincreased,usingideasdevelopedby BenneyandBergeron(1969),Haberman(1972),andSmithandBodonyi(1982b).

Wethenturnourattentiontomorerecentdevelopmentsinthefield.InChapter3 weintroducethereadertothe receptivitytheory thathasnowbecomeanintegralpart ofthetheoreticalpredictionsoflaminar-turbulenttransitioninaerodynamicflows.The theorystudiestheprocessofexcitationofinstabilitymodesintheboundarylayersby various‘externalperturbations’,suchasfree-streamturbulence,acousticnoise,and bodysurfaceroughness.Inthispresentation,weusethetriple-decktheorytodescribe thereceptivityphenomena.WestartwithTerent’ev’s(1981,1987)theoreticalmodelof earlierexperimentsofSchubauerandSkramstad(1948),whereTollmien–Schlichting wavesweregeneratedbyavibratingribbon.Wefirststudyharmonicoscillationsof theribbon,andcalculatetheamplitudeofthegeneratedTollmien–Schlichtingwave. Then,aninitial-valueproblemisconsideredwheretheribbonstartstooscillateat acertaintime,creatingawavepacketintheboundarylayer.Chapter3concludes withananalysisofthereceptivityoftheboundarylayertoacoustic perturbations. WhendescribingthisformofreceptivitywefollowthepapersbyRuban(1984)and Goldstein(1985).Theseauthorsdemonstratedthatwhenanacousticwaveinteracts withanisolatedroughnessonthebodysurface,aTollmien–Schlichtingwaveformsin theboundarylayerbehindtheroughness.Thetheoryallowsustopredicttheinitial amplitudeoftheTollmien–Schlichtingwave.

InChapter4wediscussthe weaklynonlinearstabilitytheory thatisaimedat predictinghowthegrowthoftheamplitudeoftheperturbationsaffectsthecritical Reynoldsnumber.Thegoverningequationofweaklynonlineartheorywasfirstfor-

mulatedbyLandau(1944)basedonphysicalarguments.Aformal derivationofthis equationwasgivenbyStuart(1960)andWatson(1960)withtheamplitudeofthe perturbationsassumedtobeasmallbutnon-zeroparameter.Sincethenthisequationisreferredtoasthe Landau–Stuartequation.Itappearsthatfluidflowscanbe subdividedintotwoclasses, subcriticallyunstable and supercriticallyunstable.Tothe firstcategorybelongs,forexample,planePoiseuilleflow.Forthisflow,anincreasein theamplitudeoftheperturbationleadstoadecreaseofthecriticalReynoldsnumber. Contrarytothat,theBlasiusboundarylayershowsasupercriticalbehaviourwhere thecriticalReynoldsnumberincreaseswiththeamplitudeoftheperturbations.We concludeChapter4withnumericalanalysisoffiniteamplitudeperturbationsthat leadstotheconceptofa neutralsurface

Finally,inChapter5weintroducethereadertotheconceptofaself-sustaining processwithinaviscousfluid.Thisisaseriesofinteractionsbywhichcertaindistinguishableflowstructures,whichwouldusuallydecayduetotheactionofviscosity, aremaintainedbyatransferofenergyvialong-scale/short-scale interplayfromother disturbancespresentintheflow.Inturn,thesedisturbancesarethemselvessupported bytheverystructuretheyhelptopreserve.Thistypeofprocess,whichisinherently nonlinearandtypicallythree-dimensionalinnature,isfoundtoberesponsiblefor thegenerationofso-calledexactcoherentstructuresinshearflows.Formoderateto largeReynoldsnumbers,theseequilibriumsolutionscorrespondtocertaincoherent statesvisitedbyturbulentflowsandhavebeenobservedexperimentally(e.g.seeHof etal.,2004).Wewillinvestigatethemathematicalnatureoftheseequilibriumstates atbothfiniteReynoldsnumber,wherecertainapproximationsneed tobemade,and atasymptoticallylargeReynoldsnumber,wherethetheorycanbegivenarigorous mathematicalfoundation.Weconcentrateinthemainonapplicationstochannelflow, whileindicatinghowtheanalysiscanbeappliedmorebroadly.

Thematerialpresentedinthisbookisbasedonlecturecoursesgivenbytheauthors atImperialCollegeLondon,theUniversityofManchester,andMoscowInstituteof PhysicsandTechnology.

1ClassicalHydrodynamicStabilityTheory 5

1.1LinearStabilityTheory5

1.1.1Globalstabilityanalysis9

1.2StabilityofParallelFlows14

1.2.1Poiseuilleflow14

1.2.2Analysisoftwo-dimensionalperturbations20 Exercises121

1.3StabilityofBoundaryLayers24

1.3.1Basicflow24

1.3.2Theparallelflowapproximation27

1.3.3Stabilityanalysis28

1.3.4Temporalandspatialinstabilities31 Exercises233

1.4InviscidStabilityTheory34

1.4.1PropertiesoftheRayleighequation34

1.4.2Inviscidinstabilityofalaminarjet40 Exercises343

1.5Kelvin–HelmholtzInstability46 Exercises452

1.6Cross-FlowVortices54

1.6.1Basicflow58

1.6.2Linearstabilityanalysis59 Exercises564

1.7CentrifugalInstability66

1.7.1Taylorvortices69

1.7.2G¨ortlervortices79 Exercises687

2High-Reynolds-NumberAnalysisofParallelandShearFlow Instabilities 89

2.1ProblemFormulation90

2.2AsymptoticAnalysisoftheOrr–SommerfeldEquationforBlasius Flow91

2.2.1Outerregion91

2.2.2Mainpartoftheboundarylayer92

2.3CriticalLayerandStokesLayerCoincident:LowerBranch99

2.3.1Theviscoussublayer99

2.3.2Canonicalformofthedispersionequation102

2.3.3Numericalsolutionofthedispersionequation105 Exercises7109

2.4CriticalLayerandStokesLayerDistinct:UpperBranch112

2.4.1Contributionofthecriticallayer114

2.4.2AnalysisoftheStokeslayer116

2.4.3Thedispersionrelationsfortheupperbranch117

2.5AsymptoticAnalysisoftheOrr–SommerfeldEquationforPlane PoiseuilleFlow120

2.5.1Derivationofthelowerbrancheigenrelation123

2.5.2Derivationoftheupperbrancheigenrelation125 Exercises8129

2.6CriticalLayerTheory132

2.6.1Linearcriticallayertheory135

2.6.2Nonlinearcriticallayertheory140 Exercises9146

3Boundary-LayerReceptivity 153

3.1Terent’ev’sProblem154

3.1.1Problemformulation156

3.1.2Boundarylayerbeforethevibratingribbon157

3.1.3Triple-deckregion158

3.1.4Viscous-inviscidinteractionproblem166

3.1.5Linearproblem167

3.1.6Receptivitycoefficient173 Exercises10176

3.2Initial-ValueProblem178

3.2.1Problemformulation179

3.2.2Numericalsolutionofthelinearproblem181

3.2.3Analysisofthewavepacket187

3.2.4Convectiveandabsoluteinstabilities195

3.2.5Centreofthewavepacket195 Exercises11196

3.3GenerationofTollmien–SchlichtingWavesbySound198

3.3.1Problemformulation199

3.3.2Unperturbedflow201

3.3.3Acousticnoise203

3.3.4Triple-deckregion210

3.3.5Viscous-inviscidinteractionproblem217

3.3.6Linearreceptivity219

3.3.7Receptivitycoefficient228 Exercises12234

3.4FurtherAdvancesinReceptivityTheory241

4WeaklyNonlinearStabilityTheory 243

4.1Landau’sConceptofLaminar-TurbulentTransition243

4.2Landau–StuartEquation244

4.2.1Problemformulation244

4.2.2Asymptoticprocedure247

4.2.3Linearperturbations248

4.2.4Quadraticapproximation249

4.2.5Cubicapproximation251

4.2.6PropertiesoftheLandau–Stuartequation253 Exercises13258

4.3Finite-AmplitudeNonlinearTravellingWaveSolutions262 Exercises14265

5CoherentStructuresandSelf-SustainingProcessesinShear Flows 268

5.1TheFundamentalBuildingBlocksofaSelf-SustainingProcess271

5.2TheSelf-SustainingProcess(SSP)atFiniteReynoldsNumber273

5.2.1Therollflow273

5.2.2Thestreamwisestreak276

5.2.3Thethree-dimensionaltravellingwave280

5.2.4Thenonlinearfeedbackontherolls283

5.2.5FullnumericalsolutionsforplaneCouetteflow286 Exercises15288

5.3Self-SustainingProcessesatHighReynoldsNumber:Vortex-Inviscid WaveInteraction292

5.3.1Thecoreflow293

5.3.2Asymptoticbehaviournearthecriticalcurve295

5.3.3Insidethecriticallayer298

5.3.4Thefullnonlinearinteraction303 Exercises16306

5.4Self-SustainingProcessesatHighReynoldsNumber:Vortex-Viscous WaveInteraction309

5.4.1Theunforcedroll/streakflow310

5.4.2Theviscouswalllayers311

5.4.3Wavefeedbackontheroll/streakcoreflow315

5.4.4Solutionforsmallamplitude:weaklynonlineartheory319

5.4.5Fullsolutionofthenonlinearinteractionequations324 Exercises17325

5.5MoreRecentDevelopments330

Introduction

Hydrodynamicstabilitytheoryisconcernedwiththeimportantquestionofhow(and why)alaminarflowundergoesatransitiontoaturbulentstate.Reynolds(1883) wasthefirsttoperformacarefulexperimentalinvestigationofthelaminar-turbulent transitionprocessintheHagen–Poiseuilleflowthroughacirculartube.Hisapparatus isshowninFigureI.1.Thetubewasplacedhorizontallyinsidealargeglasstankfilled withwater.Oneendofthetubewasconnectedthroughataptoasink;thetapwas usedtoregulatetheamountofwaterpassingthroughthetube.Theotherendofthe tubewasopentothesurroundingwater,allowingthewatertoenterthetubeoncethe tapwasopened.Inordertoreducethedisturbancesintheflowthroughthetube,the openendofthetubewasfittedwithatrumpetmouthpiece.Theflow visualization wasperformedwithhighlycolouredwateraddedtotheflowinfrontofthetrumpet. Itwassuppliedthroughathintubeconnectedtoareservoironthe topofthewater tank(seeFigureI.1).

Fig.I.1:Reynolds’apparatus(seeReynolds,1883).

(a)Laminarflow.

(b)Turbulentflow.

Fig.I.2:Laminar-turbulenttransitionintheHagen–Poiseuilleflowthroughacircular tube.ThesephotographsweretakenbyN.H.JohannesesandC. Loweusingthe originalReynolds’pipe.

AsaresultofhisobservationsReynolds(1883)arrivedatthefollowingconclusions:

1.Whenthefluidvelocitywassufficientlysmall,thecoloureddyestreakextended inaperfectlystraightlinethroughthetube;seeFigureI.2(a).This meansthat theflowwassteadywiththetrajectoriesofthefluidparticlesbeing straightlines paralleltothetubeaxis.

2.Asthevelocitywasincreasedinsmallsteps,theflowwouldsuddenlydevelop unsteadiness;seeFigureI.2(b).Reynolds(1883)reportedthat thishappenswhen thedimensionlessparameter

nowcalledtheReynoldsnumber,reachesthecriticalvalue Rec ≃ 13000.Here ˆ umax isthefluidvelocityalongthetubeaxis, a denotesthetuberadiusand ν the kinematicviscosityofwater.

Asthetransitionfromthe laminar flowregime(FigureI.2a)tothe turbulent one (FigureI.2b)takesplace,thefluidmotionbecomessignificantlymore complicated. Inadditiontotheprimaryflowparalleltothetubeaxis,thefluidparticlesarenow involvedinsecondarymotionsinplanesperpendiculartotheaxis;the secondaryflow isunsteadyandratherirregular.Thisleadstoamixingofthefluidand enhancesthe exchangeofmomentumbetweenthefluidparticles.Asaconsequence,insteadofthe parabolicvelocityprofile1

1SeeSection2.1.3inPart1ofthisbookseries.

(a)Laminarflow.

(b)Turbulentflow.

Fig.I.3:Velocitydistributionacrossthetubeforlaminarandturbulentflowregimes; in(b)thedashedlinereproducesthelaminarvelocityprofile.

characteristicofthelaminarflow(seeFigureI.3a),amoreuniformdistributionofthe velocityisobservedinthecoreofflownearthetubeaxis(seeFigure I.3b).Assuming thatthefluidfluxthroughthetuberemainsunchanged,thevelocitythenexhibitsa steeperrisefromzeronearthetubewall.Thisexplainswhytheresistanceofthetube totheflowappearstoincreaseintheturbulentflowregime.Itisknownthattheshear stressproducedbytheflowonthetubewallmaybecalculatedas2

Here µ isthedynamicviscositycoefficient,ˆ u istheaxialvelocitycomponent,andˆ r is theradialcoordinatemeasuredfromthetubeaxis;inthispresentationweuse‘hat’ todenotedimensionalvariables.Comparingthevelocitydistributionsinthelaminar andturbulentflows(seeFigureI.3)itiseasytoseethat τw is,indeed,largerinthe turbulentflow.

Ofcourse,Hagen–Poiseuilleflowisnottheonlyformoffluidmotionthatissubject tolaminar-turbulenttransition.FollowingReynolds’(1883)discovery,variousother flowswereinvestigated.Inparticular,thetransitionintheboundary-layerflowonaflat platewasfirstobservedbyBurgers(1924)andlaterstudiedinmoredetailbyDryden (1947)andKlebanoffandTidstrom(1959).Theyfoundthatneartheleadingedgethe flowisalwayslaminar,andmaybedescribedbytheBlasiussolution.3 However,ata

Fig.I.4:Tollmien–Schlichtingwavesintheboundarylayeronaflatplate.FlowvisualizationbyWerl´e(1980).

2Seethefifthequationin(1.8.65)onpage92inPart1ofthisbookseries.

3SeeSection1.1inPart3ofthisbookseries.

Fig.I.5:Laminar-turbulenttransitionintheboundarylayeronaflat plate.

certaindistanceˆ xc fromtheleadingedgetheunsteadinessstartstodevelopinthe flowintheformofso-called Tollmien–Schlichtingwaves thataresuperimposedon thesteadyBlasiusflow(FigureI.4).Typicallytheinitialamplitudeofthesewavesis toosmalltocausenoticeablechangesinthevelocityfield,buttheygrowdownstream, andthereexistsasecondcriticalpointˆ xt nearwhichlaminar-turbulenttransition takesplace.Asaresultofthetransitionthethicknessoftheboundarylayerincreases significantly,andthevelocityprofilesbecomes‘fuller’whichleadstoanincreasein theshearstressontheplatesurface;seeFigureI.5.

IfwenowdefinetheReynoldsnumberas

, where V∞ isthevelocityattheouteredgeoftheboundarylayer,thentransitionis typicallyobservedwhen Re reachesavalueof ≃ 5 105 .

1

ClassicalHydrodynamicStability Theory

1.1LinearStabilityTheory

ThetheoryofHydrodynamicStabilityisaimedatpredictingif,andwhen,thetransitionfromalaminartoaturbulentstateshouldbeexpectedforaparticularflow, andhowtheflowchangesthroughthetransitionregion.Tooutlinethemathematical approachusedinthestabilitytheory,weshallstartwithafairlygeneralflowpasta rigidbodyasdepictedinFigure1.1.WeuseaCartesiancoordinatesystem(ˆx, ˆ y, ˆ z) anddenotethecorrespondingcomponentsofthevelocityvector as(ˆu, ˆ v, ˆ w).Wefurtherdenotethetimeby ˆ t,thepressurebyˆ p,thefluiddensityby ρ andthekinematic viscosityby ν.Assumingtheflowincompressibleanddisregardingthebodyforce, we canwritetheNavier–Stokesequationsthatdescribethefluidmotionas1

Thesehavetobesolvedwiththeno-slipconditiononthebodysurface S

andthefollowingconditionsinthefree-streamflowfarfromthebody:

1Seeequations(1.7.6)onpage62inPart1ofthisbookseries. Hereweshalldenotethedimensional variablesby‘hat’.

Here(u∞,v∞,w∞)arethecomponentsofthefree-streamvelocityvector V∞,and p∞ denotesthefree-streampressure.

Letusnowexpressthegoverningequations(1.1.1)andboundaryconditions(1.1.2) indimensionlessform.Forthispurposeweintroducethecharacteristicscale L of thebody,anddenotethemodulusofthefree-streamvelocityvector V∞ by V∞ Usingthesequantities,thenon-dimensionalindependentanddependentvariablesare introducedthroughtheequations

Substitutionof(1.1.3)into(1.1.1)resultsin

where Re istheReynoldsnumber:

Theboundaryconditions(1.1.2)become

Fig.1.1:Flowlayout.

u → u∞/V∞, v → v∞/V∞, w → w∞/V∞, p → 0

as x 2 + y 2 + z 2 →∞. (1.1.5b)

Letusnowassumethatthebodyismotionless,andtheboundary-valueproblem (1.1.4),(1.1.5)admitsasteadysolution

u = U (x,y,z),v = V (x,y,z),w = W (x,y,z),p = P (x,y,z)(1.1.6)

forarangeofvaluesoftheReynoldsnumber Re.Weshallcall(1.1.6)the basicsolution Theexistenceofthissolutiondoesnot,however,guaranteethat thecorrespondingflow canbeactuallyobservedinnature.Forthistohappentheflowhastobestable,that is,ifwesuperimposeonthebasicstate(1.1.6)aperturbationofasmallamplitude ε, sothat

u = U (x,y,z)+ εu ′(t,x,y,z),v = V (x,y,z)+ εv ′(t,x,y,z), w = W (x,y,z)+ εw ′(t,x,y,z),p = P (x,y,z)+ εp ′(t,x,y,z), (1.1.7)

thentheperturbationhastodecayintimereturningthesolutionto itsbasicstate (1.1.6).

Substituting(1.1.7)intotheNavier–Stokesequations(1.1.4)andworkingwiththe O(ε)terms,yieldsthefollowingsetoflinearequationsfortheperturbationfunctions:

Thecorrespondingboundaryconditionsareobtainedbysubstituting(1.1.7)into (1.1.5a)and(1.1.5b).Wehave

Chapter1.ClassicalHydrodynamicStabilityTheory

Whatonewouldliketodonowistoconstructthesolutiontotheinitial-valueproblemwhere,givenaninitialdistributionoftheperturbationinspace,thesubsequent behaviourofthefunctions u′ , v′ , w′,and p′ ispredicted.Noticethatallthecoefficients inequations(1.1.8)areexpressedthroughthesolution(1.1.6)ofthesteadyproblem, andtherefore,donotdependontime t.Thismeansthattheinitial-valueproblem canbesolvedusingthemethodofLaplacetransforms.Recallthat ifweconsider,for example,thefunction u′(t,x,y,z),thenitsLaplacetransform˜ u(σ,x,y,z)iscalculated usingtheintegral

(σ,x,y,z)=

with σ beingacomplexparameter, σ = σr + iσi .Itisknownthatifthereexistsareal constant M> 0suchthat |u′| <Meλt forall t> 0,where λ isanotherrealconstant, thentheLaplacetransform(1.1.10)existsforall σ situatedinthecomplexplaneon theright-handsideoftheverticallinecrossingtherealaxisatthe point σr = λ;see Figure1.2. Forknown˜ u(σ,x,y,z)theoriginalfunction u′(t,x,y,z)mayberecoveredusing theBromwichintegral

wheretheintegrationisperformedinthecomplex σ-planealonganyverticalline σr = a situatedtotherightoftheline σr = λ.

Fig.1.2:Thecomplex σ-plane.

1.1.1Globalstabilityanalysis

Theformoftheinversionintegral(1.1.11)suggeststhatthesolutionofthelinearized equations(1.1.8)canrepresentedasasuperpositionofso-called normalmodes,that arewrittenas

Substitutionof(1.1.12)intoequations(1.1.8)yields

Onealsoneedstosubstitute(1.1.12)intotheboundaryconditions(1.1.9),whichleads to

Noticethattheboundary-valueproblem(1.1.13),(1.1.14)admitsatrivialsolution u ≡ 0, v ≡ 0, w ≡ 0, p ≡ 0.

Inorderforanon-trivialsolutiontoexist,theparameter σ shouldbechosenappropriately.Hence,theboundary-valueproblem(1.1.13),(1.1.14)isaneigen-valueproblem. Thesolutionofthisproblemisadifficultnumericaltaskreferredtoas the globalstabilityanalysis.Inthispresentationwewillillustratethisapproachusing,asanexample, theflowpastacircularcylinder.

Beforeturningtothecylinderproblemweshallmakethefollowingcomment. Supposethatasaresultofthecalculations,aspectrumofeigen-valuesof σ isfound. Thenonecanjudgeiftheflowconsideredisstableorunstablebythe positionof

Chapter1.ClassicalHydrodynamicStabilityTheory

theeigen-valuesinthecomplex σ-plane.Indeed,thetimedependenceofeachnormal mode(1.1.12)isgivenbytheexponential e σt = e(σr +iσi )t = e σr t cos(σit)+ i sin(σit) , whichshowsthattheflowperturbationsoscillatewiththefrequency σi andgrowor decaywiththeamplitude eσr t.Ifalltheeigen-valuesaresuchthat σr isnegative,then theflowisstablewithrespecttosmallperturbations.If,ontheotherhand,there existsatleastoneeigen-valuewithpositiverealpartof σ,thentheflowisunstable, namely,theperturbations u′ , v′ , w′,and p′ in(1.1.7)growwithtime,andtheflow willevolveawayfromtheinitiallaminarstate(U,V,W,P ).

Flowpastacircularcylinder

Letacircularcylinderofradius a beplacedinauniformflowofanincompressible viscousfluid;seeFigure1.3.Whendealingwiththisflowitisconvenienttousea Cartesiancoordinatesystemwithitsoriginatthecentreofthecylinder,the x-axis paralleltothefree-streamvelocityvector,the z-axisalongtheaxisofthecylinder,and the y-axisintheperpendiculardirection.Non-dimensionalvariablescanbeintroduced byonceagainusingthescalings(1.1.3)where L isreplacedbythecylinderradius a. Accordingly,theReynoldsnumberisnowdefinedas Re = V∞a/ν. Weshallassumethatthefree-streamvelocityvectorisperpendiculartothegeneratrixofthecylinder.Inthiscase,onecanexpecttheflowpastthecylindertobe two-dimensional;thatis,the‘spanwise’velocitycomponent w iszeroandnoneof thefluid-dynamicfunctionsdependon z,whichrenderstheNavier–Stokesequations (1.1.4)intheform

1.1.LinearStabilityTheory 11

Theseequationshavetobesolvedsubjecttothefree-streamconditions,

u =1,v =0,p =0at x 2 + y 2 = ∞, (1.1.16) andtheno-slipconditionsonthecylindersurface,

u = v =0if x 2 + y 2 =1 (1.1.17)

Theresultsofcalculationsofthesteadybasicflow

u = U (x,y),v = V (x,y),p = P (x,y) aredisplayedinFigure1.4intheformofstreamlineplots.Forsmallvaluesofthe Reynoldsnumber Re = V∞a/ν theflowremainsattachedtothecylindersurface asFigure1.4(a)plottedfor Re =2.5shows.However,anincreaseoftheReynolds numberleadstoflowseparationfromthecylindersurface.Asaresult,twoeddies formbehindthecylinder.TheseareclearlyseeninFigure1.4(b)plottedfor Re =5. Whentheeddiesfirstappear,theyoccupyasmallvicinityoftherearstagnationpoint.

Fig.1.4:SteadyflowpastacircularcylinderforReynoldsnumbers Re =2 5, 5, 10, and25.Thedashedlinesshowthestreamlinesintherecirculationeddies.

Chapter1.ClassicalHydrodynamicStabilityTheory

Then,astheReynoldsnumberincreases,theeddiesbecomeprogressivelylarger;see Figures1.4(c)and1.4(d).

Tostudythestabilityofthisflowweshallassumethattheperturbationsarealso two-dimensional,andthen,combining(1.1.12)and(1.1.7),wewillhave

Substitutionof(1.1.18)into(1.1.15)–(1.1.17)renderstheeigen-valueproblem(1.1.13), (1.1.14)intheform

TheresultsofthenumericalsolutionofthisproblemaredisplayedinFigure1.5 wheretheeigen-valuesof(1.1.19)areshowninthecomplex σ-plane.Ithasbeenfound thatthereexistsacriticalvalueoftheReynoldsnumber Rec ≈ 24 4.For Re<Rec

Fig.1.5:Thespectrumofthehundredleaststableeigen-valuesfor theflowpasta circularcylinderat Re = Rec.Arrowshighlighttheeigen-valueswhichcrossthe imaginaryaxis.

(a)Realpartof˜ u

(b)Imaginarypartof˜ u

Fig.1.6:Contourplotsoftherealandimaginarypartsofthestreamwisevelocity perturbationeigenfunction˜ u,attheonsetofinstability Re = Rec.Contourlevelsare inintervalsof0 1,andthepositiveandnegativelevelsareshownbysolidanddashed lines,respectively.Alsoweusethickersolidlinesforzerolevelsof ℜ{u} and ℑ{u} (notshown)theflowisstablewithalleigen-solutionslyingtotheleftoftheimaginary axis,where σr = ℜ{σ} < 0.Figure1.5‘capturesthemoment’whentheReynolds numberreachesitscriticalvalue Rec.Itdisplaysthespectrumofthehundredleast stableeigen-valuesatthecriticalReynoldsnumber.Noticethattheyoccurincomplex conjugatepairs.WhentheReynoldsnumberapproaches Rec,onepairapproachthe imaginaryaxis(thesesolutionsareshownbyarrowsinFigure1.5),andtheflow becomesunstable.Infact,at Re = Rec theflowperformsharmonicoscillationswith thefrequency σi = ℑ{σ} =0 3709.Thecorrespondingeigen-functionsarealsocomplex conjugatetooneanother.InFigure1.6weshowtherealandimaginarypartsofthe perturbedlongitudinalvelocitycomponent˜ u(x,y).Theperturbationfielddevelopsa ratherlongwakebehindthecylinder.Fortheattenuationcondition

u =˜ v =˜ p =0at x 2 + y 2 = ∞

tohold,thecomputationregionhadtobeextendedto x ≈ 300.InFigure1.6only apartofthewakeisshown.Itiseasilyseenthat˜ u(x,y)isanti-symmetricwith respecttothe x-axis.Theseresultsareinagreementwithlaboratoryobservations.It isknownfromexperimentthatwhentheReynoldsnumberreachesa criticalvalue, theflowbecomesoscillatory,withvorticesperiodicallysheddingfrom theupperand lowersidesofthecylinder.Thisvortexsystemisknownasthe K´arm´anvortexstreet. Theglobalstabilityanalysismaybeusedtoinvestigatethestabilitypropertiesof variousotherflows.Unfortunately,itisnotclearhowthemethodcanbeappliedto boundarylayers.AswecanseefromFigures(I.4)and(I.5),intheboundarylayerthe instabilitiesgrowwiththedownstreamcoordinate x,notwithtime t,whichmakesthe attenuationcondition(1.1.14b)inapplicable.Analternativeapproachisneeded(see Section1.3).

1.2StabilityofParallelFlows

Inordertoachievefurtherprogressinthetheoreticalanalysisofthestabilityequations (1.1.13),(1.1.14)weshallrestrictourattentiontoaspecialclassofflowsreferredto as parallelflows.WeshallstartwithplanePoiseuilleflowwhichbelongstothisclass.

1.2.1Poiseuilleflow

AdetaileddiscussionofthepropertiesofPoiseuilleflowwasgiveninSection2.1.2in Part1ofthisbookseries.Rememberthatthisistheflowofanincompressiblefluid throughachannelformedbytwoinfiniteplanesparalleltooneanother(Figure1.7). Thefluidmotionisdrivenbyalongitudinalpressuregradient.Tostudytheflow weshallusehereCartesiancoordinateswiththeˆ x-axisdrawnparalleltotheplates inthemiddleofthechannel,theˆ y-axisperpendiculartotheplates,andtheˆ z-axis perpendiculartotheplaneofthesketchinFigure1.7.Thedistancebetweentheplates is2h 2

Thefirststepinthestabilitytheoryistostudythebasicflow.Itisdescribedby thesteadyversionoftheNavier–Stokesequations(1.1.1):

Theseshouldbesolvedsubjecttotheno-slipconditiononthetwoplates:

Ifthechannelissufficientlylong,theninthemajorityoftheflow(excludingthe channelends)

Fig.1.7:Theproblemlayout.

2NoticethatinPart1,slightlydifferentnotationswereused.

1.2.StabilityofParallelFlows 15

Sincetheproblemconsideredisinvariantwithrespecttoanarbitraryshiftinthe ˆ z-direction,wecanalsoclaimthatthederivativeofanyfunctionwithrespecttoˆ z is zero,thatis

With(1.2.3)and(1.2.4)thecontinuityequation(1.2.1d)reducesto

which,beingintegratedwiththeboundaryconditionforˆ v in(1.2.2),yields

0(1.2.5) intheentireflowfield.

Using(1.2.3),(1.2.4),and(1.2.5)intheˆ x-momentumequation(1.2.1a),wefind that

Here µ = ρν isthedynamicviscositycoefficient.Sincetheflowconsideredisincompressible,wecanassume µ tobeconstantovertheentireflowfield.

Substitutionof(1.2.5)intotheˆ y-momentumequation(1.2.1b)yields

andweseethatinthebasicflowthepressuredoesnotvaryacross thechannel. Differentiating(1.2.6)withrespecttoˆ x wehave

which,inviewof(1.2.3),iszero.Consequently,thepressuregradientremainsconstant overtheentireflowfieldandmaybecalculatedas

where∆ˆ p isthepressuredifferencebetweenthechannelends,and L isthelengthof thechannel.

Integrating(1.2.6)withtheno-slipconditionsonthetwoplates

wefindthatthevelocityprofileisparabolic,

Themaximumvelocity

isachievedinthemiddleofthechannel(ˆ y =0).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.