Download full Flight theory and aerodynamics: a practical guide for operational safety 3rd edition,

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/flight-theory-and-aerodynamics-a-practical-guide-foroperational-safety-3rd-edition-ebook-pdf/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

eTextbook 978-1118911044 Risk Assessment: A Practical Guide to Assessing Operational Risks

https://ebookmass.com/product/etextbook-978-1118911044-riskassessment-a-practical-guide-to-assessing-operational-risks/

The Correctional Officer: A Practical Guide, Third Edition 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/the-correctional-officer-apractical-guide-third-edition-3rd-edition-ebook-pdf/

Critical Theory Today: A User Friendly Guide 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/critical-theory-today-a-userfriendly-guide-3rd-edition-ebook-pdf/

The Business Guide to Sustainability: Practical Strategies and Tools for Organizations 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/the-business-guide-tosustainability-practical-strategies-and-tools-fororganizations-3rd-edition-ebook-pdf/

(eTextbook PDF) for Practical Strategies for Technical Communication: A Brief Guide Third Edition

https://ebookmass.com/product/etextbook-pdf-for-practicalstrategies-for-technical-communication-a-brief-guide-thirdedition/

System Safety Engineering and Risk Assessment: A Practical Approach, Second Edition 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/system-safety-engineering-and-riskassessment-a-practical-approach-second-edition-2nd-edition-ebookpdf/

Practical Guide to Clinical Data Management 3rd Edition – Ebook PDF Version

https://ebookmass.com/product/practical-guide-to-clinical-datamanagement-3rd-edition-ebook-pdf-version/

Fundamentals of Phonetics: A Practical Guide for Students 4th Edition, (Ebook PDF)

https://ebookmass.com/product/fundamentals-of-phonetics-apractical-guide-for-students-4th-edition-ebook-pdf/

Mastering Competencies in Family Therapy: A Practical Approach to Theory and Clinical Case Documentation 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/mastering-competencies-in-familytherapy-a-practical-approach-to-theory-and-clinical-casedocumentation-3rd-edition-ebook-pdf/

Low-LevelWindShear,216

AircraftPerformanceinLow-LevelWindShear,218

EffectofIceandFrost,221

WakeTurbulence,222 Problems,224

13ManeuveringPerformance227

GeneralTurningPerformance,227 Equations,242 Problems,243

14LongitudinalStabilityandControl245

Definitions,245 OscillatoryMotion,246

AirplaneReferenceAxes,248

StaticLongitudinalStability,248 DynamicLongitudinalStability,260 PitchingTendenciesinaStall,261

LongitudinalControl,264 Symbols,266 Equations,266 Problems,266

15DirectionalandLateralStabilityandControl269

DirectionalStabilityandControl,269 StaticDirectionalStability,269 DirectionalControl,276 Multi-EngineFlightPrinciples,280 LateralStabilityandControl,284 StaticLateralStability,284 LateralControl,288

DynamicDirectionalandLateralCoupledEffects,288 Symbols,293 Equations,293 Problems,293

16High-SpeedFlight

TheSpeedofSound,295 High-SubsonicFlight,297

DesignFeaturesforHigh-SubsonicFlight,298 TransonicFlight,301 SupersonicFlight,305 Symbols,316 Equations,316 Problems,316

295

17Rotary-WingFlightTheory319

MomentumTheoryofLift,320

AirfoilSelection,320

ForcesonRotorSystem,321

ThrustDevelopment,323

HoveringFlight,324 GroundEffect,326

RotorSystems,328 DissymmetryofLiftinForwardFlight,330 HighForwardSpeedProblems,333 HelicopterControl,334

HelicopterPower-RequiredCurves,336

PowerSettling,SettlingwithPower,andVortexRingState,338 Autorotation,340 DynamicRollover,341 Problems,343

Preface

Thethirdeditionof FlightTheoryandAerodynamics wasrevisedtofurtherenhancethebook’suseasan introductorytextforcollegesanduniversitiesofferinganaeronauticalprogram.Thepublisherconducteda surveywithaviationschoolstodeterminewhatwasneededinanupdatedtext.Theresultisthisthirdedition thatmeetsnotonlyclassroomrequirementsbutalsopracticalapplication.

Allseventeenchaptershavesomelevelofupdatingandadditionalcontent.Therevisionretainsmathematical proofs,butalsoseekstoprovideanon-mathematicaldiscussionofaerodynamicsgearedtowardamorepracticalapplicationofflighttheory.Assuch,itisahowtohandbookaswellasoneaboutthetheoryofflying.Itwas writtenforallparticipantsintheaviationindustry:Pilots,aviationmaintenancetechnicians,aircraftdispatchers,airtrafficcontrollers,loadmasters,flightengineers,flightattendants,meteorologists,avionicstechnicians, aviationmanagers,asallhaveavestedinterestinbothsafetyandoperationalefficiency.

Updatesinthethirdedition:

• Newsequenceofchaptersforbetterflowoftopics

• Extensiveupgradetothehelicopterchapter,includingdiscussionofothertypesofrotorcraft

• Addedmoderngraphics,includingcorrelationwithcurrentFAApublications

• Addeddetailinsubjectmatteremphasizingpracticalapplication

• Additionaltermsandabbreviations

TheauthorswouldliketothankourcontactsatWileyfortheirsupportthroughoutthisrevisionaswellas thesupportofourcolleaguesandfamilies.InparticulartheauthorswouldliketothankSteven.A.Saunders forhistechnicalcontributiontothisrevision,employingover50yearsofmilitary,airline,andgeneralaviation experienceintheprocess.Finally,theauthorswouldliketogratefullyacknowledgethepreviousworkofCharles E.DoleandJamesE.Lewisfortheircontributiontoimprovingaviationsafetythroughouttheaviationindustry.

JosephR.Badick

BrianA.Johnson

AbouttheAuthors

Aformermarine,thelateCHARLESE.DOLEtaughtflightsafetyfortwenty-eightyearstoofficersoftheU.S. AirForce,Army,andNavy,aswellasattheUniversityofSouthernCalifornia.

ThelateJAMESE.LEWISwasanassociateprofessorofAeronauticalScienceatEmbryRiddleAeronautical UniversityinFlorida,formeraeronauticalengineerfortheColumbusAircraftDivisionofRockwellInternational,andretiredOhioNationalGuardmilitarypilot.

JOSEPHR.BADICKhasoverfortyyearsofflightexperienceinsingle,multi-engine,land/seaplaneaircraft. Ratedincommercialrotor-craftandgliders,withthehighestratingof(A.T.P.)AirlineTransportPilot.A licensedairframeandpowerplantmechanic,withinspectionauthorization(I.A.),hehasinstallednumerous aircraftaerodynamicperformance(S.T.C’s)SupplementalTypeCertificates,withtestflightchecks.Heholds aPh.D.(ABD)inBusinessfromNorthcentralUniversityofArizonaandaMaster’sdegreeinAeronautical Science.HewasaNavalOfficerfor30yearsasanAeronauticalEngineerDutyOfficer(AEDO),involvedinall aspectsofaircraftmaintenance,logistics,acquisition,andtest/evaluation.Currentlyheisaprofessorofaviation atacommunitycollegeintheCareerPilot/AviationManagementdegreeprograms.

BRIANA.JOHNSONisaformerairlineandcorporatepilotwhoholdsamulti-engineAirlineTransportPilot certificate,inadditiontoCommercialpilotsingle-engineland/seaprivileges.Heisanactiveinstrumentand multi-engineGoldSealflightinstructorwithanadvancedgroundinstructorrating.HeholdsaMaster’sdegree inAeronauticalSciencefromEmbry-RiddleAeronauticalUniversityandcurrentlyservesinafacultyposition foratwo-yearCareerPilot/AviationManagementdegreeprogram,inadditiontoservingasanadjunctfaculty memberintheAeronauticalSciencedepartmentofamajoraeronauticaluniversity.

FLIGHTTHEORY ANDAERODYNAMICS

1 Introduction

Abasicunderstandingofthephysicallawsofnaturethataffectaircraftinflightandonthegroundisaprerequisiteforthestudyofaerodynamics.Modernaircrafthavebecomemoresophisticated,andmoreautomated, usingadvancedmaterialsintheirconstruction,requiringpilotstorenewtheirunderstandingofthenaturalforces encounteredduringflight.Understandinghowpilotscontrolandcounteracttheseforcesbetterpreparespilots andengineersfortheartofflying,andforharnessingthefundamentalphysicallawsthatguidethem.

Perhapsyourgoalistobeapilot,whowill“slipthesurlybondsofearth,”asJohnGillespieMageewrote inhisclassicpoem“HighFlight.”Ormaybeyouaspiretobuildormaintainaircraftasaskilledtechnician. Orpossiblyyouwishtoserveinanothervitalroleintheaviationindustry,suchasmanager,dispatcher,meteorologist,engineer,teacher,oranothercapacity.Whicheverareayoumightbeconsidering,thistextbookwill attempttobuildonpreviousmaterialyouhavelearned,andhopefullywillprepareyouforasuccessfulaviationcareer.

THEFLIGHTENVIRONMENT

Thischapterbeginswithareviewofthebasicprinciplesofphysicsandconcludeswithasummaryoflinear motion,mechanicalenergy,andpower.Aworkingknowledgeoftheseareas,andhowtheyrelatetobasic aerodynamics,isvitalaswemovepasttherudimentary“fourforcesofflight”andintroducethrustand power-producingaircraft,liftanddragcurves,stabilityandcontrol,maneuveringperformance,slow-speed flight,andothertopics.

Uptothispointyouhaveseenthattherearefourbasicforcesactingonanaircraftinflight:lift,weight, thrust,anddrag.Nowwemustunderstandhowtheseforceschangeasanaircraftacceleratesdowntherunway, ordescendsonfinalapproachtoarunwayandgentlytouchesdownevenwhentravelingtwicethespeedofa caronthehighway.Onceanaircrafthassafelymadeitintotheair,whateffectdoesweighthaveonitsability toclimb,andshouldtheaircraftclimbuptotheflightlevelsorstaylowerandtake“advantage”ofthedenser airclosertotheground?

Bydevelopinganunderstandingoftheaerodynamicsofflight,howdesign,weight,loadfactors,andgravity affectanaircraftduringflightmaneuversfromstallstohighspeedflight,thepilotlearnshowtocontrolthe balancebetweentheseforces.Thistextbookwillhelpclarifytheseissues,amongothers,hopefullyleavingyou withabetterunderstandingoftheflightenvironment.

BASICQUANTITIES

Anintroductiontoaerodynamicsmustbeginwithareviewofphysics,andinparticular,thebranchofphysics thatwillbepresentedhereiscalled mechanics.Wewillexaminethefundamentalphysicallawsgoverningthe forcesactingonanaircraftinflight,andwhateffectthesenaturallawsandforceshaveontheperformance characteristicsofaircraft.Tocontrolanaircraft,whetheritisanairplane,helicopter,glider,orballoon,thepilot mustunderstandtheprinciplesinvolvedandlearntouseorcounteractthesenaturalforces.

Wewillstartwiththeconceptsofwork,energy,power,andfriction,andthenbuilduponthemaswemove forwardinfuturechapters.

BecausethemetricsystemofmeasurementhasnotyetbeenwidelyacceptedintheUnitedStates,theEnglish systemofmeasurementisusedinthisbook.Thefundamentalunitsare

Forcepounds(lb)

Distancefeet(ft)

Timeseconds(sec)

Fromthefundamentalunits,otherquantitiescanbederived:

Velocity(distance/time)ft/sec(fps)

Area(distancesquared)squareft(ft2 )

Pressure(force/unitarea)lb/ft2 (psf)

Acceleration(changeinvelocity)ft/sec/sec(fps2 )

Aircraftmeasureairspeedinknots(nauticalmilesperhour)orinMachnumber(theratiooftrueairspeedto thespeedofsound).Ratesofclimbanddescentaremeasuredinfeetperminute,soquantitiesotherthanthose aboveareusedinsomecases.Someusefulconversionfactorsarelistedbelow:

Multiplybytoget

knots1.69feetpersecond(fps)

fps0.5925knots milesperhour(mph)1.47fps

fps0.6818mph

mph0.8690knots knots1.15mph nauticalmiles(nm)6076feet(ft) nm1.15statutemiles(sm) sm0.869nm

knots101.3feetperminute(fpm)

FORCES

Aforceisapushorapulltendingtochangethestateofmotionofabody.Typicalforcesactingonan aircraftinsteadyflightareshowninFig.1.1.Figure1.2showstheresolutionoftheaerodynamicforcesduring

AERODYNAMIC FORCE (AF)

THRUST

WEIGHT

Fig.1.1. Forcesonanairplaneinsteadyflight.

Fig.1.2. Resolvedforcesonanairplaneinsteadyflight.

U.S.DepartmentofTransportationFederalAviationAdministration, Pilot’sHandbookofAeronauticalKnowledge, 2008

straight-and-level,unacceleratedflightandisseparatedintofourcomponents.Thecomponentthatis90∘ to theflightpathandactstowardthetopoftheairplaneiscalled lift.Thecomponentthatisparalleltotheflight pathandactstowardtherearoftheairplaneiscalled drag;whiletheopposingforwardforceisthrustandis usuallycreatedbytheengine. Weight opposesliftandaswewillseeisafunctionofthemassoftheaircraft andgravity.

MASS

Mass isameasureoftheamountofmaterialcontainedinabody. Weight,ontheotherhand,isaforcecaused bythegravitationalattractionoftheearth(g = 32 2ft∕s2 ),moon,sun,orotherheavenlybodies.Weightwill vary,dependingonwherethebodyislocatedinspace.Masswillnotvarywithposition.

(W )= Mass (m)× Accelerationofgravity (g)

Rearranginggives

Thismassunitiscalledthe slug

Drag

SCALARANDVECTORQUANTITIES

Aquantitythathassizeormagnitudeonlyiscalleda scalar quantity.Thequantitiesofmass,time,andtemperatureareexamplesofscalarquantities.Aquantitythathasbothmagnitudeanddirectioniscalleda vector quantity.Forces,accelerations,andvelocitiesareexamplesofvectorquantities.Speedisascalar,butifwe considerthedirectionofthespeed,thenitisavectorquantitycalled velocity.Ifwesayanaircrafttraveled 100nm,thedistanceisascalar,butifwesayanaircrafttraveled100nmonaheadingof360∘ ,thedistanceis avectorquantity.

ScalarAddition

Scalarquantitiescanbeadded(orsubtracted)bysimplearithmetic.Forexample,ifyouhave5gallonsofgas inyourcar’stankandyoustopatagasstationandtopoffyourtankwith9gallonsmore,yourtanknowholds 14gallons.

VectorAddition

Vectoradditionismorecomplicatedthanscalaraddition.Vectorquantitiesareconvenientlyshownbyarrows. Thelengthofthearrowrepresentsthemagnitudeofthequantity,andtheorientationofthearrowrepresents thedirectionalpropertyofthequantity.Forexample,ifweconsiderthetopofthispageasrepresentingnorth andwewanttoshowthevelocityofanaircraftflyingeastatanairspeedof300knots,thevelocityvectorisas showninFig.1.3.Ifthereisa30-knotwindfromthenorth,thewindvectorisasshowninFig.1.4.

Tofindtheaircraft’sflightpath,groundspeed,anddriftangle,weaddthesetwovectorsasfollows.Place thetailofthewindvectoratthearrowoftheaircraftvectoranddrawastraightlinefromthetailoftheaircraft vectortothearrowofthewindvector.This resultant vectorrepresentsthepathoftheaircraftovertheground. Thelengthoftheresultantvectorrepresentsthegroundspeed,andtheanglebetweentheaircraftvectorandthe resultantvectoristhedriftangle(Fig.1.5).

ThegroundspeedisthehypotenuseoftherighttriangleandisfoundbyuseofthePythagoreantheorem V 2 r = V 2 a

c + V 2 w :

Groundspeed = Vr = √(300)2 +(30)2 = 301.5knots

Va/c = 300k

Vectorofaneastboundaircraft.

= 30k

Fig.1.3.
Fig.1.4. Vectorofanorthwind.
Fig.1.5. Vectoraddition.

CLIMB ANGLE

HORIZONTAL

Fig.1.6. Vectorofanaircraftinaclimb.

Fig.1.7. Vectorsofgroundspeedandrateofclimb.

Thedriftangleistheanglewhosetangentis Vw ∕Va∕c = 30∕300 = 0 1,whichis5.7∘ totheright(south)of theaircraftheading.

VectorResolution

Itisoftendesirabletoreplaceagivenvectorbytwoormoreothervectors.Thisiscalled vectorresolution.The resultingvectorsarecalledcomponentvectorsoftheoriginalvectorand,ifaddedvectorially,theywillproduce theoriginalvector.Forexample,ifanaircraftisinasteadyclimb,atanairspeedof200knots,andtheflightpath makesa30∘ anglewiththehorizontal,thegroundspeedandrateofclimbcanbefoundbyvectorresolution. Theflightpathandvelocityareshownbyvector Va∕c inFig.1.6.

InFig.1.7toresolvethevector Va∕c intoacomponent Vh paralleltothehorizontal,whichwillrepresentthe groundspeed,andaverticalcomponent, Vv ,whichwillrepresenttherateofclimb,wesimplydrawastraight lineverticallyupwardfromthehorizontaltothetipofthearrow Va∕c .Thisverticallinerepresentstherateof climbandthehorizontallinerepresentsthegroundspeedoftheaircraft.Iftheairspeed Va∕c is200knotsand theclimbangleis30∘ ,mathematicallythevaluesare

MOMENTS

Ifamechanictightensanutbyapplyingaforcetoawrench,atwistingaction,calleda moment,iscreatedabout thecenterofthebolt.Thisparticulartypeofmomentiscalled torque (pronounced“tork”).Moments, M ,are measuredbymultiplyingtheamountoftheappliedforce, F ,bythe momentarm,L:

Themomentarmistheperpendiculardistancefromthelineofactionoftheappliedforcetothecenterofrotation.Momentsaremeasuredasfoot-pounds(ft-lb)orasinch-pounds(in.-lb).Ifamechanicusesa10-in.-long wrenchandapplies25lbofforce,thetorqueonthenutis250in.-lb.

Theaircraftmomentsthatareofparticularinteresttopilotsincludepitchingmoments,yawingmoments, androllingmoments.Ifyouhaveevercompletedaweightandbalancecomputationforanaircraftyouhave calculatedamoment,whereweightwasthe force andthe arm wastheinchesfromdatum.Pitchingmoments, forexample,occurwhenanaircraft’selevatorismoved.Airloadsontheelevator,multipliedbythedistance totheaircraft’scenterofgravity(CG),createpitchingmoments,whichcausethenosetopitchupordown.As youcanseefromEq.1.2,ifaforceremainsthesamebutthearmisincreased,thegreaterthemoment.

Severalforcesmayactonanaircraftatthesametime,andeachwillproduceitsownmomentaboutthe aircraft’sCG.Someofthesemomentsmayopposeothersindirection.Itisthereforenecessarytoclassifyeach moment,notonlybyitsmagnitude,butalsobyitsdirectionofrotation.Onesuchclassificationcouldbeby clockwise or counterclockwise rotation.Inthecaseofpitchingmoments,a nose-up or nose-down classification seemsappropriate.

Mathematically,itisdesirablethatmomentsbeclassifiedaspositive(+)ornegative( ).Forexample,ifa clockwisemomentisconsideredtobea + moment,thenacounterclockwisemomentmustbeconsideredtobe a moment.Bydefinition,aircraftnose-uppitchingmomentsareconsideredtobe + moments.

EQUILIBRIUMCONDITIONS

Websterdefinesequilibriumas“astateofbalanceorequalitybetweenopposingforces.”Abodymustmeet tworequirementstobeinastateofequilibrium:

1.Theremustbenounbalancedforcesactingonthebody.Thisiswrittenasthemathematicalformula ΣF = 0,where Σ (capsigma)istheGreeksymbolfor“sumof.”Figures1.1and1.2illustratesituations wherethisconditionissatisfied(lift = weight,thrust = drag,etc.)

2.Theremustbenounbalancedmomentsactingonthebody.Mathematically, ΣM = 0(Fig.1.8).

MomentsatthefulcruminFig.1.8are50ft-lbclockwiseand50ft-lbcounterclockwise.So, ΣM = 0.To satisfythefirstconditionofequilibrium,thefulcrummustpressagainsttheseesawwithaforceof15lb.So, ΣF = 0.

NEWTON’SLAWSOFMOTION

SirIsaacNewtonsummarizedthreegeneralizationsaboutforceandmotion.Theseareknownasthe lawsof motion.

Fig.1.8. Seesawinequilibrium.

Newton’sFirstLaw

Insimplelanguage,thefirstlawstatesthat abodyatrestwillremainatrestandabodyinmotionwillremain inmotion,inastraightline,unlessacteduponbyanunbalancedforce.Thefirstlawimpliesthatbodieshave apropertycalled inertia.Inertiamaybedefinedasthepropertyofabodythatresultsinitsmaintainingits velocityunchangedunlessitinteractswithanunbalancedforce,aswithanaircraftatrestonarampwithout unbalancedforcesactinguponit.Themeasureofinertiaiswhatistechnicallyknownas mass.

Newton’sSecondLaw

Thesecondlawstatesthat ifabodyisactedonbyanunbalancedforce,thebodywillaccelerateinthedirection oftheforceandtheaccelerationwillbedirectlyproportionaltotheforceandinverselyproportionaltothe massofthebody.Acceleration isthechangeinmotion(speed)ofabodyinaunitoftime,consideranaircraft acceleratingdowntherunway,ordeceleratingaftertouchdown.Theamountoftheacceleration a,isdirectly proportionaltotheunbalancedforce, F ,andisinverselyproportionaltothemass, m,ofthebody.Thesetwo effectscanbeexpressedbythesimpleequation

or,morecommonly,

Newton’sThirdLaw

Thethirdlawstatesthat foreveryactionforcethereisanequalandoppositereactionforce.Notethatforthis lawtohaveanymeaning,theremustbeaninteractionbetweentheforceandabody.Forexample,thegases producedbyburningfuelinarocketengineareacceleratedthroughtherocketnozzle.Theequalandopposite forceactsontheinteriorwallsofthecombustionchamber,andtherocketisacceleratedintheoppositedirection. Asapropelleraircraftpushesairbackwardsfromthepropeller,theaircraftmovesforward.

LINEARMOTION

Newton’slawsofmotionexpressrelationshipsamongforce,mass,andacceleration,buttheystopshortof discussingvelocity,time,anddistance.Thesearecoveredhere.Intheinterestofsimplicity,weassumehere thataccelerationisconstant.Then, Acceleration a = Changeinvelocity

where

Δ (capdelta)means“changein”

V = velocityattime t

V0 = velocityattime t0

Ifwestartthetimeat t0 = 0andrearrangetheabove,then

Ifwestartthetimeat t0 = 0 and V0 = 0(brakeslockedbeforetakeoffroll)andrearrangetheabovewhere Vcanbeanyvelocitygiven(forexample,liftoffvelocity),then

Thedistance s traveledinacertaintimeis

Theaveragevelocity Vav is

Therefore,

SolvingEqs.1.4and1.5simultaneouslyandeliminating t ,wecanderiveathirdequation:

Equations1.3,1.4,and1.5areusefulincalculatingtakeoffandlandingfactors.Theyarestudiedinsome detailinChapters10and11.

ROTATIONALMOTION

Withoutderivation,someoftherelationshipsamongtangential(tip)velocity, Vt ;radiusofrotation, r ;revolutions perminute,rpm;centripetalforces,CF;weightofrotatingparts, W ;andaccelerationofgravity, g,areshown below.Thecentripetalforceisthatforcethatcausesanairplanetoturn.Theapparentforcethatisequaland oppositetothisiscalledthecentrifugalforce.

WORK

Inphysics,workhasameaningdifferentfromthepopulardefinition.Youcanpushagainstasolidwalluntil youareexhaustedbut,unlessthewallmoves,youarenotdoinganywork.Workrequiresthataforcemust moveanobjectinthedirectionoftheforce.Anotherwayofsayingthisisthat onlythecomponentoftheforce inthedirectionofmovementdoesanywork:

Work = Force × Distance

Workismeasuredinft-lb.

ENERGY

Energy istheabilitytodowork.Therearemanykindsofenergy:solar,chemical,heat,nuclear,andothers.The typeofenergythatisofinteresttousinaviationis mechanicalenergy.

Therearetwokindsofmechanicalenergy.Thefirstiscalled potentialenergyofposition,ormoresimply potentialenergy,PE.NomovementisinvolvedincalculatingPE.Agoodexampleofthiskindofenergyis waterstoredbehindadam.Ifreleased,thewaterwouldbeabletodowork,suchasrunningagenerator.Asa fighteraircraftzoomstoazenithpointitbuildsPE;onceitstartstoacceleratedownwarditconvertsPEtoKE. PEequalstheweight, W ,ofanobjectmultipliedbytheheight, h,oftheobjectabovesomebaseplane:

Thesecondkindofmechanicalenergyiscalled kineticenergy,KE.Asthenameimplies,kineticenergy requiresmovementofanobject.Itisafunctionofthemass, m,oftheobjectanditsvelocity, V:

Thetotalmechanicalenergy,TE,ofanobjectisthesumofitsPEandKE:

Thelawofconservationofenergystatesthatthetotalenergyremainsconstant.Bothpotentialandkinetic energycanchangeinvalue,butthetotalenergymustremainthesame: Energycannotbecreatedordestroyed, butcanchangeinform.

POWER

Inourdiscussionofworkandenergywehavenotmentionedtime. Power isdefinedas“therateofdoingwork” orwork/time.Weknow:

Work = force × distance and Speed = distance∕time

Power = work time = force × distance time = force × speed (ft-lb∕sec)

JamesWattdefinedtheterm horsepower (HP)as550ft-lb/sec:

Horsepower = Force × Speed 550

Ifthespeedismeasuredinknots, Vk ,andtheforceisthe thrust, T ,ofajetengine,then

HP = Thrust × Vk 325 = TVk 325 (1.13)

Equation1.13isveryusefulincomparingthrust-producingaircraft(turbojets)withpower-producingaircraft (propelleraircraftandhelicopters).

FRICTION

Iftwosurfacesareincontactwitheachother,thenaforcedevelopsbetweenthemwhenanattemptismade tomovethemrelativetoeachother.Thisforceiscalled friction.Generally,wethinkoffrictionassomething

COEFFICIENT

01020304050

Fig.1.9. Coefficientsoffrictionforairplanetiresonarunway.

tobeavoidedbecauseitwastesenergyandcausespartstowear.Inourdiscussionondrag,wewilldiscuss theparasitedragonanairplaneinflightandthethrustorpowertoovercomethatforce.Frictionisnotalways ourenemy,however,forwithoutittherewouldbenotractionbetweenanaircraft’stiresandtherunway.Once anaircraftlands,liftisreducedandaportionoftheweightisconvertedtofrictionalforce.Dependingonthe aircrafttype,aerodynamicbraking,thrustreversers,andspoilerswillbeusedtoassistthebrakesandshorten thelanding,orrejectedtakeoffdistance.

Severalfactorsareinvolvedindeterminingfrictioneffectsonaircraftduringtakeoffandlandingoperations. Amongthesearerunwaysurfacingmaterial,conditionoftherunway,tirematerialandtread,andtheamountof brakeslippage.Allofthesevariablesdeterminea coefficientoffriction �� (mu).Theactualbrakingforce, Fb ,is theproductofthiscoefficient �� (Greeksymbolmu)andthenormalforce, N ,betweenthetiresandtherunway:

Figure1.9showstypicalvaluesofthecoefficientoffrictionforvariousconditions.

SYMBOLS

a Acceleration(ft/sec2 )

CFCentrifugalforce(lb)

E Energy(ft-lb)

KEKineticenergy

PEPotentialenergy

TETotalenergy

F Force(lb)

Fb Brakingforce

g Accelerationofgravity(ft/sec2 )

h Height(ft)

HPHorsepower

L Momentarm(ftorin.)

m Mass(slugs,lb-sec2 /ft)

M Moment(ft-lborin.-lb)

N Normalforce(lb)

r Radius(ft)

rpmRevolutionsperminute

s Distance(ft)

T Thrust(lb)

t Time(sec)

V Speed(ft/sec)

Vk Speed(knots)

V0 Initialspeed

Vt Tangential(tip)speed

W Weight(lb)

�� (mu) Coefficientoffriction(dimensionless)

EQUATIONS

1.1 W = mg

1.2 M = FL

1.3 F = ma

1.4 V = V0 + at 1.5 s = V0 t + 1 2 at 2

1.6 s = V 2 V 2 0 2a

1.7 Vt = r (rpm) 9.55

1.8CF = WV 2 t gr

1.9CF = Wr (rpm)2 2930

1.10PE = Wh

1.11KE = 1 2 mV 2

1.12TE = PE + KE

1.13HP = TVk 325

1.14 Fb = �� N

PROBLEMS

Note:Answerstoproblemsaregivenattheendofthebook.

1. Anairplaneweighs16,000lb.Thelocalgravitationalacceleration g is32fps2 .Whatisthemassofthe airplane?

2. TheairplaneinProblem1acceleratesdownthetakeoffrunwaywithanetforceof6000lb.Findtheaccelerationoftheairplane.

3. Anairplaneistowingaglidertoaltitude.Thetowropeis20∘ belowthehorizontalandhasatensionforce of300lbexertedonitbytheairplane.Findthehorizontaldragofthegliderandtheamountofliftthatthe ropeisprovidingtotheglider.Sin20∘ = 0.342;cos20∘ = 0.940.

4. Ajetairplaneisclimbingataconstantairspeedinno-windconditions.Theplaneisdirectlyoverapointon thegroundthatis4statutemilesfromthetakeoffpointandthealtimeterreads15,840ft.Findthetangent oftheplane’sclimbangleandthedistancethatithasflownthroughtheair.

5. Findthedistance s andtheforce F ontheseesawfulcrumshowninthefigure.Assumethatthesystemis inequilibrium.

6. TheairplaneinProblem2startsfromabrakes-lockedpositionontherunway.Theairplanetakesoffatan airspeedof200fps.Findthetimefortheaircrafttoreachtakeoffspeed.

7. Underno-windconditions,whattakeoffrollisrequiredfortheaircraftinProblem6?

8. Uponreachingavelocityof100fps,thepilotoftheairplaneinProblem6decidestoabortthetakeoffand appliesbrakesandstopstheairplanein1000ft.Findtheairplane’sdeceleration.

9. Ahelicopterhasarotordiameterof30ftanditisbeingoperatedinahoverat286.5rpm.Findthetipspeed Vt oftherotor.

10. Anairplaneweighs16,000lbandisflyingat5000ftaltitudeandatanairspeedof200fps.Find(a)the potentialenergy,(b)thekineticenergy,and(c)thetotalenergy.Assumingnoextradragontheairplane,if thepilotdoveuntiltheairspeedwas400fps,whatwouldthealtitudebe?

11. Anaircraft’sturbojetengineproduces10,000lbofthrustat162.5knotstrueairspeed.Whatistheequivalent powerthatitisproducing?

12. Anaircraftweighs24,000lbandhas75%ofitsweightonthemain(braking)wheels.Ifthecoefficientof frictionis0.7,findthebrakingforce Fb ontheairplane.

2 Atmosphere,Altitude,andAirspeed Measurement

PROPERTIESOFTHEATMOSPHERE

Theaerodynamicforcesandmomentsactingonanaircraftinflightaredue,ingreatpart,tothepropertiesofthe airmassinwhichtheaircraftisflying.Byvolumetheatmosphereiscomposedofapproximately78%nitrogen, 21%oxygen,and1%othergases.Themostimportantpropertiesofairthataffectaerodynamicbehaviorareits staticpressure,temperature,density,andviscosity.

StaticPressure

The staticpressure oftheair, P,issimplytheweightperunitareaoftheairabovethelevelunderconsideration.Forinstance,theweightofacolumnofairwithacross-sectionalareaof1ft2 andextendingupwardfrom sealevelthroughtheatmosphereis2116lb.Thesealevelstaticpressureis,therefore,2116psf(or14.7psi). Staticpressureisreducedasaltitudeisincreasedbecausethereislessairweightabove.At18,000ftaltitude thestaticpressureisabouthalfthatatsealevel.Anothercommonlyusedmeasureofstaticpressureis inches ofmercury.Onastandardsealeveldaytheair’sstaticpressurewillsupportacolumnofmercury(Hg)that is29.92in.high(Fig.2.1).Weatherreportsuseathirdmethodofmeasuringstaticpressurecalled millibars, standardpressurehereis1,013.2mb.Inadditiontotheseratherconfusingsystems,therearethemetricmeasurementsinusethroughoutmostoftheworld.Forthediscussionofperformanceproblemslaterinthistextbook, wewillprimarilyusethemeasurementofstaticpressureininchesofmercury.

Inaerodynamicsitisconvenienttousepressureratios,ratherthanactualpressures.Thustheunitsofmeasurementarecanceledout:

where P0 isthesealevelstandardstaticpressure(2116psfor29.92in.Hg).Thus,apressureratioof0.5means thattheambientpressureisone-halfofthestandardsealevelvalue.At18,000ft,onastandardday,thepressure ratiois0.4992.

Temperature

ThecommonlyusedmeasuresoftemperaturearetheFahrenheit,F,andCelsius,C(formerlycalledcentigrade) scales.Aviationweatherreportsforpilots,aswellasperformancecalculationtables,willusuallyreportthe temperaturein ∘ C.Neitherofthesescaleshasabsolutezeroasabase,soneithercanbeusedincalculations. Absolutetemperaturemustbeusedinstead.AbsolutezerointheFahrenheitsystemis 460∘ andintheCelsius systemis 273∘ .ToconvertfromtheFahrenheitsystemtotheabsolutesystem,calledRankine,R,add460 tothe ∘ F.ToconvertfromtheCelsiussystemtotheabsolutesystem,calledKelvin,K,add273tothe ∘ C.The

Pressureratio
(2.1)

Fig.2.1. Standardpressure.

U.S.DepartmentofTransportationFederalAviationAdministration, Pilot’sHandbookofAeronauticalKnowledge, 2008

symbolforabsolutetemperatureis T andthesymbolforsealevelstandardtemperatureis T0 :

Byusingtemperatureratios,insteadofactualtemperatures,theunitscancel.Thetemperatureratioisthe Greeklettertheta, �� :

Atsealevel,onastandardday, ��0∘ = 1 0.Temperaturedecreaseswithanincreaseinaltitudeuntilthe tropopauseisreached(36,089ftonastandardday).Itthenremainsconstantuntilanaltitudeofabout82,023ft.

Thetemperatureatthetropopauseis 69.7∘ Fand �� = 0 7519.

Density

Density isthemostimportantpropertyofairinthestudyofaerodynamics,andisdirectlyimpactedbypressure, temperature,andhumiditychanges.Sinceaircanbecompressedandexpanded,thelowerthepressure,theless densetheair;densityisdirectlyproportionaltopressure.Increasingthetemperatureoftheair(particleshave greaterkineticenergy)alsodecreasesthedensityoftheair,sointhiscasedensityandtemperaturehavean inverserelationship.Lessdense,thinnerairhasalowerairdensityandissaidtobea higherdensityaltitude

(decreasingaircraftperformance);moredense,thickerairissaidtobea lowerdensityaltitude (greateraircraft performance).

Pressuredecreasesasyouclimbinaltitude,andusuallytemperaturedecreasesaswelltoacertainpoint.Two exceptionsoccurwithtemperaturedecreasewithincreasingaltitude:oneisaninversionlayer,andtheotheris intheupperregionoftheatmospherenearthetropopausewherethetemperatureremainsconstantandmay evenrisewithincreasingaltitudeperiodically.Thediscussionabovewouldindicatethatgreateraltitude(less denseair)andcoldertemperature(moredenseair)wouldresultinaconflictinregardstodensity.Butusually theeffectofadecreaseinpressurewithaltitudeovercomesanyimprovementinperformancethecolder,dense airmayhaveandalowerdensityaltitudeistheruleofthumbthehigherinaltitudeanaircraftclimbs.

Theeffectofmoisturecontentonperformancewillbelargelyignoredinthistextbookbecausemosttextbookstreattheeffectofhumidityasbeingnegligibleforpracticalpurposes,butitisimportanttounderstand thatwatervaporislighterthanair,somoistairislighterthandryair.Astheamountofwatervaporincreases, thedensityoftheairdecreases,resultinginahigherdensityaltitude(decreaseinaircraftperformance).

Densityisthemassoftheairperunitofvolume.Thesymbolfordensityis �� (rho):

Standardsealeveldensityis ��0 = 0 002377slugs/ft3 .Densitydecreaseswithanincreaseinaltitude.At 22,000ft,thedensityis0.001183slugs/ft3 (aboutone-halfofsealeveldensity).

Itisdesirableinaerodynamicstousedensityratiosinsteadoftheactualvaluesofdensity.Thesymbolfor densityratiois �� (sigma):

Theuniversalgaslawshowsthatdensityisdirectlyproportionaltopressureandinverselyproportionalto absolutetemperature:

Formingaratiogives

R isthegasconstantandcancels,sothedensityratio,orsigma,isafunctionofpressureandtemperature:

Viscosity

Viscosity canbesimplydefinedastheinternalfrictionofafluidcausedbymolecularattractionthatmakesit resistitstendencytoflow.Theviscosityoftheairisimportantwhendiscussingairflowintheregionveryclose tothesurfaceofanaircraft.Thisregioniscalledthe boundarylayer.Wediscussviscosityinmoredetailwhen wetakeupthesubjectofboundarylayertheory.

ICAOSTANDARDATMOSPHERE

Toprovideabasisforcomparingaircraftperformanceindifferentpartsoftheworldandundervarying atmosphericconditions,theperformancedatamustbereducedtoasetofstandardconditions.Theseare definedbytheInternationalCivilAviationOrganization(ICAO)andarecompiledinastandardatmosphere

Table2.1.StandardAtmosphereTable Altitude (ft)

01.00001.00001.000059.

1,0000 97110.98540.964455

2,0000.94280.97100.929851.870.9862657.2.000165

3,0000 91510.95660.896248 300.9794654.9.000169

4,0000.88810.94240.863744.740.9725652.6.000174

5,0000 86170.92830.832041 170.9656650.3.000178

6,0000.83590.91430.801437.

7,0000 81060.90040.771634 040.9519645.6.000187

8,0000.78600.88660.742830.470.9450643.3.000192

9,0000 76200.87290.714826 900.9381640.9.000197

10,0000 73850.85930.687723 340.9312638.6.000202

15,0000.62920.79320.56435.510.8969626.7.000229

20,0000 53280.72990.4595 12 320.8625614.6.000262

25,0000.44810.66940.3711 30.150.8281602.2.000302 30,0000 37410.61170.2970

a Thetropopause.

table.AnabbreviatedtableisshownhereasTable2.1.Columnsinthetableshowstandarddaydensity,density ratio,pressure,pressureratio,temperature,temperatureratio,andspeedofsoundatvariousaltitudes.

ALTITUDEMEASUREMENT

Whenapilotusestheterm altitude, thereferenceisusuallytoaltitudeabovesealevelasreadonthealtimeter, butitisimportantthatthedistinctionismadetounderstandwhat types ofaltitudeexist.Whenmeteorologists refertotheheightofthecloudlayeraboveanairfieldtheyareusuallyreferringtothealtitudeabovethefield elevation.WhenairtrafficcontrolreferstoanaltitudeatFL180andabove,theyarereferringtopressurealtitude.Understandingwhat“altitudes”areimportantatdifferentperiodsofflight,andtheeffectoftemperature, pressure,andmoistureonthosealtitudes,isimperativeforsafeflight.

IndicatedAltitude

Indicatedaltitudeisthealtitudethatisreaddirectlyfromthealtimeterandisuncorrectedforanyerrors.Inthe UnitedStatesbelowFL180thealtimeterissettothecurrentaltimetersettingofthefieldyouaredepartingfrom orarrivingto,orisgivenbyairtrafficcontrolforthecurrentareayouareflyingin.IntheU.S.,whenflyingat orabove18,000feet,altitudeismeasuredinFlightLevels(e.g.,FL180for18,000feet).AtFL180theindicated

altitudewillbeequaltopressurealtitudeasthealtimetersettingissetto29.92′′ ,standardpressure,orQNE. Thealtitudeatwhichthecrewchangesto29.92iscalledthetransitionaltitude(TA).Whenthecrewdescends forlanding,thealtitudeatwhichtheyreturnthealtimetersettingtolocalbarometricpressurecorrectedtosea level(QNH)iscalledthetransitionlevel(TL).(Rememberitthisway:29.92isselectedattheTA,andthe“A” standsforaloft,asinclimbingorcruise.Whenreturningtoland,theTLissetondescent,and“L”standsfor low,orlanding.)

WhenQNEislowerthan29.92,thelowestuseableflightlevelisnolongerFL180.ThelowestuseableFLis obtainedfromtheaeronauticalpublications.Forinstance,intheUS,ifthepressureintheareaofoperationsis between29.91and29.42inches,thelowestuseableenroutealtitudeisFL185.Itshouldalsobenotedthatthe TAandTLoutsidetheUnitedStateswillnotalwaysbe18,000.ICAOmemberssettheirownvalues.

Incidentally,QFEisthereferencepressuresetinthealtimeterifthepilotwishestoknowtheelevationabove theairfield.Whentheaircraftisontheairfield,thealtimeterreadszero.QFEisseldomusedasitwouldbeof limitedvaluewhenawayfromtheimmediatevicinityoftheairfield.

Calibratedaltitudeisindicatedaltitudecorrectedforinstrumentationerrors.

TrueAltitude

Truealtitudeistheactualaltitudeabovemeansealevelandisreferencedasmeansealevel(MSL).Onmost aeronauticalchartsMSLaltitudesarepublishedforman-madeobjectssuchastowersandbuildings,aswell asforterrain,sincethisisthealtitudeclosesttothealtitudereadoffthealtimeter.Animportantnoteisthat truealtitudewillonlybethesameasindicatedaltitudewhenflyinginstandardconditions,whichisveryrare. Whenflyinginconditionscolderthanstandard,thealtimeterwillreadahigheraltitudethenyouareflying, sotruealtitudewillbelowerthanindicatedaltitude.Thesamedangeroussituationcandevelopwhenyouare flyingfromahighpressureareatoalowpressureareaandthealtimeterisnotcorrectedforthelocalaltimeter setting.Youraltimeterwillinterpretthelowerpressureasahigheraltitudeandyourtruealtitudewillagainbe lowerthanyourindicatedaltitude.Fromthevariationsintruealtitudeversusindicatedaltitude,thesayingwas developed“hightolow,orhottocold,lookoutbelow.”Ofcourse,thisassumesthatthealtimeterisneverreset tolocalpressureforanentireflightcoveringalongdistancewithvaryingtemperaturesandpressures.

AbsoluteAltitude

Absolutealtitudeistheverticalaltitudeabovetheground(AGL),andcanbemeasuredwithdeviceslikea radaraltimeter.Ofcourseyourabsolutealtitudeismorecriticaltheclosertothegroundyouareflying,soeven whennotequippedwitharadaraltimeterapilotshouldbeawareoftheirAGLaltitude.Whenconductingan instrumentapproachininclementweather,knowledgeofyourAGLaltitudeisvitaltothesafecompletionof theapproachorexecutionofamissedapproach.Yourheightaboveairport(HAA),heightabovetouchdown zone(HAT),anddecisionheight(DH)areallAGLaltitudesandshouldbebriefedbeforetheapproach.

PressureandDensityAltitude

Regardingaircraftperformance,twotypesofaltitudeareofmostinteresttoapilot:pressurealtitudeanddensity altitude.

Pressurealtitudeisthataltitudeinthestandardatmospherecorrespondingtoacertainstaticpressure.Pressurealtitudeistheverticaldistanceaboveastandarddatumplanewhereatmosphericpressureis29.92".Inthe UnitedStates,atFL180andabovethealtimeterisalwayssetto29.92"unlessabnormallylowpressureexists inthearea.Pressurealtitudeisusedinperformancecalculationstocomputetrueairspeed,densityaltitude,and takeoffandlandingdata.Figure2.2indicatesaconvenientwaytodeterminepressurealtitudewhenunableto set29.92"inthealtimeter.

Fig.2.2. Fieldelevationversuspressurealtitude.

U.S.DepartmentofTransportationFederalAviationAdministration, Pilot’sHandbookofAeronauticalKnowledge, 2008

Whencalculatingthepressureratiowewillusethestandardpressureof2,116psf.Ifthepressureatacertain altitudeis1,455psf,thenthepressureratiois:

EnteringTable2.1withthisvalue,wefindthecorrespondingpressurealtitudeof10,000ft.

Densityaltitudeisfoundbycorrectingpressurealtitudefornonstandardtemperatureconditions(Fig.2.3). Pressurealtitudeanddensityaltitudearethesamewhenconditionsarestandard.Oncepressurealtitudehas beendetermined,thedensityaltitudeiscalculatedusingoutsideairtemperature.Ifthetemperatureisbelow standard,thenthedensityaltitudeislowerthanpressurealtitudeandaircraftperformanceisimproved.Ifthe outsideairtemperatureiswarmerthanstandard,thedensityaltitudeishigherthanpressurealtitudeandaircraft performanceisdegraded.

WhenusingTable2.1instead,iftheairhasadensityratioof0.6292,thedensityratiocolumnshowsthat thisvaluecorrespondstoadensityaltitudeof15,000ft.Aspreviouslydiscussed,densityaltitudeinfluences aircraftperformance;thehigherthedensityaltitude,theloweraircraftperformance.Lowairdensityequalsa higherdensityaltitude;highairdensityequalsalowerdensityaltitude.Therefore,aircraftperformancecharts areprovidedforvariousdensityaltitudes.

CONTINUITYEQUATION

Considertheflowofairthroughapipeofvaryingcrosssection,asshowninFig.2.4.Thereisnoflowthrough thesidesofthepipe.Airflowsonlythroughtheends.Themassofairenteringthepipe,inagivenunitof time,equalsthemassofairleavingthepipe,inthesameunitoftime.Themassflowthroughthepipemust remainconstant.Themassflowateachstationisequal.Constantmassflowiscalled steady-stateflow.The massairflowisequaltothevolumeofairmultipliedbythedensityoftheair.Thevolumeofair,atanystation, isequaltothevelocityoftheairmultipliedbythecross-sectionalareaofthatstation.

Themassairflowsymbol Q istheproductofthedensity,thearea,andthevelocity:

Thecontinuityequationstatesthatthemassairflowisaconstant:

Thecontinuityequationisvalidforsteady-stateflow,bothinsubsonicandsupersonicflow.Forsubsonic flowtheairisconsideredtobeincompressible,anditsdensityremainsconstant.Thedensitysymbolscanthen beeliminated;thus,forsubsonicflow,

Velocityisinverselyproportionaltocross-sectionalareaorascross-sectionalareadecreases,velocity increases.

BERNOULLI’SEQUATION

Thecontinuityequationexplainstherelationshipbetweenvelocityandcross-sectionalarea.Itdoesnotexplain differencesinstaticpressureoftheairpassingthroughapipeofvaryingcrosssections.Bernoulli,usingthe principleofconservationofenergy,developedaconceptthatexplainsthebehaviorofpressuresingases.

ConsidertheflowofairthroughaVenturitube,asshowninFig.2.5.Theenergyofanairstreamisintwo forms:Ithasa potentialenergy,whichisitsstaticpressure,anda kineticenergy,whichisitsdynamicpressure. Thetotalpressureoftheairstreamisthesumofthestaticpressureandthedynamicpressure.Thetotalpressure

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Download full Flight theory and aerodynamics: a practical guide for operational safety 3rd edition, by Education Libraries - Issuu