Buy ebook Introduction to microfluidics 2nd edition patrick tabeling cheap price

Page 1


Introduction to Microfluidics 2nd Edition Patrick Tabeling

Visit to download the full and correct content document: https://ebookmass.com/product/introduction-to-microfluidics-2nd-edition-patrick-tabeli ng/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

An Introduction to Medicinal Chemistry 7th Edition

Graham L. Patrick

https://ebookmass.com/product/an-introduction-to-medicinalchemistry-7th-edition-graham-l-patrick/

A Concise Introduction to Logic (14th Edition) Patrick J. Hurley

https://ebookmass.com/product/a-concise-introduction-tologic-14th-edition-patrick-j-hurley/

Pharmacologie à l'officine 2nd Edition Patrick Poucheret

https://ebookmass.com/product/pharmacologie-a-lofficine-2ndedition-patrick-poucheret/

Laboratory Methods in Microfluidics 1st Edition Edition

Basant Giri (Auth.)

https://ebookmass.com/product/laboratory-methods-inmicrofluidics-1st-edition-edition-basant-giri-auth/

Introduction to Modern Analysis, 2nd Edition Kantorovitz

https://ebookmass.com/product/introduction-to-modernanalysis-2nd-edition-kantorovitz/

Introduction to Nuclear Science 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/introduction-to-nuclearscience-2nd-edition-ebook-pdf/

Introduction to Private Security 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/introduction-to-privatesecurity-2nd-edition-ebook-pdf/

Introduction To Embedded Systems 2nd Edition K. V Shibu

https://ebookmass.com/product/introduction-to-embeddedsystems-2nd-edition-k-v-shibu/

(eBook PDF) Introduction to Women’s and Gender Studies 2nd Edition

https://ebookmass.com/product/ebook-pdf-introduction-to-womensand-gender-studies-2nd-edition/

INTRODUCTIONTOMICROFLUIDICS

Introduction toMicrofluidics

PatrickTabeling

ÉcoleSupérieuredePhysiqueetdeChimieIndustrielles,(ESPCI)Paris, ParisSciencesetLettres(PSL)University.

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

©PatrickTabeling2023

Themoralrightsoftheauthorhavebeenasserted

Firstpublishedinhardbackin2005 Firstpublishedinpaperbackin2010

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2023907882

ISBN978–0–19–284530–6 DOI:10.1093/oso/9780192845306.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

ToIsa

Preface

Microfluidicshasprogressedconsiderablyoverthelasttwentyyears,andthetimehas cometoenvisageaseriousupdateofthefirsteditionof IntroductiontoMicrofluidics, publishedin2005.Infact,thissecondeditionismorethananupdate.Compared tothefirstone,itkeepsthesamestructure,thesamespirit,thesameattemptsto explainthings,onaphysicalbasis,indepthandsimply,wheneverpossible,butitisnot reducibletoanupdate.Thepresenteditionresultsfromcompleterewritingofthefirst one,nurturedbytheconsiderableamountofinformationcollectedinthefieldoverthe lasttwodecades.Somuchinformationhasbeengatheredintwentyyears.Somany revisionsofthevisionsofthefieldhavebeenmade.Thingsthatlookedimpossible inthe1990sgaverisetoanimportantindustry,tenyearslater.Thisisthecaseof nextgenerationsequencing(NGS).Thingsthatlookedrevolutionaryturnedoutto bedisappointing.Thehistoryofmicrofluidicsisfullofdreamsthatbecamerealand appealingevidencethatbecamewrong.Letusreturntotheturnofthecentury.Atthat time,themicrofluidicmarket(i.e.withoutinkjetprinting)wassmall,andscepticism wasfloatingaroundconcerningthepotentialofthetechnologytofinditsfeetina market,eventhoughitwasregularlyannounced,hereandthere,thatmicrofluidics wouldrevolutionarizethetwenty-firstcentury.Commonsenseledtothetheory,infact wrong,thatdrivingflowsthroughtinychannels,atanindustrialscale,withoutleaks, clogging,bubbles,oruncontrolledadsorption,wasimpossible.Theoppositeviewpoint believingthatitisstraightforwardtocreateacomplex,functional,microfluidicdevice wasunrealistic.Still,successfulmicrofluidicproductsemerged,while,inthemeantime, thetechnologypenetratedintoanincreasingnumberofnewdomains.Themarket steadilyincreasedatatwo-digitrate,reaching,today,seventeenbillionsdollars.At themoment,hundredsofmillionsofdevicesaresoldeveryyear.Forexample,1.2 millionIlluminamicrofluidicflowcells,forgenesequencing,areshippedeverysingle year.Inthemeantime,fundamentalphenomena,suchascapillarity,wetting,slippage, andnanofluidictransporthavebeenbetterunderstoodor,inanumberofpuzzling cases,justunderstood.Overtheyears,theearlyvisionofthedomain,basedona strictanalogywithmicroelectronics,graduallyshiftedtoanewparadigm,inwhichthe microfluidictoolboxisnolongerrestrictedtoMOS-FETsurrogates,butincorporates amuchbroaderpaletteofmaterialsandmechanisms.

Sincethefirstedition,twentybooksonmicrofluidicshavebeenpublished.Manyare goodorverygood.Butsomelookmorelikegalleriesofcartoonsexhibitingsystems supposedtowork,withnodatashowingthattheydo.Thisisastyle.Itriedtoavoid thistypeofpresentation.Otherbooks,oftenengineering-oriented,describebasicphenomenawithoutmuchdepth.Infact,caricaturingsubtlemechanismsisadifficult exercise.Sometimes,errorsaremade.Perhaps,wecouldcontentourselveswiththis

viii Preface

levelofdescription.Afterall,wecanuseacomputerwithnoideahowatransistor works.AsP.Andersonstated,scienceisorganizedinhierarchicallevels,builtontop ofeachother,theupperusingconceptselaboratedbythelower.Bothoperateindependently,elaboratingtheirownlawsandparadigms.Then,asjustsaid,computing researchersdonotneedtoknowwhatatransistoris,andthereisnonecessityfor fluidmechaniciststounderstandkinetictheoryofgases.Inthe1990s,itwasthought thatsoon,microfluidicresearcherswouldnolongerneedfluidmechanics.Engineers woulddesignmicrofluidicmachines,withoutnoticingthatfluidsarerunninginthem. Perhaps,oneday,microfluidicswillreachthisstage.Butmicrofluidicshasnotreached thislevelyet.Anditisstillvaluableandprobablyimportant,toacquireaminimal knowledgeonthesubtletiesthatthefieldreliesupon,atleasttoknowthelimitations thattheyinduce.Iattemptedtoprovidethistypeofknowledgethroughoutthisbook.

Manycalculationsdevelopedinthepresentbookareelementary.Still,theyallowus torationalizemostofthephysicsinvolvedinmicrofluidicflowandtransportphenomena.Physico–chemicalprocesses,developingonsurfacesorinbulks,soimportantin microfluidics,areexplainedonanintuitivebasis,withoutusingthepowerfulmachineryofthermodynamics,whoseexquisiteconceptssometimesobscuretheunderpinningphysics.Emphasisisplacedonmodernapplications,inwhichbiologyplaysan importantpart.Also,asinthefirstedition,aforty-pageintroductiontomicrofluidic technologiesisgiven.Thebookincludesenoughmaterialtobuildupcoursesofvarious formats,fromafewtotwentyhoursorso.

Fig.0.1: Antplayingmicroguitar(FromM.Seiffert(2003)).

Acknowledgements

First,IwouldliketothankC.M.Ho,whohostedmein2000,attheUniversityof CaliforniaatLosAngeles(UCLA),atthetimewhenthe’goldenyears’ofmicrofluidics werejustlaunching.Thankstohim,Idiscoveredthefield.OnmyreturntoParis, oneyearlater,P.G.DeGennesofferedmetocreateamicrofluidiclaboratoryat EcoleSup´erieuredeChimieIndustrielle(ESPCI),whichIdidwithenthusiasm.Since then,fortwentyyears,Ihavehadthechancetomeetextraordinarypeople,students, postdocs,andcolleagues,andtobuildstrongfriendships.Writingthesecondedition isasortofnoeticjourneythroughtheseexcitingyears.

Microfluidicsisabroadfield,anditisimpossibletobecome,allofasudden,aworld classexpertonallthesubjectsitembraces.Iwasfortunatetoreceivehelpfrommany colleagues,whokindlyexchangedcorrespondanceand,inmanycases,correctederrors andmisconceptions.IacknowledgeJ.Ottino,whomadenumerousremarksonthe chaoticmixingsection.InthestrangeatmosphereoftheCOVIDconfinementdays,we hadlongexchangesovertheinternet,evoking,sometimes,theyearswhenwepertained tothesamecommunity.Thislefttheimpressionthatwritingabookisalsoalook intothepast,sometimesexposingtheauthortovertigo.Ihadthesamefeelingswith myfriendsY.Pomeau,andJ.P.Bouchaud,fortheirremarksconcerningBrownian motionandchaos,andK.MoffattforhiscommentsonBatchelor’sapproachtofluid mechanics.IhaddiscussionswithG.WhitesidesandA.Manzconcerningmicrofluidics, itspastandfuture.J.EijkelsandA.vandenBergexpressedtheirenlighteningvision ofnanofluidicswhichIrefertointhebook.D.LohseupdatedthepoorknowledgeIhad onnanobubbles,H.StonemadeadetailedreadingofmypresentationoftheNavierStokesequations,F.MugelegavepreciousremarksonelectrowettingandJ.Cossyon surfactantchemistry.WithmyfriendS.Quake,Ihadalongsemanticdisputeabout theword‘vesicle’,notendedyet.Z.Z.Li,aformerstudent,nowprofessoratBeijing InstituteofTechnology,performedexperimentstoobtaintheuseful(unpublished) imagesshowninChap4,relatedtostepemulsificationtechnique.Ialsobenefited fromgreatremarksfromD.Quere,J.O.Fossum,T.Lecuit,V.Hessel,J.LViovy, J.Eggers,M.Bazant,R.Ismagilov,P.Doyle,H.Bruus,A.Strooke,F.Wyart,E. Clement,A.Skjeltorp,E.Raphael,M.Tatoulian,Y.Tran,K.Jensen,S.Wereley,J. Bibette,A.GriffithsandD.Weitz.IalsoacknowledgeJ.MoulyandC.Midelet,from YoleDevelopment,fortheirexplanationsofthemicrofluidicmarket.DeepthankstoC. Rollard,forherdescriptionoftherealmofspiders.IamalsoindebtedtoJ.O.Fossum, E.Torino,P.A.Netti,forgreatdiscussionsandfortheirinvitationstosabbatical periodsatNordheimUniversityandtheItalianInstituteofTechnology,inNapoli.I wouldalsoliketoacknowledgeA.Libchaber,fromwhomIlearnedalot.Discussions withmyclosecolleagues,P.NgheandJ.McGrawwereinspiringandexchangesin mygroupprovidedasourceofthinkingandlearning:thankstoP.Garneret,E.Coz, E.Martin,U.Soysal,P.Nieckele,M.Russo,andI.Maimouni.Iamalsogratefulto M.DhunnooforherhelpandL.Dehove,forherappealingcoverandthegreatfigures showninthisbook.

Contents

1Introduction 1

1.1Astonishingmicrofluidicsystemsinnature1 1.2Exquisitemicrofluidiccontrolinthehumanbody3 1.3MEMS,themotherofmicrofluidics6 1.4Thebirthofmicrofluidics9 1.5Theadventofsofttechnology14 1.6Diversificationofthetechnologyandbroadeningoftheapplications16

1.7MicroReactionTechnology(MRT)21 1.8Nanofluidics22 1.9Themicrofluidicmarket26 1.10Futureofmicrofluidics30 1.11Reviewsandbooks38 1.12Organizationofthebook39

References 40

2Physicsatthemicroscale 48

2.1Thescalesofsmallthings48

2.2IntermolecularForces-basics58

2.3Nano-MicroandMillifluidics71 2.4Thephysicsofminiaturization73 2.5Scalinglawsinnature77

2.6Miniaturizationofelectrostaticsystems87

2.7Miniaturizationofelectromagneticsystems91

2.8Miniaturizationofmechanicalsystems-thevibratingmicrobeam93 2.9Miniaturizationofthermalsystems95 2.10Samplingandthroughput97

References 100

3Hydrodynamicsofmicrofluidics1:channels 103

3.1Theflowequationsandtheboundaryconditions103 3.2Slippageingases118 3.3Slippageinliquids121 3.4MicrofluidicsatsmallReynoldsnumbers127 3.5Resistancesandcapacitancesinmicrofluidics141 3.6Inertialmicrofluidicsandmillifluidics150

References 158

xii Contents

4Hydrodynamicsofmicrofluidics2:droplets 162 4.1Liquid–vapourinterfaces162 4.2Laplace’slaw169 4.3Surfactants181 4.4Wetting188 4.5Dropletsadvancingonasurface198 4.6Thegoverningequationsandthecapillarynumber202 4.7TheLandau–LevichandBrethertonfilms205 4.8TheRayleigh–Plateauinstability208 4.9Washburnlawandpapermicrofluidics212 4.10Productionofmicrofluidicdropletsandbubbles215 4.11Characteristicsofmicrofluidicdropletsandbubbles225

References 240

5Transportinmicrofluidics 245

5.1Themicroscopicoriginofdiffusion245 5.2Advection-diffusionequationanditsproperties253 5.3Analysisofdiffusionphenomena257 5.4Analysisofdispersionphenomena263 5.5Briefintroductiontochaosandchaoticmixing269 5.6Mixinginmicrofluidicdevices276 5.7Fourapplicationsoftransportofmatterinmicrofluidics286 5.8Transportofmatteracrossinterfaces290 5.9Particlesandmicrofluidics299 5.10Particlesininertialregimes307 5.11Adsorption308

5.12Chromatography312 5.13Thermaltransportbyconduction318 5.14Convection-diffusionheatequationandproperties324

5.15Heattransferinthepresenceofaflowinmicrosystems329 5.16Evaporationanddrying336

5.17Microexchangersforelectroniccomponents340

References 344

6Electrokinetics 350

6.1Introduction350

6.2Basicnotionsofelectrostaticsofmacroscopicmedia350

6.3Theelectrokineticequations356 6.4Theelectricaldoublelayer359

6.5Electro-osmosis372

6.6Electrophoresis381

6.7Microfluidicelectrokineticseparation393

6.8Dielectrophoresis400

6.9Threeillustrations/applicationsofdielectrophoresis404 6.10Electrowetting406

Contents xiii

References 412

7Anintroductiontomicrofabrication 415

7.1Introduction415

7.2Currentsituationofmicrotechnologies415

7.3Theenvironmentofmicrofabrication417

7.4Photolithography419

7.5Directwritingormasklessphotolithography424

7.6Microfabricationmethodsforsiliconandglassdevices425

7.7PDMS-basedmoulding–softlithography437

7.8ComputerNumericalControl(CNC)Micromilling449

7.93DPrintingorAdditiveManufacturing(AM)449

7.10Papermicrofluidics451

7.11Othertechnologies453

References 459 Index 462

Introduction

Inthe1970s,itbecamepossibletominiaturizeelectromechanicalsystems,downto themicrometricscale.Thisgaverisetoanewfield,calledMicro-ElectroMechanical Systems(MEMS).Later,inthe1990s,thefieldexpanded,creatingallsortsofmicrodevices,inwhichfluids,drivenundercontrol,gaverisetonewfunctionalities.This promptedthebirthofanewfield–microfluidics–thecentralsubjectofthisbook.

Microfluidicscanbedefinedasthescienceofmanipulationoffluidsinsystemsof micrometricsize.Fluidscanbegases,liquids,Newtonianornot,monoormultiphasic (e.g.oilandwater).Systemscanbedeviceswithchannels,patternedsurfaces,or papersheets.Micrometricisanorderofmagnitude.Inpractice,microfluidicscales rangefrom100nmto1mm.Thedefinitionproposedhereiscurrentlyusedinthe field1 andwewilladoptitthroughoutthebook.2

1.1Astonishingmicrofluidicsystemsinnature

Obviously,naturemanipulates,withexquisitecontrol,fluidsatthemicroscale.Otherwisenolifewouldbepossible.Thetreeisanexample.InthetreeofFig.1.1,tens ofthousandsofleavesarenourishedbyanetworkcontainingthousandsofcapillaries ofdiametersontheorderoftensofmicrometres(inthetrunkandthebranches)and billionsofporesofseveraltensofnanometres(inthemesophyllcellsystem,inthe

1Inaninfluentialpaper[1],titled‘Theoriginsandthefutureofmicrofluidics’,G.Whitesides definedmicrofluidicsas‘thescienceandtechnologyofsystemsthatprocessormanipulatesmall (10 9 to10 18 liters)amountsoffluids,usingchannelswithdimensionsoftenstohundredsof micrometers’.Thedefinition,althoughmorerestrictiveaboutthescales,isessentiallyisthesameas ours.

2Tworemarksmustbemadeatthislevel:

-Microfluidicsshouldnotbeconfusedwithmicrohydrodynamics.Microhydrodynamicsisthestudy ofcreepingflows,i.e.flowsatlowReynoldsnumbers.Inthedefinitionofmicrohydrodynamics,‘micro’ referstotheReynoldsnumber,notthesystemsize.Inmicrofluidics,‘micro’referstothesystemsize, nottheReynoldsnumber.Onecanhavemicrohydrodynamicflowsofdecimetricsizes(e.g.honey pouredfromaspoon)andmicrofluidicflowsoperatingatsubstantiallyhighReynoldsnumbers(e.g. inertialmicromixers).

-‘Microfluid’isawordthatsometimesappearsintheliterature.Itisnotaphysicalconcept. ‘Fluid’referstoastateofmatterdefinedmicroscopically.Inthebulk,gasesandliquidscirculatingin microchannelspossessexactlythesamemicroscopicstructureasinlargecontainers.Thereisnonew phase.Inextremelyconfinedsystems,forinstance,incarbonnanotubes,theliquidstructurecanbe affectedbythewalls.However,thisconcernsonlynanometricscales.

Fig.1.1: Thistreepossessesacomplexnetworkofcapillaries(xylemandphloem)that suppliessaphomogeneouslytothetensofthousandsofleavesthatitcarriesonitsbranches, andredistributecarbohydratesandotherorganiccompoundsbetweenleaves,roots,andfruits (credit:JohannesPlenio)[2].

leaf).3 Inthepores,sapevaporates,throughaprocesscalledtranspiration,creating interfacesthatpullthesapfromtherootstothetop[3,4].Despitethecomplexityof thenetwork,thesupplyofsapisstableintimeandhomogeneousinspace.Thehydrodynamicsofthetreeisextremelysubtle.Forinstance,largetreesdrivethesapat negativepressures[5,6].Nohydraulicsystemmadebyhumansfunctionslikethis.The reasonisthatwhenthepressureisnegative,bubblesnucleateandtheflowisunstable andbecomesoutofcontrol.Intrees,bubblesgrow,butseveralmechanisms,including mechanical,blocktheirpropagation,therebypreventingembolismanddeath[4].

WewillcomebacktothetreesinChapter4,whencapillaryphenomenaarediscussed. Here,itisenoughtoobservethatthetreeprovidesanexampleofexquisitemicrofluidiccontrol..Thiscontrolisachievednotforthepleasureofrealizingatechnological performance,buttoensuresurvival.

Asimilarproblematicholdsforthespider.Thespiderproduces4 longsilkenthreads,a fewdozenmicrometresindiameter,formingacomplexpattern-thespiderweb-,each threaddevelopingaresistancetorupturethatistwiceasgreatasthatofsteel[7,8]. Howdoesthespidermanagetoproducethismaterial?Tomakealongstoryshort, 5 thesilksolutioniscontainedintheglands,whicharehighlightedinFig.1.2.In mostspiders,sixglandsproducedifferenttypesofsilks.Thesolutionisdriveninsmall capillaries,severaltensof µmindiameter.Byactuatingvalves,orselectingtheglands,

3Themesophyllpartismuchmoreresistivethantheotherpartsofthetree.Thisexplainswhy thetreedistributesthesapamongtheleaves,inaremarkablyhomogeneousmanner.

4Allspidersproducesilkbutonlyafractionofthemproducewebs.Thosewhichdonotproduce websusethesilkwirestobuildcagesprotectingtheireggs,ortopassfromoneleaforonebranchto anothertomovemoreswiftly.

5Anexcellent,descriptionofthespidersilkproductionisgivenbytheMuseumofAustralia,inan articlenamed:‘Silk:thespider’ssuccessstory’.

Exquisitemicrofluidiccontrolinthehumanbody 3

thespiderchoosesthesilkitwantstoproduce,foronepartoftheweboranother. Eachglandworksaspartofapair.Inthecapillary,onetypeofsilkoccupiesthe centralpartofthechannel,andtheothertheperiphery.Thus,theyformaconcentric systeminwhichthetwosilksflowsidebyside.Intheirjourneys,thesilksolutions deshydrateand,combinedwiththeeffectofthelargedeformationratetowhichthey aresubjected,6 tendtoharden.Attheendofthesejourneys,thesoftmaterialis extrudedatthebackoftheabdomen,throughtensofsubmicrometricnozzles;itthen evaporatesandsolidifies.Thespiderthuscontrolsacomplexannularflowstructure, thedehydratationprocessalongthecapillary,andthefinalextrusionthroughmany nozzles.Thistechnologicaltourdeforceallowsittocatchinsectstoeat.

1.2: Twoglandsproducethesilkof thespiderweb,eachglandsecretinga particulartypeofsilk.Thesilkisina liquidstateintheglands.Duringits journeytowardstheoutlet,thesolutionhardensundertheeffectoflarge deformations,dehydrates,turnsinto asoftmaterial,exitsthespider,evaporates,andsolidifies.

1.2Exquisitemicrofluidiccontrolinthehumanbody

Humanscontrolflowsatthemicroscalewithahighlevelofprecision,andforthe samereasonsasanimalsandtrees:tobeviable.Theexamplesarenumerousandthey concernalmostallpartsofthebody.Here,justafewarementioned.

Bloodcirculation Thebloodnetworkisformedbyvesselsofdifferenttypes:arteries, veins,andcapillaries.Eachoftheseplaysaspecificroleinthecirculationprocess. Thetotallengthofthevesselsisimpressive:100,000km.Theirdiametersrange from25mm(theaorta)to8 µm,i.e.thesizeofaredbloodcell.7 Mostofthevessels arelessthan100 µmindiameter,i.e.theyhaveamicrofluidicsize.Fig.1.3(A) showsthevesselnetworkofalymphnode.Itsgeometricalcomplexityisevident. Blooditselfisacomplexfluid:itcomprisesaplasma,whichincludesalargevariety ofsolutes,andseveraltypesofcells-mostlyredbloodcells(erythrocytes)-.A numberofphenomena,describedintheliterature,alterthehomogeneityofthe suspension.TheFahraeuseffect[9]whereby,alongmicrochannelswhosediameter decreasesinthestreamwisedirection,thecellconcentrationdecreases.Theeffect islinkedtotheparticularinteractionthatthecellsdevelopwiththewalls.In thebloodnetwork,differenthydrodynamicregimestakeplace,dependingonthe ratioofvesseldiametertobloodcelldiameter.Despitethiscomplexity,theblood circulationispreciselycontrolled.Theaveragedflowrateistunedsoastobe

6Itisconsideredthatthesilksolutionbehavesasashear-thickeningfluid.

7Redbloodcellsarebiconcavedisks,8 µmindiameteraverage

Fig.1.3: (A)Representationofanetworkofbloodvessels.Gasesandnutrientsareexchanged betweenthebloodandsurroundingtissuethroughthepermeablewallsofcapillaries,the smallestbloodvessels(fromDesigncell,2013).(B)Sketchofthegastransferstakingplace inthelungs.(C)Migrationofamegakaryocyteinthebonetissue,penetrationintheblood vessel,andthesubsequentplateletformation.

compatiblewiththemetabolism.Inthenetwork,nocloggingoccurs,andthe pressuredropsarekeptsmall.Drivingasuspension,underprecisecontrol,insuch acomplexmicrofluidicsystem,representsaformidablechallengethatevolution hasmanagedtomeet.

Gasexchangesinlungs Lungstakeinoxygenandeliminatecarbondioxide.The gastransferbetweenbloodandair,atthealveolalevel,isschematizedinFig. 1.3(B).Themembrane(madeofcells)separatingthealveolaandthesurroundingcapillariesisonecellthick,i.e.about1 µm.Withsuchasmalldimension, gasespassquicklythroughthemembraneintotheblood.Oxygen-deficient,carbondioxide-richbloodreturntotheheart.Althoughcapillarieshostonlyone cellintheircrosssections,nocloggingoccurs.Lungstypicallycontain480millionalveoli.Therespiratorysystemprovidesanexamplewherehumansexertan exquisitecontrolofthebloodcirculationandgasexchanges,atthemicronscale.

Plateletproduction :Plateletsarecellsmeasuring2-3 µmandwithoutnucleus. Theypreventhaemorrhages.Withoutthem,wewouldnotsurvive.Tocarryout thisfunction,platelets,initiallyspherical,taketheformofastar,adhereand aggregateatawoundandtriggerthrombingenerationandfibrinformationto createaclot,furtherstrengthenedbytheaccumulationofwhitebloodcells[10]. Fig.1.3(C)sketchestheprocessofformation.Megakariocytes(30 µmlarge),are producedinthebonemarrow,thentravelthroughthebonetissueandenter thebloodcirculation,bymigratingthroughthevesselwall.Inthebloodstream, beingtetheredtothewall,theyarestretchedoutbytheshearflowandbreakup tosmallvesicularblobsofmicrometresize,calledplatelets[11].Thelifespanof plateletsislimited,andwemustproducebillionsoffunctionalplateletseveryday torenewthem.Ifthebloodcirculationweretoofast,turbulencewoulddevelop andthebreakupprocesswouldbecomeoutofcontrol.Ifthebloodcirculation weretooslow,themegakariocytewouldnotbreakupandnoplateletwouldbe

Exquisitemicrofluidiccontrolinthehumanbody 5 produced.Theprocessisthusfinelycontrolled.

Fig.1.4: A-Sketchofaskinporewithitseccrinegland;B-Eyewithitsfilm:C-Aquaporin, acrosswhichwatermoleculescirculate.

Sweating Sweatingcoolsdownthebody,duringexercise,whenthetemperatureis hotorincaseoffever[12].Fig.1.4showsaneccrinegland,whichproducessweat anddrivesitthroughthemicrofluidicsudoralchannel(50 µmindiameter),up totheskinpore.Theflowrateisdeterminedbythekineticsofsecretionofthe gland.Onceattheskinlevel,sweatformsafilmoradroplet,whichevaporates and,inturn,accordingtothermodynamics,coolsdownthebloodcirculatingin theregionandtherebythebody.Typicalenergylossesperunitoftimeare350 watts,severaltimesthebasalmetabolism,i.e.theenergy,perunitoftime,used byahumanatrest,aswillbeseeninChap.2.Shouldthesweatflowbetoo large,theskinwouldbecoveredbyathickfilm,and,intheoppositecase,there wouldbenothermalregulation.Thereby,againinthiscase,evolutionhasledto afinecontrolofmicrofluidicsweatflows,whichplaysaninstrumentalroleinour thermalstability.

Tears Tearfilmisessentialforclearvisionandeyehealth[13].Itprotectstheocularsurfacewithmoisture,transportswasteaway,andprovidesasmoothoptical surface.Thisfilmhasamicrometricthickness.Aftereachblink,itre-forms.Deficienciesinthetearfilmcausesblurredvision,burning,foreignbodysensation, andtearing.Flowcontrolisinstrumentaltoavoidtheseproblems.

Aquaporin Theprecedingexampleswereconcernedwithmicrometricscales.Humansalsocontrolflowsatthenanometricscale.Anexampleisaquaporin.The functionofthismoleculeistotransportwateracrosscellmembranesinresponse toosmoticgradients[14].Withoutcellscouldblow,asredbloodcellsdowhen theyaresuddenlyimmersedinasaltysolution.Typically,cellscontainupto30 aquaporins.AsillustratedinFig.1.4(C),inthepresenceofanosmoticpressure gradient,watermoleculesareforcedtocirculatethroughtheaquaporin,inone directionortheother,tocancelit.Aquaporinsareextremelyselective:onlywater moleculespassthroughthem.Theyneverclog,duetotheactionofananti-fouling mechanismthatisnotyetunderstood.Theirpermeabilityissufficientlyhigh[15] toenablefastequilibration,sinceiftheequilibrationprocessweretooslow,cells wouldbeunstable.Ithasbeensuggestedthatthehourglassgeometryofthe

moleculeplaysaroleinthisproperty.Aquaporinillustrateswelltheexquisite controlthathumanshavedevelopedatthenanoscaletoensuretheirviability.

1.3MEMS,themotherofmicrofluidics

Asevokedinthefirstlinesoftheintroduction,manhasbeguntocreate,intheseventies,machinesofmicrometricsizes.ThesesystemswerecalledMicroElectroMechanical Systems(MEMS).MEMSsizescurrentlyrangebetween1 µmand500 µm.AnexcellentexampleofaMEMS,hilglightedin[16],isshowninFig.1.5.ThisMEMSisa microgearwhoseoverallsizeis200 µm.Itisheldbyanant.Thefigureillustratesthe intrusionofaman-mademachineintothesmallanimalrealm.Theentryintomicrometricscalesisnotanewfeat,however.Sincetheinventionoftheopticalmicroscope inthesixteenthcentury,themicrometricworldhasbeenscrutinizedindetail.Themicroscopehasallowedcountlessscientificdiscoveriestobemade.However,before1970, humansdidnot act atamicrometricscale,whichispreciselywhatMEMSallows.As aresult,whenMEMSappearedonthescene,theirpotentialofapplicationswasclear. Thefirstexampleconcernsairbagsforcars.

1.5: Antholdinganickelmicro-gear, madebyLIGAtechnology(German for‘lithographie,galvanofomung,abfomung’).Thisantwasmetallized andplacedinavacuuminorder tobephotographedbyelectronmicroscopy.Thisimagewasprovidedby theKarlsruhegroup(Germany)[17].

MEMSforairbags,whichfirstappearedinthe1980s,consistofanintegratedsystem onasiliconwaferthatisjustafewmillimetreslong.ThisisshowninFig.1.6.The heartofthechipismadeoftwocombs,onefixedandtheothermobile;thecapacitance ofthesecombsvariesundertheeffectofanimpact.AswewillseeinChapter2,the miniaturizationofthecapacitorelementallowsthecreationofahighlysensitiveand rapiddetector.TheindustrialsuccessofMEMSforairbagisnotsolelyduetothe improvementinsensorresponseandsensitivity,butalsototheabilitytointegrate detection,informationanalysis,andsignalprocessingallononesinglechip.Justas withintegratedcircuits,thischipcanbereproducedbythemillion.Thecost,whichis criticalinthefieldofautomobilemanufacturing,becomesveryadvantageouscompared totraditionalsystems.Forthisreason,allmodernautomobilesnowuseMEMSfor theirairbags,andtensofmillionsofthesedevicesareproducedeachyear.

ThehistoryofMEMSisinteresting.Theyear1959isoftenconsideredtobethe beginningofthehistoryofmicro-andnanotechnology.InDecemberofthatyear,

Fig.1.6: A-SEMimageofapartofaMEMS-accelerometerforairbag(ReprintedfromRef. [18],withpermissionfromIOPPublishing,Ltd,Copyright2022);Bprincipleoffunctioning oftheaccelerometer.

avisionaryspeechwasgivenbyRichardP.FeynmanduringtheAmericanPhysical Society(APS)meetingatCaltech.Thisspeechwasentitled‘Thereisplentyofroom atthebottom’[19].Anearlypartofthespeechisasfollows:

Iwouldliketodescribeafield,inwhichlittlehasbeendone,butinwhichanenormous amountcanbedoneinprinciple.Thisfieldisnotquitethesameastheothersinthatitwill nottellusmuchoffundamentalphysics(inthesenseof‘Whatarethestrangeparticles?’) butitismorelikesolid-statephysicsinthesensethatitmighttellusmuchofgreatinterest aboutthestrangephenomenathatoccurincomplexsituations.Furthermore,apointthatis mostimportantisthatitwouldhaveanenormousnumberoftechnicalapplications.

Feynmansawnophysicalreasonwhythe50volumesof EncyclopediaBritannica could notbeinscribedontheheadofaneedle.Oneletterwouldonlyneedtoconsistofless thanadozenorsomolecules.Confrontedwiththedifficultyofworkingatmicrometricscales,hesuggestedthatwe‘trainantshowtoteachmites’howtoconstruct miniaturizedmachines’.

Howmanytimeswhenyouareworkingonsomethingfrustratinglytinylikeyourwife’swrist watch,haveyousaidtoyourself,‘IfIcouldonlytrainananttodothis!’WhatIwould liketosuggestisthepossibilityoftrainingananttotrainamitetodothis.Whatarethe possibilitiesofsmallbutmovablemachines?Theymayormaynotbeuseful,buttheysurely wouldbefuntomake.

Thesesuggestionsorpredictionsdidnotremainjustafantasy;sincethreedecades later,in1990,theword‘IBM’wasspelledoutwith35xenonatoms[20](seeFig.1.7).

1.7: IBMspelledoutwith35xenon atoms,depositedonacold(4K) Nickel(110)surface.Theatomswere transferredfromthesharpScanningTunnellingMicroscope(STM) tipandimagedwiththeSTM[20]. Thisimagereceivedalargeecho.

ThefirstMEMSdeviceswerecreatedtwodecadesafterFeynman’sspeech[21].The firstmicrobeamwasreportedin1982(Fig.1.8A),andthefirstmicrospringin1988. Thefirstmicromotorwascreatedin1988[22,23](Fig.1.8B)8.Itconsistedofanelectrostaticmotor,wheretherotatingelectricfieldwasgeneratedbyelectrodesevaporated ontopolysilicon.Onemajordifficultywasthatstiction(thecombinedphenomenaof adhesionandfriction),whichtendedtoblocktherotorwasexacerbatedbyminiaturization.Thesolutiontothisproblemconsistedofreducingthesurfaceareaofthe rotor/substratecontact,butthismademicrofabricationofthismachinemoredifficult.

Fig.1.8: (A)Firstmicrobeam(1982).(B)Firstmicromotor,madeatUCBerkeleybyTai andMullerin1989.Thismotorhasbeenplacednexttoahumanhairwhosediameterison theorderof200 µm.(CourtesyofProfessorRichardS.Muller,BerkeleySensor&Actuator Center,UniversityofCalifornia,Berkeley).

Otherexamplesareamicrogripper,ahot-wirerake[21],andanastonishingmicroguitar,showninChapter7,withnanostrings30nminsize,vibratingatMHzfrequencies.9 Inaddition,someunsubstantiatedconceptswereproposed:forinstance,aMEMSconsistingofinclinablemirrorsthatpermitcommunicationbetweenthegroundandan airbornemicro-engine.10 Theprojectfailed,buttheconceptwasappealing.Notallof theseobjectswerepractical,butallofthemstimulatedtheimagination.

Today,theMEMSmarketisestimatedtobeworthbetweenUS10andUS13billions, dependingontheagencies.ExamplesofcompaniesareARMHoldings.Bosch,Cisco SystemsInc.,InvenSense,KnowlesElectronics,MediaTekInc.MicrochipTechnology Inc.,SamsungDevelopers,STMicroelectronics,and,TexasInstruments.MEMSproductionincludesavarietyofproductslikeMEMSforairbags,microgyroscopesfor mobilephones,micromirrorsfordigitalprojectors(Fig.1.9),pressuresensors,tomen-

8WewillseeinChapter2thatthismicromotorcancomprisethebaseelementofamicroturbine thatconvertschemicalenergytoelectricalenergy.Itisalsointerestingtonotethatmicrogears, fabricatedusingMEMStechnology,areoftenusedtodayinclockmaking.

9Theguitar,10 µmlong,withsix30nmwidecords,willbeshowninChapter7.Itwasrealized atCornell,in1997,inthegroupledbyProfCraighead.

10Thisconcernedaproject,writtenbyKristoferS.J.Pister,JoeKahn,andBernhardBoser,the UniversityofCalifornia,Berkeley,in1997,whoseobjectivewastobuildwirelesssensornodeswitha volumeofonecubicmillimeter.

Thebirthofmicrofluidics 9

Fig.1.9: (A)OpticalMEMS(MOEMS)madebyTexasInstrument,usedindigitalprojectors. (B)Anarrayofmicro-mirrorsusedinavideo-projector.Thesizeofeachmirroris10 µm [24](CreativeCommonsAttribution4.0UnportedLicense).

tionafew.Theapplicationsareimpressive,butthereisstillroomatthebottom.For instance,noMEMSiscapableofflyingandact,forinstance,likeamosquito.Creating aMEMS-mosquiitowouldnecessitatedevelopinganextremelylightweightandpowerfulenergysource,thatdoesnotexistyet,andintegratinganextraordinarilyefficient motor,alongwithultraminiaturizedmicro-pumps.Allthis,today,looksimpossible.

1.4Thebirthofmicrofluidics

Wenowconcentrateonmicrofluidics.Asinthecaseinmanyfields,thebirthofmicrofluidics,definedas‘thescienceofmanipulationoffluidsatthemicroscale’,assaid above,hasbeenprecededbyprecursorsandevenprecursorsofprecursors.Peoplehave succeeded,inmanycircumstances,inmanipulatingfluidsatthemicrometricscale,in acontrolledmanner,withonlytheirhands.Todothis,theyexploitedhydrodynamical lawsthatnaturallyprovideacontrolofthemicrometricscale.Anexampleispainting. Paintersdepositmicrometriclayersonwalls,whosethicknessiscontrolledbythespeed ofthebrush.Anotherexampleissoapbubbles.Thefilms,stabilizedbysurfactants, aresub-micrometric.Theseexamplesshowthatwithoutmicrotechnologicaltoolbox, themicrometricscale,inanumberofcases,canbecontrolled.

Ofmuchgreatertechnologicalsignificanceisadeviceproducingsubmillimetricdroplets. Itwasinventedin1964byR.G.Sweet[25,26](seeFig.1.10).

SketchofthesystemusedbyR.G. Sweet[25].

Theinvention,withothers,playedaninstrumentalroleinthefieldofink-jetprinting, amajorapplicationofmicrofluidics.Here,dropletswereemittedanddepositedona movingsheet.Akeypointwastheelectrostaticcontrol,whichallowedlargequantities ofnanoliterdropletstobeproduced,inareproduciblemanner,openinganavenue towardsthefabricationofink-jetprinters.

1.11: Firstmicrofluidicsystem(1975)[28]:aminiaturized gaschromatographer,including aninjector,a1.5mlongmicrochannelandathermaldetector.(ReprintedwiththepermissionofIEEE,copyright2022.)

Inthe1970s,silicon-basedMEMStechnologywaswelladvanced,manycleanrooms wereavailable,andtherewerenodifficultyinetchinggroovesonsiliconwafersto createmicrochannels.Inthiscontext,thefirstmicrofluidicdevice,inventedbyS.C. Terry[27],appearedonthescenein1975.UnlikeSweet’sinvention,themanufacturing anddesignofthedeviceprefiguredthesilicon-basedmicrofluidicdevicesthatwould laterdevelop,givingbirthtomicrofluidics.ThedevicemadebyTerry[27,28]wasa miniaturizedgaschromatographer.ItisshowninFig.1.11.

Terry’sdevicecirculatedgasthrougha1.5mmicrochanneletchedinasiliconwafer, bondedtoaglassplate.Thesystemincludedaminiaturizedelectromagneticinjector andathermaldetector.Separationsofgaseoushydrocarbonmixtureswereperformed inlessthan10s,withoutcompromisingtheefficiency,whichwasanimpressivefeat atthattime.

Nonetheless,althoughthedevicewasindustrializedseveralyearslater,thetechnologicaljumpremainedisolated,because,duringtheseyears,theseparation-science communitywasnotreadytoadoptsilicontechnology[29].Itwasonlyafter1990that theadvantagesofminiaturizationwerethrustintothespotlight,foritsapplicationto electrokineticliquidchromatography[30–32].

Aseminalpaperappearedin1990[30].Byreasoningonscalinglaws,A.Manzet al.arguedthatminiaturizationenablesthecreationofperformingseparationsystems, combiningportability,lowcost,andhighspeed,withoutcompromisingtheefficiency.11 WewilldescribethesesystemsinChapter6.Thepaperintroducedanewacronym,

11Theconclusionofthepaperwas:‘Abasictheoryofhydrodynamicsanddiffusionindicatesfaster andmoreefficientchromatographicseparations,fasterelectrophoreticseparationsandshortertransporttimesforaminiaturizedTAS.Theconsumptionofcarrier,reagentormobilephaseisdramaticallysmaller.Amulti-channeldevicewouldallowthesimultaneousperformanceofalargenumber ofmeasurements(underthesameconditions).’

1.12: Firstelectrokineticseparationmicrosystem(1992).Overalldlmensionsare 14.8cmx3.9cmx1cm.(Reprintedrom Ref.[31],withpermissionofAmericalChemicalSociety.Copyright2022.)

µTAS,whichstoodforMicroTotalAnalysisSystem.Thetermlooksawkward.What doesitmean?A‘TotalAnalysisSystem’(TAS)referstoasysteminwhichanalyticalinstrumentsaretransportedonacart,toperformthetotalanalysisofasample (sampling,sampletransport,chemicalreactions,detection)inthefield.Thanksto miniaturization,nocartwasneeded,andtheequivalentsystemwascalled µTAS.The ideasweresubstantiatedtwoyearslater,withtherealizationofthefirstelectrokinetic separationmicrosystem[30].12 Thisdemonstratedperformancesinlinewithexpectations,i.e.highspeedofseparation,andexcellentefficiency,transportability,andlow cost.Microfluidicswasborn.

Later,allsortsofmicrofluidicsystemswerefabricated:electrophoreticseparationassays[33,34],electro-osmoticpumps[35],diffusiveseparationsystems[36],micromixers[37–42],DNAamplificationsystems[43–49],cytometers[50,51],DNAseparation assays[98–102],centrifugalmicrofluidics(seereview[103])andchemicalmicroreactors[52–56],tociteafewexamples.Anumberoftheseinventionsweretoplayan importantrole,adecadelater,intherampingupofthemicrofluidicmarket.

1.13: Coveroftheproceedingsofthefirst µTAS conferenceorganizedby A.vandenBergand P.Bergveldin1994,in Enschede(theNetherlands).(Reproduced withpermissionfromthe ChemicalandBiological MicrosystemsSociety (CBMS),copyright2022 CBMS.)

Upto1994,theyoungmicrofluidiccommunitygatheredindifferentmeetings,inparticularinMEMSconferences(launchedsixyearsbefore,in1988),inwhichoneor twosessionsweredevotedtomicrofluidics.Thesituationwasnotoptimal.Controlling

12Infact,thedevicewasmanufacturedin1988.

fluidflowsinmicrodevicesrequireddiscussionofsubtlehydrodynamicandphysicochemicalphenomena,andthesewerefarfromthefocusofthesemeetings.Therefore,a desiretoorganizespecializedseminarsemerged,inordertofocusonthesephenomena, and,inthemeantime,takethespecifictechnologicalcontextintoaccount,mostoften overlookedintraditionalacademicmeetings.Thefirst µTASconferencewasorganized byA.vandenBergandP.Bergveldin1994,inEnschede(theNetherlands).Thecover oftheproceedingsisshowninFig.1.13.Atotalof160participantsattended.Today, µTASconferencesbringtogether1,500participants.13

Intheseearlydays,a‘paradigm’,i.e.asetofconceptsandpracticesthatdefineascientificdisciplineatanyparticularperiodoftime’,or,moresimply,‘whatthemembers ofascientificcommunity,andtheyalone,share’[57],emerged.Itwasthoughtthatthe objectiveofmicrofluidicswastocreatebasicmicrofluidicfunctions,or‘bricks’,and assemblethem,inawaysimilartomicroelectronics,soastogeneratecomplexfunctionalities,thatcouldrespondtounmetneedsinbiologyandchemistry.Thenotionof lab-on-a-chipwasfrequentlyputforward,andstunningcartoonsdesignedtoillustrate theconcept,suchasthoseofFig.1.1414,appearedinmanybroad-readership(forinstanceRef.[58]),augmentingthevisibilityofthefield.Butwhydidthecommunity notfabricatecomplexmicrofluidicsystems,comparabletomicroelectronicprocessors, astheyenvisioned?Onebottleneckwasvalveintegration.Itappearedimpossible,at thattime,withsilicon,plasticsorglass,tointegratemorethanafewvalvesona device.Therewasnochancetocompetewiththemillionsoftransistorsintegrated,at thattime,oncentralprocessingunits(CPUs).

Inthesameperiod,hydrodynamicexperimentsrevealedunexpectedphenomena;for instance,largeslippages,whichapparentlycontradictedtheno-slipdogmaofhydrodynamics[59,60].Inthemeantime,microfluidictechnologyrevealedthemechanical behaviorofsingleDNAmolecules.TheexperimentwasperformedbyChuetal.[61] in1993,incross-flowmicrochannels.Thisworklaiddownthefoundationsofanew domain:thestudyofsinglemolecules.Italsoshowedthatmicrofluidicscouldprovide newtoolsforinvestigatingfundamentalquestions.Aroundthattime,anumberof fundamentalcontributionsallowedthephysicalroleoftheconfinementtobeclarified. Thisconcerned,forinstance,electrohydrodynamics,electrowetting,chaoticmixing, polymerdynamics,gasflows,orfluidinterfaces.Thelistislongandwewillreturnto thesesubjectslater.Moleculardynamicssimulations,ontheotherhand,enlightened

13Thesecondmeeting, µTAS96,washeldinBaselwith275participants.Thefirsttwomeetingswere heldasinformalworkshops.Bythetimeofthethirdworkshop, µTAS1998(420participants),held inBanff,theworkshophadbecomeaworldwideconference.Thenumberofparticipantscontinued toincreasein µTAS2000(about500participants)heldinEnschedeand µTAS2001(about700 participants)heldinMonterey.Thenumberofsubmittedpapersalsodramaticallyincreasedinthis periodfrom130in1998,to230in2000,tonearly400in2001.From2001, µTASbecameanannual symposium(textofpresentationof µTAS2002,heldinNara(Japan),andwrittenbyYoshinobu BabaandShuichiShoji).

14Fig.1.14(A)isstunning,butitismisleadinginthesensethat,inpractice,thefunctionalities shownonthefigurearemuchmoredifficulttointegratethansuggested.Perhapsinspiredbythis unrealisticillustration,orunderstandingtheanalogybetweenmicroelectronicsandmicrofluidicsina tooliteralsense,severalcompanieswastedmuchtimeandenergydevelopingcomplexlab-on-a-chip thathadnochanceofworking

Fig.1.14: (A)Cartoonpublishedin1998[58],showinganimaginarymicrofluidicdeviceintegratingseveralfunctionalities:electrophoreticseparation,heating,driving,mixing,extraction,andpolymerasechainreaction(PCR)amplification.(B)ImageelaboratedbyCaliper, around2000,thatillustrateswellthelab-on-a-chipconcept.

anumberofphenomena,sometimesinconflictwiththeexperiment.Thisconcerned, forinstance,slippage,nanobubbledynamics,orelectrowetting.Again,wewillreturn tothesesubjectslater.

Bytheturnofthetwenty-firstcentury,manymicrofluidicdeviceswerecreatedinthe labs,somepatented(onehundredorso)awaitingcommercialdevelopments,many not.Before2000,theglobalmicrofluidicmarketwasanano-market,worthlessthan US$100M.15 Anumberofmicrofluidicproducts,althoughelegant,didnotmeetany market.Thiswasthecaseofthemicrofluidicfountainpen[62].Othersdidnotfunction withsufficientreliability:thiswasthecaseoftheglucosewatch,dedicatedtomonitor glucosebysamplinginterstitialfluids.Itwilltakeyearsbeforethisproductfindsits placeinthemarket[63].Otherinventionsmetconsiderablesuccess:onedeveloped byi-Stat(createdin1983),ofextremelysimpleconstruction,dedicatedtoglucose measurements.Inthe1990s,i-Statcompanyshippedseveralmillioncartridgesevery yeartohospitals.Twocommercialproducts,whoseproductionvolumeswerenotas important,butwhichpromisedaninterestingfuture,mustbementioned:theBioanalyzer,dedicatedtoDNAseparation,madebyCaliperAgilent,andtheSmartCycler R System,aPointofCare(POC)molecularsystem,developedbyCepheid(founded in1996).Thetwosystemsmarkedtheentryofmicrofluidicsinmolecularbiology. Cepheidwouldbecome,yearslater,amajorplayerinthisfield.Inthemeantime, severalmicrofluidicfoundries,suchasMicronit(foundedin1999),orChipChop,and lateron,Dolomite(2005)formicrofabrication,andFluigent(2006)andElvesys(2011) forinstrumentation,werecreated.Theyplayedanimportantroleinthedevelopment ofmicrofluidics.

15Althoughinkjetprintingisamicrofluidicsystem,byconvention,itisnotcountedaspartofthis market.

Whofirstusedthewordmicrofluidics?

Before1993,thewordmicrofluidics’wasessentiallyabsentfromthevocabularyof themicrosystemcommunityItdidnotappearanywhereinthe857pagesofthe Microsystemtechnology90Proceedings[67],animportantconferenceoftheyoung MEMScommunity.Instead,thewords‘microliquid-handling’,‘micro-hydraulics’, ‘microfluid’,withorwithouthyphen,ormicro-liquidflows’werepreferred[68].‘Microfluidics’wasalsoabsentfromTerry’s[28],andManz’s[30,31]papers,publishedin 1979,1990,and1992.Whywasthisthecase?Wemayhypothesizethatresearchers ofthattime,involvedinwhatwenowcall‘microfluidics’,werereluctanttouseaword thatlookedesoteric.Thesituationseemedtochangein1993,afterthepublication, byP.Gravesen,ofasurveytitled‘Microfluidics:AReview’[65].Thepaperacquireda significantvisibility.Althoughnoetymologicstudyhasbeendone,andprobablywill neverbedone,onemayhypothesizethatthereviewstronglycontributedto,ifnot initiated,thespreadoftheword.Lateron,althoughinvisibleintheMicroTas94Proceedings,theword‘microfluidics’increasinglyappearedintheliterature.Theword wassuitablesinceitrepresented,aspointedoutbyR.Zengerle[66],a‘headline’coveringalltypesofactionsinvolvingfluids,andperformedinmicrosystems.After1997, itfrequentlyappearedandeventuallyacquiredaprominentplaceinthelanguage. Finally,thecommunityworkingonfluidmanipulationsatthemicroscaleadoptedit togiveanametotheirfield.

1.5Theadventofsofttechnology

Animportantstepwastakenin1998,withthedevelopment,byG.Whitesides,of softtechnology[69–71].16 Withsofttechnology,deviceswerenolongermadeinglass orsilicon,butinsoftmaterials.Fromatechnologicalperspective,thisrepresenteda considerableshift.Twoimages,extractedfrom[69]and[70],areshowninFig.1.15.

Fig.1.15: (A)ScanningelectronmicrographsofaPDMShoneycombstructure,createdby moldingthepolymeragainstaphotoresistmould(ReprintedfromRef.[69]withpermission fromWileyandSons,copyright2022WileyandSons).(B)Double-Tsectionofthenetworkof channels.TheroughnessinthesidewallsofthePDMSchannelsarisesfromthelimitedmask resolution(ReprintedwithpermissionfromRef.[70],copyright2022AmericanChemical Society.).

16Whitesides’paperswerepreceded,in1997,bytwopioneeringworks[72,73].

Theadventofsofttechnology 15

Figure1.15(A)istakenfromRef.[69].Thepaperexplainedtheconceptofsofttechnology,anditstwomainfacets,microprintingandmicromoulding,whichwewilldiscuss inChapter7.

Figure1.15(B)showsmicrochannelsmadeinPolyDiMethylSiloxane(PDMS)[70].We willhearmuchaboutPDMSinthebook.Itisalmostamiraculousmaterial.Ithas propertiesthatnoothermaterialpossesses:deformable,transparentinthevisible range,insulating,hydrophobic,stickingtoglassinareversiblemanner.Wewillsee,in Chapter7,thatallofthesepropertiesmakesoftlithographypossible.InFig.1.15(B), theaqueoussampleisintroducedinthedoubleT,thendrivenbyelectroosmotic forcesintoalongmicrochannel(notshown),alongwhichelectrokineticseparationis performed,inamannersimilartoManz’swork[31].Thewallsarerough,duetothelow maskresolution.Theauthorsachievedionicseparationinthesystem,witharesolution andaspeedcomparabletosilicondevices.Thepaperthussuggested,that,eventhough surfacechemistryisnotascontrolledasinglassorsilicon,electrokineticseparation, themajorapplicationofmicrofluidicsatthattime,isfeasible.Forchromatographic experts,thiswasquiteasurprise.

Nonetheless,themessagereceivedbymanyresearcherswasnotaboutseparation.It wasthatPDMSmicrodeviceswereeasytocreate.17 Oncethemouldwasfabricated, therestofthetechnologicalprocesscouldbemadeoutsideacleanroom,without specializedskills.Amasterstudentcouldlearnitinoneday.Thesimplificationofthe technologicalprocessgaverisetoasurgeofactivity.Manylaboratories,interestedin microfluidics,butwithlimitedaccesstocleanrooms,cametothefieldandstarted investigatingnewdirections.Onecouldcomparethisperiodtothetransitionfrom centralizedinformaticstolaptopcomputing.

Whydidallthecommunitynotrushouttousesofttechnology,abandoningsilicon? Tworeasonscanbeprovided:thefirstisthatPDMSsurfacesarenotstable,meaning thatperformingaccurateseparationswithsuchamaterialwasimpossible.Forthe communityofthattime,composed,mostly,ofanalyticalchemists,thisrepresenteda seriouslimitation.Secondly,PDMSdevicescannotbeproducedinlargequantities. Scalingupisnotpossible,whilewithsiliconitis.Thesetwoargumentsledmostof themicrofluidiccommunityofthattimetokeepworkingwithsiliconandglass.The argumentswerenotunreasonable.Today,halfofthehundredsofmillionsofdevices producedinthemicrofluidicmarketaremadewithglassandsilicon.

Mostresearchersusingsofttechnologywerethusnewcomers.Inthesameperiod,pressingneedsappeared:examplesareDNAsequencing,cellsorting,moleculescreening, singlecellanalysis,andproteomics.Asmentionedearlierfortheparticularcaseof DNAsequencing,alltheseapplicationsconveyedbignumbers:fivebillioncellstosort forisolating1-10circulartumorcells(CTC)[76],hundredofthousandsofcompounds fordrugdiscovery[80],millionsoffluidmanipulationsforperforminggenesequencing[75].Howsomanyexperimentscouldbecarriedoutrapidlyandinparallel,while consuminglittlereagent[74]?Thiswasthenewchallengefacedbymicrofluidics.The

17ThediscoveryofSU8,byIBM,inthe1990s,allowedthickmouldstobemadeinonephotolithographicstep,facilitatingthefabricationofPDMSdevices.

challengewasnotonlyintellectual.Today,theaforementioneddomainsrepresentthe largestshareofthemicrofluidicmarket.18

Inthiscontext,asurgeofinnovationsemerged.Onelandmarkwasthedemonstration, in2002,that,byexploitingthedeformabilityofPDMS[77],thousandsofvalvescould beintegratedonthesamedevice[78].ThisisshowninFig.1.16.Thevalveproblem, raisedinthepreviousdecade,seemedtobesolved.Thetechnologygavebirthtoa company,Fluidigm,whosevaluationwouldsoonreachUS$1bn.WithCepheidand Fluidigm,twomicrofluidicunicornswerebornintheyears2000-2010.19

1.16: Thedevice,whosechannelsarevisualizedwithdyes,contains2056microvalves. Thesystemperformsdistinctassaysin256 nlsubreactionchambers.Eachofthemis individuallyaddressed,usingamultiplexed valvesystem,.Withit,only20valvesare neededtocontroltheassay.(Reprinted from[78],withpermissionfromtheAmericanAssociationfortheAdvancementofScience.Copyright2022.)

ThedeviceshowninFig.1.16contains2,056microvalves.Eachofthe256chambers onthechipisindividuallyaddressed.Amultiplexerallowsforreducingthenumberof connections,from N (Nbeingthenumberofchambers)to2 log2N [78].Itisimpossible torealizesuchasystemwithglassorsilicon.Formicrofluidics,anewperiodopened.

1.6Diversificationofthetechnologyandbroadeningofthe applications

Intheyears2000-08,thankstosoftlithography,themicrofluidiccommunityhadan easieraccesstotechnology.Thenumberofapplications,includingthoseinvolvinglarge numbers,increased,andgrowingpublicsupportraisedmomentuminuniversities.In suchconditions,themicrofluidiccommunitygrewsubstantially,reachingthousands ofresearchersworldwide.Thestimulatingatmosphereofthattimewasperceptiblein the µTASconferences.

Droplet-basedmicrofluidicsappearedintheperiod2000-2002.Wewillpresentthe technologyinChapter4.Atfirstglance,producingmicrodropletsundercontroldidnot appearnew.Forinstance,ink-jetprintersandfluorescentactivesorters(FACS)already

18BeforetheadventoftheCOVID-19pandemic.

19Ataboutthesametime,Theranos,whichpromisedtoperformahundreddifferenttestswitha singledropofblood,reachedmuchhighervaluations.Tenyearslater,thecompanycollapsed.Because oftheabsenceofpeer-reviewedpublicationsissuedbythecompany,linksbetweenthemicrofluidic communityandthiscompanywereinexistent.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Buy ebook Introduction to microfluidics 2nd edition patrick tabeling cheap price by Education Libraries - Issuu