Optical multidimensional coherent spectroscopy hebin li download pdf

Page 1


Optical Multidimensional Coherent Spectroscopy Hebin Li

Visit to download the full and correct content document: https://ebookmass.com/product/optical-multidimensional-coherent-spectroscopy-hebi n-li/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

An improved least squares channel estimation algorithm for coherent optical FBMC/OQAM system K. A. Alaghbari

https://ebookmass.com/product/an-improved-least-squares-channelestimation-algorithm-for-coherent-optical-fbmc-oqam-system-k-aalaghbari/

Optical Materials and Applications: Volume 1 Novel Optical Materials Francesco Simoni

https://ebookmass.com/product/optical-materials-and-applicationsvolume-1-novel-optical-materials-francesco-simoni/

Chemometrics in Spectroscopy (Second Edition) Howard Mark

https://ebookmass.com/product/chemometrics-in-spectroscopysecond-edition-howard-mark/

Laser-Induced Breakdown Spectroscopy 2nd Edition

P. Singh (Editor)

https://ebookmass.com/product/laser-induced-breakdownspectroscopy-2nd-edition-jagdish-p-singh-editor/

Understanding Disaster Risk: A Multidimensional Approach Pedro Pinto Santos

https://ebookmass.com/product/understanding-disaster-risk-amultidimensional-approach-pedro-pinto-santos/

Spectroscopy of Lanthanide Doped Oxide Materials Dhoble

https://ebookmass.com/product/spectroscopy-of-lanthanide-dopedoxide-materials-dhoble/

Mössbauer Spectroscopy: Applications in Chemistry and Materials Science Yann Garcia

https://ebookmass.com/product/mossbauer-spectroscopyapplications-in-chemistry-and-materials-science-yann-garcia/

Understanding Disaster Risk: A Multidimensional Approach 1st Edition Pedro Pinto Santos

https://ebookmass.com/product/understanding-disaster-risk-amultidimensional-approach-1st-edition-pedro-pinto-santos/

Multidimensional Analytical Techniques in Environmental Research 1st Edition Regina Duarte (Editor)

https://ebookmass.com/product/multidimensional-analyticaltechniques-in-environmental-research-1st-edition-regina-duarteeditor/

OpticalMultidimensionalCoherent Spectroscopy

OpticalMultidimensional CoherentSpectroscopy

HEBINLI

FloridaInternationalUniversity

BACHANALOMSADZE

SantaClaraUniversity

GALANMOODY

UniversityofCaliforniaSantaBarbara

CHRISTOPHERL.SMALLWOOD

SanJoseStateUniversity

STEVENT.CUNDIFF

UniversityofMichigan

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©HebinLi,BachanaLomsadze,GalanMoody,ChristopherL.Smallwood, andStevenT.Cundiff2023

Themoralrightsoftheauthorshavebeenasserted Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2023930434

ISBN978–0–19–284386–9

DOI:10.1093/oso/9780192843869.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

Wededicatethisbooktoourfamilieswhohadtoputupwithourabsencewhilewe wroteit.

Preface

Ultrashortopticalpulses,withdurationrangingfromafewpicosecondsdowntoafew femtoseconds,havebeenusedtostudydynamicsinmattersincepulsedlaserswere firstdevelopedinthe1960s.Indeed,thisresearchareahasbeenoneofthedrivers forimprovementsinthefieldultrafastoptics,suchasreductionsinpulseduration. Thefieldofusingultrashortlightpulsestoprobedynamicalprocessesinmatteris generallyknownas“ultrafastspectroscopy.”

Beginninginthelate1990s,thefieldofultrafastspectroscopyunderwentarevolutionduetotheintroductionofmultidimensionalcoherentspectroscopybasedon conceptsoriginallydevelopedinnuclearmagneticresonancespectroscopy.Giventheir power,multidimensionalcoherentmethodsarebecomingthedominantultrafastspectroscopictechniques.

Thisbookpresentsopticalmultidimensionalcoherentspectroscopymethodsand theirapplicationtosystemsandmaterialsthatfallprimarilywithinthefieldofphysics. Thesystemsincludeatomicvaporsandsolids—particularlysemiconductorsandsemiconductornanostructures.Multidimensionalcoherentspectroscopyintheinfraredand visiblespectralregionshasbeenmoreextensivelyusedtostudymolecules.Astheapplicationofmultidimensionalcoherentspectroscopytomolecularsystemshasbeen coveredbyotherbooks,wehavechosentonotrepeatthatcoveragehere.Rather,we seektobroadenthecoveragebyaddressingapplicationsthatarelargelynotcovered elsewhere.

Webeginbyprovidinganintroductionofmultidimensionalcoherentspectroscopy forresearchersinallfields,whetherornottheyhaveabackgroundinultrafastspectroscopy,oreveninopticalspectroscopymoregenerally.Wethenfocusontheuseof thetechniquetoprobesystemsthatareprimarilyofinterestinthefieldsofphysics andmaterialsscience.Ourgoalistoillustratetheinformationthatmultidimensional coherentspectroscopycanprovideanditsadvantagesoverothermethods.Todoso, wefocusonseveralexemplarymaterials,butalsoaimtoillustratethetechnique’s broaderapplicability.

Acknowledgements

WeacknowledgeallofthoseindividualswhohaveworkedorcollaboratedwithusondevelopingandusingmultidimensionalcoherentspectroscopyincludingDiogoAlmeida, TravisAutry,WanKiBae,ManfredBayer,CameliaBorca,AlanBristow,Xingcan Dai,MatthewDay,DenisKaraiskaj,IrinaKuznetsova,Xiaoqin(Elaine)Li,Albert Liu,TorstenMeier,RichardMirin,EricMartin,ShaulMukamel,Ga¨elNardin,Lazaro Padilha,MartenRichter,MarkSiemens,KevinSilverman,RohanSingh,BoSun, TakeshiSuzuki,PeterThomas,AndreasWieckandTianhaoZhang.STCwouldlike toacknowledgethesustainedfundingforresearchonthistopicfromtheDOEAtomic, MolecularandOpticalScienceprogramandNSFfundingthroughtheJILAPhysics FrontierCenter.

Tableofsymbols

Symbol DescriptionSection

A cross-sectionalinteractionarea3.1

a0 Bohrradius5.3

aB excitonBohrradius9.1

ˆ B/ ˆ B† excitonannihilation/creationoperator5.3

C probabilityamplitude1.4

Ci ith Londondispersioncoefficient5.3

c speedoflightinvacuum1

D spatialdiffusioncoefficient1.3

Dα(x,y,z) double-sidedFeynmandiagramequation3.1

E(t) totalelectricfieldinthetimedomain1.2

ˆ

E(t) complex-valued,slowlyvaryingcomponentof E(t)1.2

E(t) phasordescriptionof E 2.3.3

E0 real-valuedelectricfieldamplitude1.2

EB biexcitonenergy9.1

Ee single-particleelectronenergy9.1

Eh single-particleholeenergy9.1

En energydifferencebetweentwoquantumstates1

Esignal radiatedelectricfieldfrompolarization2.3.3

EX excitonenergy9.1

F{...} Fouriertransformoperation1.2

E(ω) totalelectricfieldinthefrequencydomain1.2

E0 electricfieldpulsearea1.2

f0 comboffsetfrequency6.1

fCE carrier-envelopeoffsetfrequency4.4

fn frequencyof nth combtooth6.1

frep laserrepetitionrate4.4

G(ω) Fouriertransformof g(t)intothefrequencydomain3.2

g(t) Gaussiandistributionfunctioninthetimedomain3.10

H Hamiltonianoperatorofasystem1.4

H0 unperturbedHamiltonianoperatorofasystem1.4

h Planck’sconstant, h =6 62607015 × 10 34 J·s1

ℏ reducedPlanckconstant, ℏ = h/2π 1.4

I opticalintensity1.2

ISI spectralinterferogramintensity4.3

I electricfieldpowerspectruminthefrequencydomain1.2

Jmn one-excitoncouplingstrengthbetweenexcitons m and n 5.3

Kmn two-excitoncouplingparameter5.3

x Tableofsymbols

k wavevectoroflight, k =2π/λ

L samplelength1.3

LB potentialbarrierwidth9.1

Lc lasercavitylength6.1

Lmin minimumpotentialbarrierwidthforconfinement9.1

mc conductionbandeffectivemass7.1

me electronmass7.1

mhh heavyholebandeffectivemass7.1

mlh lightholevalencebandeffectivemass7.1

N integernumberpulses,datapoints,etc.4.4

N particledensity5

Np numberofparticles5.4 n refractiveindex1.1

ˆ O⟩ expectationvalueofoperator ˆ O

P dielectricpolarizationdensity1.1

Pψ probabilityofbeinginstate |ψ⟩

Q(x) probabilitydistributionfunction3.2

R inter-atomicseparationdistance5.3

rc correlationparameter6.4

T delaybetweensecondandthirdpulses1.3

T0 opticaltransmission1.3

T1 excitedstatepopulationlifetime3.1

T2 excited/groundstatecoherencetime3.1

T ∗ 2 ensembledephasingtime3.2

Trep laserrepetitionperiod4.4

t signalemissiontime1.3

V interactionHamiltonian1.4

V (R) long-rangeatomicinteractionpotential5.4

V0 potentialbarrierheight9.1

vgr groupvelocity6.1

vph phasevelocity6.1

vs translationstagevelocity4.4

W populationinversionbetweenquantumstates1.4

Xhh heavyholeexciton7.1

Xlh lightholeexciton7.1

α0 absorptioncoefficient1.3

β opticalfrequencychirpparameter1.2

∆1 singlyexcitedstateinteractionshift6.4

∆2 doublyexcitedstateinteractionshift6.4

∆B biexcitonbindingenergy9.1

∆T changeinopticaltransmission1.3

Tableofsymbols xi

∆ϕce carrier-envelopephase-slip6.1

∆X excitonbindingenergy7.1

δ(t) Diracdeltafunction2.3.1

δt temporalintensitypulseduration1.2

δte temporalintensity e 1 halfwidth1.2

δte2 temporalintensity e 2 halfwidth1.2

δtFWHM temporalintensityfull-widthathalfmaximum1.2

δU spectralintensitybandwidthinenergy1.2

δα0 changeinabsorptioncoefficient1.3

δκ spectralintensitybandwidthinwavenumbers1.2

δλ spectralintensitybandwidthinwavelength1.2

δν spectralintensitybandwidthinfrequency1.2

δω spectralintensitybandwidthinangularfrequency1.2

δωe spectralintensity e 1 halfwidth1.2

δωe2 spectralintensity e 2 halfwidth1.2

δωFWHM spectralintensityfull-widthathalfmaximum1.2

ϵ0 vacuumpermittivity3.1

Γ relaxationoperator1.4

Γ10 excitedstatepopulationdecayrate3.1

Γgr gratingrelaxationrate1.3

Γpop populationrelaxationrate1.3

γ dephasingrate/homogeneouslinewidth1.3

γ10 excited/groundstatedecoherencerate3.1

γij imaginarypartofresonancefrequencybetweenstates i and j 2.3.1

γph puredephasingrate1.4

γt singlequantumdephasingrate6.4

γτ doublequantumdephasingrate6.4

Θ(x) Heavisidestepfunction1.3

θ anglebetweenbeams1and21.3

ϑ Blochspherepolarangle1.5

Λ spatialgratingperiod1.3

λ wavelengthoflightinvacuum1

µ electricdipolemoment1.4

ν frequencyoflight1

ν∗ differencefrequencybetweensignalandCWreferencelaser4.4

π mathematicalconstant π ≈ 3.14151.1

ρ densitymatrixoperator1.4

σ N -particlespectraldistributionwidth3.2

τ delaybetweenfirstandsecondpulses1.3

τex two-leveltransitionexcited-statelifetime1.3

χ electricsusceptibility1.1

xii Tableofsymbols

ϕ opticalphase1.2

ϕS,R phaseofsignal/referenceelectricfield4.3

φ Blochsphereazimuthalangle1.5 |ψ⟩ quantummechanicalwavefunction1.4

Ωij complexresonancefrequencybetweenstates i and j

Ωr Rabifrequency1.4

ω opticalangularfrequency1.2

ω0 resonantangularfrequencyofanopticaltransition3.2.1

ωc carrierangularfrequencyofalaser1.2 ωij realpartofresonancefrequencybetweenstates i and j

Tableofacronyms

Acronym Description

2DCS two-dimensionalcoherentspectroscopy

2DES two-dimensionalelectronicspectroscopy

AOM acousto-opticmodulator

BS beamsplitter

◦C degreesCelsius

c.c. complexconjugate

CAD computer-aideddesign

CB conductionBand

CCD charge-coupleddevice

CP compensationplate

CQD colloidalquantumdot

CVD chemicalvapordeposition

CW continuouswave

DBR distributedBraggreflector

DCM dichroicmirror

DCS dual-combspectroscopy

DDS direct-digitalsynthesizer

DFT discreteFouriertransform

DQW doublequantumwell

DSP digitalsignalprocessor

EID excitationinduceddephasing

EIS excitationinducedshift

ESE excited-stateemission

FFT fastFouriertransform

FPGA fieldprogrammablegatearray

FTIR Fourier-transforminfrared

FWHM full-widthathalf-maximum

GNE goldnanoelectrode

GSB ground-statebleaching

HeNe helium-neon

hh heavyhole

HWP half-waveplate

IFQD interfacefluctuationquantumdots

IR infrared

lh lighthole

LO localoscillator

LP lowerpolariton

xiv Tableofacronyms

MAPI MethylammoniumLeadIodide

MBE molecularbeamepitaxy

MDCS multi-dimensionalcoherentspectroscopy

MONSTR multidimensionalopticalnonlinearspectrometer

MQC multi-quantumcoherence

NA numericalaperture

NMR nuclearmagneticresonance

NW narrowwell

OD opticaldensity

PBS polarizingbeamsplitter

PL photoluminescence

PLE photoluminescenceexcitation

PZT piezoelectrictransducer

QD quantumdot

QW quantumwell

RBM radialbreathingmode

RF radiofrequency

SAQD self-assembledquantumdot

SERS surface-enhancedRamanspectroscopy

SNR signal-to-noiseratio

SR-TFWM spectrallyresolvedtransientfour-wavemixing

STM scanningtunnelingmicroscope

SWNT single-walledcarbonnanotube

TBP time-bandwidthproduct

TC lock-inamplifiertimeconstant

TCS tri-combspectroscopy

TFWM transientfour-wavemixing

TI-TFWM time-integratedtransientfour-wavemixing

TMD TransitionMetalDichalcogenide

Tr traceofalinearoperator

TR-TFWM time-resolvedtransientfour-wavemixing

UP upperpolariton

VB valenceband

WW widewell

ZPL zerophononline

Contents

1Basicsofultrafastspectroscopy 1

1.1Basicsofspectroscopy:linearversusnonlinear2

1.2Ultrashortpulses6

1.3Ultrafastnonlinear/coherentspectroscopy10

1.4Thedensitymatrix15

1.5Blochsphererepresentationofquantumstates20

2Introductiontomultidimensionalcoherentspectroscopy 23

2.1Conceptsofmultidimensionalcoherentspectroscopy24

2.2Spectrumclassification29

2.3Densitymatrixformalismanddouble-sidedFeynmandiagrams32

2.4Phasematching43

2.5Two-dimensionalinfrared(2DIR)spectroscopy44

3Interpretationofmultidimensionalcoherentspectra 45

3.1Isolatedtwo-levelsystem45

3.2Inhomogeneouslybroadenedensembleoftwo-levelsystems49

3.3Coherentcouplingsignatures55

3.4Incoherentcouplingsignatures57

3.5Doublyexcitedstatesandmany-bodyinteractions58

3.6Double-quantumspectra62

3.7Zero-quantumspectra65

3.8Three-dimensionalcoherentspectroscopy67

3.9Nonrephasingpathwaysandpurelyabsorptivespectra67

3.10Finite-pulseeffects68

4Experimentalimplementations 77

4.1Experimentalrequirementsandconsiderations77

4.2Overviewofexperimentalapproaches80

4.3Activelystabilizedboxgeometry81

4.4Phasemodulatedcollineargeometry89

4.5Comparisonofdifferentapproaches97

4.6Dataanalysis97

5Multidimensionalcoherentspectroscopyofatomicensembles 101

5.1Single-andzero-quantum2Dspectraofatomicvapors102

5.2MDCSinopticallythicksamples108

5.3Probingmany-bodyinteractionswithdouble-quantum2Dspectroscopy112

Contents

5.4Probingmany-bodycorrelationswithmulti-quantum2Dspectroscopy121

6Frequencycomb-basedmultidimensionalcoherent spectroscopy 127

6.1Introductiontofrequencycombsanddual-combspectroscopy128

6.2Frequencycomb-basedfour-wave-mixingspectroscopy130

6.3Frequencycomb-basedsingle-quantum2Dspectroscopy135

6.4Frequencycomb-baseddouble-quantum2Dspectroscopy139

6.5Tri-combspectroscopy144

7Two-dimensionalspectroscopyofsemiconductorquantum wells 151

7.1Introductiontosemiconductoroptics152

7.2Many-bodysignaturesinone-quantum2Dspectra154

7.3Many-bodysignaturesindouble-andmulti-quantum2Dspectra161

7.4Two-dimensionalspectroscopyofcoupledquantumwells165

7.5Quantumwellexciton-polaritonsinmicrocavities168

8Three-dimensionalcoherentspectroscopy 171

8.1Fifth-order3Dinfraredspectroscopy172

8.2Fifth-order3Delectronicspectroscopy173

8.3Third-order3Delectronicspectroscopy174

8.43Dcoherentfrequencydomainspectroscopy191

9Two-dimensionalspectroscopyofsemiconductorquantum dots 193

9.1Opticalandelectronicpropertiesofquantumdots193

9.22DcoherentspectroscopyofGaAsquantumdots197

9.32Dspectroscopyofself-assembledIn(Ga)Asquantumdots202

9.4Coherentcontrolofquantumdots205

9.5Two-dimensionalspectroscopyofcolloidalquantumdots207

10Two-dimensionalspectroscopyofatomicallythin2D materials 213

10.1Introductionto2Dmaterials213

10.2Homogeneouslinewidthin2Dmaterials214

10.3Valleycoherenceandcouplingin2Dmaterials217

11Otherapplicationsofmulti-dimensionalcoherentspectroscopy inPhysics 223

11.1Semiconductingcarbonnanotubes223

11.2Colorcentersindiamond225

11.3Perovskitematerials228

12Newtrendsinmultidimensionalcoherentspectroscopy 235

12.1Broadeningthespectralrange:fromterahertztox-rays235

12.2Improvingthespatialresolution237

Basicsofultrafastspectroscopy

StartingfromIssacNewton’suseofaprismtoobservethespectrumofsunlight,optical spectroscopistshavebeenstrivingtofurtherourunderstandingofmatterbystudying howitabsorbsandemitslight.SpectroscopictechniquesremainedfundamentallyunchangedforcenturiescomparedtoNewton’smethod.Lightwasdispersedbyaprism ordiffractiongratingandtheintensitywasmeasuredasafunctionofangle,whichcan bemappedintowavelength.Changesinthespectralintensitycanberelatedtoeither inherentpropertiesofthesourceorthelightpassingthroughamediumthatabsorbs atspecificwavelengths.Theabsorptionoremissionwavelengthcanbeconvertedtoa frequencythrough c = λν where c isthespeedoflight, λ isthewavelengthofthelight and ν isitsfrequency.Usingthequantummechanicalrelationbetweenenergy, En,and frequency, En = hν,where h isPlanck’sconstant,thefrequencycanbeunderstood astheenergydifferencebetweentwoquantumstatessuchaselectronicorvibrational states.

Beforetheinventionofthelaser,spectroscopicmeasurementswereallperformedin thelinearregimewherethematerialpropertiesareindependentoftheintensityofthe light.Inthisregimetheelectricfieldofthelightisweakcomparedtotheinternalfields oftheatomormolecule.Alasercanproducelightthatisnolongerweakcomparedto theinternalfieldsofanatomormolecule,thustheinventionofthelaserbroughtthe fieldofopticalspectroscopyintoaneweraofnonlinearspectroscopy.Inthenonlinear regime,thematerialpropertiesarenolongerindependentofthelightintensity,signals scalewithahigherpowerofthelaserintensity,andtwolaserbeamscaninteractina sample.Forinstance,astrongpumpbeamcansaturateanabsorptionresonanceand thusincreasethetransmissionofaweakerprobebeam.Also,wave-mixingofmultiple lightfieldsinthesamplecanleadtoasignalbeamwithanentirelynewdirectionand frequency.

Opticalspectroscopicmeasurementscanalsobemadenotasafunctionofwavelengthbutratheroftime.Time-domainspectroscopyisanalogoustotheideaofastroboscope,inthatshortflashesoflightcancapturestop-actionimagesofultrafastdynamicssuchasachemicalreactionorchargecarriersrelaxinginasolid.Measurements madeinthetimedomainusinglaserpulsescanbeconvertedintofrequency-domain spectrausingaFouriertransform.Ingeneral,thetime-domainspectracanbefunctionsofmultipletimedelays,sotheresultingfrequency-domainspectraarefunctions ofmultiplefrequenciesandthusaremultidimensional.TheconceptofmultidimensionalFouriertransformspectroscopywasdevelopedinnuclearmagneticresonance (NMR)[108]andisnowtransformingthefieldofultrafastlaserspectroscopy.

Basicsofultrafastspectroscopy

Multidimensionalcoherentspectroscopyhasanumberofadvantagesoverother typesofspectroscopy,includingone-dimensionalmethodsandmultidimensionalmethodsthatarenotcoherent.Atthesametime,multidimensionalcoherentspectroscopy ischallengingtoexperimentallyimplementintheopticalportionoftheelectromagneticspectrumduetotheneedtousephase-relatedlightpulsestoexcitethesample andtomeasurethephaseoftheemittedlightsignals.

Tosetthestagebeforediscussingmultidimensionalcoherentmethods,inthischapterwewillreviewseveralultrafastspectroscopicmethods,bothbecausetheyserveas thefoundationfromwhichmultidimensionalcoherentmethodsweredeveloped,and theyprovidecontextfordescribingtheadvantagesofmultidimensionalcoherentmethods.InChapter2wewillintroducethebasicconceptsinvolvedinmultidimensional coherentspectroscopy,followedbyanin-depthdiscussionofhowtointerpretmultidimensionalcoherentspectrainChapter3.Chapter4willreviewseveralexperimental implementations,describinghoweachovercomestheaforementionedchallenges.

1.1Basicsofspectroscopy:linearversusnonlinear

Thefieldofspectroscopyinvolvesmeasuringaspectrumthatdisplaysthefrequency (spectral)dependenceoftheinteractionbetweenmatterandelectromagneticradiation. Theelectromagneticradiationmaybeincidentonthematterfromanexternalsource, oritmaybeemittedbythematter.Inthisbook,wewilldiscusstheformercase.

Whenanelectromagneticfieldisincidentonmatter,itdisplacestheelectronsor ionsinthematterfromtheirequilibriumpositions,producingapolarizationinthe matterthatinturnradiatesanewelectromagneticfield.Treatingthepolarizationasa drivingterminMaxwell’sequationsandtakingthefar-fieldlimitgivestheresultthat thephaseofthereradiatedfieldlagsthephaseofthepolarizationby90◦ (afactorof i incomplexphasornotation).Theinterferenceofthisreradiatedfieldwiththeincident fieldresultsinmodificationofthefieldduetopropagationthroughthematter,which isusuallyattributedtomaterialpropertiessuchasanindexofrefractionorabsorption.

Inlinearspectroscopy,theincidentelectromagneticfieldisweakandtheinduced polarizationislinearlyproportionaltotheincidentfield.Foracontinuouswave(CW) incidentfield,thepolarizationwillhavethesamefrequencyandwavevectorasthe incidentfield.However,thephaseofthepolarizationwithrespecttotheincidentfield dependsonfrequencyifresonancesarepresentinthematerial.First,weconsideronly asingleresonanceasthesimplestexample.

Ifthefrequencyoftheincidentfieldissignificantlybelowtheresonantfrequency, thentheinducedpolarizationwillbein-phasewiththeincidentfieldandthereradiated fieldwillbe90◦ outofphaseinthefarfieldduetoaforementionedfar-fieldphaselag. Sincethepolarizationhasthesamewavevectorastheincidentfield,thereradiated fieldwillpropagateinthesamedirection,soadetectorplacedafterthesamplewill detectthesumoftheincidentfieldandthereradiatedfield.Ifthereradiatedfieldis weakcomparedtotheincidentfield,thedominantresultwillsimplybeaphaseshift ofthetransmittedfieldcomparedtotheincidentfield,asillustratedinFig.1.1(a) [notethat eikx + iδeikx ≈ ei(kx+δ) forsmallvaluesof δ,where k =2πn/λ].Thisphase shiftisconsistentwithatransparentmaterialwithanindexofrefraction n.

Fig.1.1 Sketchoflinearspectroscopyshowingincidentfieldsandreradiatedfieldsinthe vicinityofanopticalresonance. (a) Belowresonance. (b) Onresonance. (c) Aboveresonance. (d) Frequencydependenceofthecomplexpolarization,intermsofamplitudeandphase(top) andrealandimaginaryquadratures(bottom).

Ifthefrequencyoftheincidentfieldistunedsothatitisontheresonancein thesample,thephaseofthepolarizationwilllagthatoftheincidentfieldby90◦ . Togetherwiththefar-fieldphaseshift,thenetresultwillbethatthereradiatedfield willbe180◦ outofphasewiththeincidentfieldandtheywillexperiencedestructive interferencewhenmeasuredtogether,assketchedinFig.1.1(b).Thisdestructiveinterferencemeansthatalowertransmittedintensityismeasured,asexpected,because theincidentfieldisnowbeingabsorbedbythesamplesinceitisonresonance.

Tuningthefrequencyoftheincidentfieldtobeaboveresonanceresultsinasituationsimilartobelowresonance,justaphaseshiftofthetransmittedfield,although thephaseshiftisintheoppositedirection,asshowninFig.1.1(c).

Takenasawhole,thissimplifiedpictureofabsorptionspectroscopyisusefulbecauseitemphasizestheimportanceoftherelativephasebetweentheincidentfieldand theinducedpolarization:itisallthedifferencebetweenamaterialbeingtransparent butcausingaphaseshiftofthetransmittedlightandthematerialabsorbingthelight andresultinginlesslightbeingtransmitted.Theabilitytomeasurethephaseofthe polarizationwithrespecttotheincidentfieldscanbeimplementedinmultidimensional coherentspectroscopy,andityieldsimportantinformationabouthowthematerialis respondingtotheincidentlight.

Thecompletefrequencydependenceofthematerialpolarizationinthevicinityof theresonanceisdepictedinFig.1.1(d),dividedintocomplexamplitudeandphase componentsattopandintorealandimaginaryquadraturesonbottom.Thequadra-

turedepiction,inparticular,exhibitsanumberofimportantfeaturesthatwillserveas usefulreferencepointsforthenonlinearmultidimensionalspectrathatwillbediscussed inmuchoftherestofthisbook.Asmentionedabove,whenthepolarizationsignalis bothsmallandprimarilyreal-valued,thedominanteffectontheemittedsignalisa changeinphase.Infact,therealpartofthepolarizationremainscloselyconnected tophaseshiftsintheopticalfieldregardlessofwhatimaginarypartiftheoverall reradiatedsignalamplituderemainssmallincomparisontotheincidentfield.Because thesephaseshiftsaredifferentforlightatdifferentfrequencies,thequadratureisvery oftenreferredtoinspectroscopyliteratureasthepolarization’s“dispersive”component.Likewise,thepolarization’simaginarycomponentbearsastrongresemblance tothematerial’sabsorptionpropertiesandassuchisfrequentlytermedthesignal’s “absorptive”component.Intermsofthereradiatedfield—whichisthemostcommonlyexaminedquantityinMDCS—thedispersivecomponentshiftsintothesignal’s imaginaryquadratureandtheabsorptivecomponentshiftsintotherealquadrature.

Thisdiscussionhasdescribedasimplespectroscopyexperiment,namelysweepingthefrequencyofanelectromagneticfieldincidentonasampleandmeasuringthe transmittedintensity.Ifadipinthetransmittedintensityisobservedataspecific frequencyitindicatesthepresenceofresonance;thewidthoftheresonancecharacterizesthedampingoftheresonance.However,thereareimportantambiguitiesinlinear spectra,namelytheinabilitytodistinguishbetweenhomogeneousandinhomogeneous broadeningandtheinabilitytodetermineiftworesonancesarecoupledoruncoupled.

Typicallythesampleisanensembleofmanysystems,whethertheyareatomsundergoingelectronictransitions,moleculesundergoingvibrationaltransitions,ornuclei flippingtheirspins.Ifallthesystemsintheensembleareidentical,i.e.,theyhavethe sameresonantfrequencyandsamelinewidth,theensembleisdesignatedasbeing“homogeneouslybroadened”;however,thismaynotnecessarilybethecase.Inparticular, theremaybeadistributionofresonantfrequenciesduetoeffectssuchastheDoppler shiftinavapor,randomcrystalfieldsinanion-dopedsolidorstructuraldisorderina nanostructure.Inthiscase,thelinewidthofthemeasuredresonancemayhavenothing todowiththelinewidthoftheindividualmembersoftheensemble,butratherreflectsthedistributionofresonancefrequencies.Thiscaseisknownas“inhomogeneous broadening.”

Thelinearspectrumofaninhomogeneouslybroadenedensemblewillhavearesonancefeature(theabsorption“line”)thathasawidththatischaracteristicofthe inhomogeneousdistribution,notthedampingoftheindividualmembersoftheensemble.Whilebothareusefultoknow,theyprovidequitedifferentinformation.The widthintheabsenceoftheinhomogeneousbroadening,oftencalledthe“homogeneouswidth”providesinformationaboutprocessesthatinterrupttheoscillations,for examplecollisionsandradiativedecay.

Thereisalsoanambiguityinlinearspectroscopyiftworesonancesareobservedin alinearspectrum.Therearetwopossiblesituations.Onepossibilityisthatthesample isheterogeneous,i.e.,amixtureoftwospecieswithdifferentresonancefrequencies. Theotherpossibilityisthatitispure,i.e.,asinglesubstance,butthatsubstancehas twotransitions.AgoodexampleofthislattercasewouldbetheD1 andD2 linesin thealkalimetals,whichcorrespondtothesingleouterelectronmakingatransition

Basicsofspectroscopy:linearversusnonlinear 5

toground S1/2 statethe P1/2 and P3/2 states.Linearspectroscopycannotdistinguish betweenthesetwopossibilities.

Theseambiguitiescanberesolvedbyusingsomeformofnonlinearspectroscopy.In nonlinearspectroscopy,astheintensityoftheexcitationfieldisincreased,thedielectric polarization P (ω)ofamaterialisnolongerlinearlyproportionaltotheincidentfield, butratherhigher-ordertermsmustbeconsidered.Inthefrequencydomain,wecan describethisintermsofapowerseriesexpansionof P (ω)asfunctionofelectricfield strength E(ω)as

wheretheconstant ϵ0 isthevacuumpermittivityandthecoefficients χ(n)(ω)describe electricsusceptibilityparametersofthematerialateachofthedifferentorders n Linearspectroscopycorrespondstothesituationwherealltheterms χ(n)E n for n> 1 aresmallenoughtobeneglected,resultingintherelationship P (ω)= ϵ0χ(1)(ω)E(ω). Ofcourse,thisapproximationdependsonthestrengthof E,becauseforlargeenough E,the E n factorcanmake χ(n)E n >χ(1)E,nomatterhowsmalltheratio χ(n)/χ(1).It ispossibletoshowthatforinversionsymmetricsystems,thesecond-orderterminthe expansionofEq.(1.1),andindeedalloftheeven-valuedhigher-orderterms,mustbe identicallyequaltozero.1 Hence,indelvingintotheworldofnonlinearspectroscopy,it isoftenthe χ(3) termthatisactuallythemostimportantelementgoverningnonlinear correctionstothepolarizationasawhole,andsoitisuponthistermthatwewill mostheavilyconcentrateourattentioninthisbook.

Tounderstandhownonlinearspectroscopycanresolvetheambiguitiesinalinear spectrum,itiseasiesttoconsiderasimplefrequency-domainmethodknownas“spectralholeburning.”Inspectralholeburning,acontinuouswave(CW)“pump”laser excitesthesample,saturatingitsabsorption.Asecondlaseristhenscannedtomeasure theabsorptionofthesample.Ifthesampleishomogeneouslybroadened,theabsorptionoftheentirelinesimplydecreases.However,ifitisinhomogeneouslybroadened, thenthesub-ensemblethatisresonantwiththepumplaserismoststronglysaturated. Inthiscase,themeasuredabsorptionspectrumisunchanged,exceptinthespectral regionclosetothepump,wheretheabsorptionisdecreased,knownas“burninga hole.”Thewidthofthespectralholeisproportionaltothehomogeneouswidth.Thus theobservationofspectralholeburningshowsthatthesystemisinhomogeneously broadenedandthewidthgivesthehomogeneouswidth.

Similarly,iftworesonancesarepresentinthespectrum,tuningthepumplaserto oneresonanceandprobingtheothercandetermineiftheyarecoupled.Iftheyare coupled,thenthissituationwillresultinachangeintheabsorption,whereasifthey areuncoupleditwillnot.ThisexamplewasbasedonusingCWlasers.Althoughthere aresomeimplementationsofopticalmultidimensionalcoherentspectroscopybased onthisapproach[55–57,443],mostarebasedonusingmutuallycoherentpulsesand scanningtheirdelays.

Atime-domainmultidimensionalcoherentspectroscopy(MDCS)measurementis madebyilluminatingasamplewithaseriesoflightpulsesandmeasuringasignal

1See,forexample, NonlinearOptics,byRobertW.Boyd[40].

Basicsofultrafastspectroscopy

fromthesampleasafunctionofthedelaysbetweenthepulses.Typicallythepulses havedurationofafewpicosecondsorless,whichisconsideredthedomainof“ultrafast optics,”wheretraditionalphotodetectorsaretooslowtodirectlymeasurethepulse duration.Duetotheirshortduration,suchpulsesintrinsicallyhavebroadspectral bandwidth,thusspectralfeaturescanbemeasuredwithouttuningthemspectrally, butratherbyspectrallyresolvingthem.Whilethiscanbedoneusingtraditional spectrometers,itcanalsoberealizedusingFouriertransformmethods.SomeMDCS approachesonlyuseFouriertransforms,whereasothersuseacombinationofFourier transformsandaspectrometertospectrallyresolvethesignal.

BeforeweintroduceMDCS,weneedtobrieflyreviewthepropertiesofultrashort pulsesandintroducelessrelatedformsofspectroscopythatarebasedonultrashort opticalpulses.

1.2Ultrashortpulses

Ashortopticalpulsepassingthroughafixedpointinspacecanbedescribedbyits electricfieldinthetimedomain

where ωc isthecarrierfrequency,andwhere ϕ(t)isatime-dependentphase.The secondlineoftheequationisexpressedinphasornotation,withthecomplex-valued amplitude

ˆ E(t)= | ˆ E(t)|eiϕ(t),andwiththeabbreviation“c.c.”standingfor“complex conjugate.”Forthediscussionthroughoutthefirstthreechaptersofthisbook,we ignorethethefactthatlighthasapolarization,andthustreattheelectricfieldas ascalar.Notethatthechoiceof ωc isinprinciplearbitrary;thesamepulsecould bedescribedusingadifferent ωc byadjustingthetimedependenceoftheamplitude coefficientstoincludelinearlyrampingphasefactors.Typically,however, ωc ischosen toeliminatealinearrampin ϕ(t).Throughoutthisbookweuseacaret( ˆ X)placed overthetopofafunction X toindicateavalueassumedtovary“slowly”intime(i.e., tobenearlyconstantoverseveralperiodsoftheopticalfrequencies).

Althoughslowincomparisontothecarrieroscillations,timedependenceofthe amplitudefactor ˆ E(t)asintroducedinEq.(1.2)isstillrequiredtoshapethelightinto apulse.Writingouttheamplitudeandphasecomponentsof ˆ E(t)explicitlyandthen expressingthemintermsofopticalintensity I(t) ≡ nϵ0c⟨E(t)2⟩ leadsto

where n isrefractiveindex, ϵ0 isthevacuumpermittivity, c isthespeedoflight, andtheanglebracketsinthedefinitionofintensityspecifythetimeaverageover anopticalperiod.AsshowninFig.1.2,thepulsedescribedusingEq.(1.3)canbe visualizedasanoscillatingcarrier,offrequency ωc,underanenvelopeproportional to I(t).Theconstantinthephasefactor ϕ(t)allowsthepossibilityofashiftin

Fig.1.2 Theelectricfield(solidredline)andtheenvelope(blueline)ofanultrafastpulse.

alignmentbetweentheripplesofthecarrierandtheoverallenvelopeposition,known asthe“carrier-envelopephase.”

OnereasonablemathematicaldescriptionofanultrafastpulseisGaussian.The envelopeofaGaussianpulseis

where E0 isthe(real-valued)amplitudeandtheparameter δte2 describespulseduration.ThepulseintensityassociatedwithEq.(1.4)is

whichdemonstratesthatforaGaussianpulse,thedurationparameter δte2 corresponds tothehalfwidthatwhichthepulseintensitydropsto1/e2 (13.5%)ofitspeak.Beyond this,theequationshowsthatthepulsedurationoftheintensityfunctionisafactorof √2shorterthanthepulsedurationoftheamplitudefunction.Althoughthe1/e2 halfwidthdefinitionofpulsedurationiscommon,thedurationofapulsecanbedefined accordingtoanynumberofdifferentconventions,includingtheintensityhalfwidth 1/e value(δte),theintensityfullwidthathalfmaximum(FWHM)value(δtFWHM), andvariousdefinitionsassociatedwiththeintensityautocorrelationfunction.Thus,it isimportanttodefinethepulsedurationcarefullywhenintroducingitasaparameter inordertoavoidambiguities.ForGaussianpulses,thedurationparameters δte, δte2, and δtFWHM arerelatedtoeachotherby

However,theconversionfactorsrelatingthevariouswidthdefinitionsaredifferentfor differentpulseshapes.

Anultrashortpulsecanalsobedescribedinthefrequencydomainwheretheelectric fieldiswrittenasafunctionoftheangularfrequencyorfrequency.Theconversion betweenthetimeandfrequencydomainsisperformedbytheFourierTransformof theelectricfield(nottheintensity),wheretheforwardFourierTransform

convertsfromatime-domainsignal, E(t),toitsfrequency-domainrepresentation, E(ω),andtheinverseFouriertransform

convertstheotherdirection,givingthetime-domainwaveformfromthefrequencydomainrepresentation.Notethattheredifferingconventionsforthedefinitionofthe FourierTransformwithregardstothesignoftheexponentinthekernel(eiωt versus e iωt)andnormalization( 1 2π infrontoftheinverseFouriertransformversus 1 2π in frontofboththeforwardandinversetransforms).Throughoutthisbookwewilluse theconventionsgiveninEqs.(1.7)and(1.8).TheFouriertransformofEq.(1.3)gives

Thefieldinthefrequencydomainhasbothpositiveandnegativefrequencies.Thetwo frequencycomponentsareactuallyequivalent,butrequiredtomakethesignalreal. Weusuallytakeonlythepositivefrequencyandcenterthepulseatzerofrequency (i.e.,expressedintherotatingframe)incomplexphasornotationas

Here I(ω)isthespectralintensityfunctionandthefrequency-domainphaseis

ThephasecalculatedfromEq.(1.11)canonlyvaryfrom π to π sotherecouldbe2π phasejumps.Wecanunwrapthephasebyaddingorsubtracting2π toavoidphase jumpsandhaveacontinuousphase.ThephasedefinedbyEq.(1.11)hasnomeaning whentheintensityiszero.Thephaseisnoisywhentheintensityissmallatthewings ofspectrum,inwhichcasethephaseisusuallynotplotted.AccordingtotheFourier

shifttheorem,adelayinthetimedomainisalinearphaserampinthefrequency domain,i.e., F{E(t t0)} = E(ω)eiωt0 .

ApplyingtheFouriertransformtothetime-domainGaussianpulsedescribedby Eq.(1.4)givesthefrequency-domainpulseinaframerotatingatthecarrierfrequency as

Theintensityspectrumofthepulseis

whichdemonstratesthatthespectralprofileofatime-domainGaussianpulseisalso aGaussian.The1/e2 halfwidthintensityspectralbandwidthofthisGaussianis (δωe2)=2/(δte2).

Asinthetime-domainrepresentationoftheelectricfield,therearedifferentkinds ofconventionsfordescribingspectralbandwidth,includingthespectralintensity1/e2 halfwidth(δe2),thespectralintensity1/e halfwidth(δωe),andthespectralintensity FWHMvalue(δωFWHM).Insimilarfashiontothewaysthattime-domainpulsedurationsarerelatedtoeachother,forGaussianpulsesthesefrequency-domainbandwidth descriptionsareconnectedthroughtherelationship (δωFWHM)= √2ln2(δωe

Differentresearchfieldsalsousedifferentunitsinthefrequencydomain.Thespectrum andbandwidthcanbepresentedasafunctionoffrequency(THz),angularfrequency (rad/s),wavelength(nm),energy(eV),orwavenumber(cm 1).Thebandwidthand eventhelineshapearedifferentwhendifferentunitsareused.Thebandwidthcanbe properlyconvertedintodifferentunits.Asanexample,weconsiderashortpulsethat hasaspectralbandwidthinfrequencyas

δν =5THz (1.15)

Thisbandwidthcanbeconverted,forexample,intounitsofangularfrequency,

wavenumber,

energy,

orwavelength,

wherethelastoftheseexpressionsiswavelengthdependent.Assumingawavelength of800nm,wehave δλ ≈ 10nm.

Basicsofultrafastspectroscopy

Consideringtheintensitypulseduration δtFWHM = √2ln2(δte2),thepulsedurationandthespectralbandwidtharerelatedas δtFWHM =4ln2/(δωFWHM).Therefore, ashorterpulseinthetimedomainrequiresabroaderspectruminthefrequencydomainandviceversa.Theshortestpossiblepulseforagivenbandwidth,knownasthe Fouriertransform-limitedpulse,canbeachievedwhenthespectralphaseisconstant acrossthespectrum.Theproductofthebandwidthandthetemporaldurationofa pulseisadimensionlessnumberknownasthetime-bandwidthproduct(TBP).The TBPhasaminimumvalueforatransform-limitedpulseandtheexactvaluedepends onthepulseshape.Ifconsistentunitsareusedfortimeandbandwidth,theTBP isaunitlessnumber.Forexample,atransform-limitedGaussianpulsehasaTBP of(δtFWHM)(δνFWHM)=0.441whiletheTBPis(δtFWHM)(δνFWHM)=0.315for atransform-limitedsech2-shapedpulse.Theserelationsimplythat100-fsGaussian pulsesmusthaveabandwidthof4.41THzwhile100-fssech2-shapedpulsesneeda minimumbandwidthof3.15THz.

Apulsecanhaveacarrierfrequencythatvariesintime,inwhichcasethepulseis calledachirpedpulse.AlinearlychirpedGaussianpulsecanbewrittenas

where ωc isthecarrierfrequencyand βt2 isthechirp.Theterm βt2 modifiesthecarrier frequencyandvarieswithtime.Itcanbeconsideredasasecond-orderphase.When β ispositive,thepulseincreasesitsfrequencylinearlyintime(fromredtoblue)and ispositivelychirped.When β isnegative,thepulsedecreasesitsfrequencylinearlyin time(frombluetored)andisnegativelychirped.

FouriertransformingEq.(1.20)givesthefrequency-domainexpressionofthechirped pulse,

with δωe2 =2/(δte2).Addingachirpinthetimedomainchangesthespectralwidth butnotthetemporalwidthofthepulse,whileaddingachirpinthefrequencydomain changesthetemporalwidthbutnotthespectralwidthofthepulse.Inanexperiment, achirpisusuallycreatedbypropagatingthroughadispersivemedium,whichistosay thatthechirpisaddedinthefrequencydomain.Asaresult,inexperiments,adding chirptypicallyresultsinincreasingthetemporalwidthofthepulses.

1.3Ultrafastnonlinear/coherentspectroscopy

Ultrafastpulsesenableuniquecapabilitiesinspectroscopy.First,thetimeresolution providedbyultrafastpulsescanprobeeventsthatoccuronfstopstimescales.Second,thehighinstantaneouspowerandhencethestrongelectricfieldinultrafast pulsescanleadtomoreefficientnonlineareffectsfornonlinearspectroscopy.Finally, aproperpulsesequencecanbeusedtoperformcoherentspectroscopy.Incoherent spectroscopy,suchastime-resolvedfluorescence/luminescenceandtransientabsorptionspectroscopy,isonlysensitivetopopulationrelaxationandtheresultscanbe interpretedbymodelingwithrateequations.Incontrast,coherentspectroscopy,such

Fig.1.3 Schematicofatypicalpump-probesetupwithtwopulsesandlock-indetection. astransientfour-wavemixingandmultidimensionalcoherentspectroscopy,alsoprobes phaserelaxationandinterpretingcoherentspectrarequiresopticalBlochequations.

Thesimplestultrafasttechniqueistime-resolvedfluorescence/luminescencespectroscopy.Thetechniqueusesonlyonepulsetoexcitethesamplefromthegroundstate toahigh-lyingexcitedstate.Thesamplethenrelaxestoalowerexcitedstatefrom whichafluorescencesignalisspontaneouslyemitted.Thefluorescencehasalonger wavelengththanthepumppulsesothesignalcanbedistinguishedfromscattered pumpphotons.Thesignalcanberecordedasafunctionoftimebyusingtime-resolved detectionsuchastime-correlatedphotoncountingorastreakcamera,whichhasa typicaltimeresolutionofafewps.Thetimeresolutioncanbeimprovedbycross correlatingthefluorescencesignalandareferencepulsethroughanupconversionnonlinearprocess,inwhichcasethetimeresolutionisonlylimitedbythepulseduration. Themeasuredfluorescencesignalusuallyrisesinitiallyandthendecaysexponentially. Therisetimeoffluorescenceisrelatedtotherelaxationtimefromthehigh-lyingstate tothelowerexcitedstate,whilethedecaydynamicsaredeterminedbytherelaxation fromthelowerexcitedstatetothegroundstate.

Pulseduration-limitedtimeresolutioncanalsobeachievedbyusingaslowdetector inthetwo-pulsetransientabsorptiontechnique(alsoknownaspump-probe).Atypical pump-probesetupisdepictedinFig.1.3.Thesampleisfirstexcitedbyapumppulse andthechangeinabsorptiondueexcitationcreatedbythepumppulseismeasured usingasubsequentprobepulse.Typicallytheabsorptiondecreasesafterthepump pulseduetobleachingofthetransitionbythepump-inducedpopulationofexcited statesanddepletionofthegroundstatepopulation.Asthepopulationrelaxesfromthe excitedstatebackintothegroundstate,theabsorptionwillrecover,whichismonitored bychangingthedelaybetweenpumpandprobepulses.Thetimedelaybetweenthe pumpandprobepulsescanbevariedbytranslatingamirrororretroreflectorusinga delaystage,therebychangingthepathlengthandhencetimedelayduetothechanged time-of-flight.Theaveragepowerofthetransmittedprobepulseismeasuredbyaslow

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.