Immediate download The economics of financial markets and institutions oren sussman ebooks 2024

Page 1


The Economics

of Financial Markets and Institutions Oren Sussman

Visit to download the full and correct content document: https://ebookmass.com/product/the-economics-of-financial-markets-and-institutions-o ren-sussman/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Financial Markets and Institutions 12th Edition

https://ebookmass.com/product/financial-markets-andinstitutions-12th-edition/

Financial Markets and Institutions 5th Edition Coll.

https://ebookmass.com/product/financial-markets-andinstitutions-5th-edition-coll/

(eBook PDF) Financial Markets & Institutions 13th Edition

https://ebookmass.com/product/ebook-pdf-financial-marketsinstitutions-13th-edition/

Financial Markets and Institutions, 8e ISE 8th Edition

Anthony Saunders

https://ebookmass.com/product/financial-markets-andinstitutions-8e-ise-8th-edition-anthony-saunders/

Financial Institutions and Markets: Structure Growth and Innovations 6th Edition Jitendra

https://ebookmass.com/product/financial-institutions-and-marketsstructure-growth-and-innovations-6th-edition-jitendra-mahakud/

Financial Markets & Institutions (MindTap Course List) 13th Edition Jeff Madura

https://ebookmass.com/product/financial-markets-institutionsmindtap-course-list-13th-edition-jeff-madura/

The Economics of Money, Banking and Financial Markets, Seventh Canadian Edition Frederic S. Mishkin

https://ebookmass.com/product/the-economics-of-money-banking-andfinancial-markets-seventh-canadian-edition-frederic-s-mishkin/

(eTextbook PDF) for Financial Markets and Institutions 7th Edition by Anthony Saunders

https://ebookmass.com/product/etextbook-pdf-for-financialmarkets-and-institutions-7th-edition-by-anthony-saunders/

The Governance of Telecom Markets: Economics, Law and Institutions in Europe 1st ed. Edition Antonio Manganelli

https://ebookmass.com/product/the-governance-of-telecom-marketseconomics-law-and-institutions-in-europe-1st-ed-edition-antoniomanganelli/

TheEconomicsofFinancialMarkets andInstitutions

TheEconomics ofFinancialMarkets andInstitutions fromFirstPrinciples

ORENSUSSMAN

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©OrenSussman2023

Themoralrightsoftheauthorhavebeenasserted Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2023930672

ISBN978–0–19–286973–9

DOI:10.1093/oso/9780192869739.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

Preface

ThisbookisbasedonintroductorylecturesonfinancialeconomicsthatIdelivered tomastersstudentsintheFacultyofLawattheUniversityofOxford.Mostofthe students,smartandhardworking(asmanylawyersare),hadnobackgroundin economics.Worse,someweremathsphobs;others,didnottakeanymathematics classesbeyondtheageof16,nordidtheypractisetheirpre-16skillssince.Hence, thechallengewastodeliverthebasicideasthatlawyersworkinginfinancialmarketsneedintheirdealingwithpractitionersandregulatorswiththeminimumuse ofmathematics.That,ofcourse,requireddrasticsimplificationofthematerialas wellas‘cuttingcorners’—hereandthere.ThecornersthatIhavedecidedtocut awaymaynotbetoeveryone’staste.Nevertheless,Ibelievethattheexperience thatIhavegainedwhiledeliveringtheselecturesisworthsharingwithothers.

Likemanyeconomists,followingthe2008financialcrisis,Ifeltthatfinance traininghasbecometoo‘engineeringminded’,losingtouchwithfundamentaleconomicanalysis.Thismanuscriptattemptstoprovidetheeconomicfoundations andtheirapplicationtofinance—jointly.Needlesstosay,thatlimitsthedepthand breadththatIcanprovide,onboththeconceptualaswellastheapplicationside. Thisbookdoesnotintendtoreplacesomeexcellenteconomictextbooksongame theory,consumertheory,orcontracttheory,nordoesitintendtoreplaceequally goodtextbooksincorporatefinance,banking,orassetpricing.Onlytoprovidea foundationfromwhichstudentscanexpandinbothdirections.

IamgratefultoLucaEnriqueswhoreadtheentiremanuscriptandprovided mewithmosthelpfulcomments.AlexanderGuembelandDanAwreyhavedone soonChapters5and6,respectively.IamalsogratefultoCarloSushant-Chari andWandeMcCunnwhocommentedonthefirsttwochapters.Numerousclass participantsmadecommentsthathelpedmetosharpenandclarifycertainpoints. Needlesstosay,Iamtheonlyonetoblamefortheremainingfaultsinthisbook.

2.4.2Equilibriumforthe

2.6.1Frictions:ASimpleExample

2.6.2Frictions:PreliminaryDiscussion

2.6.3Ex-PostversusEx-AnteEconomicEfficiency

2.7ANoteonEquilibriainGames

2.9.1ThirdParties

2.9.2PrivateBenefitsandLiquidity

2.9.3ActivistCourtsandtheAvailabilityofCredit

3.4.2BuyOuts

3.4.3AReconsiderationoftheGM–FBCase

3.4.4AnEmpiricalTestoftheTheory

4.3.1‘Shifts’onandofSupplyandDemandCurve

4.5.2AnoteonCoase,Pareto,SpontaneousOrderandthe

4.5.3DavidRicardo’sComparativeAdvantageTheory

5.TheMarketforRisk

5.5.2TradeDrivenbyDifferentAttitudestowardsRisk

5.5.3TradeDrivenbyDifferentBeliefs

5.7EmpiricalTestsofRiskSharing

5.9.1TheModigliani–MillerTheorem

6.MarketFailures

6.2.1PerfectCompetitioninMoreDetail

6.2.1.1CostStructureofFirms

6.2.1.2CompetitiveStructureintheShortRunandin theLongRun

6.2.2Monopoly

6.2.3CausesforMonopolization

6.2.3.1NaturalMonopoly

6.2.4Oligopoly

6.2.4.1BertrandDuopoly

6.2.4.2CournotDuopoly

6.2.4.3ANoteonOligopolyandProductDifferentiation

6.2.5MoreRegulation-ScepticalArguments

6.2.5.1Schumpeter:MonopolyandTechnologicalInnovation

6.2.5.2RegulatoryCapture

6.3MissingMarkets

6.3.1TheTextbookCase:Emission

6.3.1.1PolicyResponses

6.3.1.2SocialValuation

6.3.1.3PublicGoods

6.3.2TheIdentificationofMarketFailures

6.3.2.1Lighthouses

6.3.2.2TheFableofBees

6.3.3InformationasaPublicGood

6.3.3.1HealthCare

6.3.3.2CostlyStateVerification

6.3.3.3SomeEmpiricalEvidence

6.3.3.4The‘HirshleiferEffect’

6.3.4Liquidity

7.TradingwiththeBetterInformed

7.3TheHidden-TypeProblem

7.3.1TheMarketforLemons

7.3.2EducationasaSignal

7.3.2.1FullInformationBenchmark

7.3.2.2SeparatingEquilibria

7.3.2.3PoolingEquilibria

7.3.2.4EconomicEfficiencyinAdverseSelectionModels

7.3.3Application:DebtandEquity

7.4TheHiddenActionProblem

7.4.1FullInformationBenchmark

7.4.2HiddenEffort:IncentiveCompatibility

7.4.3SolvingtheContractProblemwithHiddenEffort

7.4.4Implications

7.4.5AlternativeInterpretationoftheHiddenEffort

7.4.5.1PrivateBenefitsofControl

7.4.5.2CashDiversion

7.4.6Application:InternalandExternalFunding

7.4.7Application:TheSavingsandLoansCrisisin1980sUS

7.4.8Application:TheFirmasaNexusofContracts

8.5.1The‘No-trade’Result

8.7.1Bid-AskSpreads(I)

8.8.1Bid-AskSpreads(II)

8.9TheMartingaleProperty

Introduction

Financialeconomicsisanapplicationofgeneraleconomicstothestudyofthe financialsystem.

Thefinancialsystempresentsexamplesofsomeofthemostcompetitivemarketsintheworld;forexampletreasurybondsorforeign-exchangemarkets.Atthe sametime,thesystemalsopresentssomecomplexnon-marketorganizations,such aslimitedcompaniesorbanks.Thisdiversityoforganizationalformmakesclear, rightfromthestart,thatbeyondtheunderstandingofpricesandtradingvolumes, thebusinessoffinancialeconomicsistounderstandwhatpurposeisservedby thisdiversityoforganizationalform.

Itisworthnotingthatthetypicalobjectthatistradedinfinancialmarketsis nota‘thing’—apotatooranautomobilebut,rather,a title¹ toa‘thing’:apromise todeliver,atsomepointinthefuture,the‘thing’,contingentoncertaineventualities.Debt,equity,insurancecontracts,orstockoptions(therighttobuyorsella stockatapre-specifiedprice)aretypicalexamples.Clearly,whileitisimportantto understandpricesandquantities,itisequallyimportanttounderstandwhythese contractsarestructuredthewaytheyare.

TheTaoistsageChuangTzu(369–286 BC)heldtheviewthat‘goodorder[i.e. organization]resultsspontaneouslywhenthingsareletalone’.Hearguedthat regulations,whichtendtobecome‘morenumerousthanthehairsofanox’,are inherentlycomplicatedandineffective;themoreregulationthereis‘themorethe peopleareimpoverished’.² FriedrichAugustvonHayek,winnerofthe1974Nobel PrizeinEconomics,isoftencreditedwiththeapplicationoftheconcepttoeconomics;seeSugden (1989).³ Itisimportanttodistinguishtwopartsofthethesis. First,thatalthoughmarketsundoubtedlyrequirerules,normsandinstitutionsin ordertofunctioneffectively,thesecanbedevisedbythetraderswhooperatein thesamemarkets,withoutany‘topdown’supervision.Second,thatwhentraders gettogetherinordertoexecutecertainbusinesstotheirownbenefit,theydon’t dosotothedetermentofothers,whoarenotpartytothebusiness.

Toputitmoretechnically,wemakeadistinctionbetween positive and normative analysis.Theformeraimsatunderstandingeconomicrealityasit is,thelatter

¹ Wordsusedinatechnical-economicssensearepresented,firsttime,initalicsfont.

² CitedbyRothbard (1990).

³ AdamSmithusedthebetter-knownconceptoftheinvisiblehand.‘Spontaneousorder’emphasizes that‘order’includesbothmarketandnon-marketinstitutionalarrangements.

TheEconomicsofFinancialMarketsandInstitutions.OrenSussman,OxfordUniversityPress.©OrenSussman(2023). DOI:10.1093/oso/9780192869739.003.0001

aimsatsuggestinghowit ought tobe.⁴ Clearly,normativeanalysisrequiresamore accuratecriterionofevaluation.Asweshallsee,economistsfocustheiranalysis ononespecialaspectofsuchevaluation,whichis economicefficiency,aconcept thatis,hopefully,independentofanyone’svaluejudgement,moralorpoliticalpersuasionand,inparticular,ofthevaluejudgementoftheeconomistwhoexecutes theanalysis.Wecanthusrephrasethestatementabove:whilepositiveanalysis aimsatunderstandingthemodusoperandiofagivenmarketorinstitution,normativeanalysistriestoestablishwhetheritispossibletomakeitoperatemore efficiently,possiblybyregulation.Evidently,the(extreme)positionofsomefollowersofTzuandHayekisthatthebestwaytoachieveeconomicefficiencyisby avoidingregulationalltogether.

Theconceptofspontaneousorderhasaninterestingbiologicalconnotation: thattheeconomicsystemisself-organizing,likeagroupofcellsthatevolves,first toacluster,thentoacolonywheresomecellsspecializeincertaintasksand, ultimately,toacomplexorganism,onethatcanadaptandsurviveinachanging environment.Noexternalforceshapesordirectstheprocess,andthecellsthat initiatetheprocesshavenoawarenessorunderstandingoftheendresult.Amore relevantexampleisacommonlawsystem,whichevolvesthroughtheaccumulationofcourtcases,witheachcasedecidedonitsonmerit.Toalargeextent,this wastheapproachthatEnglishlawadoptedtowardsCorporatelaw:oncethestakeholderswritetheirpreferredrulesintotheirbusinesscontracts(broadlydefined, includingchartersandarticlesofassociation),andoncethecourtsenforcethese contractsasintendedbytheparties,astandardizedbodyoflawemerges.⁵ Neither thecontractingpartiesnorthejudgesthatruleonadisputedinterpretationofa contracthavetheobligation,(or,indeed,thecapacity)toexerciseanyjudgement beyondthefactsofthecaseinfrontofthem.

Itisimportanttoemphasizethattheanalysisthatwepresentinsubsequent chaptersdoesnottakeitforgrantedthatspontaneousorderisthebesteconomic arrangement;infact,wedemonstratethatinsomecasesitisnot.Rather,our purposeistooperationalizetheideaofspontaneousorderbybuildingmathematicalmodelsofindividualbehaviourandsocialinteraction,andtestthesemodels againstthedatasoastoevaluatetheoutcomesintermsofeconomicefficiency. Whilewedonotwishtoimposeanypriorjudgementupontheanalysis,wedo findthatspontaneousorderisaveryusefulbenchmark;anoptiontobeconsideredandtested,notaforegoneconclusion,dictatedinadvance.Perhapsweshould alsomakeclearthatouranalysisisnotconclusive.Rather,wesuggestalinethat separatessettingswherespontaneousorderyieldsefficientoutcomesfromsettingswhereitdoesnot.Thatlineshouldbereexaminedandredrawnaccording

⁴ ThedistinctionbetweenisandaughtstatementsisduetothegreatScottishphilosopherDavid Hume(1711–1776).

⁵ Theaboveisasomewhatidealizedviewofnineteenth-centuryEnglishcommerciallaw,ratherthan present-dayEnglishlaw.

tochangingcircumstancessuchasnewtechnologies,conceptualinnovationsin economicanalysis,aswellasbytheavailabilityofnewdata.

OnMathematicalModelling

Muchofeconomicsisaboutquantifiablephenomena:prices,volumesoffunding, profit,andloss.Weusemathematicsinordertobuildmodelsthatmimictheforces thatdrivethesemagnitudessoastoguidethestatisticalanalysisthatteststhese modelsagainstactualdata.

Crucially,‘mathematics’doesnotmeancomplicatedmathematics.Infact,the readerofthisbookisnotrequiredtoperformanyalgebraicoperationabovethe levelthata16-year-oldhigh-schoolstudentisexpectedtoachieve.Whereverpossible,weprogresstheargumentusingdiagrams,savingthereadertheeffortof algebra.Theappendixtothebookreviewsthelittlemathematicsthatisrequired.

Nevertheless,followingtheargumentsinthisbookrequiresacapacitythat high-schoolstudents,drilledtofollowcertainstepsinordertosolvestandardizedproblems,arenottrainedfor:toexpressanargumentabouttheoperationof acertaineconomicsystemintermsofmathematicalfunctionsandthentorelate thesolutionofthemodelbacktotherealitythathasmotivatedtheanalysis.The readeristhereforeadvisednottoworrytoomuchaboutalgebraicdetail,butto paymuchattentiontothestructureofthemodels,theirassumptions,andtheway assumptionsarefollowedbyconclusions.

OnAbstraction

Bytheirverynature,economicmodelsareabstract.Manyreadersarelikelyto askthequestion:whyshoulditbeso?Whycan’twehaveananalysisthatlooks, rightfromthestart,morerealistic?Thesimpleansweristhatsuchananalysis wouldbefartoocomplicated.Theargumentisbrilliantlyarticulatedbythegreat Argentinianwriter,JorgeLuisBorges(1899–1986),inashortstorycalled“On ExactitudeinScience”, narratedbyafictionalseventeenth-centurytraveller.The storyisbrought,below,initsentirety:

Inthatempire,theartofcartographyattainedsuchperfectionthatthemapof asingleprovinceoccupiedtheentiretyofacity,andthemapoftheempire,the entiretyofaprovince.Intime,thoseunconscionablemapsnolongersatisfied, andtheCartographersGuildsstruckamapoftheempirewhosesizewasthat oftheempire,andwhichcoincidedpointforpointwithit.Thefollowinggenerations,whowerenotsofondofthestudyofcartographyastheirforebearshad been,sawthatvastmapwasuseless,andnotwithoutsomepitilessnesswasit,that theydeliveredituptotheinclemenciesofsunandwinters.Inthedesertsofthe

west,stilltoday,therearetatteredruinsofthatmap,inhabitedbyanimalsand beggars;inallthelandthereisnootherrelicofthedisciplinesofgeography. SuarezMiranda,Viajesdevaronesprudentes,LibroIV,Cap.XLV,Lerida,1658

Hence,ourpurposehereistoidentifythemainforcesthatdrivethefinancialsystem,abstractingfromdetailthatiseitherirrelevantorhasaneffectthatistoosmall tojustifythecost,intermsofextracomplexity,ofitsinclusion.

OnFirstPrinciples

Byfirstprincipleswemeanthatwebuildourfinancialmodelsongeneraleconomicprinciples.Wedonotmeanthatallthemodelsinthisbookaddupto aunifiedandcohesivebodyoftheorythatanswers,unambiguously,anyquestionthatapractitionerorapolicymakermightseektoanswer.Rather,toapply theideasinthisbooktoaproblem,thereadermayhavetoapplydifferentmodelstodifferentaspectsoftheproblemwith,sometimes,conflictingimplications. Whichmightraisethequestionwhethertheeffortofstudyingfinancialeconomics isworthmaking.BenBernanke,ChairoftheFederalReserve(thecentralbankof theUnitedStates)between2006and2014andwinnerofthe2022NobelPrize inEconomics,inaspeechdeliveredattheBaccalaureateCeremonyatPrinceton University⁶ on2June2013,providesapossibleanswer:

Economicsisahighlysophisticatedfieldofthoughtthatissuperbatexplaining topolicymakerspreciselywhythechoicestheymadeinthepastwerewrong. Aboutthefuture,notsomuch.However,carefuleconomicanalysisdoeshaveone importantbenefit,whichisthatitcanhelpkillideasthatarecompletelylogically inconsistentorwildlyatvariancewiththedata.Thisinsightcoversatleast90 percentofproposedeconomicpolicies.

TheStructureofThisBook

Chapter1:westudythedecision-makingprocessofa rational individual,actinginisolationfromotherdecisionmakers.Sincefinancialmarketstradeclaims againstfuturedeliveries,wefocustheanalysisondecisionsthathaveatimeand uncertainty dimension.

Chapter2:weanalysethesimplestpossibleeconomicinteraction,whichis tradebetweentwoindividuals,wherethetermsoftradearedecidedthrougha

⁶ See: https://www.federalreserve.gov/newsevents/speech/bernanke20130602a.htm

processofbargaining.Theconceptofequilibriumisintroduced.Weprovideaprecisedefinitionofeconomicefficiency.Weintroducethe CoaseTheorem,namely thatina frictionless world,spontaneousinteractionyieldsefficientoutcomes.The analysisisappliedtoanimportantrealworldproblem:theresolutionof financial distress.

Chapter3:weanalysetheconceptof propertyrights.Sincecompaniesmaybe definedbytheassetsthattheyown,theanalysisisintimatelyrelatedtotheanalysis ofthe natureofthefirm.Weintroducetheideathatinordertoovercomecertainfrictions,someeconomicactivityisinternalizedintonon-marketinstitutions. Wealsointroducetheideathatimperfectinformationmaybeamajorsourceof frictions.

Chapter4:weanalysetheconceptofa competitivemarket,wherearelatively largenumberofindividualstradeidenticalobjects,simultaneously.Competitivemarketsaretheparadigmaticexampleineconomicsof decentralization,a moreaccuraterepresentationofspontaneousorder.Wepresentthetwo Welfare Theorems regardingtheeconomicefficiencyofcompetitivemarkets.

Chapter5:weapplytheanalysisofChapter4tothemarketforriskandtothe pricingof riskysecurities suchasequitiesoroptions.Wederivethe CapitalAssets PricingModel (CAPM),amajortoolusedbyfinancial-marketsparticipants.

Chapter6:weprovideananalysisof marketfailures,wheredecentralizedmarketsdonotachieveeconomicefficiency.Weelaborateontheideathatnon-market organizationsemergesoastoovercomefrictionsintrading.

Chapter7:wepresentarigorousanalysisoffrictionsintheformof asymmetricinformation,whereonepartytoadealisbetterinformedthantheother.We elaborateontheefficiencyimplicationsof adverseselection and moralhazard.

Chapter8:weanalysehow,incertaincases,asymmetricinformationisrevealed throughtheprocessoftradingandhowthatinformationisaggregated intomarket pricesthroughseveralvariationsofthe rationalexpectations model.

References

[1] Rothbard,Murray,N.(1990).‘ConceptsoftheRoleofIntellectualsinSocialChange TowardsLaissezFaire’. JournalofLibertarianStudies,Vol.9,No.2,43–67.

[2] Sugden,Robert(1989).‘SpontaneousOrder’,TheJournalofEconomicPerspectives, Vol.3,No.4,pp.85–97.

Making(Rational)Decisions

1.1 Introduction

Themainbusinessofeconomicsisthestudyofinteractionbetweendecisionmakerssuchasmanagers,workers,traders,consumers,orpoliticians;wewillcallthem playersfromnowon.Thatis,modellingoneplayer’sdecision-makinginrelationto thedecisionsmadebyothers.Sincesuchmodellingiscomplicatedwetake,inthis chapter,apreliminarystepofunderstandinghowplayersmakedecisionswhen theyareisolatedfromotherplayers—asomewhateasiertask.Morespecifically, weanalysehowplayersmake rational decisions.Somereadersmayloseinterest atthispoint:forhowcanthebehaviourofordinaryhumans,somewithdubious character,somewithonlymodestintelligence,otherspoorlyeducated,allfacing acomplexcircumstance,beinvestigatedontheassumptionthattheymakedecisionsinthemannerusuallyassociatedwithphilosophersorscientists?Webeg readerstobepatientwhiledemonstratingthattheconceptofrationality,inits narrowtechnical-economicssense,canaccommodatemostofthecharacteristics commonlyattributedtoordinaryhumans.Moreover,wearguethatitishardtosee howanempirical(positive)studycanbeexecutedwithouttheuseoftherationalityassumption.Weshallalsoarguethatmostpolicy(normative)analysesactually maketherationalityassumption,oftenimplicitly.

Definition1.1. Arationalplayerselectsactionssoastoadvanceoutcomesthat satisfyherownmotivesandobjectives,thewayshefeelsabouttheseobjectives, tothebestofherunderstandingofthecausalrelationshipbetweentheaction thatshetakesandtheoutcomethatresults.

Afewpointsareworthemphasizing:

• Rationalityisapropertyofindividualplayers.Itisnotapplicabletogroupsof players.Hence,propositionsuchas‘countryX(orcompanyY)isirrational’ or‘thestockmarketisirrational’are,simply,meaningless.InChapter2we provideanaccuratedefinitionofeconomicefficiencythatallowsustoevaluatetheperformanceofgroupsofplayers.Asweshallsee,therationalityof eachandeverymemberofthegroupisnotsufficienttoguaranteethatthe outcomeoftheinteractionisefficient.

• By‘motivesandobjectives’wemeanthegratificationofcertainsentiments; theseare,simply,whatplayers‘feellike’gettingorachieving.Norestrictions

.OrenSussman,OxfordUniversityPress.©OrenSussman(2023). DOI:10.1093/oso/9780192869739.003.0002

areimposedonthesentimentsthatdriveplayerstowardsoneobjectiveor another.Playersmaybevulgarorgentile,materialisticorspiritual,selfish oraltruistic,farsightedorshortsighted,cleverorfoolish,well-calculated orhot-headed.Therationalityassumptiondoesnotexcludeanyofthese characteristics.

• Rationalitydoesnotimplythataplayerwhomakesadecisionknowsallthat thereistoknowabouttheproblemathand.Often,playersareforcedtomake decisionswithverylittleinformation.Asaresult,itispossiblethattheymake costlymistakesonthewaytoachievetheirobjectives.Atthesametime,the definitionimpliesthatplayersdotheirbestinordertoavoidsuchmistakes.

• Thedefinitionaboveisincomplete.Thewords‘satisfy’,‘motives’,or even‘understanding’havenoprecisetechnicalmeaning.Nevertheless,the definitionissufficientforourpurpose—atleastforthetimebeing.

1.2 FromSentimenttoQuantifiedSubjectiveValuation

Thesentimentthatmotivatesanindividualplayercannotbeobjectivelyassessed, letalonequantified,byanimpartialobserver.Buttheactionsthattheplayertakes inanattempttosatisfythissentimentareobservable,sothattheycanbeobjectivelydocumented.Inparticular,theplayer’svaluationofa‘thing’,acommodity thatshedesires,isobservableandevenquantifiableaccordingtothehighestprice thatsheiswillingtopayforthatcommodity.Sincevaluationsaredrivenbysubjectivesentiment,theyarespecifictotheplayerwhoactsuponthem.Oneplayer’s vanitymaybesatisfiedbytheacquisitionofanexpensivesportscar,anotherplayer derivesaestheticcomfortfromlisteningtoclassicalmusic,yetanotherplayer derivesasenseoffulfilmentfromacharitabledonation.Paymentsmaybedenominatedintermsofmoneyorinkind(namelyintermsofothercommodities).It followsthataplayerthat subjectivelyvalues acommodityat£10/unit,butbuys thecommodityforapricelessthan£10/unit,ismadebetteroffby‘cuttingsucha deal’.Atthesametime,theplayerdeclinesanoffertobuythecommodityataprice higherthan£10/unit.(Offeredthecommodityforexactly£10/unit,theplayeris indifferentbetweenacquiringitornot.)Sincethevaluationissubjective,itislikely totriggerdifferentreactionsindifferentplayers:forexample,ifplayer A valuesa certaincommodityat£10/unitandplayerBvaluesthesamecommodityat£8/unit, andifbothplayersfacethesamemarketpriceof£9/unit,thenplayer A wouldbuy thecommoditywhileplayer B woulddeclinesuchanoffer;indeed,incaseplayer B alreadyhasthecommodity,sheshouldsellit.The surplus forplayer A (B)from buying(selling)thecommodityis£1.

Theexamplesabovehighlightthedistinctionbetweensubjectivevaluationsand marketprices.Theformerisanexpressionofasentimentthatishard-wiredinto aplayer’spsyche,thelatterisanobjectiveeconomicfact.Whenalargenumberof

playerscometogetherinordertotrade,amarketisformedandauniformprice tendstoemerge.(Thepriceislikelytobeuniformacrosstransactionsateachpoint oftimebutmaychangeovertime.)Economiststrytoexplainmarketprices,takingthesubjectivevaluationsasgiven.Forexample,supposethatthesubjective valuationsofplayersinacertainmarketareeither£10/unit or£8/unit. Wewould notexpecttoobserveamarketpriceabove£10/unit forthen,allmarketparticipantswouldliketosellthecommodity,withnoonewillingtobuy.Forasimilar reason,wewouldnotexpecttoobserveapricebelow£8/unit.Benignasthese observationsare,thecentralrolethattheyplayinsubsequentchaptersjustifies emphasizingthemasfollows:

Proposition1.1. Aplayerbenefitsfrombuying(selling)acommoditythatis availableatapricelower(higher)thanherownsubjectivevaluation.

1.3 TheSubjectiveValueofTime

Itispopularlyarguedthatgreedandfeararetwobasicsentimentsthatdrive financialmarkets.Wecancapturethesesentimentsbyapplyingthenotionofasubjectivevaluationabitmoreimaginatively.Wethereforemodel‘greed’asadesire forquicksatisfactionwhile‘fear’relatestotheanguishthataplayerfeelswhilehe facestheprospectoflossesevenwhen,atthesametime,healsofacestheprospect ofsimilarmagnitudegains.Thetechnical-economicstermsareimpatienceandrisk aversion,respectively(seeSection 1.9.2 below).

Itiseasiertoconceivetimeasasequenceofdiscretepoints,t =0,1,2,3…,rather thanaflux,andtoassumethatdecisionsandactionstakeplaceatthesepoints aloneratherthaninthecontinuumbetweenthem.Let 0< β <1 (theGreekletter beta¹)bethesubjectivevaluationofacommoditydeliveredat t +1intermsof anothercommodity,whichhasthesamephysicalcharacteristics,butisdelivered atperiod t. ² Hence,aplayerwith β = 0.8isindifferentbetweenreceivingoneunit ofincomenextperiodor0.8unitsofincome,presently.Alower β isinterpreted asastrongerdesireforquicksatisfactionorahigherlevelofimpatience.Wecall objects,like β,thatcaptureaplayer’ssentiment: behaviouralparameters.

Noticethat,economicallyspeaking,the t-deliveredobjectandthe t +1deliveredobjectaretwodifferentcommoditieseventhoughtheyhavethesame physicalcharacteristics;otherwise,theywouldhavethesamesubjectivevaluations.Hence,acommodity’ssubjectivevaluationisnotdictatedbyitsphysical properties.Thepresent-deliveredobjectandthefuture-deliveredobjectareidenticalintheirengineeringandchemicalproperties,thoughdifferencesinthetiming

¹ Tobedistinguishedfromthefamous‘financebeta’thatwediscussinChapter5.Theuseofthe samesymbolfortwodifferentobjectsisawkwardbutunavoidable.

² Freestorageimpliesthat βsabove1are‘notinteresting’.

ofdeliveryaffectadifferentsubjectivevaluation.Apatientplayermayfeelthata delayindeliveryhardlyaffectsherwhileanimpatientplayermayfeelthatdeferringsatisfactioncauseshimmuchirritation.Asaresult,theformeriswillingto giveuponlyasmallfractionofthepresentcommodityinordertoavoiddelay, whilethelatteriswillingtogiveupalargefractionofthepresentcommodityin ordertoavoiddelay.

Asnoted,weshouldmakeasharpdistinctionbetweenthesubjectivevalueofa commodityanditsmarketprice.Inpractice,thetradeinfuturedeliveriesiscarried outthrough futurecontracts.Thatisabindingcontract,bytheissuer,todeliver, onacertainday,tothebearer,acertainobject.Forthetimebeing,weabstract fromthepossibilitythattheissuer defaults onhisobligationtodelivertheobject whenthetimecomes.Theclosestreal-worldexampleoffuturecontractswithno defaultriskisatreasurybond.

1.3.1 Arbitrage

Thepriceofafuturecontractiscloselyrelatedtotherateofinterest,throughan importantconceptinfinancialeconomics: arbitrage.

Let R bethemarketpriceofacontractthatdeliversoneunitofincomeinthe nextperiod.Supposethat,atthesametime,theeconomyalsohasamarketfor risklessloansthatpayaninterestrate, r,perperiod.Thatis,investing£1 ina 5% bondorabankaccount,aplayerwillbepaidback,nextperiod,£1.05.

Proposition1.2. Byarbitrage,theonlyconceivablerelationshipbetweenRandris

Theargumentisstraightforward.Suppose,bywayofcontradiction,that

Bypresentlysellingonefuturecontractandlendingtheproceeds, R,atthemarketinterestrate, r,aplayercangenerateanext-periodprofit—aftercollectingthe interestandredeemingthefuturecontract,of

R(1+ r) –1>0.

Itfollowsthatina counterfactual worldwheretheinequality(1.1)holds,playerscanmakeaprofitwithoutmakinganyeffort,bearinganycostorexposing themselvestoanyrisk.Moreover,itishardtoseewhyaplayerwhofacessuch

anopportunitywouldnotscaleitupto£10,£100,£1000…,makingastronomical profits.And,inaddition,everyplayerinthemarketwouldliketoexploitsuchan opportunity.However,astateofaffairswhereallplayerswouldliketosellfuture contractsandlendtheproceeds,withnobuyersorborrowersontheotherside,is inconceivable.

Incase:

< 1 1+ r ,

theoppositetrade,namelyborrowingoneunittobuy 1/R unitsoffuturecontract, wouldleavethetraderwithafutureprofitof

– (1+ r) >0.

1.3.1.1 Discounting

Thefollowingterminologyisbothcommonandconvenient.Insteadofsaying‘the valueofanext-period-deliveredcommodityintermsofapresent-deliveredcommodityis R’,wesaythatthe presentvalue orthe discountedvalue ofanext-period deliveryis R.

Inamulti-periodsetting,the t =1valueof£1 deliveredin t =3is R2.Thatis becausethe t =2valueofthe t =3deliveryis R;discounting t =2deliveryof R to t =1yields R · R.Obviously,

(assumingthatboth R and r arefixedovertime).

Wecanalsoapplytheformulaofaconverginggeometricseriestocalculatethe marketvalueofa console,abondthatdelivers£1 inperpetuity,

(seeMathematicalAppendix,SectionA.1forthederivationofageometricseries andsubstitutein 1 1+r insteadof q,there).

Byasimilarargument,wederivethecurrentsubjectivevaluationofabundleof deliveriesusingthesubjectivediscountfactor.Considersuchabundle,delivering objectssubjectivelyvalued v1 and v2 at t =1and t =2,respectively.Then,the t =1 subjectivevaluationofthe t =2deliveryis βv2 andthepresent(t =1) valuationof theentirebundleis

Noticethatthe vsdenotethesubjectivevaluesof instantaneous deliveries,namely valuationsatthetimeofthedelivery,while V denotesthediscountedsubjective valueofaflowofsuchinstantaneoussubjectivevaluations.Tocompletetheparallel(thoughconceptuallydistinct)treatmentofmarketvaluationsandsubjective valuationswedefinethesubjectivediscountrate,ρ(theGreekletterrho),suchthat

Tosummarize:

R isthemarketdiscountfactor, r isthemarketinterestrate, β isthesubjectivediscountfactor, ρ isthesubjectivediscountrate.

1.3.2 TheNet-Present-Value(NPV)Formula

Byawell-knowndecisionrule,a project thatcosts I tostartupandgeneratesa certaincashflow, yt, t =1,2,…,T,isprofitableif(andonlyif)

(providedthattheinterestrateremainsconstant).ItiseasytoseethattheNPV ruleisjustanapplicationoftheaboveprinciples.Thatis,ifthemarketvalueof abundleoffuturecashflowsexceedsthecostofproducingitthen,byarbitrage, thisisanopportunityworthexploiting.Inprinciple,thestatementisnodifferent from:ifonecanproduceabasketwithone x commodityandtwo y commodities forasumlowerthan px +2py,where px and py arethemarketpricesof x and y, respectively,shewouldprofitfromdoingso.

1.4 AnApplication:RationalDrugAddiction

GaryBecker,winnerofthe1992NobelPrizeinEconomics,hasdemonstrated, throughmanypublishpapers,thattheconceptofrationalitycanaccommodatesurprisinglyrichandvariedsortsofattitudesandbehaviours.Oneofthe mostdramaticexamplesofthiseffortisa1977paper,co-authoredwithGeorge Stigler,winnerofthe1982NobelPrizeinEconomics,whichanalysesrational drugaddiction.Thepaperdemonstratesthatevenifwethinkthatdrugaddictionisa‘horriblething’,itdoesnotfollowthataddictsareirrational.Aplayermay

behaveinamannerthatothersconsiderfoolish,irresponsible,self-harming,or sociallyunacceptableand,yet,qualifyasrationalasfarastechnicaleconomicsis concerned.ThefollowingisamuchsimplifiedexpositionoftheBecker–Stigler argument.

1.4.1 TheDecisionTreeofaPotentialDrugAddict

Figure1.1describesthedecisionproblemfacingapotentialdrugaddict.Theproblemis dynamic,inthesensethatseveralinterrelateddecisionsneedtotakeplace atdifferentpointsintime.Westicktoadiscrete-timerepresentationandlimit thenumberofperiodstojusttwo: t =1,2,presentandfuture,withnohorizon beyondthesecondperiod,asifthe‘worldends’thereafter.Theproblemismodelledusinga decisiontree:asetofnodes,eachrepresentingapointintimewhere theplayerhastoselectanactionoutofseveralalternatives.Eachnode(savethe terminalones)isconnectedtosubsequentnodes,showinghowonedecisiongives risetoanother.Asequenceofactionsleadtoanoutcome,whichisevaluatedsubjectively.Usingthesubjectivediscountfactor,β,thesubjectivevaluationsoffuture outcomescanbediscounted,sothatall‘linesofactions’canarevalued(seeonthe right-handsideofFigure 1.1).

Thetwo-periodmodellingisobviouslycoarseandmayseemcontrivedatfirst glance.Amorerealisticmodellingthatwouldaddmanymoreperiodsispossible,butthecostintermsoftechnicalcomplexityisnotsufficientlyrewardedin termsofextraeconomicinsight.Ingeneral,two-periodsettingsprovesufficientin capturingtheessenceofmanydynamicproblemsineconomics.

Figure1.1 Thedrug-addictiondecisiontree

At t =1theplayerfacesthedecisionwhethertotakedrugsornot.Takingdrugs wouldmakehim‘high’,asentimentthathevalues,subjectively,asequivalentto receiving80unitsofincome(nettingoutthecostofbuyingdrugs).Avoidingdrugs generatesasubjectivevalueofonly20.Iftheplayertakesdrugshewillbecome, at t =2, anaddict.Insuchacase,drugswillnolongergivehimtheinitialhigh, althoughhewillhavetospendaconsiderableamountofmoneyonbuyingthem. Inadditionthereareindirectcosts:lossofjobopportunities,relationships,and health.Thedirectcosts,togetherwiththesubjectivelyvaluedlossofwell-being, areequivalentto payingout 220,at t =2.Alternativelyhecantakepainfultreatmentthathasasubjectivevalueof−280,i.e.inflictspainequivalenttopayingout 280unitsofincome.Ifhedoesnottakedrugsat t =1,hestayswiththesamelevel ofsubjectivevaluationof20.(Weassume,forsimplicity,thattheoptionoftaking drugsisnolongeravailableat t =2.)

1.4.2 RationalDecisions

Arationalplayerisforwardlooking.Alreadyat t =1hemustaskhimselfwhat hisnext(t =2)movewillbeifhedecidestotakedrugs—presently.Theansweris obvious:hewillhavetodecidewhethertotaketreatmentorsustainhisaddiction. Itshouldbecleartohim,alreadyat t =1, whatthatdecisionwouldbe:thepainof treatmentistoohightobear(as280>220)andshouldbeavoided,regardlessofβ. Ifso,theplayercaneliminatetheoptionoftreatment,andreplacethet =2decision problemwiththevalueofthepreferredaction,thatis−220,whichdiscountedto period1hasasubjectivevalueof –220β.Doingsosimplifiesthe t =1decisionto selectingoneofthefollowingoptions:eitherenjoythepresenthighandthefuture painofsustainingthehabitwithajointdiscountedvalue 80–220β,oravoidboth, alineofactionthatisvaluedat20+20β.Hence,thet =1decisionistoavoiddrugs ifandonlyif

Solvingoutfortheinequality(1.2)wederivethefollowingresult:

Proposition1.3. Patientplayers,i.e.playerscharacterizedbyarelativelyhigh subjectivediscountfactor, β>0.25,wouldavoiddrugs.

1.4.3 PracticalImplications

Nodeepinsightabouthumannatureisrevealedbytheconclusionthatdrug addictshaveapersonalitythatishighlyattractedtoimmediatesatisfactionsand,at thesametime,tendtoberelativelyindifferenttofuturepain.Yet,Proposition 1.3

stillservesapurpose:todemonstratethattherationalityassumptionis,actually, quitebenign.

Butthen,istherationalityassumptioninterestingatall?Proposition 4 derives anotherbenignresultregardingtheeffectofapolicythatoffersdrugaddicts subsidizedtreatment:

Proposition1.4. Subsidizingtreatmentfordrugaddictsbyanamountof120(so thatthesubjectivevaluationoftreatment,netofthesubsidy,dropsto160)would switchaddicts’decisionfromsustainingtheirhabittogettingtreatmentbut,also, wouldtemptmorepatientplayers,with 0.25< β < 1 3,whohithertostayedclean, toexperimentwithdrugsat t=1.

Whileitmightbearguedthatwedonotneedaformaltheoryinordertomake suchastatement,ourpurposehereisdifferent:todemonstratethatmost(normative)policyanalysismakestherationalityassumption,oftenimplicitly.Foronly rationalagentsrespondtomaterialincentivesintheformof‘carrotsandsticks’.It isonlybecauseplayershavewell-definedobjectivesandoperaterationallyinorder toachievethem,thattheirbehaviourcanbeaffectedbypolicyinapredictable manner.

1.4.4 BackwardInduction

Themethod,above,forfindingabestlineofactiononadecisiontreeiscalled backwardinduction.Generally,itcanbedescribedasfollows: i) inadecisiontree T-periodslong,foreachterminalnode,selecttheoptionwiththehighest payoff;discountandaddtheresulttothepayoffgeneratedbythe T −1actionthat givesrisetotherespectivenode.Replacethatterminalnodesbythesums.Notice thattheresultisanewdecisiontreeoflength T −1. ii) Repeatthepreviousstep untilonlythet =1nodeisleft.iii)Spanningthetreeforward,markingeachnode’s selectedactionshowsthebestlineofaction.

1.5 OpportunityCosts

Wehavestated,above,thatsustainingdrugaddictionshouldbevaluednotjust accordingtothedirect,‘out-of-pocket’,costofbuyingdrugsbut,also,accordingtomissedprofessionalandpersonalopportunities,suchassufferinginflicted onfamilymembersandfriends.Theconceptofan opportunitycost accountsfor costs,incashandinkind,resultingfromacertainaction,includingopportunitieslostduetotheactionthatwastaken.Forexample:theeconomiccostofa universitydegreeshouldincludebothout-of-pockettuitionfeesandtheincome

foregonebybeingoutofajob.Atthesametime,out-of-pocketcostsonfoodand accommodationshouldnotbeincludedbecausethesewouldhavebeenborne evenoutofuniversity.

1.6 RevealedPreferences

Itshouldbeclear,bynow,thattherationalityassumptionplaysapivotalrole inbothpositiveandnormativeeconomicanalysis.Itallowsustoidentifyplayers’motivesand,then,todesignpoliciesthataffecttheirbehaviour.Thedoctrine of revealedpreferences demonstratesthatsomeoftheseresultscanbederived, directly,usingtherationalityassumptionalone,withoutdrawingonbehavioural parameters,suchasthesubjectivediscountfactor,β.Thetheorywasdevelopedby PaulSamuelson,thewinnerofthe1970NobelPrizeinEconomics.Thefollowing isamuchsimplifiedexpositionoftheargument,inthecontextofspendingand savingdecisions—bythemselvesdecisionsthatareimportantintheanalysisof financialmarkets.Westartwiththebasicframework,stillusingthe β, parameter.

1.6.1 LendingandBorrowingDecisions

Consideraplayerwholivesforjusttwoperiods,t =1,2,presentandfuture,young ageandoldage;the‘worldends’thereafter.Ineachperiod,theplayerearns yt unitsofincome,sothatthecombinationofherpresentandfutureincomecanbe described,diagrammatically,bythepoint, y = (y1,y2),onagraphwithperiod-t magnitudesontheaxes;seeFigure 1.2.³ Theplayerhastodecideher consumption plan,represented,similarly,bypoint c = (c1,c2).Thereisa t =1marketforfuture contracts;eachcontractdeliversoneunitofincomeat t =2.Themarketisperfect inthesensethattheplayercanbuyandsellthematthesameprice, R.Clearly, buyingacontract,wherebytheplayerpaysoutpresentlyinordertoreceivefuture payments,isjustadifferentwayofsayingthattheplayerislending,soastodefer consumptionfromthepresenttothefuture: c1 < y1 where c2 > y2.Noticealso that y1 – c1 istheplayer’ssavings.Ineverydayparlanceitiscommontoapplythe word‘saving’onlytoapositive y1 – c1,butthedistinctionbetweenpositiveand negativesavingsservesnopurposehere.ThearbitrageconditionofProposition 1.2 holds.

³ SeeMathematicalAppendixforabriefintroductiontofunctionsandgraphs.InFigure1.2,inorder tomakeaclearerdistinctionbetweenthelevelandthevariable‘period-oneincome’,weuseaboldfont forthelatter,sothatthat y1 istheactuallevelofperiod-1income,and y1 isavariablethatcantakeon anysuchlevel.Amoreprecisedistinctionbetweenthevariableandthelevelcouldbeadoptedatthe costofamorecumbersomenotation.Ingeneralinthisbook,inthetradeoffbetweenprecisionand simplicity,weleanforthelatter.

Thelending/borrowingproblem

Let x bethenumberoffuturecontractsthattheplayersellsat t =1.Anegative x meansthattheplayerbuysfuturecontracts,asisthecaseinFigure 1.2.Then,

Solving x = y2 –c2 fromEquation(1.4),substitutingtheresultintoEquation(1.4) andre-arranging,wegettheplayer’s life-timebudgetconstraint:

1 + Rc2 = y1 + Ry2, whichhasanintuitiveinterpretation:thediscountedvalueoftheplayer’slife-time incomemustequalthepresentvalueofhislife-timeconsumption.

The(downwardssloping)straightlinewithaslopeof –1 R,drawnthroughpoint y,iscalledthebudgetline.Toseewhy,considerthetrianglethatisformedbetween thebudgetlineandthehorizontalaxis,totherightandbelowpoint y.Sincethe height/baseratioofthattriangleequals 1 R,andsincetheheightis y2,thelength ofthattriangle’sbasemustbe Ry2.Itfollowsthatthehorizontaldistancefromthe origintothepointwherethebudgetlineintersectswiththehorizontalaxisrepresentsthediscountedvalueoftheplayer’slife-timeincome, y1 +Ry2.Nowconsider anyconsumptionpointthatliesonthatstraightline;thepresentvalueofthatconsumptionplanisalsorepresentedbytheintersectionofthebudgetlinewiththe horizontalaxis.Itfollowsthatanyconsumptionplanthatliesonthebudgetline isaffordable,just.Consumptionpointsabovethebudgetlinesarenotaffordable whileconsumptionpointsbelowthebudgetlineareaffordablebutleavebehind

Figure1.2

someunspentincome.Sincethe‘worldends’att =2,itisintheplayer’sbestinterest tospendallhisresourcesonconsumption.

Next,weconsiderthesubjectivevalueofalternative,affordable,consumption plans;consider,forexamplepoint c inFigure 1.2.Wefollowthesamestepsas inthepreviousparagraph,onlythatthistimea(broken)linewitha –1 β slopeis drawnviapointc.Thesubjectivevalueofthatplanisrepresentedbythehorizontal distancebetweentheoriginandthepointwherethatbrokenlineintersectswith thehorizontalaxis.Clearly,lendinghasbenefitedtheplayer,forthebrokenlinein thefigureliesabovea(hypothetical)linedrawnthroughpoint y,indicatingthat theplayerisbetteroffexecutingtheaffordableconsumptionplan (c1,c2),relative toavoidingtradeinfuturecontractsthatwouldleaveheratpoint(y1,y2).Butthen, lendingevenmorewouldbenefithertoanevengreaterextent.Itfollowsthat:

Proposition1.5. Playerswhosesubjectivevaluationoffutureconsumptionis higherthanthemarket’svaluationoffutureconsumption,namely β > R,will buyfutureconsumption(i.e.lend)allthewaythroughtothecornerwherec1 =0. Playerswith β < R willborrowuptothepointwhere c2 =0.

Proposition1.5,whichisjustaninstanceofProposition1.1above,demonstrates howtomodellendingandborrowing(savingandspending)decisionsusingthe β behaviouralparameter.Thatis,lendersarepatientplayers,characterizedbyhigh βs,whileborrowersareimpatientplayers,characterizedbylow βs—relativeto R.Evidently,theproceduredoesnotidentifytheexactmagnitudeofplayers’ βs, onlysortsthemtohigh/lowpatiencegroups—relativeto R.Yet,moredata,such asobservingenvironmentswithchangingRs,mayallowustoobtainmorerefined estimates.

1.6.2 TheRevealed-PreferencePrinciple

Considerarationalplayerwithincome y whooptstobecomealenderatpoint c inFigure 1.3.Supposethattheinterestrateincreasesfrom r to r′ (remember that 1 R =1+ r ).Mighttheplayerswitchfromlendingtoborrowingasaresult? Theansweris,clearly,no.Hispreviousselectionofpoint c′ whenpoint c′′ was alreadyavailablerevealedapreferencefortheformeroverthelatter.Ifso,thereis noreasontoreversethedecisionwhenahigherinterestrate, r′,stillleavesboth c′ and c′′ asaffordableoptions.Noristhereareasontoswitchtoanypointonthe segmentbetweenpoints y and c′′,i.e.becomeaborrower. Moreover,wecanalsoinferthattheaboveplayerismadebetteroffbythehigher interestrate:

Proposition1.6. Bytherationalityassumptionalone,alending(borrowing)player wouldbenefitfromahigher(lower)interestrate.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.