Instant ebooks textbook Field theoretic simulations in soft matter and quantum fluids glenn h. fredr

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/field-theoretic-simulations-in-soft-matter-and-quantum -fluids-glenn-h-fredrickson/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Soft Matter: Concepts, Phenomena, and Applications Wim Van Saarloos

https://ebookmass.com/product/soft-matter-concepts-phenomena-andapplications-wim-van-saarloos/

Combinatorial Physics: Combinatorics, Quantum Field Theory, and Quantum Gravity Models Adrian Tanasa

https://ebookmass.com/product/combinatorial-physicscombinatorics-quantum-field-theory-and-quantum-gravity-modelsadrian-tanasa/

Quantum Field Theory and Critical Phenomena 5th Edition Jean Zinn-Justin

https://ebookmass.com/product/quantum-field-theory-and-criticalphenomena-5th-edition-jean-zinn-justin/

Introduction to Quantum Field Theory with Applications to Quantum Gravity 1st Edition Iosif L. Buchbinder

https://ebookmass.com/product/introduction-to-quantum-fieldtheory-with-applications-to-quantum-gravity-1st-edition-iosif-lbuchbinder/

Condensed Matter Physics: A Very Short Introduction

https://ebookmass.com/product/condensed-matter-physics-a-veryshort-introduction-ross-h-mckenzie/

Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs Jianchao Cai

https://ebookmass.com/product/petrophysical-characterization-andfluids-transport-in-unconventional-reservoirs-jianchao-cai/

Urinalysis and Body Fluids 6th Edition

https://ebookmass.com/product/urinalysis-and-body-fluids-6thedition/

Models of Quantum matter : a first course on integrability and the Bethe Ansatz First Edition. Edition Eckle

https://ebookmass.com/product/models-of-quantum-matter-a-firstcourse-on-integrability-and-the-bethe-ansatz-first-editionedition-eckle/

Russophobia: Propaganda in International Politics Glenn Diesen

https://ebookmass.com/product/russophobia-propaganda-ininternational-politics-glenn-diesen/

Field-TheoreticSimulationsinSoftMatterand QuantumFluids

InternationalSeriesofMonographsonPhysics

SeriesEditors

R.Friend UniversityofCambridge

M.Rees UniversityofCambridge

D.SherringtonUniversityofOxford

G.VenezianoCERN,Geneva

173.G.H.Fredrickson,K.T.Delaney: Field-TheoreticSimulationsinSoftMatterandQuantumFluids

172.J.Kübler: Theoryofitinerantelectronmagnetism,Secondedition

171.J.Zinn-Justin: Quantumfieldtheoryandcriticalphenomena,Fifthedition

170.V.Z.Kresin,S.G.Ovchinnikov,S.A.Wolf: Superconductingstate-mechanismsandmaterials

169.P.T.Chruściel: Geometryofblackholes

168.R.Wigmans: Calorimetry–Energymeasurementinparticlephysics,Secondedition

167.B.Mashhoon: Nonlocalgravity

166.N.Horing: Quantumstatisticalfieldtheory

165.T.C.Choy: Effectivemediumtheory,Secondedition

164.L.Pitaevskii,S.Stringari: Bose-Einsteincondensationandsuperfluidity

163.B.J.Dalton,J.Jeffers,S.M.Barnett: Phasespacemethodsfordegeneratequantumgases

162.W.D.McComb: Homogeneous,isotropicturbulence–phenomenology,renormalizationandstatistical closures

160.C.Barrabès,P.A.Hogan: Advancedgeneralrelativity–gravitywaves,spinningparticles,andblack holes

159.W.Barford: Electronicandopticalpropertiesofconjugatedpolymers,Secondedition

158.F.Strocchi: Anintroductiontonon-perturbativefoundationsofquantumfieldtheory

157.K.H.Bennemann,J.B.Ketterson: Novelsuperfluids,Volume2

156.K.H.Bennemann,J.B.Ketterson: Novelsuperfluids,Volume1

155.C.Kiefer: Quantumgravity,Thirdedition

154.L.Mestel: Stellarmagnetism,Secondedition

153.R.A.Klemm: Layeredsuperconductors,Volume1

152.E.L.Wolf: Principlesofelectrontunnelingspectroscopy,Secondedition 151.R.Blinc: Advancedferroelectricity

150.L.Berthier,G.Biroli,J.-P.Bouchaud,W.vanSaarloos,L.Cipelletti: Dynamicalheterogeneitiesin glasses,colloids,andgranularmedia

149.J.Wesson: Tokamaks,Fourthedition

148.H.Asada,T.Futamase,P.Hogan: Equationsofmotioningeneralrelativity

147.A.Yaouanc,P.DalmasdeRéotier: Muonspinrotation,relaxation,andresonance

146.B.McCoy: Advancedstatisticalmechanics

145.M.Bordag,G.L.Klimchitskaya,U.Mohideen,V.M.Mostepanenko: AdvancesintheCasimireffect

144.T.R.Field: Electromagneticscatteringfromrandommedia

143.W.Götze: Complexdynamicsofglass-formingliquids–amode-couplingtheory

142.V.M.Agranovich: Excitationsinorganicsolids

141.W.T.Grandy: Entropyandthetimeevolutionofmacroscopicsystems

140.M.Alcubierre: Introductionto3+1numericalrelativity

139.A.L.Ivanov,S.G.Tikhodeev: Problemsofcondensedmatterphysics-quantumcoherencephenomena inelectron-holeandcoupledmatter-lightsystems

138.I.M.Vardavas,F.W.Taylor: Radiationandclimate

137.A.F.Borghesani: Ionsandelectronsinliquidhelium

135.V.Fortov,I.Iakubov,A.Khrapak: Physicsofstronglycoupledplasma

134.G.Fredrickson: Theequilibriumtheoryofinhomogeneouspolymers

133.H.Suhl: Relaxationprocessesinmicromagnetics

132.J.Terning: Modernsupersymmetry

131.M.Mariño: Chern-Simonstheory,matrixmodels,andtopologicalstrings

130.V.Gantmakher: Electronsanddisorderinsolids

129.W.Barford: Electronicandopticalpropertiesofconjugatedpolymers

128.R.E.Raab,O.L.deLange: Multipoletheoryinelectromagnetism

127.A.Larkin,A.Varlamov: Theoryoffluctuationsinsuperconductors

126.P.Goldbart,N.Goldenfeld,D.Sherrington: Stealingthegold

125.S.Atzeni,J.Meyer-ter-Vehn: Thephysicsofinertialfusion

123.T.Fujimoto: Plasmaspectroscopy

122.K.Fujikawa,H.Suzuki: Pathintegralsandquantumanomalies

121.T.Giamarchi: Quantumphysicsinonedimension

120.M.Warner,E.Terentjev: Liquidcrystalelastomers

119.L.Jacak,P.Sitko,K.Wieczorek,A.Wojs: QuantumHallsystems

117.G.Volovik: TheUniverseinaheliumdroplet

116.L.Pitaevskii,S.Stringari: Bose-Einsteincondensation

115.G.Dissertori,I.G.Knowles,M.Schmelling: Quantumchromodynamics

114.B.DeWitt: Theglobalapproachtoquantumfieldtheory

112.R.M.Mazo: Brownianmotion-fluctuations,dynamics,andapplications

111.H.Nishimori: Statisticalphysicsofspinglassesandinformationprocessing-anintroduction

110.N.B.Kopnin: Theoryofnonequilibriumsuperconductivity

109.A.Aharoni: Introductiontothetheoryofferromagnetism,Secondedition

108.R.Dobbs: Heliumthree

105.Y.Kuramoto,Y.Kitaoka: Dynamicsofheavyelectrons

104.D.Bardin,G.Passarino: TheStandardModelinthemaking

103.G.C.Branco,L.Lavoura,J.P.Silva: CPViolation

101.H.Araki: Mathematicaltheoryofquantumfields

100.L.M.Pismen: Vorticesinnonlinearfields

99.L.Mestel: Stellarmagnetism

98.K.H.Bennemann: Nonlinearopticsinmetals

94.S.Chikazumi: Physicsofferromagnetism

91.R.A.Bertlmann: Anomaliesinquantumfieldtheory

90.P.K.Gosh: Iontraps

87.P.S.Joshi: Globalaspectsingravitationandcosmology

86.E.R.Pike,S.Sarkar: Thequantumtheoryofradiation

83.P.G.deGennes,J.Prost: Thephysicsofliquidcrystals

73.M.Doi,S.F.Edwards: Thetheoryofpolymerdynamics

69.S.Chandrasekhar: Themathematicaltheoryofblackholes

51.C.Møller: Thetheoryofrelativity

46.H.E.Stanley: Introductiontophasetransitionsandcriticalphenomena

32.A.Abragam: Principlesofnuclearmagnetism

27.P.A.M.Dirac: Principlesofquantummechanics

23.R.E.Peierls: Quantumtheoryofsolids

Field-Theoretic SimulationsinSoftMatter andQuantumFluids

DepartmentsofChemicalEngineeringandMaterials

MaterialsResearchLaboratory UniversityofCalifornia,SantaBarbara SantaBarbara,California,USA

KRIST.DELANEY

MaterialsResearchLaboratory UniversityofCalifornia,SantaBarbara SantaBarbara,California,USA

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©GlennH.FredricksonandKrisT.Delaney2023

Themoralrightsoftheauthorshavebeenasserted Impression:1

Somerightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,forcommercialpurposes, withoutthepriorpermissioninwritingofOxfordUniversityPress,orasexpressly permittedbylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescope ofthislicenceshouldbesenttotheRightsDepartment,OxfordUniversityPress, attheaddressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2022951424

ISBN978–0–19–284748–5

DOI:10.1093/oso/9780192847485.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

Preface

Withtheadventandwideavailabilityofpowerfuldigitalcomputers, molecularsimulationshavebecomeanimportantcomponentofthescientificendeavoracrossvast fieldsofresearchspanningchemistry,biology,physics,andmaterialsscience.Inthe classicalrealm,theunderlyingmodelsinvolveparticledegreesof freedom:atomiccoordinatesandmomentainall-atommodels,orcoordinatesandmomentaoflumped variablesincoarse-grainedmodels.Awiderangeofsimulationtechniqueshasbeen developedtoevolvethesedegreesoffreedomandsampleconfigurationspaceforthe purposeofaccessingequilibriumpropertiesorkineticphenomena suchasrateprocessesandtransportcoefficients.Thesetechniquesincludemoleculardynamics(MD), Brownian/Langevin/Stokesiandynamics,dissipativeparticledynamics (DPD),and MonteCarlomethods(MC),amongothers.Renderingsuchparticle-simulationtechniquesevenmorepowerfulistheemergenceofpubliclyavailableclassicalforcefields, validatedbyvasttrovesofexperimentaldataandquantum-chemicalcalculations.A wealthofopen-sourceandcommercialsoftwarehasfurtherpromotedaccessibilityand widespreadadoptionofmolecularsimulationtools.

Inthequantumrealm,anumberofparticle-basedsimulationmethods havealso beendevelopedandrefined,includingpathintegralMonteCarlo(PIMC),whichis awaytosimulatefinite-temperatureassembliesofinteractingquantumparticlesat thermalequilibrium.ThepathintegralparticletrajectoriestrackedinPIMCareclosed loopsin“imaginarytime”thathaveastrikingsimilaritytoclassical ringpolymers. AnotherimportanttechniqueistheCar-Parrinello abinitio MDschemeinwhich nucleimoveclassicallyviamoleculardynamicsinforcefieldscomputedusingquantum electronicdensityfunctionaltheory.

Inspiteoftheirsuccesses,classicalandquantumparticle-basedsimulationsconductedwithatomicresolutionstruggletoreachintothe mesoscale,heredefinedas lengthscalesspanning1nmto1 µm,andintothecontinuumbeyond.Particularlychallengingaredensesystemsofpolymers,forwhichrelaxationtimesgrow algebraically, orevenexponentially,withchainlength.Thechallengesarecompoundedwhenthe systemmacroscopicallyormesoscopicallyphaseseparates,crystallizes,orvitrifies, whereinaparticlesimulationmustevolveahugenumberofhighlyconstrainedcoordinates(sufficienttoresolvestructureatthemesoscale)overadauntingtimewindow.

Atthecontinuumlevel,modelingofsolidmechanics,fluidflow,heatandmass transport,andelectromagneticphenomenaisbasednotonparticlesbuton fields thatcapturestructureandcorrelationsinspaceandtime.Thesetheoriescombine conservationlawswithconstitutiveequationstoprovideclosedsetsofequationsfor thefieldvariables.Suchcontinuumdescriptionscanbeclassifiedas phenomenological, ratherthanmolecular,becauseparametersspecifyingmaterialcharacteristics,e.g. elasticmoduliortransportcoefficients,arerequiredtobeinputtothetheoriesrather

Preface

thanemergingfromspecifiedintermolecularinteractions.

Field-theorymodelsofclassicalfluidsandsoftmatterwithanunderlyingmolecular basishavebeenknownformanydecades.Inthefieldofpolymerphysics,techniques suchasHubbard-StratonovichtransformswereintroducedbyEdwards inthe1960s toexactlytransformequilibriumensemblesofinteractingpolymersintomolecularlyinformedstatisticalfieldtheories.Thesefieldtheorieshaveservedasthebasisfor analyticalworkthathasrevealedimportantinsightsintopolymerstructureandthermodynamics,buttheanalyticaltoolsarelargelylimitedtohomogeneoussystems.Only inthepasttwentyfiveyearshaveviablenumericalmethodsemerged forsimulating suchfieldtheorymodelsandexploringmesoscalephenomena.Thepredominanttool, self-consistentfieldtheory(SCFT),isaworkhorseforstudyinginhomogeneouspolymerandsoft-mattersystems,butinvokesamean-fieldapproximationthatbecomes inaccuratefordilutesystemsorthosenearcriticalphasetransitions.

Amorepowerfulandgeneraltechnique, field-theoreticsimulations (FTS),involves adirectnumericalattackonastatisticalfieldtheory,withoutengaging simplifying approximations.FTSmustcircumventthe“signproblem”thatisassociatedwiththe non-positive-definitestatisticalweightsinherenttomolecularly-informedfieldtheories.RatherthanMonteCarlosampling,whichreliesonpositiveBoltzmannweights, FTSschemesinvokeacomplexLangevinsamplingofthefieldsinafictitioustime. Astrikingfeatureoffield-theoreticsimulationsofpolymersisthat theybecomeincreasinglyadvantagedoverparticlesimulationmethodsathighmolecular weightand highdensity.Moreover,theycaneasilyreachintothemesoscaleandprovideabridge tocontinuummodels.Anotherremarkableaspectofthefield-theoreticrepresentation isthatitenablesdirectevaluationof absolutefreeenergies,whichgreatlysimplifies thetaskofconstructingphasediagrams.Withacorrespondingparticle model,tedious indirectmethodsinvolvinghistogramsorthermodynamicintegration arerequiredto assessphasebehavior.

Strategiesforbuildingandnumericallysimulatingmolecularly-basedfieldtheory modelswerediscussedinapreviousmonographoninhomogeneouspolymers byone ofus(Fredrickson,2006).Sincethattime,field-theoreticsimulationmethodshave evolvedconsiderablyandthescopeofsystemsthatcanbeaddressedhasexpanded withinandbeyondpolymerstowidercategoriesofsoftmaterials.There isalsoanew appreciationthatclassicalpolymersystemscanberepresentedina“coherentstates” (CS)field-theoreticformreminiscentofmodernpathintegraldescriptionsofquantum many-bodysystems.Thisalternativerepresentationopensuppromisingnewavenues forstudyingdifficultclassicalsystems,suchasreactingpolymers,butalsopresents interestingchallengesinthedevelopmentofnumericalmethodsforFTS.

Directnumericalsimulationsof quantumfieldtheories haveshownpromiseinthe fieldofnuclearphysics,butsurprisinglyhavenotbeenwidelyexploitedincondensed matter,atomic,andlow-temperaturephysics.Specifically,theadventofopticaltraps andlasercoolinghasspawnedaresurgenceofinterestinthecollectivequantumbehaviorofultra-coldatoms.Bymeansoflaserirradiationandtheimpositionofmagnetic fields,“artificialgaugefields”canbeimposedthatcreateexotic,highly-correlatedand entangledstatesofmatterandallowthesestatestobeprobedwithexquisiteprecision. Frustratedquantum-spinmodelsarealsoofcontemporaryinterestduetotheirability

Preface tohostsimilarexoticquantumstates,suchasquantumspinliquids.Anunderstanding ofsuchstatescouldproveusefulinthedesignofmaterialsforfuture quantumcomputingdevices.Broadclassesofmodelsinbothtypesofsystemscanberepresentedas CS-typequantumfieldtheorieswithembedded Bosestatistics,whichareamenableto field-theoreticsimulationbycomplexLangevintechniques.Thesimilarstructuresof CSrepresentationsofquantumBoseandclassicalpolymerfieldtheories suggestthat coordinationofemergingFTStechniquesacrossthequantum-classical dividecould yieldsignificantbenefitstoeacharea.

Field-theoreticsimulationsarecurrentlynotwidelypracticed. Inpart,thisisbecausemanypractitionersofparticle-basedsimulationsarenotversedinthelanguage offieldtheory.Moreover,eventhenumericalmethodsareunfamiliar,asfieldsarebest resolvedandtime-evolvedusingtechniquesdevelopedincontinuummechanicsdisciplinessuchascomputationalfluidmechanics.Thesignproblem,which ispresentin bothclassicalandquantumfieldtheories,presentsafurtherbarriertoentry,asone mustunderstandandproperlydeploycomplexLangevinmethodstoefficientlysamplefieldconfigurationspace.Finally,thereislimitedpublicavailabilityofsoftware forconductingfield-basedsimulations.Inspiteofthesechallenges,FTSmethodology bringstogetherafascinatingsetofconceptsandtoolsfromtheoreticalphysics,quantumandclassicalfieldtheory,numericalanalysis,andappliedmathematicstotackle importantproblemsspanninglow-temperaturephysicstomaterialscience.

Withthepresentmonographweaimtoprovideasinglesourcetoguidethedevelopmentandefficientnumericalsimulationofmolecularly-informedfield-theorymodels. Chapter 1 containsanintroductiontothecalculusoffunctionals,thebasicnotionof afieldtheory,andthedistinguishingfeaturesofphenomenologicalandmolecularlyinformedfieldtheories.Startingwithasimplemonatomicfluidandgeneralizingto polymers,Chapter 2 illustrateshowauxiliaryfieldandcoherentstatemethodscanbe usedtotransformmany-bodyproblemsintostatisticalfieldtheoriesforclassicalsystemsatequilibrium.Chapter 3 summarizesthecorrespondingmethodologytobuild quantumfieldtheoriesforequilibriumassembliesofparticlessatisfyingBosestatistics. InChapter 4,weintroducenumericalmethodsforrepresentingandefficientlymanipulatinglargefields.Spectralcollocationor“pseudo-spectral”techniquesareemployed, whichyieldultra-highaccuracyforsmooth(mean-field)solutions,are easytocode,and leveragehighlyoptimizedandwidelyavailablefastFouriertransform(FFT)libraries.

Withthesefoundations,Chapter 5 developsschemesforfindingdeterministic “mean-field”solutionsoffieldtheorymodelsandforconductingstochasticFTSsimulations,whichinvokenosimplifyingapproximation.FTSisperformedusingcomplexLangevin(CL)sampling,whichisrobustagainstthesignproblemandis the mostversatilemethodforsimulatingclassicaland(bosonic)quantumfieldtheories. Weshowhowtoconstructefficient,stableandaccurateCLalgorithms.Chapter 6 providesanintroductiontomolecularly-informedfieldtheoriesfornon-equilibrium systems,includingtheuseofKeldyshcontoursforfinite-temperaturequantumdynamicsandpathintegralMartin-Siggia-Rosetypemethodsforclassicaldynamics. Numericalmethodsforsimulatingbothtypesofnon-equilibriumfieldtheoriesaredetailed.Finally,Chapter 7 reviewsadvancedsimulationtechniquessuchasalternative ensembles,variable-cell-shapemethods,free-energyestimation,coarse-graining,and

Preface

techniquesforlinkingparticle-andfield-basedsimulations.

Field-theoreticsimulationmethodsarenotapanacea.Theyaremostpowerfulfor studyingsystemsinwhichthedominantphysicsinvolvemesoscale structuresandtheir dynamics.Inconstrast,phenomenathatarecontrolledbyatomic-scaleliquidstructure ormolecularrecognition,e.g.crystallization,foldingofproteins,orligand-receptor binding,arebestsimulatedusingtraditionalparticletechniques suchasmolecular dynamics.Thisisbecauseresolvingfieldsdowntoatomicscalesrequiresmoredegrees offreedomthanthecorrespondingnumberofparticlecoordinates,renderingFTS methodsnoncompetitive.ThemolecularbasisforafieldtheoryamenabletoFTS isthusgenerallya coarse-grained particlemodel.Insuchamodel,atomicfeatures areeliminatedbelowabout1nm,andparticlesinteractviasofterpotentialsthanthe harshlyrepulsivepotentialstypicallyusedinall-atommodels.Anadditionallimitation inquantummodelsisthatthesignprobleminfieldtheoriesinvolving fermions is generallyintractablebycomplexLangevinsamplingduetothenon-analyticcharacter oftheiractionfunctionals.

Thisbookisintendedforgraduatestudents,postdocs,faculty,andprofessional scientistsinterestedinlearningthetheoryandpracticeoffield-theoreticsimulations. Prerequisitesincludefamiliaritywithquantummechanics,statisticalmechanics,appliedmathematics,numericalanalysis,andprobabilitytheoryattheadvancedundergraduateorfirstyeargraduatelevel.Weassumenopriorexperiencewith fieldtheory, many-bodytheory,pathintegrals,andthecalculusoffunctionals.Finally,thereferencescitedarenotintendedtobecomprehensive,butratherthose webelievewillbe mosthelpfultothereader.Weapologizeinadvanceforinevitableomissions.

Acknowledgements

Wearepleasedtoacknowledgethefinancialsupportofourresearchonfield-theoretic simulationsbytheDivisionofMaterialsResearchoftheNationalScience Foundation throughtheMRSEC,DMREF,andCMMTPrograms(mostrecently,awardsDMR1720256,DMR-1725414,DMR-1822215,andDMR-2104255),andtheDepartmentof Energy,BasicEnergySciencesthroughtheEFRCandMaterialsChemistryPrograms (awardsDE-SC0019272andDE-SC0019001).

Thanksarealsoduetothemanygraduatestudents,postdocs,andcollaborators whohavecontributeddeeplytoourunderstandingofthissubject matter.Afewshould becalledoutforspecificcontributions.FrancoisDroletandScottSideswerethefirst tobringcomputationalscienceexpertisetoagroupthatwasinexperiencedinother thanpencilandpapertheory.VenkatGanesanintroducedustothecomplexLangevin methodandwasbraveenoughtoattemptitsfirstapplicationtopolymerfieldtheories. Jean-LouisBarratshowedthewaytogeneralizetheParinello-Ray-Rahmanframework forvariablecellfield-basedsimulations.KirillKatsovandErinLennonsimilarlyextendedtheFrenkel-Laddthermodynamicintegrationmethodtocomputeabsolutefree energiesoffluid,liquidcrystalline,andsolidmesophases.RobRigglemanprovidedthe firstfield-theoreticimplementationsofBennett’smethodandthe Gibbsensemble. MikeVillettaughtushowtoeliminateproblematicultravioletdivergences,deriveefficientpressureandstressoperators,andconductvariationalcoarse-graining.Werelied onHectorCenicerosandCarlosGarcia-Cerveraforguidanceonallthingsnumerical, fromintegrationofstochasticdifferentialequationstoefficientChebyshevcollocation methods.Finally,HenriOrlandintroducedustothecoherentstatesrepresentation andencouragedourworkincomputationalquantumfieldtheory.

WeareindebtedtoDanielVigil,NickSherck,DougGrzetic,andKimberleeKeithleyforcontributingfigurestothebook.

ToLesley,Sara,andourfamilies,thankyouforyourpatiencewithusinspiteof allthetimespentaway!

Introduction

1.1Mathematicalpreliminaries

1.1.1Functionalnotation

Thisbookisconcernedwiththeconstructionoffieldtheorymodelsof classicaland quantumfluidsandthedevelopmentofcomputersimulationmethodsto studytheir properties.Suchmodelsnecessarilyinvolve functionals,whicharemappingsbetweena functionandascalarrealorcomplexnumber.Forexample,wecandefineafunctional F1 astheintegralofthesquareofafunction ϕ(x)definedoveraninterval x ∈ [a,b] as

Bythenotation F1[ϕ],itisimpliedthatthevalueofthefunctional F1 dependson thevalueofthefunction ϕ(x)notatasinglepoint x,butonitsvaluesoverthefull interval.Althoughcommonintheliterature,wefindnotationslike F1[ϕ(x)]confusing andundesirable. F1 isanexampleofa local functionalsinceitinvolvestheintegralof apurelylocalfunctionof ϕ(x).A nonlocal functionalisonethatinvolvesaderivative of ϕ(x)orsomenon-localkernelfunction k(x,x′),examplesbeing

Functionalsaresimilarlydefinedformulti-variatefunctions,such asascalarfield ϕ(r)definedforpoints r ina d-dimensionaldomainΩ.AnexampleisaGinzburgLandau-typefunctionalfamiliarinthetheoryofphasetransitions(Stanley,1971; Goldenfeld,1992)

Inthiscontext,thefunctional F4 representsthefreeenergyofasystem, ϕ(r)isan orderparameterfield, f (ϕ)isalocalfreeenergydensity,andthesquaregradientterm penalizesrapidvariationsintheorderparameter(i.e.interfaces).

1.1.2Functionalcalculus

Thecalculusoffunctionalsisasubjecttaughtwithinthecorephysicsgraduatecurriculumatmostuniversities,buttypicallynotinchemistry,materialsscience,ormost

engineeringdisciplines.Theintroductoryconceptscanbefound inappliedmathematicsormathematicalphysicstextsinsectionsbearingtitlessuchascalculusof variations,functionalanalysis,orfunctionalcalculus(Arfken etal.,2013).

Wefirsttacklethenotionofa functionalderivative.Considertakingafunctional suchas F1[ϕ]ineqn(1.1)anddisplacingthefunction ϕ(x)byasmall,arbitrary perturbation δϕ(x).Thisperturbationisafunctionof x thatcanbeofanyshape,but isassumedtobeuniformlysmallinamplitude.Thechangeinthefunctionalassociated withthesmalldisplacementinthefunctionis

Thisquadraticfunctionalproducestermsinthevariation δF1 onlyuptosecondorder in δϕ(x).Inthegeneralcaseforanarbitraryfunctional F [ϕ]wehaveaso-called functionalTaylorexpansion

≡ F [ϕ + δϕ] F [ϕ]

+ O(δϕ3)(1.6)

withtermstoallordersintheperturbationfunction.Thecoefficientsinthisexpression multiplyingthesuccessivepowersof δϕ(x)arecalled functionalderivatives.Inthecase ofthefunctional F1 weseethatthefirsttwo(andonlynon-vanishing)derivativesare δF1[ϕ] δϕ(x) =2ϕ(x),

2F1[ϕ] δϕ(x)δϕ(x′) =2δ(x x ′)(1.7)

where δ(x)isDirac’sdeltafunction(Arfken etal.,2013)definedbytherelation b a dx′ δ(x x′)f (x′)= f (x)forany x ∈ (a,b)and f (x)anarbitraryfunction. Thefirstfunctionalderivative δF [ϕ]/δϕ(x)expressestherateatwhichthefunctional F changeswhenthefunction ϕ isperturbednearthepoint x.Similarly,the secondfunctionalderivative δ2F [ϕ]/δϕ(x)δϕ(x′)providesthecoefficientofthesecond orderresponseof F toperturbingthefunction ϕ independentlyattwodifferentpoints x and x′.Thesefunctionalderivativesarecloselyrelatedtopartialderivativesinthe expansionofamultivariatefunction.Indeed,ifweapproximateacontinuousfunction ϕ(x)bysamplingitat N pointstoforman N -vector ϕ andusethesamepoints inaquadratureschemetoapproximatetheintegraldefiningthefunctional F ,then F becomesanexplicitfunctionofthecomponentsof ϕ andthepartialderivatives of F constituteadiscreteapproximationtothecorrespondingcontinuousfunctional derivatives.Forexample,applyingasimplerectangularquadratureon auniformgrid tothefunctional F1,thepartialderivativewithrespecttothefieldvariationatthe jthpoint ϕj ≡ ϕ(xj )is ∂F1/∂ϕj =2∆xϕj ,with∆x thespacingbetweenpoints.From eqn(1.7)weseethattherelationshipbetweenthefirstfunctionalandpartial derivativesis ∂F1/∂ϕj =∆xδF1/δϕ(xj ).Thatis,thedimensionsofafunctionalderivative

δF1 [ϕ] /δϕ(x)are[F1][ϕ] 1 [x] 1.Inspiteoftheirsimilarinterpretation,functional derivativesthushavedifferentdimensionsthanpartialderivatives.

Thefunctionalderivativesofpurelylocalfunctionalssuchas F1[ϕ],aswellnonlocalfunctionalssuchas F3[ϕ]thatdonotinvolvederivativesofthefunction,canbe constructedwithoutspecifyingboundarydataon ϕ(x).Forexample,inthecaseof F3 wehave δF3[ϕ] δϕ(x) = b a dx′

Incontrast, boundaryconditions areneededtoconstructfunctionalderivativesof functionalscontainingfirstorhigherderivativesofthefunction ϕ(x).Asanexample, tocomputethefirstfunctionalderivativeof F2 wewrite

Toexpressthisintheformofthefirsttermineqn(1.6)wemustintegratebyparts, leadingto

Forcasesofperiodicboundaryconditions,homogeneousDirichlet(ϕ =0)conditions, orhomogeneousNeumann(dϕ/dx =0)conditionsonthefunction ϕ(x)atbothboundaries,theboundarytermsineqn(1.10)vanishandthefunctionalderivativeisseen tobe δF2[ϕ]/δϕ(x)= 2 d2ϕ(x)/dx2.Insituationswheretheboundarytermsdonot individuallyvanishorcancel,thenthereareadditionalboundarycontributionstothe functionalderivative.Similarargumentsapplyforcomputingfunctionalderivativesin higherdimensions.For ϕ(r)satisfyingperiodic,homogeneousDirichlet,orhomogeneousNeumannconditionsontheboundaryΓofthedomainΩ,avariantofGreen’s theorem(Hildebrand,1965)canbeusedtoconductthenecessarypartialintegration andverifythatboundarytermsdonotcontributetothefirstfunctionalderivativeof F4[ϕ]givenineqn(1.4).Insuchcasesoneobtains

δF4[ϕ] δϕ(r) = df (ϕ(r)) dϕ(r) −∇2ϕ(r)(1.11) where ∇2 = ∇·∇ istheLaplacianoperator.

Animportantapplicationoffunctionalcalculusistosolve min-maxproblems, namelytofindaparticularfunction ϕm(r)thatisalocalextremumofaspecified functional F [ϕ],usuallysubjecttoboundaryconditionson ϕ(r)(Arfken etal.,2013). Suchproblemsaresolvedbysettingthefirstfunctionalderivative tozero

δF [ϕ] δϕ(r) ϕm =0(1.12) justaswewouldsetthepartialderivativesofamultivariatefunction tozerotofind localminimaormaxima.Inthecaseofafunctionalinvolvingderivativessuchas

eqn(1.4),theaboveequationamountstoapartialdifferentialequation(aso-called Euler-Lagrangeequation)thatistobesolvedsubjecttoboundaryconditionsonthe field.Toestablishwhetheranextremalsolutionisalocalmaximum,minimum,or saddleof F [ϕ]itisnecessarytoconstructthesecondfunctionalderivativeevaluated attheextremalfield

Iftheeigenvaluesofthis“Hessiankernel”areallpositive(negative), then ϕm isalocal minimum(maximum).Iftheyareofmixedsign,thenthesolutionisasaddleof F

Theconceptof functionalintegration isalsoimportantinfieldtheory.Hereweare concernedwithintegratingafunctional F [ϕ]overallpossiblefunctions ϕ(x)belongingtosomefunctionspaceandsatisfyingspecifiedboundaryconditionsat x = a,b. Schematicallywehave

wherethefunctionalintegrationmeasure Dϕ willrequiresomeexplanation.Oneway todefinesuchanintegralistodiscretizethefunction ϕ(x)bysamplingitat N points (e.g.equallyspaced)overtheinterval[a,b].Thefunctionisthenapproximatedby an N -vectorofthosevalues, ϕ,andthefunctional F [ϕ]canbeapproximatedby amultivariatefunction F (ϕ).Theintegrationmeasureisfurtherapproximatedby D

dϕ1dϕ2 ··· dϕN ,resultingintheN-dimensionalRiemannintegral

IfitweretruethatlimN →∞ IN = I with I nonzeroandfinite,wewouldhaveawell controlledstrategyfordefiningthefunctionalintegral.Alas,inmanycasesthislimiting procedureresultsineither0or ±∞ irrespectiveoftheformofthefunctional F [ϕ].

Fortunatelyinstatisticalandquantumfieldtheorywedonotrequiresuchintegrals toexist,butonlytheirratios.Typicallyoneisinterestedinobservables ⟨O⟩ thatare obtainedbyaveragingsomefieldoperatorfunctional O ˜ [ϕ]overallfieldrealizations, weightedbya“probability”functional P [ϕ].Specifically,

Weusetheterm“probability”inquotesbecauseweshallsee(Chapters 2 and 3)that themolecularfieldtheoriesofinterestinclassicalandquantumsystemshaveastatisticalweight P [ϕ]thatisnotnecessarilyrealandpositivesemidefinite.Specifically,in bothclassicalstatisticalfieldtheoryandquantumfieldtheory, P [ϕ]hastheformofa Boltzmann-likedistribution ∝ exp( H[ϕ]),where H[ϕ]isacomplex-valued Hamiltonian functionalintheclassicalcaseoran action functional(typicallydenoted S[ϕ]) inaquantumtheory.Ineithersituation,aratiooffunctionalintegralslikeeqn(1.16) istypicallywell-definedinthelimitingprocessdescribedabove.Afieldtheorythat doesnothavethischaracterissaidtobe ultravioletdivergent.

Mathematicalpreliminaries 5

Asecondwaytodefinethefunctionalintegrationmeasureistointroduce normalmodes.Toillustrate,weconsiderthesimplecaseofa(classical)elastic string tightlystretchedbetweentwosupportsseparatedbyadistance L.If ϕ(x)denotesthe transversedisplacementfromthestraightpathbetweentheopposing tetheringpoints, τ denotesthetensioninthestring,andweassumesmalldisplacements,theelastic energycanbewritten

Sincetherecanbenodisplacementatthetetheringpoints, ϕ(0)= ϕ(L)=0,we introduceaFouriersineseriesrepresentation

intermsofwhich H reducestoasumofuncoupledharmonicoscillatorsinthenormal modecoordinates {an}

with“springconstants” κn ≡ τπ2n2/(2L).Ifthestringisthermallyequilibratedwith areservoirattemperature T ,thenitsequilibriumdistributionofshapesisproportional totheBoltzmanndistribution

with αn ≡ βκn and β ≡ 1/(kB T ), kB beingBoltzmann’sconstant.Theprobability distribution P [ϕ]thusfactorsbymodeindex n intoaninfiniteproductofsinglemode Gaussiandistributions.

Wenowaddressthemeasure Dϕ.Sincethesinebasisiscomplete,wecanintegrate overtheHilbertspaceofFourier-representablefunctionsbyintegratingoverallnormal modecoefficients, Dϕ = ∞ n=1 dan.Foranoperator O[ϕ]expressedintermsofnormal modecoefficientsas O ˜ ({an}),eqn(1.16)thusreducesto

Theinfiniteproductofnormalizingintegralsinthedenominatorofthisexpression convergestozerosincethe nthtermisproportionalto1/√αn ∼ 1/n.Thenumerator inisolationsimilarlyvanishesformostchoicesof O({an}).Crucially,however,there ismassivecancellationbetweennumeratoranddenominatorrenderingaveragesfinite. Forexample,incomputing ⟨am⟩,allintegralsinnumeratoranddenominatorcancel

exceptforthe mth.Becausetheremainingintegralinthenumeratorhasanodd integrand,itisevidentthat ⟨am⟩ =0.Bysimilararguments

where δm,n istheKroneckerdelta,definedas δm,n =0for m = n, δm,m =1.Returning fromthenormalmoderepresentationtorealspace,itisevidentthatthefirsttwo momentsofthetransversevibrationsofthestringare

Asonewouldintuitivelyexpect,thefirstmomentvanishesbecausepositiveandnegativedisplacementsareequallyweightedbythefunctional(1.17).Thesecondmoment vanishesatthetwoendpointsofthestringwhereitisclamped,andismaximumat thecenter x = L/2achievingavalueof kB TL/(4τ ).

1.1.3Gaussianintegrals

TheroleofGaussianintegralsinbothstatisticalandquantumfieldtheory isprofound. Wehavealreadyencounteredone-dimensionalexamplesinanalyzingeqn(1.21)and derivingeqn(1.22).Herewereviewimportantformulasinone,multiplebutfinite, andinfinitedimensions(Zee,2010; NegeleandOrland,1988; Kamenev,2011).

Astartingpointisthethreeone-dimensionalintegrals

allofwhicharevalidforRe a> 0andwhere i ≡ √ 1.Ifweextend x and J to realcolumnvectors,i.e. x =(x1,x2, ··· ,xN )T ,and a toa N × N symmetricrealor

Mathematicalpreliminaries 7

complexmatrix A withalleigenvalueshavingpositiverealparts,onefindsthetrioof formulas

dN x exp( x T Ax/2) ≡ ∞ −∞ dx1 ∞ −∞

dxN exp( x T Ax/2) = (2π)N/2 (det A)1/2 (1.28)

dN x exp( xT Ax/2+ JT x)

Z(J) ≡

dN x exp( xT Ax/2) =exp(JT A 1J/2)(1.29)

dN x exp( xT Ax/2+ iJT x)

dN x exp( xT Ax/2) =exp( JT A 1J/2)(1.30)

Finally,wecanextendtheseformulastotheinfinitedimensionalcase(N →∞)of Gaussian functionalintegrals overrealfields ϕ(x):

Z[J] ≡

Dϕ exp[ (1/2) dx dx′ ϕ(x)A(x,x′)ϕ(x′)+ dxJ(x)ϕ(x)]

Dϕ exp[ (1/2) dx dx′ ϕ(x)A(x,x′)ϕ(x′)]

Dϕ exp[ (1/2) dx dx′

wherethe“kernel”function A(x,x′)isassumedtobecomplexandsymmetric,with alleigenvalueshavingpositiverealparts.Thefunctionalinverseof A, A 1,isdefined by

Againweemphasizethatthefunctionalintegralsinthenumeratorsanddenominators ofeqns(1.31)and(1.32)arenotnecessarilywelldefined,buttheratiosareconvergent. Theseformulasareknownas Hubbard-Stratonovichtransforms (Hubbard,1959)and willbeseenthroughoutthismonographtobeanimportanttoolfortransforming interactingparticlemodelstofieldtheories.

The Z(J)functionand Z[J]functionalcanbewrittenasaveragesoverzerocenteredGaussiandistributionsofthe x and ϕ variables,i.e. Z(J)= ⟨exp(JT x)⟩ and Z[J]= ⟨exp( dxJϕ)⟩.TheTaylorexpansioncoefficientsinpowersof J or J(x)

ofthesefunctions/functionalsaremomentsoftherespectivedistributions.Allodd momentsvanishidentically,whilethesecondmomentsfollowfrom

Higher-orderevenmomentsarerelatedtoasumofproductsofsecondmomentsby expressionsknownas Wick’stheorem.Forexample,

Thefinalexpressionreflectsthesumofallpossiblepairingsinfactoringthefourth momentinproductsofsecondmoments.

AnotherclassofGaussianintegralsthatareimportantintheconstructionof coherentstatesfieldtheoriesinvolve complexvariables zj = xj + iyj andtheircomplex conjugates z∗ j = xj iyj for j =1,...,N .Inthecaseofacomplex N × N matrix A whoseeigenvaluesallhavepositiverealpartsand J anarbitrarycomplex N -vector,

(1.37)

N (z

(J∗ , J) ≡

where z† ≡ (z∗)T denotestheHermitianconjugate.Theintegrationmeasureinthe aboveequationscorrespondstoadoubleintegrationovertherealandimaginaryparts ofeachvariable,

OddmomentsofthecomplexGaussiandistributionexp( z†Az)vanishidentically, asdoevenmomentswithoutequalnumbersof zj and z∗ k factors.Thenon-vanishing secondandfourthmomentsaregivenby

Thefinalexpressionineqn(1.41)reflectsaformofWick’stheoreminwhichthe pairingsofvariablestoformproductsofsecondmomentsarerestricted topairsthat haveexactlyone z andone z∗ factor.

Finally,inthecontinuumlimitoffunctionalintegrals,eqn(1.38)generalizesto

Heretheintegrationmeasure D(ϕ∗,ϕ)isinterpretedasadoublefunctionalintegration Du Dv overtherealandimaginarypartsof

1.1.4Deltafunctionsandfunctionals

WehavealreadyencounteredtheDiracdeltafunction δ(x)(Arfken etal.,2013), definedbytherelation b a dx′ δ(x x′)f (x′)= f (x)forany x ∈ (a,b).Asthismust betruefor any function f (x), δ(x)isevidentlyaverystrangefunction;essentiallyan infinitelythinandinfinitelytallspikeattheoriginthatissymmetricandhasunit area.Suchsingular generalized functionsshouldbehandledwithcare,butherewedo notdwellontheirsubtleties.Ourfocusisinsteadonmethodsforrepresentingdelta functions,whichareoffundamentalimportanceinbuildingmolecularly-informedfield theories.

Onemethodforrepresentingadeltafunctionisthrougha deltasequence,whichis afunction δϵ(x)withunitintegralandsymmetricabouttheoriginthatcontinuously narrowsandgrowsinamplitudeasasmallpositiveparameter ϵ istakentozero.An exampleistheGaussianfunction

Thedeltafunctionisrepresentedbyadeltasequenceaccording to

whereitisimportantthatthelimitistakenoutsidetheintegralinthefinalexpression. AnotherusefulwayofrepresentingaDiracdeltainvolvesanexpansioninacomplete setoforthonormalbasisfunctions {ψn(x)} definedoverthesameinterval x ∈ (a,b). Foranysuchset,itcanbeshownthatarepresentationof δ(x)is

Aparticularlyconvenientchoiceofbasisfunctionsaretheplanewaves(Fourierbasis) ψk(x)=(1/√L)exp(ikx),with k =2πn/L and n aninteger.Thesefunctionsare orthonormalovertheinterval( L/2,L/2)andsatisfyperiodicboundaryconditions. Inthiscase

1 L

Ifthedomainisextendedtotheentirerealaxis(i.e. L →∞),thesumover n canbe convertedtoanintegralover n (andhence“wavevector” k =2πn/L),resultinginthe expression

Theseformulasareeasilyextendedtohigherdimensions.For N -vectors x and x′ , wecandefinean N -dimensionalDiracdeltafunction δ(N )(x)bytheexpression

wherethedomainofintegrationisahypercubeofvolume LN .Itfollowsfromthis definitionthatan N -dimensionalDiracdeltacanbedecomposedintoaproductof N one-dimensionaldeltas:

AFourierrepresentationofthe N -dimensionaldeltafunctionimmediatelyfollowsfrom eqn(1.47)

wherethe k integralisnowover RN .

Finally,inthelimitofinfinitedimensions,wecandefinea deltafunctional δ[ϕ]by theexpression

foranarbitraryfunctional F [ϕ]ofafunction ϕ(x).Suchadeltafunctionalconstrains thetwofunctions ϕ and ϕ′ toagreeat every point x ∈ (a,b).Thedeltafunctionalcan begiventheFourierrepresentation

Thereadermightbeconcernedabouttheabsorptionofthevanishing1/(2π)N factor for N →∞ intotheintegrationmeasure Dµ,butitcanbecompensatedbythe integrationmeasureinthedefiningexpression(1.51).Wealsonotethatthesignof theargumentoftheexponentialineqns(1.47),(1.50),and(1.52)canbeswitchedat willbecauseofthesymmetryofthedeltafunction.

1.2Phenomenologicalfieldtheories

Whilenottheprimarysubjectofthisbook,phenomenologicalfieldtheorymodels haveplayedanimportantroleinunderstandingthequalitativebehaviorofbroad

Phenomenologicalfieldtheories 11

classesofclassicalandquantumsystems.Suchtheoriesstartwithapostulateforan actionorHamiltonianfunctional,usingsymmetryarguments,physicalintuition,and knownconstraintstospecifyindividualterms.Theterms(basis functionals)arethen multipliedbyadjustableconstantsandsummedtoproduceadesiredfunctional.The constantsarephenomenologicalinthesensethattheirdependenceonfundamental molecularinteractionsisimpliedbutunknown.Sometimeswecanintuitfromphysicalconsiderationsthesignofaparticularcoefficientorthedirection ofitstrend withaparametersuchastemperatureorcomposition,butnumericalvaluesofcoefficientscanbeobtainedonlybyfittingmodelpredictionstoexperimentaldataorto simulationsbasedonamolecularmodel.Inspiteoftheselimitations, phenomenologicalfieldtheorieshavebeenofprofoundimportanceinunravelingtheintricaciesof quantumcollectivephenomenasuchassuperfluidityin 4Heandsuperconductivityin metals(FetterandWalecka,1971),andofphasetransitionsandcriticalphenomenain systemsrangingfrommagnetstosimplefluidsandsolids(Stanley,1971; Goldenfeld, 1992)topolymersandcomplexfluids(deGennes,1979).

Wehavealreadyseenanexampleofaphenomenologicalfieldtheoryinouranalysis ofthethermalfluctuationsofaclassicalelasticstring.Theelasticenergyfunctionalin eqn(1.17)includesasingleparameter τ thatspecifiesthetensionintheundisplaced string,butcontainsnomoleculardetailsaboutthecompositionofthestringnorthe strainnecessarytoachievethattension.Asasecondexample,weconsideraHamiltonianfunctionaloftheclassicalGinzburg-Landauform(Goldenfeld,1992; Amit,1984)

whichisaspecialcaseofeqn(1.4)inwhichthelocalfreeenergydensity f (ϕ)is expressedinpolynomialform,andagain, β =1/(kB T ).Inapplicationstocritical phenomenainaone-componentfluid, ϕ(r)=(ρ(r) ρc)/ρc isan orderparameter that describesthedeviationofthelocalfluiddensity ρ(r)fromthebulkcriticaldensity ρc.Foratwo-componentfluidmixturenearitsliquid–liquidcriticalpoint,thesame functionalisapplicablewith ϕ(r)interpretedasthelocaldeviationofthemixture composition(e.g.moleorvolumefraction)fromitscriticalcomposition.Ineither context,theparameter r0 isassumedtohavelineartemperaturedependenceinthe vicinityofthecriticaltemperature Tc,changingsignthereas r0 ≈ c1(T Tc)with c1 > 0,while u0 remainspositivethroughoutthecriticalregion.

AHamiltonianfunctionalstrictlycharacterizestheenergyofafluid,buteqn(1.53) alreadyhasafreeenergycharactersince ϕ(r)representscoarse-graineddegreesoffreedom.Nonetheless,thetotalfreeenergyofthesystem, F ,shouldincludethecontributionoforderparameterfluctuations,whichbecomedominantinthecriticalregion. F isobtainedfrom F = kB T ln Z,where Z isapartitionfunctionexpressedasa functionalintegralwithaBoltzmannweightdeterminedby H[ϕ]

Z = Dϕ exp( βH[ϕ])(1.54)

Withinamean-fieldapproximation,oneassumesthatthelowest-energyfieldconfiguration ϕ dominatesthisfunctionalintegral,therebyneglectingfluctuations of ϕ

about ϕ.The“mean-field”configurationisobtainedfromtheEuler-Lagrangeequation δH[ϕ]/δϕ(r)|ϕ =0,whichadmitsonlyahomogeneoussolutionforabulksystem withperiodicboundaryconditions

Theorderparameteristhuspredictedtovanishcontinuouslyasthecriticaltemperatureisapproachedfrombelowas ϕ ∼ (Tc T )β withamean-fieldexponentof β =1/2.1 Thetwobranchesofthesolutionfor T<Tc reflectthevaluesofthedensity inthecoexistinggasandliquidphasesofthefluid.

Standardreferencesoncriticalphenomena(WilsonandKogut,1974; Amit,1984; Goldenfeld,1992)buildonthisresult,usingacombinationofperturbationtheory(in thequarticcouplingparameter u0),scalinganalysis,andrenormalizationgrouptheory toanalyzefluctuationcorrectionstothefunctionalintegral(1.54).Suchanalysisshows thatlong-wavelengthcorrelationsintheorderparameterfieldproduce non-analytic contributionstothefreeenergyandmodifycriticalexponentssuchas β fromtheir mean-field(or“classical”)values.Weshallnotpursuethisfurther,as thepresentbook isfocusedon numerical,asopposedtoanalytical,techniquesandonmolecularly-based, ratherthanphenomenological,fieldtheories.Nonetheless,itisimportanttohighlight thefactthatphenomenologicalfieldtheoriesoftenpossessmathematicalpathologies referredtoas ultraviolet(UV)divergences. UVdivergencesresultfromshortdistance/highspatialfrequencymodesofthefield beinginsufficientlydampedforexpectationvaluesofobservablestobewelldefined. Toillustrate,weconsiderthehightemperaturesingle-phaseregion ofafluid(T ≫ Tc) wheretheaverageorderparametervanishes, ⟨ϕ(r)⟩ = ϕ =0,andfluctuationsin ϕ are smallinamplitude.Inthisregime,thequartictermproportionalto u0 ineqn(1.53) canbeneglected,resultinginapurelyharmonictheory.Herewewillfocusonthe calculationofthevarianceoflocalorderparameterfluctuations, ⟨ϕ2(r)⟩.

IfweassumethedomainΩtobeahypercubeofsidelength L andimposeperiodic boundaryconditions,aFourierdecompositionofthefield ϕ(r)isappropriate2 ϕ(r)= 1 V k ϕk exp(ik r)(1.56)

where V = Ld isthesystemvolume, k represents d-dimensionalreciprocallattice vectorswithcomponents kj =2πnj /L (for j =1,...,d),and nj =0, ±1, ±2,..., ±∞ areintegers.Thenotation k impliesa d-dimensionalsumover n1,...,nd.Usingthe orthogonalityoftheplanewavebasis,i.e. V dd r [exp(iq · r)]∗ exp(ik · r)= Vδq,k (1.57)

1Inthefieldofcriticalphenomenathesymbol β isreservedforthecriticalexponentdescribingthe shapeofthecoexistencecurve;elsewhereinthisbook, β istheinverseofthethermalenergy kB T .

2FourierseriesformulasandconventionsarediscussedinAppendix A.

Molecularly-informedfieldtheories 13

with δq,k theKroneckerdeltafunction,theFouriercoefficients ϕk appearingineqn(1.56) areevidentlygivenby

)(1.58)

Withthischoiceofnormalmodes,thequadraticpartofeqn(1.53)provestobe diagonal

where k ≡|k|.Bythenotation k>0 weimplyasumoveronlyhalfofreciprocal spacesincebyeqn(1.58) ϕ∗ k = ϕ k forarealfield ϕ(r).ThusonlyhalfoftheFourier coefficientsareindependent.

InsertingtheFourierrepresentation,thesecondmomentcanbewritten

whereinthesecondlineweinvokedthediagonalformof H ineqn(1.59),implyingthat ⟨ϕkϕq⟩ vanishesunless q = k.Inthethirdline,weusedtheGaussianintegralformula (1.40).Finallyintheinfinitevolumelimit,themeshofreciprocallatticepointsdensely fills Rd andwecanapproximatethesumbyanintegral,(1/V ) k → [1/(2π)d] ddk. Thisleadsto

where Sd isthesurfaceareaofaunitspherein d dimensions.Thisintegralexistsin onedimension,butfor d ≥ 2itdoesnot.Thisisadeficiencyinthemodel;thesquare gradienttermineqn(1.53),whichledtothe k2 terminthedenominatoroftheintegral, doesnotsufficientlydampsmallscale(large k)fluctuationsoftheorderparameter forthosefluctuationstobeboundintwoandthreedimensions.Wethus saythatthe modelexpressedbyeqns(1.53)–(1.54)is ultravioletdivergent.Thetypicalremedyfor practitionersoffield-theoreticcalculationsisto“regularize”thefieldtheorybycutting offsuchintegralsatsomemaximumwavevectorΛ.Thisisbasicallyarecognitionthat thephenomenologicalmodelisintrinsicallycoarse-grainedandshouldnotbeapplied belowsomescale ∼ 1/Λcomparabletomoleculardimensions.Bysimplyredefining themodeltoincludeonlyfluctuationmodes ϕk with k = |k| < Λ,theUVdivergence disappears,althoughΛisanadditionalparameterthatmustbespecifiedto determine themodel.

1.3Molecularly-informedfieldtheories

Aspreviouslymentioned,theemphasisofthisbookison molecularly-informed rather thanphenomenologicalfieldtheories.Inconstructingsuchtheories, wewilltakecareto

ensurethattheyarefreeofUVdivergences.Thiswillallowustoavoidmathematical pathologies,butalsohaveconfidencethatnumericalsimulationswillconvergewith sufficientspatialresolution.Theproceduresforbuildingmolecularly-informedtheories aredetailedinChapters2and3.Hereweprovideapreviewoftheirstructureand highlightsomeoftheadvantagesthatfield-theoreticsimulationsofferovertraditional particle-basedapproaches.

AswasemphasizedinthePreface,molecularmodelsamenabletofield-basedsimulationarebasedon coarse-grained ratherthanall-atomdescriptions.Thisisbecause pairpotentialsinmodelswithatomicresolutionareharshlyrepulsiveatshortdistances,anexamplebeingtheLennard-Jones6-12potentialwhichdivergesas r 12 for separations r → 0.Suchapotentialisnotsuitableforfield-theoreticsimulations,in partbecauseitisnotfiniteatcontact,whichthwartsthefieldrepresentation,butalso becausethesharp-featuredliquidstructurecreatedbysuchinteractionsrequiresthe fieldstoberesolvedbeneath ≈ 1 ˚ A.Thiswouldbeprohibitivelyexpensiverelativetoa directparticlesimulation.Insteadofanall-atom(AA)description,wethusstartwith amolecularmodelthatinvolvescoarse-grainedobjects(e.g.lumpedsmallmolecules orpolymersegments)ofasizeofroughly1nm.Itiswellestablishedthatsystematicmethodsformappingall-atommodelstocoarse-grained(CG)particlemodels, includingforce-matching(Noid etal.,2008; Lu etal.,2010)andrelativeentropyminimization(Shell,2008),produceCGpotentialsthatarelessharshthanAApotentials witha“softness”thatincreaseswiththelevelofcoarse-graining(Klapp etal.,2004). Whenatomicdetailsareremovedbelowacoarse-grainingthresholdofapproximately 1nm,CGpotentialsaretypicallyfiniteatcontactandsoftenoughthatnosignificant liquidstructureneedstoberesolvedbelowthatscale.

ThroughoutthisbookwestartourmodelbuildingusingCGpotentials, regardless oftheirorigin.Thismightincludeaformsuggestedbyphysicalintuition,mathematical convenience,ortheresultofarigorouscoarse-grainingprocedure.We deferthelatter toSection 7.5 ofChapter 7,wherethesubjectofinterfacingatomisticparticleand field-basedsimulationsisdiscussed.

Asanexample,weconsideraclassicmodelofahomopolymersolutionormelt comprisedofinteractingbead-springchainsdepictedinFig. 1.1.Eachpolymerhas N beads(forcecenters),connectedintolinearchainsby N 1springsdepictingacoarsegrainedbondedpairpotential ub(r).Allpairsofbeadsonthesameordifferentchains (includingbondedpairs)arealsosubjecttoaCGnon-bondedpairpotential unb(r). Forsimplicity,wechoosethebondedpotentialtobeharmonic,correspondingtoa linearspring,andthenon-bondedpotentialtobearepulsiveGaussian interaction:

where b,a> 0arecharacteristiclengthscalesand u0 > 0isarepulsive“excluded volume”parameter.Inacanonicalensemblewith n polymersinavolume V (Chandler, 1987; McQuarrie,1976),thepartitionfunctionofthecoarse-grainedparticlemodelcan bewritten

Fig.1.1:Asimplecoarse-grainedmodelofinteractingpolymersinsolution(implicitsolvent)orthe meltstate.Eachpolymerconsistsof N beads(forcecenters)connectedintoalinearchainbysprings representingabondedpotential ub(r).Pairsofbeadsonthesamechainordifferentchainsalso interactviaanon-bondedpotential unb(r).

where λT = h/√2πmkB T isthethermalwavelengthwith m themassofabeadand h thePlanckconstant.Theintegralistakenoverthe3nN coordinatesofthe nN beadvectorpositions rα,j inthevolume,denoted rnN ,with α =1, 2,...,n indexing thechainsand j =1, 2,...,N indexingbeadlocationswithinachain.Thepotential energyfunction U includesallthepairwisebondedandnon-bondedinteractions

wherethefinaltermcancelsthebeadself-interactions, us ≡ u0/(8π3/2a3), includedin thesecondnon-bondedinteractionterm.

Equations(1.63)–(1.64)constituteaCGparticlemodelthatcompletelydefinesthe thermodynamicandstructuralpropertiesoftheinteractingpolymersystematequilibrium.ThesepropertiescouldbeaccessedbyavarietyofconventionalparticlesimulationtechniquesincludingMonteCarlo(MC)ormoleculardynamics(MD)(Frenkel andSmit,1996; AllenandTildesley,1987).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Instant ebooks textbook Field theoretic simulations in soft matter and quantum fluids glenn h. fredr by Education Libraries - Issuu