[FREE PDF sample] Operator theory by example 1st edition stephan ramon garcia ebooks

Page 1


Operator Theory by Example 1st Edition Stephan Ramon Garcia

Visit to download the full and correct content document: https://ebookmass.com/product/operator-theory-by-example-1st-edition-stephan-ramo n-garcia/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Pediatric Neurosurgery (Neurosurgery by Example) 1st Edition Nathan Selden

https://ebookmass.com/product/pediatric-neurosurgeryneurosurgery-by-example-1st-edition-nathan-selden/

Deep Dive into Power Automate: Learn by Example 1st Edition Mishra

https://ebookmass.com/product/deep-dive-into-power-automatelearn-by-example-1st-edition-mishra/

Oracle PL/SQL by Example, 6th Edition Benjamin Rosenzweig

https://ebookmass.com/product/oracle-pl-sql-by-example-6thedition-benjamin-rosenzweig/

Mathematica by Example 5th Edition Martha L. Abell & James P. Braselton

https://ebookmass.com/product/mathematica-by-example-5th-editionmartha-l-abell-james-p-braselton/

Ansible for Kubernetes by Example: Automate Your Kubernetes Cluster with Ansible 1st Edition Luca Berton

https://ebookmass.com/product/ansible-for-kubernetes-by-exampleautomate-your-kubernetes-cluster-with-ansible-1st-edition-lucaberton-2/

Ansible for Kubernetes by Example: Automate Your Kubernetes Cluster with Ansible 1st Edition Luca Berton

https://ebookmass.com/product/ansible-for-kubernetes-by-exampleautomate-your-kubernetes-cluster-with-ansible-1st-edition-lucaberton/

Your Wish Is My Command: Programming by Example Henry Lieberman

https://ebookmass.com/product/your-wish-is-my-commandprogramming-by-example-henry-lieberman/

Bayesian Philosophy of Science: Variations on a Theme by the Reverend Thomas Bayes 1st Edition Stephan Hartmann

https://ebookmass.com/product/bayesian-philosophy-of-sciencevariations-on-a-theme-by-the-reverend-thomas-bayes-1st-editionstephan-hartmann/

Affect Theory, Genre, and the Example of Tragedy: Dreams We Learn 1st ed. Edition Duncan A. Lucas

https://ebookmass.com/product/affect-theory-genre-and-theexample-of-tragedy-dreams-we-learn-1st-ed-edition-duncan-a-lucas/

OperatorTheorybyExample

SeriesEditors

R.CohenS.K.Donaldson T.J.LyonsM.J.Taylor

1. Keith Hannabuss: An Introduction to Quantum Theory

2. Reinhold Meise and Dietmar Vogt: Introduction to Functional Analysis

3. James G. Oxley: Matroid Theory

4. N. J. Hitchin, G. B. Segal, and R. S. Ward: Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces

5. Wulf Rossmann: Lie Groups: An Introduction Through Linear Groups

6. Qing. Liu: Algebraic Geometry and Arithmetic Curves

7. Martin R. Bridson and Simon M. Salamon (eds): Invitations to Geometry and Topology

8. Shmuel Kantorovitz: Introduction to Modern Analysis

9. Terry Lawson: Topology: A Geometric Approach

10. Meinolf Geck: An Introduction to Algebraic Geometry and Algebraic Groups

11. Alastair Fletcher and Vladimir Markovic: Quasiconformal Maps and Teichmu¨ller Theory

12. Dominic Joyce: Riemannian Holonomy Groups and Calibrated Geometry

13. Fernando Villegas: Experimental Number Theory

14. Péter Medvegyev: Stochastic Integration Theory

15. Martin A. Guest: From Quantum Cohomology to Integrable Systems

16. Alan D. Rendall: Partial Differential Equations in General Relativity

17. Yves Félix, John Oprea, and Daniel Tanré: Algebraic Models in Geometry

18. Jie Xiong: Introduction to Stochastic Filtering Theory

19. Maciej Dunajski: Solitons, Instantons, and Twistors

20. Graham R. Allan: Introduction to Banach Spaces and Algebras

21. James Oxley: Matroid Theory, Second Edition

22. Simon Donaldson: Riemann Surfaces

23. Clifford Henry Taubes: Differential Geometry: Bundles, Connections, Metrics and Curvature

24. Gopinath Kallianpur and P Sundar: Stochastic Analysis and Diffusion Processes

25. Selman Akbulut: 4-Manifolds

26. Fon-Che Liu: Real Analysis

27. Dusa McDuff and Dietmar Salamon: Introduction to Symplectic Topology, Third Edition

28. Chris Heunen, Jamie Vicary: Categories for Quantum Theory: An Introduction

29. Shmuel Kantorovitz, Ami Viselter: Introduction to Modern Analysis, Second Edition

30. Stephan Ramon Garcia, Javad Mashreghi, and William T. Ross: Operator Theory by Example

OperatorTheory byExample

STEPHANRAMONGARCIA

W.M.KeckDistinguishedServiceProfessorandChair oftheDepartmentofMathematicsandStatistics,PomonaCollege

JAVADMASHREGHI

Professor,LavalUniversity

WILLIAMT.ROSS

RichardsonProfessorofMathematics,UniversityofRichmond

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©StephanRamonGarcia,JavadMashreghi,andWilliamT.Ross2023

Themoralrightsoftheauthorshavebeenasserted Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData

Dataavailable

LibraryofCongressControlNumber:2022946604

ISBN978–0–19–286386–7(hbk)

ISBN978–0–19–286387–4(pbk)

DOI:10.1093/oso/9780192863867.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

Toourfamilies: Gizem,Reyhan,andAltay; Shahzad,Dorsa,Parisa,andGolsa; Fiona

PREFACE

Thisisthebookwewishwehadasgraduatestudents.Asitsnamesuggests,thisbookis allaboutexamples.Insteadoflistingahostofconceptsallatonceinanabstractsetting, webringideasalongslowlyandillustrateeachnewideawithexplicitandinstructive examples.Asonecanseewiththechaptertitles,thefocusofeachchapterisona specificoperatorandnotonaconcept.Theimportanttopicsarecoveredthroughconcrete operatorsandsettings.

Asforstyle,wetakegreatpainsnottotalkdowntooraboveouraudience.Forexample, wereligiouslyeschewthedismissivewords“obvious”and“trivial,”whichhavecaused untoldhoursofheartacheandself-doubtforpuzzledgraduatestudentstheworldover. Ourprerequisitesareminimalandwetaketimetohighlightargumentsanddetailsthat areoftenbrushedoverinothersources.

Intermsofprerequisites,wehopethatthereaderhashadsomeexposuretoLebesgue’s theoryofintegration.FamiliaritywiththeLebesgueintegralandthethreebigconvergencetheorems(Fatou’slemma,themonotoneconvergencetheorem,andthedominated convergencetheorem)issufficientforourpurposes.Inaddition,anundergraduate-level courseincomplexanalysisisneededforsomeofthechapters.Wecarefullydevelop everythingelse.Moreover,wecoveranyneededbackgroundmaterialaspartofthe discussion.Wedonotburdenthereader,whoisanxioustogettooperatortheory,witha largevolumeofpreliminarymaterial.Nordowemakethempausetheirreadingtochase downaconceptorformulafromanappendix.

By“operatortheory,”wemeanthestudyofboundedoperatorsonHilbertspaces. WechoosetoworkwithHilbertspaces,notonlybecauseoftheirbeauty,ubiquity,and greatapplicability,butalsobecausetheyarethesteppingstonetomorespecialized investigations.Interestedreaderswhowishtopursuefurtherstudiesinsomeofthe topicscoveredhere,butintheBanach-spacesetting,willbewellequippedtodosoonce Hilbertspacesandtheiroperatorsarefirmlyunderstood.Weareprimarilyconcerned withconcretepropertiesofindividualoperators:norm,spectrum,compactness,invariant subspaces,andsoforth.Manyofourexamplesarenon-normaloperators,andhence lieoutsidethefocusofmanystandardtexts,inwhichvarioussubclassesofnormal operatorsplayadistinguishedrole.Althoughalgebrasofoperatorsoccasionallyarisein whatfollows,thisisnotabookonoperatoralgebras(however,wemustadmitbeing influencedbythetitleof[105]).Nordoweenterintothetheoryofunboundedoperators onHilbertspaces.

Theendnotesforeachchapterarefilledwithhistoricaldetailswhichallowthereader tounderstandthedevelopmentofeachparticulartopic.Weprovidecopiousreferences incasethereaderwishestoconsulttheoriginalsourcesordelvedeeperintoaparticular topictheyfindinteresting.

Eachchaptercomesequippedwithdozensofproblems.Intotal,thisbookcontainsover 600problems.Someofthemeasethereaderintothesubject.Othersaskthestudentto supplyaproofofsometechnicaldetail.Morecomplicatedproblems,whichsometimes explainmaterialnotcoveredinthetext,aresplitintoseveralpartstoensurethatthe studentisnotlefttreadingwater.Weprovidehintsformanyoftheproblemsanditis ourintentionthattheattentivestudentshouldbeabletoworkthroughalloftheexercises withoutoutsideassistance.

Theproofsandexampleswepresentareinstructive.Wetrynottohidebehindslick argumentsthatdonoteasilygeneralize.Neitherdoweholdbackonthedetails.Although everyonemaylearnsomethingfromthisbook,ourprimaryaudienceconsistsofgraduate studentsandentry-levelresearchers.

Finally,thisbookisnotmeanttobeacomprehensivetreatiseonoperatortheory.That bookwouldcomprisemanyvolumes.Ourbookisaselectionofinstructiveoperator-theory vignettesthatshowavarietyoftopicsthatastudentmayseeastheybegintoattend conferencesorengageinindependentresearch.

So,welcometooperatortheory!Itisaninspiringsubjectthathasdevelopedoverthe past100-plusyearsandcontinuestoenjoyapplicationsinmathematics,science,and engineering.Afterreadingthisbook,learningthehistoryofthesubjectfromtheendnotes, andworkingyourwaythroughtheproblems,wehopethatyouareinspiredandexcited aboutthesubjectasmuchasweare.

WegivespecialthankstoJohnB.Conway,ChrisDonnay,ElenaKim,TomKriete,Artur Nicolau,RyanO’Dowd,AlanSola,DanTimotin,WilliamVerreault,BrettWick,andJiahui Yuforgivingususefulfeedbackontheinitialdraftofthisbook.

StephanRamonGarciawaspartiallysupportedbyNationalScienceFoundation(US) grantsDMS-2054002andDMS-1800123.JavadMashreghiwaspartiallysupportedbyan NSERCDiscoveryGrant.

NOTATION

• ℕ .......................................................thesetofpositiveintegers

• ℤ ...............................................................thesetofintegers

• ℚ ......................................................thesetofrationalnumbers

• ℝ ..........................................................thesetofrealnumbers

• ℂ ......................................................thesetofcomplexnumbers

• �� ..........................................................theopenunitdiskin ℂ

• �� ..............................................................theunitcirclein ℂ

• �� .........................................................theclosureoftheset ��

• ℂ[��] ................................thesetofcomplexpolynomialsinthevariable ��

• ℂ[��,��] .......................thesetofcomplexpolynomialsinthevariables �� and ��

• P�� ..........................thesetofcomplexpolynomialsin �� ofdegreeatmost ��

• ℝ�� .............................................real ��-dimensionalEuclideanspace

• ℋ,�� ...............................................................Hilbertspaces

• ��,��,�� .............................................................vectorspaces

• x,y,z .............................................................abstractvectors

• ℂ�� ...................................complex ��-dimensionalEuclideanspace(p. 1)

• ������ .................................................Kroneckerdeltafunction(p. 4)

• ℓ2 ..............................thesetofsquaresummableinfinitesequences(p. 8)

• ⟨⋅,⋅⟩ ...........................................................innerproduct(p. 8)

• ⟨⋅,⋅⟩ℋ ...............................................innerproductonthespace ℋ

• ‖⋅‖ℋ ........................................................normonthespace ℋ

• ‖⋅‖ ...................................................................norm(p. 8)

• ��2[0,1] .............................................Lebesguespaceon [0,1] (p. 10)

• ��[0,1] ...............thesetofcomplex-valuedcontinuousfunctionson [0,1] (p. 12)

• ⋁ ........................................................closedlinearspan(p. 19)

• tr�� ......................................................traceofamatrix �� (p. 30)

• sgn ........................................................signumfunction(p. 35)

• diag(��0,��1,��2,…) ...........................................diagonalmatrix(p. 41)

• ��Λ .......................................diagonaloperatorwithdiagonal Λ (p. 42)

• ‖��‖ ..................................................normofanoperator �� (p. 43)

• ℬ(ℋ) .....................thesetofboundedoperatorsonaHilbertspace ℋ (p. 43)

• ℬ(ℋ,��) ..........................thesetofboundedoperatorsfrom ℋ to �� (p. 46)

• ��∗ ................................................dualofaBanachspace �� (p. 47)

• ker�� .................................thekernelofalineartransformation �� (p. 48)

• ran�� .................................therangeofalineartransformation �� (p. 48)

• ℳ�� ........................................thesetof ��×�� complexmatrices(p. 48)

• ��(��) .............................................spectrumofanoperator �� (p. 52)

• ����(��) .......................................pointspectrumofanoperator �� (p. 52)

• ������(��) .........................approximatepointspectrumofanoperator �� (p. 52)

• x⊗y ......................................................rank-onetensor(p. 57)

• ��⟂ ........................................orthogonalcomplementofaset �� (p. 69)

• ��∗ ..................................................adjointofanoperator �� (p. 71)

• ���� ...........................................multiplicationby �� on ��2[0,1] (p. 93)

• ��2(��) ..................................................Lebesguespaceon �� (p. 96)

• ��2(��) .........................................Hardyspaceoftheunitcircle(p. 98)

• ���� .............................................multiplicationby �� on ��2(��) (p. 99)

• ��2 ............................................Hardyspaceoftheunitdisk(p. 113)

• ��∞ ..............................thesetofboundedanalyticfunctionson �� (p. 117)

• {��}′ ...........................................commutantofanoperator �� (p. 122)

• ��(��) ....................................numericalrangeofanoperator �� (p. 131)

• ���� ............................................multiplicationby �� on ��2(��) (p. 175)

• ��2(��) .......................................Lebesguespacewithmeasure �� (p. 175)

• ��∞(��) ................thesetofessentiallybounded ��-measurablefunctions(p. 175)

• supp(��) ............................................supportofameasure �� (p. 175)

• ���� .........................................................pointmassat �� (p. 176)

• ��(��) ......................thesetofcontinuousfunctionsoncompactset �� (p. 176)

• R�� ...........................................essentialrangeof ��∈��∞(��) (p. 178)

• ��(��) ........................................spectralradiusofanoperator �� (p. 184)

• �� .........................................................Dirichletspace(p. 207)

• ��2 .........................................................Bergmanspace(p. 225)

• F ......................................................Fouriertransform(p. 246)

• ��∗�� ......................................convolutionoffunctions �� and �� (p. 247)

• ���� .....................................................translation ��(��−��) (p. 247)

• Q ..........................................Hilberttransformonthecircle(p. 269)

• H .......................................Hilberttransformontherealline(p. 269)

• ���� ........................................................Bishopoperator(p. 289)

• ℋ(��) ............................directsumof �� copiesofaHilbertspace ℋ (p. 308)

• ℋ(∞) .............................directsumofinfinitelymanycopiesof ℋ (p. 308)

• ��2 ..............................................................thebidisk(p. 349)

• ��2(��2) ...........................................Hardyspaceofthebidisk(p. 349)

• ���� .........................................Toeplitzoperatorwithsymbol �� (p. 357)

• ��+ ........................................................Rieszprojection(p. 359)

• �� ..................................................................��−��+ (p. 381)

• ���� .........................................Hankeloperatorwithsymbol �� (p. 381)

• ���� ....................................compositionoperatorwithsymbol �� (p. 404)

• ��2(��) ...................................closureofthepolynomialsin ��2(��) (p. 431)

• ���� ............................................multiplicationby �� on ��2(��) (p. 432)

• ���� ............................................multiplicationby �� on ��2(��) (p. 432)

• ��ᵆ ...................................................modelspace (����2)⟂ (p. 446)

• ��ᵆ .................................compressedshiftonthemodelspace ��ᵆ (p. 450)

ABRIEFTOUROFOPERATORTHEORY

Althoughexamplesdrivethisbook,wefirstprovideawhirlwindsurveyofthegeneral conceptsofoperatortheory.Wedonotexpectthestudenttomasterthesetopicsnowsince theyarecoveredinfuturechapters.

A Hilbertspace ℋ isacomplexvectorspaceendowedwithaninnerproduct ⟨x,y⟩ thatdefinesanorm ‖x‖= √⟨x,x⟩ withrespecttowhich ℋ is(Cauchy)complete.The innerproductonaHilbertspacesatisfiestheCauchy–Schwarzinequality|⟨x,y⟩|⩽‖x‖‖y‖ forall x,y ∈ℋ.ExamplesofHilbertspacesinclude ℂ�� (complexEuclideanspace), ℓ2 (thespaceofsquare-summablecomplexsequences),and ��2[0,1] (theLebesguespaceof square-integrable,complex-valuedfunctionson [0,1]).

Vectorsx,yinaHilbertspaceℋ areorthogonalif⟨x,y⟩=0.ThedimensionofaHilbert space ℋ isthecardinalityofamaximalsetofnonzeroorthogonalvectors.Thisbookis almostexclusivelyconcernedwithHilbertspacesofcountabledimension.Everysuch Hilbertspacehasanorthonormalbasis(u��)∞ ��=1,a(possiblyfinite)maximalorthogonalset suchthat ⟨u��,u��⟩=������ forall ��,��⩾1.Withrespecttoanorthonormalbasis (u��)∞ ��=1, each x ∈ℋ enjoysageneralizedFourierexpansion x = ∑∞ ��=1⟨x,u��⟩u�� thatsatisfies

Parseval’sidentity ‖x‖2 =∑∞ ��=1|⟨x,u��⟩|2

A subspace (anorm-closedlinearsubmanifold)of ℋ isitselfaHilbertspacewiththe operationsinheritedfrom ℋ.If (w��)∞ ��=1 isa(possiblyfinite)orthonormalbasisfora subspace ℳ of ℋ and x ∈ℋ,then ��ℳx = ∑∞ ��=1⟨x,w��⟩w�� belongsto ℳ andsatisfies ‖x−��ℳx‖⩽‖x y‖foreveryy ∈ℳ.Inshort,��ℳxistheuniqueclosestvectortoxinℳ. Furthermore, ��ℳ definesalineartransformationon ℋ whoserangeis ℳ.Itiscalledthe orthogonalprojectionofℋ ontoℳ anditsatisfies��2 ℳ =��ℳ and⟨��ℳx,y⟩=⟨x,��ℳy⟩forall x,y ∈ℋ. Letℋand��beHilbertspaces.Alineartransformation��∶ℋ→��isboundedif‖��‖= sup{‖��x‖�� ∶‖x‖ℋ =1} isfinite.Let ℬ(ℋ,��) denotethesetofboundedlinearoperators fromℋ to��.Wewriteℬ(ℋ)forℬ(ℋ,ℋ).Thequantity‖��‖isthenormof��.Sinceℬ(ℋ) isclosedunderadditionandscalarmultiplication,itisavectorspace.Furthermore,since ‖��+��‖⩽‖��‖+‖��‖and‖����‖=|��|‖��‖forall��,��∈ℬ(ℋ)and��∈ℂ,itfollowsthatℬ(ℋ) isanormedvectorspace.Endowedwiththisnorm, ℬ(ℋ) iscompleteandthusformsa Banachspace.Moreover,thecomposition���� belongstoℬ(ℋ)and‖����‖⩽‖��‖‖��‖forall ��,��∈ℬ(ℋ).Therefore, ℬ(ℋ) isaBanachalgebra.

Foreach��∈ℬ(ℋ,��),thereisaunique��∗ ∈ℬ(��,ℋ)suchthat⟨��x,y⟩�� =⟨x,��∗y⟩ℋ forall x ∈ℋ and y ∈��.Theoperator ��∗ isthe adjoint of ��;itistheanalogueofthe conjugatetransposeofamatrix.Onecanshowthat��↦��∗ isconjugatelinear,that��∗∗ = ��,‖��‖=‖��∗‖,and‖��∗��‖=‖��‖2.Thisadditionalstructureupgradesℬ(ℋ)fromaBanach algebratoa ��∗-algebra.Onecanexploitadjointstoobtaininformationaboutthekernel andrangeofanoperator.

Formostoftheoperators ��∈ℬ(ℋ) coveredinthisbook,wegivethe matrix representation [��]=[⟨��u��,u��⟩]∞ ��,��=1 withrespecttoanorthonormalbasis (u��)∞ ��=1 for ℋ.Thismatrixrepresentation [��] definesaboundedoperator x ↦[��]x ontheHilbert spaceℓ2 ofsquaresummablesequencesthatisstructurallyidenticalto��.Schur’stheorem helpsusdeterminewhichinfinitematricesdefineboundedoperatorson ℓ2.Manyof theoperatorscoveredinthisbook,suchastheCesàrooperator,theVolterraoperator, weightedshifts,Toeplitzoperators,andHankeloperators,havefascinatingstructuredmatrixrepresentations.

Animportantclassofoperatorsisthecompactoperators.Thesearethe��∈ℬ(ℋ)such that (��x��)∞ ��=1 hasaconvergentsubsequencewhenever (x��)∞ ��=1 isaboundedsequencein ℋ.Equivalently,anoperatoriscompactifittakeseachboundedsettoonewhoseclosure iscompact.Eachfinite-rankoperatoriscompactandeverycompactoperatoristhenorm limitoffinite-rankoperators.Thecompactoperatorsformanorm-closed, ∗-closedideal within ℬ(ℋ)

Someoperatorshaveaparticularlycloserelationshipwiththeiradjoint.Forexample, theoperator �� on ��2[0,1] definedby (����)(��)=����(��) satisfies ��∗ =��.Suchoperators are selfadjoint.If �� isapositivefinitecompactlysupportedBorelmeasureon ℂ,thenthe operator �� on ��2(��) definedby (����)(��)=����(��) satisfies (��∗��)(��)= ����(��),andthus ��∗��=����∗.Suchoperatorsare normal.Theoperator (����)(������)=��������(������) on ��2(��) satisfies ��∗��=����∗ =��.Suchoperatorsare unitary.

UnitaryoperatorspreservetheambientstructureofHilbertspacesandcanserveasa vehicletorelate ��∈ℬ(ℋ) with ��∈ℬ(��).Wesaythat �� is unitarilyequivalent to �� if thereisaunitary ��∈ℬ(ℋ,��) suchthat ������∗ =��.Unitaryequivalenceisoftenused toidentifyseeminglycomplicatedoperatorswithrelativelysimpleones.

Anoperator ��∈ℬ(ℋ) is invertible ifthereisa ��∈ℬ(ℋ) suchthat ����=����=��, where �� istheidentityoperatoron ℋ.If ℋ isfinitedimensional,thentheconditions “�� isinvertible”,“�� issurjective”,and“�� isinjective”areequivalent.If ℋ isinfinite dimensional,invertibilityisamoredelicatematter.The spectrum of ��,denotedby ��(��), isthesetof ��∈ℂ suchthat ��−���� isnotinvertiblein ℬ(ℋ).If ℋ isfinitedimensional, then ��(��) isthesetofeigenvaluesof ��.If ℋ isinfinitedimensional,itispossibleforan operatortohavenoeigenvalues.Nevertheless,��(��)isalwaysanonemptycompactsubset of ℂ.Unitarilyequivalentoperatorshavethesamespectrum.

Thespectrumplaysanimportantroleinthefunctionalcalculusofanoperator.For ��∈ℬ(ℋ) andapolynomial ��(��)=��0 +��1��+��2��2 +⋯+�������� , onecandefinethe operator ��(��)=��0��+��1��+��2��2 +⋯+��������.TheRieszfunctionalcalculussaysthat if �� isanalyticonanopenneighborhoodof ��(��),onecandefine ��(��)∈ℬ(ℋ).If �� isa normaloperator,onecandefine ��(��) forallBorel-measurablefunctionson ��(��)

Oneofthegreatgemsofoperatortheoryisthespectraltheoremfornormaloperators.It saysthatanynormaloperator�� isunitarilyequivalenttoamultiplicationoperator������= ���� onsome ��2(��,��) space.Undercertaincircumstances, �� canbetakentobe ��(��) and �� hassupporton ��(��).Thereisalsothespectralmultiplicitytheoremwhichdetermines whentwonormaloperatorsareunitarilyequivalent.

Asubspace ℳ of ℋ is invariant for ��∈ℬ(ℋ) if ��ℳ⊆ℳ.Forexample, {0} and ℋ areinvariantsubspacesforany ��∈ℬ(ℋ).Themostfamousopenprobleminoperator

theory,theinvariantsubspaceproblem,askswhetherevery��∈ℬ(ℋ),wheredimℋ⩾2, possessesaninvariantsubspacebesidesthetwolistedabove.Mostoftheoperatorsinthis bookhaveanabundanceofinvariantsubspacesthatpermitaconcretedescription.

Thereareseveralnaturaltopologieson ℬ(ℋ).Mostofthetime,wecandiscussthese conceptsintermsofsequencesandconvergenceinsteadofgettingintobasesandsubbases fortherespectivetopologies.Firstandforemost,thereisthenormtopology,where���� →�� if ‖���� −��‖→0.Nextcomesthe strongoperatortopology (SOT),where ���� →�� (SOT)if ‖����x−��x‖→0 foreach x ∈ℋ.Thereisalsothe weakoperatortopology (WOT),where ���� →�� (WOT)if ⟨(���� −��)x,y⟩→0 foreach x,y ∈ℋ.NormconvergenceimpliesSOT convergenceandSOTconvergenceimpliesWOTconvergence.Theconversesdonothold. Thesetopologiesappearwhendeterminingthecommutantofanoperator.For��∈ℬ(ℋ), the commutant {��}′ isthesetofallboundedoperatorsthatcommutewith ��.Onecansee that ��(��) belongsto {��}′ (where ��∈ℂ[��] isapolynomial)asdoeseitherthestrongor weakclosureof{��(��)∶��∈ℂ[��]}.Forsomeoperators,neitheroftheseclosurescomprise theentirecommutant.

Thereiscertainlymuchmoretobesaid,manyexamplestoworkthrough,andnumerousconnectionstocomplexanalysisthatwehavenotyettouchedupon(although theseformanimportantcomponentofthebook).However,wehopethatthepreceding briefsummaryofthebasicdefinitionshasshedsomelightonthepathforward.These definitionswillbeintroducedanddiscussed,induecourseandingreatdepth,aswework ourwaythroughtwentychaptersfullofinstructiveexamples.

HilbertSpaces

KeyConcepts: Innerproduct,norm,innerproductspace, ℂ�� , ℓ2 , ��2[0,1],Hilbertspace,Cauchy–Schwarzinequality,triangleinequality,orthogonalprojection,orthonormalbasis,Banachspace.

Outline:ThischapterexploresthebasicsofHilbertspacesbyusing ℂ�� (��-dimensional Euclideanspace),ℓ2 (thespaceofsquare-summablecomplexsequences),and��2[0,1](the spaceofsquare-integrable,complex-valuedLebesgue-measurablefunctionson [0,1])as examples.Inaddition,thischaptercoverstheCauchy–Schwarzandtriangleinequalities, orthonormalbases,andorthogonalprojections.SinceBanachspacesplayaroleinthe subsequentchapters,thischapteralsocoversafewBanach-spacebasics.Ourapproach ispedagogicalandnotaimedatoptimalefficiency.Someresultsarecoveredmultiple times,inincreasinglevelsofgenerality,inordertoillustratealternateproofsordifferent perspectives.

1.1 EuclideanSpace

Letℂ�� ,��-dimensionalEuclideanspace,denotethesetofvectorsa =(��1,��2,…,����),where each���� ∈ℂ.Withtheoperationsofadditiona+b =(��1+��1,��2+��2,…,����+����)andscalar multiplication ��a =(����1,����2,…,������),alongwiththezeroelement 0 =(0,0,…,0), ℂ�� is avectorspace.Italsocomesequippedwithaninnerproductandcorrespondingnorm ⟨a,b⟩= �� ∑ ��=1 �������� and ‖a‖=( �� ∑ ��=1 |����|2) 1 2 , respectively,where �� denotesthecomplexconjugateof ��∈ℂ.Inparticular, ⟨a,a⟩=‖a‖2 . Theinnerproductsatisfiesthefollowingfor a,b,c ∈ℂ�� and ��∈ℂ.

(a) ⟨a,a⟩⩾0.

(b) ⟨a,a⟩=0 ifandonlyif a = 0.

(c) ⟨a,b⟩=⟨b,a⟩

(d) ⟨a+b,c⟩=⟨a,c⟩+⟨b,c⟩

(e) ⟨��a,b⟩=��⟨a,b⟩

Thepropertiesaboveensurethattheinnerproductislinearinthefirstslot:

andconjugatelinearinthesecondslot:

Theinnerproducton ℂ�� alsosatisfiesthefollowingfundamentalinequality.Variants andgeneralizationsofthisinequalityinothersettings,andwithdifferentproofs,appear throughoutthischapter.

Proposition1.1.1 (Cauchy–Schwarzinequality). If a,b ∈ℂ��,then

Equalityholdsifandonlyif a and b arelinearlydependent.

Proof If ��

for 1⩽��⩽��,then

Sincetheleftsideisnonnegative,itfollowsthat

Toobtain(1.1.2),apply(1.1.3)to

and

requestsaproofofthesecondpartoftheproposition.

AnimportantconsequenceoftheCauchy–Schwarzinequalityisthefollowinginequality,sonamedbecauseoftheimageinFigure 1.1.1.

Proposition1.1.4 (Triangleinequality). If a,b ∈ℂ��,then ‖a+b‖⩽‖a‖+‖b‖. Equality holdsifandonlyif a or b isanonnegativemultipleoftheother.

Figure1.1.1 Thetriangleinequality.

Proof TheCauchy–Schwarzinequalityyields

Therefore,

Takesquarerootsaboveanddeducethetriangleinequality.Exercise 1.10.4 requests aproofofthesecondpartoftheproposition. ■

Thenormon ℂ�� definesametric ��(a,b)=‖a b‖ withrespecttowhich ℂ�� is Cauchy complete.Thatis,everyCauchysequencein ℂ�� converges(Exercise 1.10.7).Themetric notation ��(a,b) isusuallysuppressedinfavorof ‖a b‖,whichmoreclearlysuggestsits translationinvariance: ��(a,b)=‖a b‖=‖(a c)−(b c)‖=��(a c,b c).

Theinnerproducton ℂ�� isthecomplexversionofthedotproducton ℝ��.Recallthat twovectorsin ℝ�� areorthogonalifandonlyiftheirdotproductiszero.Thisinspiresthe followingdefinition.

Definition1.1.5. Vectors a,b ∈ℂ�� are orthogonal,written a ⟂ b,if ⟨a,b⟩=0.

Thestructureimparteduponℂ�� bytheinnerproductyieldsanaloguesofsomefamiliar resultsfromEuclideangeometry(Figure 1.1.2).

0 x y x+y

Figure1.1.2 ThePythagoreantheorem: ‖x‖2+‖y‖2 =‖x+y‖2 if x ⟂ y

Proposition1.1.6 (Pythagoreantheorem). If a,b ∈ℂ�� and a ⟂ b,then

Proof Bythepropertiesoftheinnerproductdiscussedearlier,observethat

‖a+b‖2 =⟨a+b,a+b⟩ =⟨a,a⟩+⟨a,b⟩+⟨b,a⟩+⟨b,b⟩ =‖a‖2+0+0+‖b‖2 =‖a‖2+‖b‖2 , whichcompletestheproof. ■

Supposethat (a��)�� ��=1 ∈ℂ�� isabasis,inthesenseoflinearalgebra,thatis, a1,a2,…,a�� arelinearlyindependentand span{a1,a2,…,a��}=ℂ��.TheGram–Schmidtprocess(see Theorem 1.5.1 below)producesabasis (u��)�� ��=1 suchthat ⟨u��,u��⟩=������,where ������

if ��=��, 0 if ��≠��, isthe Kroneckerdeltafunction.Inotherwords,the u�� arepairwiseorthogonalandhave unitlength.Suchabasisisan orthonormalbasis.

Proposition1.1.7. Let(u��)�� ��=1 beanorthonormalbasisforℂ��.Thenthefollowingholdfor each x ∈ℂ�� .

(a) x = �� ∑ ��=1 ⟨x,u��⟩u��

(b) ‖x‖2 = �� ∑ ��=1 |⟨x,u��⟩|2 .

Proof (a)Since span{u1,u2,…,u��}=ℂ��,foreach x ∈ℂ�� therearescalars ���� suchthat

Foreachfixed ��,theorthonormalityof (u��)�� ��=1 ensuresthat

(b)Frompart(a),

whichcompletestheproof. ■

A subspace of ℂ�� isanonemptysubsetof ℂ�� thatisclosedundervectoradditionand scalarmultiplication.Inℂ��,suchasetisalsotopologicallyclosedandhencethisdoesnot conflictwithDefinition 1.4.7 belowofasubspaceintheHilbert-spacesetting.If ℳ⊆ℂ�� isasubspaceofdimension ��,thentheGram–Schmidtprocess(seeTheorem 1.5.1 below) providesanorthonormalbasis (v��)�� ��=1 for ℳ

Proposition1.1.8. Let (v��)�� ��=1 beanorthonormalbasisforasubspace ℳ of ℂ��.Foreach x ∈ℂ��,define

Thenthefollowinghold.

(a) ‖x−��ℳx‖⩽‖x v‖ forevery v ∈ℳ.

ℳ⟂ ��ℳx x x−��ℳx ℳ 0

Figure1.1.3 Theorthogonalprojectionontothesubspace ℳ

(b) (x−��ℳx)⟂ v forevery v ∈ℳ

(c) ∑�� ��=1|⟨x,v��⟩|2 ⩽‖x‖2

(d) ��ℳx = x ifandonlyif x ∈ℳ

Proof (a)Forany ��1,��2,…,���� ∈ℂ,Exercise 1.10.10 yields

Thisexpressionisminimizedpreciselywhen ���� =⟨x,v��⟩ forall 1⩽��⩽�� (b)Forany 1⩽��⩽��, ⟨x−��ℳx,v��⟩=⟨x �� ∑ ��=1 ⟨x,v��⟩v��,v��

Thus, (x −��ℳx)⟂ v�� forall 1⩽��⩽��.Since (v��)�� ��=1 isabasisfor ℳ,theconjugate linearityoftheinnerproductinthesecondslotensuresthat (x−��ℳx)⟂ v forevery v ∈ℳ.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.