[Ebooks PDF] download A modern introduction to classical electrodynamics 1st edition michele maggior

Page 1


A Modern Introduction to Classical Electrodynamics 1st Edition Michele

Maggiore

Visit to download the full and correct content document: https://ebookmass.com/product/a-modern-introduction-to-classical-electrodynamics-1 st-edition-michele-maggiore/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Introduction to Classical Chinese Vogelsang

https://ebookmass.com/product/introduction-to-classical-chinesevogelsang/

A Modern Introduction to Dynamical Systems Richard Brown

https://ebookmass.com/product/a-modern-introduction-to-dynamicalsystems-richard-brown/

A Modern Introduction to Fuzzy Mathematics 1. Edition Apostolos Syropoulos

https://ebookmass.com/product/a-modern-introduction-to-fuzzymathematics-1-edition-apostolos-syropoulos/

Introduction to Modern Analysis, 2nd Edition Kantorovitz

https://ebookmass.com/product/introduction-to-modernanalysis-2nd-edition-kantorovitz/

(eBook PDF) Introduction to Philosophy: Classical and Contemporary Readings 8th Edition

https://ebookmass.com/product/ebook-pdf-introduction-tophilosophy-classical-and-contemporary-readings-8th-edition/

(eBook PDF) Introduction to Mythology: Contemporary Approaches to Classical and World Myths 4th Edition

https://ebookmass.com/product/ebook-pdf-introduction-tomythology-contemporary-approaches-to-classical-and-worldmyths-4th-edition/

Introduction to AutoCAD® 2024: A Modern Perspective

https://ebookmass.com/product/introduction-toautocad-2024-a-modern-perspective-paul-richard/

After Ancient Biography: Modern Types and Classical Archetypes 1st ed. Edition Robert Fraser

https://ebookmass.com/product/after-ancient-biography-moderntypes-and-classical-archetypes-1st-ed-edition-robert-fraser/

A Gendered Lens for Genocide Prevention 1st Edition

https://ebookmass.com/product/a-gendered-lens-for-genocideprevention-1st-edition-mary-michele-connellan/

A MODERNINTRODUCTIONTOCLASSICALELECTRODYNAMICS

TheOxfordMasterSeriesisdesignedforfinalyearundergraduateandbeginninggraduatestudentsinphysicsandrelated disciplines.Ithasbeendrivenbyaperceivedgapintheliteraturetoday.Whilebasicundergraduatephysicstextsoftenshow littleornoconnectionwiththehugeexplosionofresearchoverthelasttwodecades,moreadvancedandspecializedtexts tendtoberatherdauntingforstudents.Inthisseries,alltopicsandtheirconsequencesaretreatedatasimplelevel,while pointerstorecentdevelopmentsareprovidedatvariousstages.Theemphasisisonclearphysicalprincipleslikesymmetry, quantummechanics,andelectromagnetismwhichunderliethewholeofphysics.Atthesametime,thesubjectsarerelated torealmeasurementsandtotheexperimentaltechniquesanddevicescurrentlyusedbyphysicistsinacademeandindustry. Booksinthisseriesarewrittenascoursebooks,andincludeampletutorialmaterial,examples,illustrations,revisionpoints, andproblemsets.Theycanlikewisebeusedaspreparationforstudentsstartingadoctorateinphysicsandrelatedfields, orforrecentgraduatesstartingresearchinoneofthesefieldsinindustry.

CONDENSED MATTER PHYSICS

1.M.T.Dove: Structureanddynamics:anatomicviewofmaterials

2.J.Singleton: Bandtheoryandelectronicpropertiesofsolids

3.A.M.Fox: Opticalpropertiesofsolids,secondedition

4.S.J.Blundell: Magnetismincondensedmatter

5.J.F.Annett: Superconductivity,superfluids,andcondensates

6.R.A.L.Jones: Softcondensedmatter

17.S.Tautz: Surfacesofcondensedmatter

18.H.Bruus: Theoreticalmicrofluidics

19.C.L.Dennis,J.F.Gregg: Theartofspintronics:anintroduction

21.T.T.Heikkilä: Thephysicsofnanoelectronics:transportandfluctuationphenomenaatlowtemperatures

22.M.Geoghegan,G.Hadziioannou: Polymerelectronics

ATOMIC,OPTICAL, AND LASER PHYSICS

7.C.J.Foot: Atomicphysics

8.G.A.Brooker: Modernclassicaloptics

9.S.M.Hooker,C.E.Webb: Laserphysics

15.A.M.Fox:Quantumoptics: anintroduction

16.S.M.Barnett: Quantuminformation

23.P.Blood: Quantumconfinedlaserdevices

PARTICLE PHYSICS,ASTROPHYSICS, AND COSMOLOGY

10.D.H.Perkins: Particleastrophysics,secondedition

11.Ta-PeiCheng: Relativity,gravitationandcosmology,secondedition

24.G.Barr,R.Devenish,R.Walczak,T.Weidberg: ParticlephysicsintheLHCera

26.M.E.Peskin: Conceptsofelementaryparticlephysics

STATISTICAL,COMPUTATIONAL, AND THEORETICAL PHYSICS

12.M.Maggiore: Amodernintroductiontoquantumfieldtheory

13.W.Krauth: Statisticalmechanics:algorithmsandcomputations

14.J.P.Sethna: Statisticalmechanics:entropy,orderparameters,andcomplexity,secondedition

20.S.N.Dorogovtsev: Lecturesoncomplexnetworks

25.R.Soto: Kinetictheoryandtransportphenomena

27.M.Maggiore: Amodernintroductiontoclassicalelectrodynamics

A ModernIntroductiontoClassicalElectrodynamics

DépartementdePhysiqueThéorique

UniversitédeGenève

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©MicheleMaggiore2023

Themoralrightsoftheauthorhavebeenasserted Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2023935108

ISBN9780192867421

ISBN9780192867438(pbk.)

DOI:10.1093/oso/9780192867421.001.0001

Printedandboundby

CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

AMaura,Sara,IlariaeLorenzo

Preface

ThisbookevolvedfromthenotesofacoursethatIteachattheUniversityofGeneva,forundergraduatephysicsstudents.Formanygenerationsofphysicists,includingmine,theclassicreferencesforclassical electrodynamicshavebeenthetextbookbyJacksonandthatbyLandauandLifschits.1 Theformerisstillmuchused,althoughmoremodern

1Inthetextwewillrefertothelatest editionsofthesebooks,Jackson(1998) andLandauandLifschits(1975).However,thesebookswentthroughmany editions:thefirsteditionofJacksonappearedin1962,whilethatofLandau andLifschitsevendatesbackto1939. andexcellenttextbookswithasomewhatsimilarstructure,suchasGarg (2012)orZangwill(2013),nowexist,whilethelatterisbynowrarely used,evenasanauxiliaryreferencetextforacourse.Becauseofmy field-theoreticalbackground,asmynotesweregrowingIrealizedthat theywerenaturallydriftingtowardwhatlookedtomeasamodernversionofLandauandLifschits,andthisstimulatedmetoexpandthem furtherintoabook.

Whilethisbookismeantasamodernintroductiontoclassicalelectrodynamics,itisbynomeansintendedasafirstintroductiontothe subject.Thereaderisassumedtohavealreadyhadafirstcourseon electrodynamics,atalevelcoveredforinstancebyGriffiths(2017).This alsoimpliesadifferentstructureofthepresentation.Inafirstcourse ofelectrodynamics,itisnaturaltotakea‘bottom-up’approach,where onestartsfromexperimentalobservationsinthesimplesettingsofelectrostaticsandmagnetostatics,andthenmovestowardtime-dependent phenomenaandelectromagneticinduction,whicheventuallyleadsto generalizingtheequationsgoverningelectrostaticsandmagnetostatics intothesynthesisprovidedbythefullMaxwell’sequation.Thisapproachisthenaturaloneforafirstintroductionbecause,firstofall, givesthecorrecthistoricalperspectiveandshowshowMaxwell’sequationsemergedfromtheunificationofalargebodyofobservations;furthermore,italsoallowsonetostartwithmoreelementarymathematical tools,forthebenefitofthestudentthatmeetssomeofthemforthefirst time,whileatthesametimediscoveringallthesenewandfundamental physicsconcepts.Thepricethatispaidisthattheapproach,following thehistoricaldevelopments,issometimesheuristic,andthelogicofthe argumentsandderivationsisnotalwaystight.

Forthismoreadvancedtext,Ihavechoseninsteada‘top-down’approach.Maxwell’sequationsareintroducedimmediately(afteranintroductorychapteronmathematicaltools)asthe‘definition’ofthetheory, andtheirconsequencesarethensystematicallydeveloped.Thishasthe advantageofabetterlogicalclarity.Itwillalsoallowustoalwaysgo intothe‘realstory’,ratherthanpresentingatfirstasimplerversion,to belaterimproved.

22 Thisapproachisdifferentfrom,e.g. thatofJackson,orZangwill.Itis insteadthesamefollowedbyGarg, andespeciallybyLandauandLifschits,thatevenseparatedthesubjects intotwodifferentbooks:“TheClassicalTheoryofFields”,Landauand Lifschits(1975),forvacuumelectrodynamics,and“ElectrodynamicsofContinuousMedia”,LandauandLifschits (1984)forelectrodynamicsinmaterials.

Animportantaspectofourpresentationisthatwekeepdistinctthe discussionofelectrodynamics‘invacuum’(i.e.,thecomputationofthe electromagneticfieldsgeneratedbylocalizedsources,intheregionoutsidethesources)fromthestudyofMaxwell’sequationsinsidematerials.Thestudyoftheequations‘invacuum’revealstheunderlying fundamentalstructureofthetheory,whileclassicalelectrodynamicsin materialmediaisbasicallyaphenomenologicaltheory.Mixingthetwo treatments,becauseofaformalsimilarityamongtheequations,canbe conceptuallyconfusing.UntilChapter12wewillfocusuniquelyonvacuumelectrodynamics,whilefromChapter13westudyelectrodynamics inmaterials.

3

Bycomparison,Jacksonintroduces thegaugepotentialsinfullgeneralityforthefirsttimeonlyafterabout 220pagesandZangwillafterabout500 pages,andtheirintroductionisingeneralpresentedsimplyasatrickforsimplifyingtheequations.However,their roleismuchmorefundamental,since theyarethebasicdynamicalvariables inafield-theoreticaltreatment(which alsoimpliesthattheywillbecomethe basicvariablesalsowhenonemovesto aquantumtreatment).AsforSpecial Relativity,Jacksonintroducesitonly aftermorethan500pages,whileZangwillrelegatesittoChapter22,after820 pages,andGargtoChapter24.

Focusingfirstonvacuumelectrodynamicsallowsustobringoutthe twomostimportantstructuralaspectsofthetheoryatitsfundamental level,namelygaugeinvarianceandthefactthatSpecialRelativityis hiddenintheMaxwell’sequations.Wewillintroduceimmediatelyand infullgeneralitythegaugepotentials,andworkoutmostoftheequationsandderivationsofvacuumelectrodynamicsintermsofthem.From amodernfield-theoreticalperspective,weknowthatclassicalelectrodynamicsistheprototypeofagaugetheory,andthenotionofgaugefields andgaugeinvarianceiscentraltoallmodernparticlephysics,aswellas tocondensedmattertheory.Similarly,afterhavingdulyderivedfrom Maxwell’sequationsthemostelementaryresultsofelectrostaticsand magnetostatics,aswellasthenotionsofworkandelectromagneticenergyandtheexpansioninstaticmultipoles,wemoveasfastaspossible toSpecialRelativity,introducingthecovariantformalismandshowing howMaxwell’sequationscanbereformulatedinacovariantform.3 Hav-

inginourhandsthegaugepotentialsandthecovariantformalism,most ofthesubsequentderivationsinChapters8–12areperformedinterms ofthem,withaclearadvantageintechnicalandconceptualclarity. Evenifthisbookwasbornfrommynotesforanundergraduatecourse, andismeanttobeusedforsuchacourse,ithasobviouslygrownwell beyondtheoriginalscope,andsomepartsofitarequiteadvanced. Moretechnicalsections,orwholechaptersthataremorespecialized, areclearlymarked,sothatthebookcanbeusedatdifferentlevels, fromtheundergraduatestudent,totheresearcherthatneedstochecka textbookasareference.Classicalelectrodynamics,foritsrichnessand importance,isasubjecttowhichonereturnsoverandoverduringa scientist’scareer.

Finally,animportantpoint,whenwritingatextbookofelectrodynamics,isthechoiceofthesystemofunits.Inmechanics,thetransformationbetweensystemssuchasc.g.s.(centimeter-gram-second)andm.k.s. (meter-kilogram-second)istrivial,andjustamountstomultiplicative factors.However,inelectromagnetismtherearefurthercomplications. Thishasledtotwomainsystemsofunitsforclassicalelectrodynamics: theSIsystem,andtheGaussiansystem.AswewilldiscussinChapter2, theessentialdifferenceisthat,forelectromagnetism,theSIsystembesidetheunitsoflength,massandtime,introducesafourthindependent baseunitofcurrent,theampere,whileintheGaussiansystemtheunit

ofcharge,andthereforeofcurrent,isderivedfromthethreebasicunits oflength,massandtime.

TheSIsystemisthenaturaloneforapplicationstothemacroscopic world:currentsaremeasuredinamperes,voltagesinvolts,andsoon. ThismakestheSIsystemtheobviouschoiceforlaboratoryapplications andinelectricalengineering,andSIunitsarebynowthealmostuniversalstandardforelectrodynamicscoursesattheundergraduatelevel. TheGaussiansystem,ontheotherhand,hasadvantagesinothercontexts,andinparticularleadstoneaterformulaswhenrelativisticeffects areimportant.4

Thisstateofaffairshasledtoaratherpeculiarsituation.Ingeneral, undergraduatetextbooksofclassicalelectromagnetismalwaysuseSI units;incontrast,moreadvancedtextbooksofclassicalelectrodynamics areoftensplitbetweenSIandGaussianunits,andalltextbookson quantumelectrodynamicsandquantumfieldtheoryuseGaussianunits. ThedifficultyofthechoiceisexemplifiedbytheJackson’stextbook, thathasbeenthe‘bible’ofclassicalelectrodynamicsforgenerationsof physicists.Thesecondedition(1975),asthefirst,usedGaussianunits throughout.However,thethirdedition(1998)switchedtoSIunitsfor thefirst10chapters,inrecognitionofthefactthatalmostallother undergraduateleveltextbooksusedSIunits;then,fromChapter11 (SpecialTheoryofRelativity)on,itgoesbacktoGaussianunits,in recognitionofthefactthattheyaremoreappropriatethanSIunits forrelativisticphenomena.5 Gaussianunitsarealsothemostcommon

choiceinquantummechanicstextbooks:whencomputingtheenergy levelofthehydrogenatom,almostalltextbooksuseaCoulombpotential inGaussianunits, e2/r,ratherthantheSIexpression e2/(4π 0r).6

InthisbookwewilluseSIunits,sincethisisnowadaysthealmost universalstandardforanundergraduatetextbookonclassicalelectrodynamics.However,itisimportanttobefamiliaralsowiththeGaussian system,asabridgetowardgraduateandmorespecializedcourses.This isparticularlyimportantforthestudentthatwishestogointotheoreticalhigh-energyphysicswhere,eventually,onlytheGaussiansystem willbeused.WewillthendiscussinSection2.2howtoquicklytranslatefromSItoGaussianunits,and,inAppendixA,wewillprovidean explicittranslationinGaussianunitsofthemostimportantresultsand formulasofthemaintext.

Finally,IwishtothankEnisBelgacem,FrancescoIacovelliandMichele Mancarella,whogavetheexercisesessionsofthecourseforvariousyears, andStefanoFoffaforusefuldiscussions.IthankagainFrancescoIacovelli forproducingaverylargenumberoffiguresofthebook.Iamgrateful toStephenBlundellforextremelyusefulcommentsonthemanuscript. Lastbutnotleast,aswithmypreviousbookswithOUP,Iwishtothank SonkeAdlung,forhisfriendlyandalwaysveryusefuladvice,aswellas allthestaffatOUP.

Geneva,January2023

4Actually,itsrealvirtuesappear whencombiningelectromagnetismwith quantummechanics.Inthiscase,the reductionfromfourtothreebaseunits obtainedwiththeGaussiansystemcan bepushedfurther,usingasystemof unitswhereonealsosets = c =1, withtheresultthatoneremainswitha singlebaseunit,typicallytakentobe themassunit.Inquantumfieldtheorythissystemissoconvenientthat units = c =1arecalled naturalunits (wewillbrieflymentiontheminSection2.2).Asaconsequence,allgeneralizationsfromclassicalelectrodynamics toquantumelectrodynamics(andits extensionssuchastheStandardModel ofelectroweakandstronginteractions) arenowadaysuniquelydiscussedusing theGaussiansystem(or,rather,avariantofit,Heaviside–LorentzorrationalizedGaussianunits,differingjustby theplacingofsome4π factors,thatwe willalsointroduceinChapter2),supplementedbyunits = c =1.

5Amongtheother‘old-time’classics, LandauandLifschits(1975)usedGaussianunits,whiletheFeynmanLectures onPhysics,Feynman etal. (1964),used SI.ThefirsttwoeditionsoftheclassictextbookbyPurcellusedGaussian units,butswitchedtoSIforthe3rdedition,PurcellandMorin(2013).Among morerecentbooks,SIisusedinGriffiths(2017),Zangwill(2013)andTong (2015),whileGaussianunitsareusedin Garg(2012)(withfrequenttranslations toSIunits).

6Themostnotableexceptionisthe quantummechanicstextbookGriffiths (2004),thatusesSIunits,consistently withtheclassicalelectrodynamicsbook bythesameauthor.

1Mathematicaltools1

1.1Vectoralgebra

1.2Differentialoperatorsonscalarandvectorfields

1.3Integrationofvectorfields.Gauss’sandStokes’stheorems 5

1.5Fouriertransform

1.6Tensorsandrotations

1.7Groupsandrepresentations

1.7.1Reducibleandirreduciblerepresentations

1.7.2Therotationgroupanditsirreducibletensorrepresentations

2Systemsofunits27 2.1TheSIsystem

3Maxwell’sequations39

3.1Maxwell’sequationsinvectorform

3.1.1LocalformofMaxwell’sequations

3.1.2IntegratedformofMaxwell’sequations

3.2Conservationlaws

3.2.1Conservationoftheelectriccharge

3.2.2Energy,momentum,andangularmomentumof theelectromagneticfield

3.3Gaugepotentialsandgaugeinvariance

4ElementaryapplicationsofMaxwell’sequations57

4.1Electrostatics

4.1.1Coulomb’slaw

4.1.2Electricfieldfromagenericstaticchargedensity

4.1.3Scalargaugepotentialandelectrostaticpotential

4.1.4Instabilityofasystemofstaticcharges

4.1.5Uniquenessofthesolutionofelectrostaticproblems

4.1.6Electrostaticsofconductors

4.1.7Electrostaticforcesfromsurfaceintegrals

4.2Magnetostatics

4.2.1Magneticfieldofaninfinitestraightwire

4.2.2Magneticfieldofastaticcurrentdensity

4.2.3Forceofamagneticfieldonawireandbetween twoparallelwires

4.3.1Time-varyingmagneticfieldandLenz’slaw

6.4.2Interactionbetweentheelectricmultipolesoftwo chargedistributions

7.2.1Lorentztransformations

7.2.2Causalityandsimultaneity

7.2.3Propertimeandtimedilatation

7.2.4Lorentzcontraction

7.3.1Four-vectorsandLorentztensors

7.3.2Contravariantandcovariantquantities

7.3.3InvarianttensorsoftheLorentzgroup

7.3.4InfinitesimalLorentztransformations

7.3.5DecompositionofaLorentztensorunderrotations

7.3.6Covarianttransformationsoffields 173

7.3.7Moregenerallessons 177

7.4Relativisticparticlekinematics 177

7.4.1Covariantdescriptionofparticletrajectories 177

7.4.2Actionofafreerelativisticparticle 179

7.4.3Relativisticenergyandmomentum 180

8Covariantformulationofelectrodynamics183

8.1Thefour-vectorcurrent 183

8.2Thefour-vectorpotential Aµ andthe Fµν tensor 185

8.3CovariantformofMaxwell’sequations 186

8.4Energy-momentumtensoroftheelectromagneticfield 188

8.5Lorentztransformationsofelectricandmagneticfields 190

8.6Relativisticformulationoftheparticle-fieldinteraction 192

8.6.1CovariantformoftheLorentzforceequation 192

8.6.2Theinteractionactionofapointparticle 194

8.7Field-theoreticalapproachtoclassicalelectrodynamics 197

8.7.1Euler–Lagrangeequationsofrelativisticfields 197

8.7.2Lagrangianoftheelectromagneticfield 202

8.7.3Noether’stheorem 205

8.8Solvedproblems 211

9Electromagneticwavesinvacuum217

9.1Waveequations 217

9.2ElectromagneticwavesintheLorenzgauge 219

9.3ElectromagneticwavesintheCoulombgauge 222

9.4Solutionsfor E and B 224

9.5Polarizationoflight 228

9.6Dopplereffectandlightaberration 229

10Electromagneticfieldofmovingcharges235

10.1AdvancedandretardedGreen’sfunction 235

10.2TheLi´enard–Wiechertpotentials 242

10.3Fieldsofchargeinuniformmotion 245

10.4Radiationfieldfromacceleratedcharges 249

10.5Radiationfromnon-relativisticcharges.Larmorformula 252

10.6Powerradiatedbyrelativisticsources 256

10.6.1RelativisticgeneralizationofLarmor’sformula 256

10.6.2Accelerationparalleltothevelocity 260

10.6.3Accelerationperpendiculartothevelocity 262

10.7Solvedproblems 264

11Radiationfromlocalizedsources269

11.1Farzonefieldsforgenericvelocities 269

11.1.1ComputationintheLorenzgauge 269

11.1.2ComputationintheCoulombgauge 273

11.1.3Radiatedpowerandspectraldistribution 275

11.2Low-velocitylimitandmultipoleexpansionoftheradiationfield 278

11.2.1Electricdipoleradiation

v/c)2

12.2.1Thegaugepotentialsto1PNorder

tionschemes

Mathematicaltools 1

Classicalelectrodynamicsrequiresagoodfamiliaritywithasetofmathematicaltools,whichwillthenfindapplicationsbasicallyeverywherein physics.Wefinditconvenienttobeginbyrecallingsomeoftheseconceptssothat,later,theunderstandingofthephysicswillnotbeobscured bythemathematicalmanipulations.Wewillfocushereontoolsthatwill beofmoreimmediateuse.Furthermathematicaltoolswillbediscussed alongtheway,intherestofthebook,astheywillbeneeded.

1.1Vectoralgebra

Avector a hasCartesiancomponents ai.Weusetheconventionthat repeatedindicesaresummedover,so, a b = i aibi ≡ aibi , (1.1)

wherethesumrunsover i =1, 2, 3inthreespatialdimensions,aswewill assumenext,or,moregenerally,over i =1,...,d in d spatialdimensions. Wecanintroducethe“Kroneckerdelta” δij ,whichisequalto1if i = j andzerootherwise.Notethat,withtheconventionofthesumover repeatedindices,wehavetheidentity

Then,wecanalsorewrite

Fromthedefinitionitfollowsthat,inthreedimensions, δii =3.Note that δij arejustthecomponentsofthe3×3identitymatrix I, δij =(I)ij and δii isthetraceofthe3 × 3identitymatrix(or,in d dimensions, δij arethecomponentsofthe d × d identitymatrix,and δii = d).

Whenusingtheconventionofsummingoverrepeatedindices,one mustbecarefulnottousethesamedummyindexfordifferentsummations.Forexample,writingthesumsexplicitly, (a b)(c d)= 3

Withtheconventionofthesumoverrepeatedindices,theright-hand sidebecomes aibicj dj .Noticethatitwasimportantheretousetwo differentletters, i,j,forthedummyindicesinvolved.

1.1 Vectoralgebra1

1.2 Differentialoperatorson scalarandvectorfields3 1.3 Integrationofvectorfields. Gauss’sandStokes’s theorems5

1.4 Diracdelta7

1.5 Fouriertransform13

1.6 Tensorsandrotations16

1.7 Groupsandrepresentations 18

Thevectorproductisgivenby

where ijk isthetotallyantisymmetrictensor(ortheLevi–Civitatensor),definedby 123 =+1,togetherwiththeconditionthatitisantisymmetricunderanyexchangeofindices.Therefore ijk =0iftwo indiceshavethesamevalueand,e.g., 213 = 123 = 1.Thisalso impliesthatthetensoriscyclic, ijk = jik = jki,i.e.,itisunchanged underacyclicpermutationoftheindices.Notethat a × b = b × a. WewillseeinSection1.6thatthetensors δij and ijk playaspecialrole inthetheoryofrepresentationsoftherotationgroup.Unitvectorsare denotedbyahat;forinstance, ˆ x, ˆ y,and ˆ z aretheunitvectorsalong the x,y and z axes,respectively.Notethat,e.g.,

Averyusefulidentityis

(Proveit!)Notethestructureoftheindices:ontheleft,theindex i is summedover,soitdoesnotappearontheright-handside.Itisadummy index,andwecouldhaveusedadifferentnameforit.Forinstance,the left-handsideofeq.(1.7)couldbewrittenas pjk plm,withadifferent letter p.Incontrast,theindices j,k,l,m arefreeindicesso,ifthey appearontheleft-handside,theymustalsoappearontheright-hand side.Notealsothat,becauseofthecyclicpropertyoftheepsilontensor, theleft-handsideofeq.(1.7)canalsobewrittenas jki ilm.

Exercise1.1 Showthat

Exercise1.2 Usingeq.(1.7),showthat

Observethatthevectorproductisnotassociative:ingeneral, a×(b×c) isdifferentfrom(a × b) × c

Exercise1.3 Usingeq.(1.7),showthat

Double-checktheresultbydirectlyidentifyingthecombinationsofindicesthatgiveanon-zerocontributionstotheleft-handsideofeq.(1.11).

1.2Differentialoperatorsonscalarand vectorfields

Wewillusethenotation ∂i = ∂/∂xi forthepartialderivativewith respecttotheCartesiancoordinates xi.Then,if f (x)isafunctionofthe spatialcoordinates,itsgradient ∇f isavectorfield(i.e.,avectordefined ateachpointofspace)whosecomponents,inCartesiancoordinates,are givenby

(∇f )i = ∂if (gradientofascalarfunction) , (1.12) or,invectorform,

∇f =(∂xf )ˆ x +(∂y f )ˆ y +(∂z f )ˆ z . (1.13)

Theexpressioninpolarcoordinates(r,θ,φ)canbeobtainedbyperformingexplicitlythetransformationbetweenthederivatives ∂x,∂y ,∂z and thederivatives ∂r = ∂/∂r,∂θ = ∂/∂θ ,and ∂φ = ∂/∂φ,andexpressing ˆ x, ˆ y, ˆ z intermsoftheunitvectors ˆ r, ˆ θ, ˆ φ (andsimilarlyinanyothercoordinatesystem,suchascylindricalcoordinates);wewillgivetheresults inpolaradcylindriccoordinatesfordifferentoperatorsattheendofthis section.Givenavectorfield v(x),wecanformtwonotablequantities withtheactionof ∇:thedivergence

∇·v = ∂ivi (divergenceofavectorfield) , (1.14) whichisascalarfield(i.e.,aquantityinvariantunderrotations,defined ateachpointofspace),andthecurl, ∇ × v,whichisagainavector field,withCartesiancomponents

(∇ × v)i = ijk∂j vk (curlofavectorfield) (1.15)

Givenafunction f ,afterformingthevectorfield ∇f ,wecanobtain againascalarbytakingthedivergenceof ∇f .ThisdefinestheLaplacian ∇2 , ∇2f = ∇ (∇f ),or ∇2f = ∂i∂if =(

2 x +

2

+

2 z )f, (1.16) where ∂x = ∂/∂x,etc.Similarly,wecandifferentiatefurtherthedivergenceorthecurlofavectorfield.Forinstance, ∇(∇·v)isavectorfield withcomponents

[∇(∇ v)]i = ∂i∂j vj , (1.17) while ∇·(∇ × v)isascalarfield,sinceitisthedivergenceofavector field.However,fromtheexplicitcomputationincomponents,

∇ (∇ × v)= ∂i( ijk∂j vk) = ijk∂i∂j vk =0 . (1.18)

1Ourconventiononthepolaranglesis suchthatsphericalcoordinatesarerelatedtoCartesiancoordinatesby x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ,with θ ∈ [0,π]and φ ∈ [0, 2π].

Cylindricalcoordinatesarerelatedto Cartesiancoordinatesby x = ρ cos ϕ, y = ρ sin ϕ (with ϕ ∈ [0, 2π])and z = z. Then,as ϕ increases,werotatecounterclockwisewithrespecttothe z axis. Thismeansthat ˆ ρ× ˆ ϕ =+ˆ z

2TheLaplacianofavectorfieldhas beendefinedfromeq.(1.20)intermsof theCartesiancoordinatesand,inthis case,oneachcomponentofthevectorfield,ithasthesameformasthe Laplacianactingonascalar.Thisisno longertrueinpolarofcylindricalcoordinates.Inthatcase, ∇2v canbemore easilyobtainedfromeq.(1.21),using thecorrespondingexpressionsof ∇ v and ∇ × v.

Thelastequalityfollowsbecause ∂i∂j isanoperatorsymmetricinthe (i,j)indices(wealwaysassumethatthederivativesactonfunctions, oronvectorfields,thatarecontinuousandinfinitelydifferentiableeverywhere,sothederivativescommute, ∂i∂j = ∂j ∂i),andthereforeit giveszerowhencontractedwiththeantisymmetrictensor ijk.Thus, thegradientofacurlvanishes.Similarly,thecurlofagradientvanishes:

(1.19) againbecause ∂j ∂k issymmetricin(j,k).TheLaplacianofavector fieldisdefined,usingCartesiancoordinates,as

Exercise1.4 Usingeq.(1.7),showthat

Forfuturereference,wegivetheexpressionofthegradientandLaplacianofascalarfield,andofthedivergenceandcurlofavectorfield, inCartesiancoordinates(x,y,x),inpolarcoordinates(r,θ,φ),andin cylindricalcoordinates(ρ,ϕ,z).1,2 Denotingby {ˆ x, ˆ y, ˆ z}, {ˆ

,

},and

,respectively,theunitvectorsinthecorrespondingdirections, wehave

1.3Integrationofvectorfields.Gauss’s andStokes’stheorems

Givenavectorfield v(x)andacurve C,onecandefinethelineintegral C d v , (1.34) bybreakingthecurveoverinfinitesimalsegments,andintroducing,in eachsegment,avector d oflength d ,tangenttothecurve.Noticethat thelineintegraldefinedinthiswayisascalarquantity.Ifthecurve C isclosed,thelineintegral(1.34)isknownasthe circulation of v around thecurve.Foraclosedcurve,wewilldenotethelineintegralby d

Theintegraloveratwo-dimensionalsurface S canbedefinedsimilarly. Wesplitthesurfaceininfinitesimalsurfaceelementsofarea ds, 3 and 3Whenwewanttostressthatthisis atwo-dimensionalsurfaceelement,we willwriteitas d2s.Otherwise,tosimplifythenotation,wewritesimply ds

wedefine ds asthevectorofmodulus ds,pointinginthedirectionperpendiculartothesurfaceelement(foraclosedsurface,theconvention istochoosetheoutwardnormal,otherwiseachoiceoforientationmust bemade).Writingtheunitvectornormaltothesurfaceas ˆ n,wehave ds = ˆ n ds.Thesurfaceintegralofavectorfield v(x)isthengivenby

Foraclosedsurface,thisdefinesthe flux of v through S.Inthecaseof aclosedsurface,wewilldenotethesurfaceintegralby ds

Thefundamentaltheoremofcalculusstatesthat,forafunctionofa singlevariable x,

Thiscanbegeneralizedtothelineintegralofafunctionofthethreedimensionalvariable x:fromthedefinitionofthelineintegral(1.34) onecanshow(doit!)that,forafunction f (x)integratedoveracurve C withendpoints x1 and x2,

∇f = f (x2) f (x1) .

Noteinparticularthat,if C isclosed,thelineintegralofagradient vanishes.Stokes’stheoremandGauss’stheoremaregeneralizationsof eq.(1.37)tosurfacesandtovolumes,respectively.Inparticular,let C bea closed curveandlet S be any surfacethathas C asitsboundary (i.e., ∂S = C,wherethenotation ∂S standsfortheboundaryof S). Then,Stokes’stheoremassertsthat,foravectorfield v(x)(withour usualassumptionsofdifferentiability,thatwewillnotrepeatfurther), S ds (∇ × v)= C d v (Stokes’stheorem) (1.38)

Theorientationconventionisthat,ifwegoaroundtheloop C inthe directionofthelineintegral,thenormalto S isobtainedwiththerighthandrule.

Anotherusefulidentityisobtainedbysetting,inStokes’stheorem, v(x)= ψ(x)w,where w isaconstantvector.Then,(∇ × v)i = ijk(∂j ψ)wk andeq.(1.38)becomes

Sincethisisvalidforgeneric w,weget

or,invectornotation,

YetanotherusefulidentityfollowingfromStokes’stheoremisobtained bysetting v(

)= u(x)×w,where,again, w isaconstantvector.Then,

where,inthelastline,weusedeq.(1.7).Theneq.(1.38)gives

andtherefore

Ausefulapplicationofthisformulaisobtainedchoosing ui(x)= xi Then ∂kui = δik and ∂iui =3,soeq.(1.44)gives

However,foraplanarsurface

where A istheareaofthesurfaceand ˆ n istheunitvectornormalto it.Wethereforeobtainanelegantformulaforthearea A ofaplanar surface S,boundedbyacurve C,

Gauss’stheoremextendsStokes’stheoremfurther,tointegrationover volumes:let V beafinitevolumeboundedbythesurface S,i.e., ∂V = S Then,

WewillmakeuseveryoftenofbothGauss’sandStokes’stheorems.44ProceedingasforStokes’stheorem,if weset v(

Avectorfieldsuchthat ∇ × v =0everywhereiscalled irrotational, orcurl-free.Wehaveseenineq.(1.19)that,if v isthegradientofa function, v = ∇f ,thenitisirrotational.Asortofconverseofthis statementholds:

Theoremforcurl-freefields.Let v beavectorfieldsuchthat ∇ × v =0everywhereinaregion V simplyconnected(i.e.,suchthat everyloopin V canbecontinuouslyshrunktoapoint).Then,there existsafunction f suchthat v = ∇f

Avectorfield v suchthat ∇·v =0iscalled solenoidal,ordivergencefree.Similarly,thereisasortofinversetoeq.(1.18):

Theoremfordivergence-freefields.Let v beavectorfieldsuch that ∇·v =0everywhereinavolume V suchthateverysurfacein V canbecontinuouslyshrunktoapoint.Then,thereexistsavectorfield w suchthat v = ∇ × w.

1.4Diracdelta

TheDiracdeltaisanespeciallyusefulmathematicalobject,thatappears everywhereinphysics.Physically,itcanbeseenasthemodelizationof apoint-likeobject.TheDiracdelta δ(x)isnotafunctionintheproper sense.Rather,inonedimension,itisdefinedfromtheconditionsthat

δ(x x0)=0if x = x0 , (1.51) andthat,foranyfunction f (x)regularinanintegrationregion I that includes x0,

(x x0)f (x)= f (x0) . (1.52)

Notethattheintegralontheleft-handsidevanishesif I doesnotinclude x0 becauseofeq.(1.51)[andoftheassumedregularityof f (x)].Onthe otherhand,againbecauseofeq.(1.51),theintegralintheleft-handside ofeq.(1.52)isindependentof I,aslongas x0 ∈ I.Inthefollowingwe willsetfordefiniteness I =(−∞, +∞),soeq.(1.52)reads

(x x0)f (x)= f (x0) (1.53)

)= ψ(

)w,with w constant, wealsogettheusefulidentity

Fig.1.1 AsequenceofapproximationstotheDirac δ function,usingthegaussians(1.55)(toppanel) orthe“rectangles”(1.56)(lower panel).

Observethat,applyingthisdefinitiontothecaseofthefunction f (x)= 1,wegetthenormalizationcondition +

SincetheDiracdeltavanishesatallpoints x = x0,butstilltheintegral intheleft-handsideofeq.(1.53)isnon-zero,itmustbesingularin x0. Actually,theDiracdeltaisnotaproperfunction,butcanbedefined byconsideringasequenceoffunctions δn(x,x0)suchthat,as n →∞, δn(x,x0) → 0for x = x0,and δn(x,x0) → +∞ for x = x0,while maintainingthenormalizationcondition(1.54).Asanexample,onecan takeasequenceofgaussianscenteredon x0,withsmallerandsmaller width,

with σn =1/n.Anotheroptioncouldbetouse

ThesetwosequencesoffunctionsareshowninFig.1.1.Inbothcases, thelimitof δn(x x0)for n →∞ doesnotexists,sinceitdivergeswhen x = x0,andthereforedoesnotdefineaproperfunction δ(x).However, onecangeneralizethenotionoffunctionstothenotionof distributions (or“improperfunctions”),whicharedefinedfromtheiractioninside anintegral,whenconvolvedwith“test”functions f (x)(withsuitably definedpropertiesofregularityand,possibly,behavioratinfinity).In thecaseoftheDiracdelta,thedefinitioninthesenseofdistributionsis givenbyeq.(1.53).Usingtheexplicitexpressionofthefunctions δn(x) givenineq.(1.56),forafunction f (x)regularnear x0,weget

Therefore,inthesenseofdistributions,i.e.,aftermultiplyingbya smoothfunction f (x)andintegrating,wehave

Fromthedefinition,weseethattheDiracdeltaonlymakessensewhen itappearsinsideanintegral.Inphysics,however,withanabuseofnotation,theuniversaluseistotreatitasifitwereanormalfunction(and itisevencalledtheDiracdelta“function”!),withtheunderstanding thattherelationsinwhichitentersmustbeunderstoodinthesenseof distributions,i.e.,multipliedbyatestfunctionandintegrated.

Fromthedefinitions(1.55)or(1.56),setting x0 =0,weseethat theDiracdeltafunctionisevenin x, δ(x)= δ( x).Twomoreuseful propertiesareleftasanexercisetothereader:

Exercise1.5 Usingthedefinition(1.53)showthat,if a isanon-zero realnumber,

(ax)= 1 |a| δ(x) . (1.59)

Exercise1.6 Usingagaineq.(1.53)showthat,if g(x)isafunction whichhasonlyonesimplezeroin x = x0,then

(g(x))= 1 |g (x0)| δ(x x0) , (1.60)

where g (x)= dg/dx.Showthat,if g(x)hasseveralsimplezerosatthe points x = xi (i =1,...,n),thisgeneralizesto

(g(x))= n i=1 1 |g (xi)| δ(x xi) . (1.61)

Exercise1.7 Showthat,inthesenseofdistributions,

AnotherusefulnotionisthederivativeoftheDiracdelta, δ (x),which, inthesenseofdistributions,isdefinedfrom

Thisdefinitionisclearlymotivatedbytheanalogywiththeintegration bypartsofanormalfunction.Taking δ(x)asthelimitfor n →∞ (inthe senseofdistributions)ofaseries δn(x)ofcontinuousanddifferentiable functions,suchasthegaussians(1.55),onecanseethat δ (x)isobtained, againinthesenseofdistributions,fromthelimit n →∞ of δn(x). Indeed,for δn(x)differentiable(andvanishingat x = ±∞),thestandard integrationbypartsgoesthrough,5 and 5Wealsoassumethatthetestfunctions f (x)gotozeroat ±∞.Infact,here itissufficientthattheydonotgrow sofasttocompensatetheexponential decayofthegaussian δn(x),sothat,in theintegrationbyparts,wecandiscard theboundarytermsatinfinity.

wherethelastequalityfollowsfromeq.(1.58).Therefore,inthesame senseaseq.(1.58),

(x x0)=lim n→∞ δn(x x0) . (1.65)

Noticethat δ (x)isanoddfunctionof x, δ ( x)= δ (x),asitis clearfromitsrepresentationintermsof δn(x),with δn(x)givenbythe

6Notethatwehaveprovedeq.(1.68) for x> 0andfor x< 0.Whetheritalso holdsfor x =0dependsontheseries δn(x)thatweuseforapproximating δ(x),andonhowwedefine θ(x =0). Ifweusefunctions δn(x)thataresymmetricaround x =0,asineqs.(1.55) or(1.56),theequalityholdsifwedefine θ(0)=1/2.However,onecouldusedifferent,non-symmetricseries δn(x),and oneshouldthenassignadifferentvalue to θ(0)fortheequalitytohold.Infact, thewholeissueisirrelevantsincethe relation(1.70)holdsonlyinthesense ofdistributions,i.e.,afterintegrating, andthefactthatitholdsinasingle pointornotdoesnotaffectanyintegratedrelation.

7Forinstance,bycompletingthesquare intheexponentonegets

sequenceofgaussians.Higher-orderderivativesoftheDiracdeltaare definedsimilarly,

whereweintroduced x = x + ik/n2 . Moreprecisely,wehaveactuallyconsideredaclosedcontourinthecomplex plane z = x + iy,composedbythe x axis y =0,andbytheparallelline y = ik/n2,andclosedthecontourjoiningthesetwolinesatinfinity.Sincethe integrandhasnosingularityinsidethis contour,bytheCauchytheoremtheintegraloverthe x axisisthesameasthe integralovertheline y = ik/n2,i.e., overthevariable z = x + ik/n2

ThereisaninterestingrelationbetweentheDiracdeltaandtheHeavisidethetafunction(alsocalledsimplythe“thetafunction”),defined by

Observethat,fromthedefinitionoftheDiracdelta,

Indeed,if x< 0,theintegrationregiondoesnotincludethepoint x =0 where δ(x )issingular,sotheintegralvanishes.For x> 0,instead, wecanextendtheintegralineq.(1.68)upto x = ∞,sinceanyhow δ(x )=0for x > 0,andwecanthenuseeq.(1.54)toshowthatthe integralisequaltoone.Conversely,foradifferentiablefunction f (x) thatvanishesatinfinity,treating θ (x)asadistributionanddefiningits derivativeaswehavedonefortheDiracdelta,

Thisshowsthat,inthesenseofdistributions,

whichcouldalsohavebeenformallyderivedbytakingthederivative ofeq.(1.68).6 Thisresultcouldhavealsobeenprovedusingasequence

δn(x)ofapproximationstotheDiracdelta,andshowingthat,pluggingit onthelefthandsideofeq.(1.68),wegetacontinuousanddifferentiable approximationtothethetafunction.

TheDiracdeltahasanextremelyusefulintegralrepresentation.A simplewaytoobtainitistousethesequenceofgaussians(1.55).Then,

ascanbeprovenbycarryingouttheintegralontheright-handsideof thefirstline.7 Similarly,

Takingthelimit n →∞ oftheserelationswethereforeget

anditsinverserelation

asimplederivationoftheinversionformulaoftheFouriertransform.

Equation(1.74)couldhavebeenderivedmoresimplyfromthedefining propertyoftheDiracdelta,eq.(1.53),observingthat,in x =0, e ikx = 1.Equation(1.75)waslessevident,andprovidesaveryusefulintegral representationoftheDiracdelta.8 InSection1.5,wewilluseittogive 8Notethat,renamingtheintegration variable k →−k,wecanalsowrite eq.(1.75)as

Thegeneralizationtomorethanonedimensionisstraightforward.In particular,inthreespatialdimensions,wedefinethethree-dimensional Diracdeltaas

(3)(x)= δ(x)δ

andthisisadistributiontobemultipliedbytestfunctions f (x)and integratedover d3x.Then,eq.(1.53)becomes

3xδ(3)(x x

whiletheintegralrepresentation(1.75)becomes

Example1.1 Divergenceof ˆ r/r2 . AsaparticularlyimportantapplicationoftheconceptsdevelopedinSections1.2,1.3,andinthepresent section,weperformthecomputationofthedivergenceofthevectorfield

where r = |x| and ˆ r istheunitvectorintheradialdirection.Inpolar coordinates, vr =1/r2 , vθ = vφ =0.Ifweuseeq.(1.29),weapparently get ∇·v = 1 r2 ∂r r 2 × 1 r2 (r =0) =0 . (1.81)

However,wehavestressedthatthisonlyholdsfor r =0,sincethese manipulationsbecomeundefinedat r =0.Tounderstandthebehavior of ∇·v in r =0,weuseGauss’stheorem(1.48)inavolume V givenby asphericalballofradius R.Itsboundaryisthesphere S2,andonthe boundary v = ˆ r/R2,while ds = R2dΩ ˆ r,where dΩistheinfinitesimal solidangle.9 Then, 9Recallthattheinfinitesimalsolidangle dΩisdefinedfromthetransformationfromCartesiantosphericalcoordinates.Intwodimensions,from x = r cos θ and y = r sin θ,itfollowsthat dxdy = rdrdθ.Similarly,inthreedimensions,therelationbetweenCartesianandsphericalcoordinates(aswe alreadymentionedinNote1onpage4) is x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ,with θ ∈ [0,π]and φ ∈ [0, 2π]. ComputingtheJacobianofthetransformation,

dxdydz = r 2 sin θdrdθdφ = r 2drdΩ , (1.82) where

dΩ=sin θdθdφ. (1.83)

Then,thetotalintegraloverthesolid angleis

dΩ= π 0 dθ sin θ 2π 0 dφ =4π, (1.84) sothetotalsolidangleinthreedimensionsis4π.Observethatwecanalso write dΩ= d cos θdφ,reabsorbingthe minussignfrom d cos θ = sin θdθ into achangeoftheintegrationlimits,so that

dΩ= 1 1 d cos θ 2π 0 dφ. (1.85) V d3 x ∇ v = S2 ds v = S2 R2dΩ ˆ r · ˆ

Thisshowsthat ∇·v cannotbezeroeverywhere.Rather,since ∇·v =0 for r =0,butstillitsintegralin d3x overanyvolume V isequalto4π, wemusthave

Fromthis,wecanobtainanotherveryusefulresult.Usingtheexpression (1.23)ofthegradientinpolarcoordinates,weget

weseethateq.(1.87)impliesthat

Replacing x by x x ,for x generic,wethenalsohave

WewillusethisresultinSection4.1.2,whenwewillintroducethenotion ofGreen’sfunctionoftheLaplacian.

1.5Fouriertransform

WenextrecallthedefinitionandsomebasicpropertiesoftheFourier transform.Forafunctionofonespatialvariable f (x),wedefinethe Fouriertransform f (k)as10

Observethat,if f (x)isreal, ˜ f ∗(k)= ˜ f ( k).Thesimplestwaytoinvert thisrelationbetween f (x)and f (k)istousetheintegralrepresentation oftheDiracdelta,eq.(1.75).11 Multiplyingeq.(1.92)by eikx,integrating

over dk/(2π),andchangingthenameoftheintegrationvariableto x in theright-handsideofeq.(1.92),weget

10Moreprecisely,onemustrestricttoa spaceoffunctionssuchthatthemanipulationsbelowarewelldefined.This canbeobtainedforinstanceconsidering f ∈ L1(R),thespaceoffunctions whoseabsolutevalueisintegrableover R

11Thiswasnotthehistoricalpath.The theoryofdistributions,whichputsthe notionofDiracdeltaonasoundmathematicalbasis,wasonlydevelopedin thefirsthalfofthe20thcentury,while theoriginalworkofFourierdatesback to1822.

12Therearedifferentconventionsfor thefactors2π inthedefinitionofthe Fouriertransform.Theonethatwe haveusedis,nowadays,themostcommoninphysics.Anothercommon choiceistodefine

Therefore,theinversionofeq.(1.92)is12

Anotherusefulrelationisobtainedconsideringtheconvolutionoftwo functions f (x)and g(x),definedby

inwhichcaseeq.(1.96)becomes

13Theexplicitcomputationgoesasfollows:

TakingtheFouriertransformweget13

Therefore,theFouriertransformofaconvolutionisequaltotheproduct oftheFouriertransforms.Thisisknownasthe convolutiontheorem Equations(1.92),(1.96),and(1.98)areeasilygeneralizedtoanynumberofspatialdimensions.Inparticular,inthreespatialdimensions,the Fouriertransformisdefinedas

Introducing y = x x ,thelastintegral over dx atfixed x isthesameasan integralover dy,so

anditsinversiongives

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.