Get A course on plasticity theory david j. steigmann free all chapters

Page 1


A Course on Plasticity Theory David J. Steigmann

Visit to download the full and correct content document: https://ebookmass.com/product/a-course-on-plasticity-theory-david-j-steigmann/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

IB Diploma Programme Course Preparation: Physics (Oxford IB Course Preparation) David Homer

https://ebookmass.com/product/ib-diploma-programme-coursepreparation-physics-oxford-ib-course-preparation-david-homer/

Market Leader: Upper Intermediate Course 2nd Edition

David Cotton

https://ebookmass.com/product/market-leader-upper-intermediatecourse-2nd-edition-david-cotton/

King David, Innocent Blood, and Bloodguilt David J. Shepherd

https://ebookmass.com/product/king-david-innocent-blood-andbloodguilt-david-j-shepherd-2/

King David, Innocent Blood, and Bloodguilt David J. Shepherd

https://ebookmass.com/product/king-david-innocent-blood-andbloodguilt-david-j-shepherd/

Organization Theory and Design (MindTap Course List) –Ebook PDF Version

https://ebookmass.com/product/organization-theory-and-designmindtap-course-list-ebook-pdf-version/

Notes on ... Caring David Stanley

https://ebookmass.com/product/notes-on-caring-david-stanley/

The Big Picture: Gross Anatomy, Medical Course & Step 1

Review 2nd Edition Edition David A. Morton

https://ebookmass.com/product/the-big-picture-gross-anatomymedical-course-step-1-review-2nd-edition-edition-david-a-morton/

On Revolutions Colin J Beck

https://ebookmass.com/product/on-revolutions-colin-j-beck/

Plasticity of Metallic Materials 1st Edition Oana

Cazacu

https://ebookmass.com/product/plasticity-of-metallicmaterials-1st-edition-oana-cazacu/

OXFORDSERIESONMATERIALSMODELLING

SeriesEditors

RobertE.Rudd

LawrenceLivermoreNationalLaboratory

OXFORD SERIESON MATERIALS MODELLING

Materialsmodellingisoneofthefastestgrowingareasinthescienceandengineeringofmaterials,bothinacademeandinindustry.Itisaverywidefield coveringmaterialsphenomenaandprocessesthatspantenordersofmagnitudeinlengthandmorethantwentyintime.Abroadrangeofmodelsand computationaltechniqueshasbeendevelopedtomodelseparatelyatomistic, microstructural,andcontinuumprocesses.Anewfieldofmultiscalemodeling hasalsoemergedinwhichtwoormorelengthscalesaremodeledsequentially orconcurrently.Theaimofthisseriesistoprovideapedagogicalsetoftexts spanningtheatomisticandmicrostructuralscalesofmaterialsmodeling,written byacknowledgedexperts.Eachbookwillassumeatmostarudimentaryknowledgeofthefielditcoversanditwillbringthereadertothefrontiersofcurrent research.Itishopedthattheserieswillbeusefulforteachingmaterialsmodeling atthepostgraduatelevel.

APS,London

RER,Livermore,California

1.M.W.Finnis: InteratomicForcesinCondensedMatter

2.K.Bhattacharya: MicrostructureofMartensite—WhyItFormsandHowItGives RisetotheShape-MemoryEffects

3.V.V.Bulatov,W.Cai: ComputerSimulationsofDislocations

4.A.S.Argon: StrengtheningMechanismsinCrystalPlasticity

5.L.P.Kubin: Dislocations,MesoscaleSimulationsandPlasticFlow

6.A.P.Sutton: PhysicsofElasticityandCrystalDefects

7.D.Steigmann: ACourseonPlasticityTheory

Forthcoming:

D.N.Theodorou,V.Mavrantzas: MultiscaleModellingofPolymers

A Course on Plasticity Theory

Department of Mechanical Engineering, University of California, Berkeley

Great Clarendon Street, Oxford, OX2 6DP, United Kingdom

Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries

© David J. Steigmann 2022

The moral rights of the author have been asserted

Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

You must not circulate this work in any other form and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data Data available

Library of Congress Control Number: 2022942494

ISBN 978–0–19–288315–5 DOI: 10.1093/oso/9780192883155.001.0001

Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY

Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work.

Tomyfamily

Preface

Thetheoryofplasticityhasalongandinterestinghistorydatingbackabouttwoanda halfcenturies.Activityinthefieldexpandedrapidlyoverthecourseofthepastcentury inparticular,givingrisetoarapidpaceofadvancement.Duringmuchofthelatterphase ofitsmoderndevelopment,thefieldwasbesetbyambiguityandcontroversyconcerning someofitsconceptualfoundations.Unsurprisingly,thisledtotheemergenceofdifferent,oftenincompatible,schoolsofthoughtonthesubject.Acomprehensivesurveyof thestateofplasticitytheoryduringthisperiodmaybefoundinthereviewarticleby Naghdi.Meanwhile,greatstrideswerebeingmadebyappliedmathematiciansinlayingthefoundationsofmoderncontinuummechanics.Theiremphasisonpermanence andrigormeantthattheunsettledsubjectofplasticitytheorywaslargelyavoided,however,withtheresultthatthislacunainthepanoplyofcontinuumtheoriesbegantobe filledquiterecently,aroundtheturnofthemillennium,aftertheantagonismoftheolder schoolshadbeguntofade.

Practicallyeverythingknownaboutplasticitythroughthemiddleofthepastcentury isdocumentedinthesuperbtreatisesbyPragerandHodge,Nadai,Hill,andKachanov, whichshouldbecarefullyreadbyanyseriousstudentofoursubject.Ataroundthesame time,newdevelopmentsweretakingplaceintheapplicationofdifferentialgeometryto thecontinuumtheoryofdefectsassociatedwithplasticity.Thishasbecomealargeand activedisciplineinitsownright,andasubstantialpartofthisbookisdevotedtoit. TheworksofBloomandWang,andthevolumeeditedbyKröner,arerecommendedto thoseinterestedinlearningaboutitsfoundations,whilethosebyClayton,Epsteinand El anowski,Epstein,andSteinmanncovermanyofthemorerecentdevelopments.The modernengineeringtheory,asdistinctfromthegeometricaltheory,isablysummarized inthebooksbyLubliner,BesselingandvanderGiessen,andBigoni.ThebooksbyHan andReddyandbyGurtinetal.arerecommendedformathematicaldevelopmentsand someofthemorerecentthinkingonthesubject.

WhilewritingthisbookIhavebeenguidedbythebeliefthatonecanalwayslearn somethingfromanythoughtfulperson.Accordinglythecontentsreflectmyunderstandingoftheworkofresearchersandscholarsspanningalargeanddiverserangeofviews onthesubjectofplasticity.Inthecourseofsurveyingthemodernliterature,Ihavebeen struckbythecontinuingisolationofthevariousschoolsfromoneanother,withscant evidenceofcross-fertilization.Particularlyglaring,frommyperspective,isthelackof acknowledgmentoftheeffortsofNollinlayingthefoundationsofthemoderntheory. ThishasbeenrectifiedtoagreatdegreebyEpsteinandEl anowski,andIfollowtheir leadingivingprimacytoNoll’sperspective.Infairness,Nollisnotaneasyread,and muchstudyisneededtograspthefullimportofhiswork.

Thebookiscertainlynotself-contained.Readersarepresumedtohavehadprior exposuretoagoodintroductorycourseonbasiccontinuummechanicsatthelevelof theexcellentbooksbyChadwickandGurtin,forexample.Aspectsofthisbasicbackgroundaresummarizedasneeded,butnotdevelopedinanydetail.Theemphasishere isonconceptualissuesconcerningthefoundationsofplasticitytheorythathaveproved challenging,tomeatleast.Thesehaveledmetotheviewthatthetimehascometoseek ameasureofconsolidationandunificationinthefield.Idonotignoretheclassicaltheory,butratherdevelopitfromtheperspectiveofthemoderntheory.Forexample,the classicaltheoryofperfectlyplasticsolidswaspresentedhistoricallyinawaythatledto itsnaturalinterpretation,fromthevantagepointofmoderncontinuummechanics,asa theoryofnon-Newtonianfluidsratherthanasamodelofthebehaviorofcertainsolids. Theresolutionofthisdilemmaisaprimeexampleoftheclaritythatcanbeachieved onceasecurelogicalfoundationforthegeneraltheoryhasbeenestablished.

Someexplicitsolutionstotheequationsofplasticitytheoryarecoveredinthisbook, butnotnearlytotheextentfoundintheolderbooks.Thereasonforthisomission is,firstly,thatthesmallcollectionofexplicitsolutionsthatareknownisablycovered elsewhere,sothatduplicationishardlyjustified,andsecondly,thatduetotheadvent ofmoderncomputing,theyarenotnearlyasrelevantastheyoncewere.Idevotethe remainderofthebooktothetheoreticalfoundationsofthesubject,inaccordancewith myownpredilections,ratherthantomattershavingtodowithcomputation.Thereason forthisemphasisismybeliefthatstudentsaretypicallynotaswellversedintheconceptualfoundationsastheyshouldbeiftheyaretorealizethefullpotentialofcomputational mechanics.Anumberofexercisesofvaryingdegreesofdifficultyappearthroughout. Theseservetoreinforceunderstandingandtoencouragethereadertofillinanygapsin thedevelopment.Comprehensivesolutionstoselectedexercisesareincludedattheend ofthebook.

Thosewhomighthavereadmypreviousbook, FiniteElasticityTheory,willfindthe styleandpresentationofthisonetobequitefamiliar.Thepresentbookisperhapsabit moredemanding,however,insofarasvariousconceptsfromnon-Euclideandifferential geometryarecoveredindetail.Igratefullyacknowledgethesmallgroupofdedicated graduatestudentsattheUniversityofCalifornia,Berkeley,whoseinterestandpersistenceprovidedtheimpetusforthedevelopmentofagraduatecourseonwhichthebook isbased.Iamespeciallygratefultooneofthem,MiladShirani,forhiscriticalreading ofthemanuscriptandforpreparingthefigures.

DavidSteigmann Berkeley,2021

References

Besseling,J.F.,andvanderGiessen,E.(1994). MathematicalModellingofInelasticDeformation. ChapmanandHall,London. Bigoni,D.(2012). NonlinearSolidMechanics:BifurcationTheoryandMaterialInstability.CambridgeUniversityPress,Cambridge,UK.

Bloom,F.(1979). ModernDifferentialGeometricTechniquesintheTheoryofContinuousDistributions ofDislocations.LectureNotesinMathematics,Vol.733.Springer,Berlin.

Chadwick,P.(1976). ContinuumMechanics:ConciseTheoryandProblems.Dover,NewYork. Clayton,J.D.(2011). NonlinearMechanicsofCrystals.Springer,Dordrecht. Epstein,M.(2010). TheGeometricalLanguageofContinuumMechanics.CambridgeUniversity Press,Cambridge,UK.

Epstein,M.,andEl˙zanowski,M.(2007). MaterialInhomogeneitiesandTheirEvolution.Springer, Berlin.

Gurtin,M.E.(1981). AnIntroductiontoContinuumMechanics.AcademicPress,Orlando. Gurtin,M.E.,Fried,E.,andAnand,L.(2010). TheMechanicsandThermodynamicsofContinua. CambridgeUniversityPress,Cambridge,UK.

Han,W.,andReddy,B.D.(2013). Plasticity:MathematicalTheoryandNumericalAnalysis Springer,N.Y. Hill,R.(1950). TheMathematicalTheoryofPlasticity.ClarendonPress,Oxford.

Kachanov,L.M.(1974). FundamentalsoftheTheoryofPlasticity.MIRPublishers,Moscow. Kröner,E.(Ed)(1968). Proc.IUTAMSymposiumonMechanicsofGeneralizedContinua.Springer, N.Y.

Lubliner,J.(2008). PlasticityTheory.Dover,N.Y. Nadai,A.(1950). TheoryofFlowandFractureofSolids.McGraw-Hill,N.Y. Naghdi,P.M.(1990).Acriticalreviewofthestateoffiniteplasticity. J.Appl.Math.Phys. (ZAMP) 41,315–394.

Noll,W.(1967).Materiallyuniformsimplebodieswithinhomogeneities. Arch.Ration.Mech. Anal.27,1–32. Prager,W.,andHodge,P.G.(1951). TheoryofPerfectlyPlasticSolids.JohnWiley&Sons,N.Y. Steigmann,D.J.(2017). FiniteElasticityTheory.OxfordUniversityPress,Oxford. Steinmann,P.(2015). GeometricalFoundationsofContinuumMechanics:AnApplicationtoFirst andSecond-OrderElasticityandElasto-Plasticity.LectureNotesinAppliedMathematicsand Mechanics,Vol.2.Springer,Berlin. Wang,C.-C.(1979). MathematicalPrinciplesofMechanicsandElectromagnetism.PartA:Analytical andContinuumMechanics.PlenumPress,N.Y.

6.5Yieldingandplasticflow

7.1Theflowrule

7.2VonMises’yieldfunction

7.3Theclassicaltheoryforisotropicrigid-plasticmaterials

7.4Bingham’smodelofviscoplasticity

7.4.1Example:Steadychannelflow

7.5Planestrainofrigid-perfectlyplasticmaterials:Slip-linetheory

7.5.1Stress,equilibrium

7.5.2Velocityfield

7.5.3Cartesianformoftheequations

7.5.4Furthertheoryforplanestrain

7.5.5Axisymmetricstateexteriortoatraction-freecircularhole

7.6Anti-planeshear

8.1Thedisplacementfield

9.3.1Crystallinesymmetry

9.3.2Isotropy

9.4Scale-dependentyielding

9.5Gradientplasticity

9.5.1Energeticresponsefunctions

9.5.2Stresspower,balancelaws,anddissipation

Preliminaries

Webeginwithafairlydescriptivediscussionofthemainobservationsaboutplastic behaviorandthebasicmechanismsresponsibleforit.Thisisfollowedbyabriefresumé ofthestandardcontinuumtheorythatunderpinsoursubsequentdevelopmentofa theoreticalframeworkforthedescriptionofelastic-plasticresponse.

1.1 Phenomenology

Muchofthebasicphenomenologyofplasticitycanbeunderstoodintermsofasimple tension-compressiontestonauniformmetallicbar.Supposethebarhaslength l0 inits unloadedstate,andlet T = F/A betheuniaxialCauchystressinthedirectionofthebar axis,where F istheaxialforceand A isthecross-sectionalareaofthedeformedbar. The stretch ofthebar,presumedtobestrainedhomogeneously,is λ = l/l0,where l is thebar’slengthwhendeformed.Ifthestressisnottoolarge,theresponseofthebaris typicallywelldescribedbythelinearrelation

betweenthestressandthelogarithmicstrainln λ,inwhichtheproportionalityconstant E isYoung’smodulus—apropertyofthematerialofwhichthebarismade.Thisrelation presumesthestateofthebar,asdeterminedbythestretchandtheCauchystress,tobe uniform.Thebaristheninequilibriuminsofarastheeffectsofbodyforces(e.g.,the weightofthebar)canbeneglected.

Therangeofstressesforwhichthisrelationholdsislimited.Itfailswhenthestress reachescertainlimits,calledthe yieldstresses inuniaxialtensionorcompression.Often theselimitscoincideinmagnitude,sothat(1.1)isvalidprovidedthat

where TY,anotherpropertyofthematerial,isthe initial yieldstress,thequalifierreflectingthefactthattheyieldstressusuallyevolveswiththestateofthematerialunder continueddeformation,itscurrentvaluetypicallyexceedingtheinitialvalue.Thisphenomenon,called strainhardening,isdepictedschematicallyinFigure 1.1.Ifthebaris

ACourseonPlasticityTheory.DavidJ.Steigmann,OxfordUniversityPress.©DavidJ.Steigmann(2022). DOI:10.1093/oso/9780192883155.003.0001

Figure1.1 Uniaxialstress–strainresponseofabar.

unloadedtozerostressfromastateinwhichthevalueof |ln λ| exceedsthatassociatedwithinitialyield,thenthebardoesnotreturntoitsinitiallength l0,butrather toanintermediatelength li.Wesay,ratherloosely,thatthebarhasbeenpermanently deformed.The plasticstretch associatedwith li is λp = li/l0.Further,theslopeofthe unloadingcurveisapproximatelyconstantandequaltothatoftheloadingcurve, namely E. Thestretch λ ofthebarjustpriortounloadingisthusgivenby

where λe = l/li isthe elasticstretch,sonamedbecause,accordingtothegraph,

Thus,theelasticstretchbearsthesamerelationtothestressasthatassociatedwiththe initialelasticresponseofthebar.

Thephenomenologyjustdescribedleadsimmediatelytotheimportantobservation thattheelasticpropertiesofthematerial,asreflectedintheuniaxialcasebyYoung’s modulus,areroughlyinsensitivetoplasticdeformation.Thisobservationcarriesoverto otherelasticpropertiesofcrystallinematerials,asdocumentedintheextensiveexperimentalworkofG.I.Taylorandassociatesandsummarizedintheintroductorychapter of Hill’s classictreatise.Inparticular,thebasiclatticestructureofametalliccrystal,the seatofitselasticproperties,remainslargelyundisturbedbytherelativeplasticslipof

crystallographicplanes.Thisobservationwillbeincorporatedasacornerstoneofthe theorytobedeveloped.

Beyondthisitisinvariablytruethat TY/E ≪ 1inmetals,implyingthat |T| /E ≪ 1 andhencethat |ln λe|≪ 1.Accordingly, T ≃ Eεe,where εe = λe 1;thatis,theelastic strain εe isinvariablysmallinmagnitude.Afurtherobservationabouttheuniaxialbar testisthat λp remainsunchangedaslongas |T| <TY,thecurrentvalueoftheyieldstress justpriortounloading.Indeedtheprimarypurposeofplasticitytheoryistodescribe how λp,or,moreaccurately,itsthree-dimensionalcounterpart,evolveswhentheyield limitisreached.Inconnectionwiththisitisnecessarytohaveaneffectivemodelofstrain hardening,thisarguablyconstitutingthemainopenproblemofthephenomenological theory.Indeedthisaspectofthesubjectisaprincipalfocusofmuchcontemporary research.Laterinthebook,wewillendeavortosummarizesomeofthecurrentthinking inthisarea.

Wehavementionedtheroleofslipalongcrystallographicplanesasabasicmechanism ofplasticdeformation,givingrisetoanoverallsheardeformationonthemacro-scale. Thisisessentiallyafrictionalprocessandthusentailsthedissipationofenergy.The slidingdoesnottakeplaceallatonce,butisinsteadtheproductoftheprogressivemovementof dislocations throughthecrystallattice.Clearillustrationsofthisphenomenon aregiveninFigure 102.2 inthebookby Gurtinetal. andChapter1ofthebookby KovácsandZsoldos.Roughly,themovementofadislocationisinitiatedbythebreakingofanatomicbondbetweentwoatomsoccupyingadjacentlayersastheydisplace relativetoeachotherinresponsetoanappliedshearstress,say.Adisplacedatomthen formsabondwithitsnewnearestneighbor.Thisprocesscontinuesinasequentialmanneruntilalltheatomsinagivenlayeraredisplacedbyonelatticespacingrelativeto thoseoccupyingtheadjacentlayer.Thereasonwhythisprocessoccursviathepassageofadislocationratherthanallatonceisthatthedislocationmechanismrequires substantiallylesseffort.Thiscanbereadilyunderstoodintermsofthefamouscarpet analogy:Thus,imaginebeingtaskedwiththejobofdisplacingacarpetacrossafloor, allthewhilemaintainingasubstantialamountofcontactbetweenthetwo.Thisisthe analogoftherelativeplasticslipofadjacentplanesofthelattice.Onecandragthecarpetwholly,ofcourse,butitismucheasiertocreateanarrowwrinkleatoneendand simplypushitacrosstheremainingpartofthecarpet.Theneteffectofthisprocedureisthattheentirecarpethasbeendisplacedenmasseonceithasbeentraversedby thewrinkle.

Adislocationengendersalocaldistortionofthelatticeinthecourseofitsmovement alongacrystallographicplane.Recallingthatthelatticeistheseatoftheelasticresponse ofthematerial,itfollowsthatdislocationsindirectlyinducealocalstressfieldintheir vicinity.Thus,totheextentthatdislocationsarepresentinanunloadedcrystal,they generateafieldof residualstress inthematerial.Thistooissomethingthatagoodtheory shouldbeabletopredict.

Naturallydislocationsinrealcrystalsare,likeatoms,discretefeatures,but,likeatoms, theyareusuallysodenselydistributedinatypicalsampleastorendermeaningfultheir descriptionintermsofacontinuousdistribution.Wethenspeakofa dislocationdensity in muchthesamewayasmassdensityisusedtomodeldenselydistributedmatter.Inturn,

thenotionofadislocationdensityhasafascinatingconnectionwithcertainconceptsin non-Euclideandifferentialgeometry,tobeexploredlater.

Mostmetallicpartsusedinengineeringapplicationsarepolycrystalline,consisting ofsmallgrainsofpurecrystalwithinwhichthemechanismofdislocationmotionis operative.Thesegrainsjoinatgrainboundaries,wheretheirinteractionscontributeto theoverallplasticresponseoftheaggregate.Oftenthesegrainsaremoreorlessrandomlyoriented,sothatatamesoscopicscaletheaggregaterespondsinthemannerof anisotropiccontinuum.Forthisreasontheclassicaltheoryofplasticityisconcerned almostexclusivelywiththeresponseofisotropicmaterials,whereastheoriesforcrystallinematerialsarelargelyconfinedtotheresearchliterature.Thevolumeeditedby Teodosiu andthebooksby HavnerandGurtinetal. areexceptionstothisruleandconstituteessentialreadinginthefieldofcrystalplasticity.Thisisnottosaythatthetheory forisotropicmaterialsispassé.Onthecontrary,thedifficultiesencounteredinreconcilingclassicalplasticitytheorywithmoderncontinuummechanicsarereadilyresolved intheframeworkofthemoderntheory.Accordinglywedevotesubstantialspacetothe isotropictheoryinthisbook.

Weconfineattentiontothepurelymechanicaltheorybecausethisiswherethemain conceptualchallengeslie.Treatmentsofthethermodynamicaltheorymaybefoundin thebooksby EpsteinandEl anowski andby Maugin.

1.2 Elementsofcontinuummechanics

Forthemostpart,ourdevelopmentisbasedonthestandardframeworkofcontinuum mechanicsasconceivedbyCauchy.Thus,wedonottakecouplestressesorhigherorder stressesintoaccount.Thisisverymuchinaccordwiththevastmajorityofworkinplasticitytheory.Muchofthemodernliteraturealsoseekstodescribelength-scaleeffects associatedwithplasticresponse.Thisistypicallymodeledbyincludinggradientsofplasticdeformationamongthevariablesappearinginconstitutiveequations,whilekeeping muchofCauchy’sframeworkintact.Wewilldevotesomeeffortlatertoadiscussionof thesedevelopments.Fornow,however,weshallbecontentwithabriefsurveyofthe basicelementsofcontinuummechanicsthatareneededforourwork.Detaileddiscussionsofeverythingsaidheremaybefoundinthetextbooksby Gurtin, Chadwick,and Liu,forexample.

Concerningnotation,weadoptthestandardsymbols At , A 1 , A∗ , SymA, SkwA, DevA,and JA.Theseare,respectively,thetranspose,inverse,cofactor,symmetricpart, skewpart,deviatoricpart,anddeterminantofasecond-ordertensor A.If A isinvertible, then A∗ = JAA t.Wealsouse Sym toidentifythelinearspaceofsymmetrictensors. Thetensorproductof3-vectorsisindicatedbyinterposingthesymbol ⊗,i.e., a ⊗ b, andisdefinedby (a ⊗ b)v = (b v)a foranyvector v. TheEuclideaninnerproduct oftensors A,B isdenotedanddefinedby A B = tr(ABt),where tr( ) isthetrace;the inducednormis |A| = √A · A.Forafourth-ordertensor A,thenotation A[B] stands forthesecond-ordertensorresultingfromthelinearactionof A on B. Itstranspose At isdefinedby B ·At[A] = A ·A[B],and A issaidtopossessmajorsymmetryif

At = A.If A ·A[B] = At ·A[B] and A ·A[B] = A ·A[Bt],then A issaidtopossess minorsymmetry.Thenotation ( )A,withaboldsubscript,standsforthederivativeofa functionwithrespecttotensor A

Supposeabody B,consistingofafixedsetofmaterialpoints,occupiesaconfiguration κt attime t,aregioninathree-dimensionalEuclideanspace.Therestriction toEuclideanspaceisnotsufficientlygeneraltoaccommodateallconditions.Rather, itreflectsaprejudicederivedfromourterrestrial,non-relativistic,experience,whichis neverthelesssufficienttocovermostproblemsthatariseatthelevelofourpresenttechnologicaldevelopment.Let y bethepositionin κt,relativetoaspecifiedorigin,ofa materialpoint p ∈ B.Toconveythenotionthatthispositionisoccupiedby p,andonly by p,weconceiveofaninvertiblemap χ from B to κt suchthat

Ratherthandealwiththeetherealbody B directly,tofacilitateanalysiswepicksome fixedregionofEuclideanspace,labeled κ,thatstandsinone-to-onerelationtoit.We callthisa reference configuration.Forexample,itisusuallyconvenienttochoosearegion thatcould,inprinciple,beoccupiedbythebody,evenifitisneveractuallyoccupiedin thecourseofitsmotion.Quiteoftenanalystschoose κ = κt0 ,theactualconfigurationat time t0,whichofcourseautomaticallyfulfillstheoccupiabilitycondition.Whateverthe choiceofthereferenceconfiguration,westipulatethatthereexistsaone-to-onemap

from B to κ suchthat

where x isthepositionof p in κ relativetosomefixedorigin.Inthiswayweeffectively identify p withtheposition x thatitoccupiesinourchosen κ.Wethenhaveaone-to-one relation

calledthe deformation of p from κ to κt,where

inwhichthesubscriptisintendedtoidentifyourchoiceof κ.Attheriskofbeing imprecise,weusuallysuppressitwhenthereisnoriskofconfusion,andsimplywrite

, (1.9) withthecaveat,ofcourse,thatthisis not thesamefunctionasthatappearingin(1.5). Wearetypicallyinterestedindeformationsthatarecontinuousanddifferentiable, meaningthatformaterialpoints p1 and p2 occupyingpositions x1 =κ(p1) and x2 =κ(p2),

respectively,thatareneartoeachotherin κ,thereexistsatensorfield F(x, t),calledthe deformationgradient,suchthat

inwhichtheLandausymbol o(ϵ) identifiestermsthataresmallerthan ε forsmall ϵ; thatis, o(ϵ)/ϵ → 0as ϵ → 0.Itthenfollowsthat p1 and p2 areneartoeachother in κt aswell.Equation(1.10)definesthedeformationgradientandeffectivelyfurnishesthedefinitionofdifferentiabilityinthiscontext.Indeferencetothisweoften write

todenotethegradientof χ withrespectto x. Theinvertibilityof(1.9)impliesthat F is aninvertibletensor.ThisisaconsequenceoftheInverseFunctionTheorem.Seethe bookby Fleming.

Unfortunately,(1.10)doesnotaffordausefulwaytocomputethedeformationgradientintermsofthefunction χ(x, t).Torectifythis,supposethepoints p1 and p2 are connectedbyasmoothcurve c ⊂ κ witharclengthparametrization x(s),suchthat x1 = x(s1) and x2 = x(s2).Assumingagainthatthesepointsareneartoeachother, wethenhave

where |o(s2 s1)| = o(s2 s1).Combiningthiswith(1.10)gives

andpassagetothelimit

at x = x1,where,with t fixed,

Ofcoursethisisjustthechainrule.Inviewof(1.9)itismeaningfultowriteitinthe form

AswewillseeinChapter4,thisformulaaffordsadirectwaytoobtainexpressionsfor F whenthepositions y and x arespecifiedintermsofcoordinatesystems.Seethebook by Steigmann forsomeexplicitexamples.

Fromwhathasbeensaiditshouldbeevidentthat,atthematerialpoint p, dx(= x′ds) and dy(= y′ds) aretangentialtothecurves c ⊂ κ and ct ⊂ κt,respectively,thelatter havingtheparametricrepresentation y(s, t) = χ(x(s), t).Wecall c a materialcurve ,to conveythemeaningthatitisconvectedbythedeformationtoacurve ct consistingof thesamematerialpoints.Considertwomaterialcurvesthatintersectat x,withtangents dx and du. Thesearetransportedto dy and dz, respectively,where dz = Fdu,with F = F(x, t),asin(1.17).Thelocalstateofdistortionofthesematerialcurvesexistingat thematerialpoint p,occupyingposition x in κ,ischaracterizedby

istherightCauchy–Greendeformationtensor.Choosingthematerialcurvestocoincide, i.e., du = dx,yieldsthesquaredstretchofacurve.Equation(1.18)thenfurnishesthe localanglemadebythetangentstotwomaterialcurvesafterdeformation.

ForourpurposesitwillproveconvenienttoworkwiththeLagrangestrain

whichisinone-to-onerelationtotheCauchy–Greentensor,where I isthereferential unittensor,definedby Iv = v forallvectors v belongingtothevectorspace Tκ associated with κ.Thelatterisoftencalledthetranslationspaceof κ,toconveythenotionthatit coincideswiththesetofallpositiondifferencesthatcanbeformedwithinit.Because κ residesinEuclideanspacebyassumption,thistranslationspaceisidenticaltothe tangentspace oftheunderlying(Euclidean)manifold.Similarly,wedenotethetranslation (tangent)spaceassociatedwith κt by Tκt .Thus,Euclideanspacesareeffectivelyflat inthesensethattheycoincidewiththeirtangentspaces.Morewillbesaidaboutthis inChapter3.

Havingdiscussedthebareessentialsofthekinematicsofdeformation,wemoveonto thebasicbalancelawsconcerningmassandmomentum.

Let ρ(y, t) bethe(positive)massdensityofthebodyintheconfiguration κt.Themass ofasubregion πt ⊂ κt issimply

where π ⊂ κ istheimageof πt undertheinversedeformation,i.e., πt = χ(π, t),meaning thatthetworegionsarerelatedbythedeformationmapandconsistofthesamesetof materialpoints;and

where JF = |det F| ,isthereferentialmassdensity.Thisissimplythefamiliarchange-ofvariableformulafromcalculus.Inthisbookweassume κ isoccupiable,sothatdet F >0, butthisisbynomeansessential.

Theprincipleofconservationofmassistheassertionthatthemassofafixedset ofmaterialpointsremainsinvariantintime.Therefore,thetimederivativeof M(πt) vanishes.Becausethedomain π isfixedforthematerialpointsthatoccupy πt,wecan passthederivativethroughtheright-mostintegral—assumingsufficientregularityofthe integrand—toobtain

wherethesuperposeddotisthe materialderivative,thepartialtimederivativeholding p, andhence x, fixed.Because π isanarbitrarysubvolumeof κ,assumingtheintegrandto becontinuouswecaninvokethe localizationtheorem—basicallythemean-valuetheorem forintegrals—toconcludethattheintegrandvanishespointwise,i.e.,that ˙ ρκ =0at every x ∈ κ.Inotherwords,thefunction ρκ(x, t) =det F(x, t)ρ(χ(x, t), t),expressedas afunctionof x and t,isindependentof t andhenceafixedfunctionof x. Thisresult doesnotapplyinthepresenceofdiffusion,however.Inthiscaseourreasoningmust beadjustedtoaccountforthefluxofmassthroughtheboundary ∂πt.Seethebookby Gurtinetal.

Thebalanceoflinearmomentumistheassertionthatthenetforceactingonthe materialoccupying πt isbalancedbytherateofchangeofitsmomentum.Thus,

where t, the traction,isthearealdensityofcontactforce, b isthebodyforceperunitmass, and v = ˙ y = ∂ ∂t χ(x, t) isthematerialvelocity.Toreducetheright-handsideweproceed asinthereductionofthemassconservationprinciple.Thus,invokingconservationof massintheform ˙ ρκ =0,wehave

whichreduces(1.24)to

Assumingtheintegrandstobeboundedinmagnitude,thismaybeusedtoestablish that t isafunctionofthetangentplaneto ∂πt atthepoint y ∈ ∂πt;equivalently,afunction oftheunitnormal n to ∂πt at y. Seetheimportantpaperby Noll.Fordefinitenesswe takethistobetheexteriorunitnormal.Withthisresultinhandwemayproceedvia Cauchy’stheoremtoshowthatthedependenceislinear,andhencethatthereexistsa tensorfield T(y, t),the Cauchystress,suchthat

Substitutinginto(1.26)andinvokingthedivergencetheorem,weobtain

where divA isthevectorfielddefinedby

foranytensorfield A(y, t) andany fixed vector c. Here divw isthescalarfield definedby

where tr isthetraceand gradw, thegradientofavectorfield w(y, t) withrespectto y,is thetensorfielddefined,asin(1.17),by

Assumingtheintegrandin(1.28)tobeacontinuousfunctionof y, wecanlocalize andarriveatCauchy’sequationofmotion,

holdingateach y ∈ κt.Generalizationstodiscontinuousfieldswillbeconsideredin Chapter6.

Thebalanceofmomentofmomentumistheassertionthat

where y isthepositionfieldrelativetoafixedorigin.Invokingconservationofmass,the tractionformula(1.27),thelinearmomentumbalance(1.32),andlocalizingasbefore,

wearriveultimatelyatthelocalalgebraicrestriction

againatevery y ∈ κt.Equations(1.32)and(1.34)areoftenreferredtoasthe spatial equationsofmotion.

Problem1.1 Prove(1.34)bycarryingoutthestepsindicated.

Equivalent referential formsoftheequations,dueessentiallytoPiola,maybederived withtheaidofthePiola–Nansonformula

connectingtheorientedareameasure nda on ∂πt toitscounterpart νdA on ∂π.Here

isthe cofactor of F. Thus,from(1.22),(1.26),and(1.27),

isthe Piolastress. Clearly,thisprovidesameasureofforceperunitreferencearea, whereastheCauchystressfurnishesaresolutionofthesameforceperunitareaofsurfaceafterdeformation.Applyingthedivergencetheoremagain,thistimeinthereference configuration,wehave

where Div,thedivergencewithrespectto x,isdefined,withobviousadjustments,inthe samewaythat div wasdefined.Localizingasusual,wefindthat(1.39)isequivalentto

holdingateach x ∈ κ,thisformulationhavingtheconvenientfeaturethatthefunction ρκ(x) isknownapriori,whereasthesymmetrycondition(1.34)isequivalentto

Toexpressthelatterconditioninamoreconvenientformweintroducethe Piola–Kirchhoffstress S,definedby

Then PFt = FSFt andtheinvertibilityof F impliesthat(1.41)isequivalenttothe symmetry

Beforeconcludingthesepreliminarieswepausetostatethemechanicalenergy balance,

isthekineticenergyofthematerialoccupying π,

isthe stresspower,inwhich A B = tr(ABt) isthe innerproduct oftensors A and B, and

isthepoweroftheforcesactingonthematerialin π,inwhich

isthePiolatraction,relatedtotheCauchytraction t by

Themechanicalenergybalancewillplayacentralroleinourdevelopment.

Problem1.2 Derive(1.44)fromthemomentumbalance(1.40).Hint:Dotmultiply (1.40)bythematerialvelocity v.Showthat v · DivP = Div(Pt v) P · ∇v,where ∇ isthegradientwithrespectto x, andthat ∇v = F.Integrateover π ⊂ κ andinvoke thedivergencetheorem.

Withreferencetotheproblem,notethatifwedotmultiply(1.40)byanarbitrary vectorfield u insteadofthematerialvelocity v, wearriveattheintegralstatement

inplaceof(1.44).Itisusual,thoughnodoubtunwisefromthepedagogicalpointofview, tocall u a virtual velocityfield,orworse,avirtual displacement,toemphasizethefact thatithasnothingwhatevertodowiththeactualmaterialvelocity.Thisisthe weakform oftheequationofmotion,sonamedbecauseitrequiresaweakerdegreeofregularity thanthelocal,or strong,form.

Althoughwehaveobtaineditasanecessaryconditionfor(1.40),itisalsosufficient. Toseethiswesimplystartwith(1.50),write P · ∇u = Div(Ptu) u · DivP,andapply thedivergencetheorem,reaching

As u isarbitrary,wechoose

where f(x) isanyfunctionthatvanisheson ∂π,therebyreducing(1.51)to

andhencerequiringthat(1.40)holdlocallyin π,leaving

astheremainingcontentof(1.51).Choosing u = p PN on ∂π thenyields

whichinturnrequiresthat(1.48)holdlocally,ateachpointof ∂π. Moreoftenthisprocedureisinvokedwith π replacedby κ.Inthiscaseposition y = χ(x, t) istypicallyassignedasafixedfunction ϕ(x), say,onapart ∂κy oftheboundary ∂κ ,implyingthattheactualvelocity v vanishesthere.Wethenstipulatethat u should alsovanishon ∂κy,asaconditionofaso-called kinematicallyadmissible virtualvelocity field.Theargumentleadingto(1.53),with π replacedby κ,remainsvalid,butinplace of(1.54)wenowhave

y.Choosing

where g(x) isanyfunctionthatvanishesonthecurve(s) ∂(∂κp) = ∂(∂κy) inaccordance withkinematicadmissibility,wethenhave

whichrequiresthat(1.48)holdpointwiseon ∂κp.

References

Batchelor,G.K.(Ed.)(1958). TheScientificPapersofSirGeoffreyIngramTaylor,Vol.1: Mechanics ofSolids.CambridgeUniversityPress,Cambridge,UK. Chadwick,P.(1976). ContinuumMechanics:ConciseTheoryandProblems. Dover,NewYork. Epstein,M.,andEl anowski,M(2007). MaterialInhomogeneitiesandTheirEvolution.Springer, Berlin. Fleming,W.(1977). FunctionsofSeveralVariables. Springer,Berlin. Gurtin,M.E.(1981). AnIntroductiontoContinuumMechanics. AcademicPress,Orlando. Gurtin,M.E.,Fried,E.,andAnand,L.(2010). TheMechanicsandThermodynamicsofContinua. CambridgeUniversityPress,Cambridge,UK. Havner,K.S.(1992). FinitePlasticDeformationofCrystallineSolids. CambridgeUniversityPress, Cambridge,UK. Hill,R.(1950). TheMathematicalTheoryofPlasticity.OxfordUniversityPress,Oxford. Liu,I-Shih.(2002). ContinuumMechanics. Springer,Berlin. Kovács,I.,andZsoldos,L.(1973). DislocationsandPlasticDeformation. PergamonPress,Oxford.

Maugin,G.A.(1992). TheThermomechanicsofPlasticityandFracture. CambridgeUniversity Press,Cambridge,UK.

Noll,W.(1974).Thefoundationsofclassicalmechanicsinthelightofrecentadvancesin continuummechanics.ReprintedinTruesdell,C.(Ed.), TheFoundationsofMechanicsand Thermodynamics, pp.32–47Springer,Berlin.

Steigmann,D.J.(2017). FiniteElasticityTheory.OxfordUniversityPress,Oxford. Teodosiu,C.(Ed)(1997). LargePlasticDeformationofCrystallineAggregates. CISMCoursesand Lectures,No.376.Springer,Vienna.

Briefresuméofnonlinearelasticity theory

Familiaritywiththebasicelementsofnonlinearelasticitytheoryisessentialtoaproper understandingofvirtuallytheentirerangeoftopicscomprisingsolidmechanicsingeneral,andplasticitytheoryinparticular.Accordinglywedevotethepresentchapterto abriefsurveyofthoseaspectsofnonlinearelasticitythatwillprovecentraltoourlater work.

2.1 Stressandstrainenergy

FollowingNoll’slandmark1958paper,wedefine elasticity tomeanthatthevalueofthe Cauchystress T(p, t) existingatthematerialpoint p ∈ B attime t isdeterminedbythe presentvalueofthedeformationfunction χ(x′ , t) for x′ ∈ Nκ(x),anarbitrary,andhence arbitrarilysmall,neighborhoodoftheplace x occupiedby p inreferenceconfiguration κ.Ourassumptionofdifferentiabilityofthedeformation—see(1.10)—impliesthatthe deformationsinfluencingthisstressareapproximatedby

andarethereforedetermined,atlinear-orderaccuracy,by χ(x, t) and F(x, t). Therequirementofframeinvariancesatisfiedbyallsensibleconstitutivefunctions impliesthattheconstitutiveequationgivingthestressis,amongotherthings, translationinvariant inthesensethatitremainsinvariantunderconstanttimetranslationsand perturbationsoftheposition y currentlyoccupiedbyamaterialpoint.Itisthereforenot explicitlydependenton t or χ(x, t).Accordingly,atleadingorderthestressisdetermined by F(x, t).TerminationatthisorderleadstoNoll’s simplematerial modelofelasticity, accordingtowhich

forsome constitutivefunction Tκ,thesubscriptidentifyingthereferenceconfiguration relativetowhichthedeformationgradientiscomputed.Itisbesttomakethisexplicitto

ACourseonPlasticityTheory.DavidJ.Steigmann,OxfordUniversityPress.©DavidJ.Steigmann(2022). DOI:10.1093/oso/9780192883155.003.0002

avoidconfusionwhenchoosingalternativereferenceconfigurations,asweshalldolater. Ofcourseitispossibletokeepfurthertermsintheexpansion(2.1)andtocontemplate theirinfluenceonconstitutiveequationsforso-called materialsofhighergrade.While theseareimportantanduseful,theyareoflimitedrelevancetothecurrentstateofthe artinplasticitytheory.Giventheconstitutivefunction Tκ fortheCauchystress,thatfor thePiolastress,forexample,relativetothesamereferenceconfiguration,followseasily from(1.38):

Frameinvarianceimposesfurtherrestrictionsontheseconstitutivefunctions,butto savetimewedefertheseandproceedinsteadtoafurtherspecializationofthepurely mechanicaltheory.Thisistheso-called workinequality,whichpositsthatitisnecessary toperformnon-negativeworkonasampleofmaterialtocauseittoundergoahypotheticalcyclicprocess;thatis,aprocessinwhichthedeformationandvelocityfieldsatthe startandendofaprocess,occurringinatimeinterval [t1, t2],coincideateverymaterial point,i.e.,

Takinggradients,theseimplythat

Thisassumptionisrelatedtothehypothesisknownmorepopularlyasthenonexistenceofperpetualmotionmachines.However,giventhatallmaterialpointsofthe sampleareinvolved,thecreationofacyclicprocessisnosmallfeatfromtheexperimentalpointofview.Moreover,whilethisassumptionhasathermodynamicalflavor,itis notinfactaconsequenceofanyprincipleofthermodynamics.Itisneverthelessrealistic, andinaccordwitheverydayexperience.

Proceeding,weimposetheworkinequalityonanarbitrarysubvolume π ⊂ κ,invoke (1.44),and,notingthatthekineticenergiesatthestartandendofthecyclecoincide, concludethat

where S isthestresspowerdefinedin(1.46).Assumingtheintegrandthereintobe continuousin [t1, t2] × π,Fubini’stheorem(see Fleming’s book)ensuresthatwecan interchangetheorderofintegration,andhencethat

Localizingasusual,wehave

andhence,inthecaseofelasticity,

inwhichtheintegralistakenroundasmoothcurvein F-space,inaccordancewiththe definitionofacyclicprocess,andtheparametricdependenceon x, havingnobearingonthediscussion,hasbeensuppressed.Byconsideringthereversalofthiscyclic process—itselfcyclic—itispossibletoshow—seethebooksby Gurtin and Steigmann, forexample—thatthisstatementissatisfiedasanequalityforallsmoothclosedcurves. This,inturn,isnecessaryandsufficientfortheexistenceofa strain-energy function Ψ(F;x), say,suchthat

thegradientof Ψ withrespectto F. Giventhefunction Ψ,thisgradientiseasilycomputed viathechainrulebywriting dΨ asalinearformin dF andreadingoffthecoefficient tensor,i.e.,

Wethushave

andhencetheratherremarkableconclusionthatthestressisdeterminedbyasingle scalar-valuedfunction.Wethenrefer,somewhatdramatically,toa hyperelasticmaterial. Thestrain-energyfunctionhasasargumentsvariablesdefinedon κ,whichshouldthereforebeappendedasasubscript.Inanefforttominimizeclutterwenormallyrefrainfrom doingthiswhenthecontextisclear.

Oncombining(2.2),(2.3),and(2.10),thesymmetrycondition(1.34)satisfiedby theCauchystressmaybeexpressedintermsofthestrain-energyfunctionas

whichinturnisequivalenttothestatement

forarbitraryskew Ω;thatis,forall Ω suchthat Ωt = Ω.Theidentity

allowsustorewritethisas

Ourintentionistocharacterizeallfunctions Ψ thatsatisfythisrequirement.Ifwe succeed,thenwecanreplacethesymmetryoftheCauchystressonceandforallbythe generalformof Ψ tobederived.Beforeundertakingthistask,however,abriefdigression isinorder.

Considertheinitial-valueproblem

where Q(u) isaone-parameterfamilyoftensors,thesuperposeddotstandsforthe derivativewithrespectto u, Ω isafixed,butarbitrary,skewtensor,and i isthespatialidentitytensor.Wewanttoshowthat Q(u) isarotationtensorforallvaluesofthe parameter u

Tothisendwedefine

andfind,with(2.17),thatthissatisfiestheinitial-valueproblem

Clearly Z(u) = i isasolution,andtheuniquenesstheoremforsolutionstoordinary differentialequationsimpliesthatthereisnoother.Thus, Q(u) isorthogonalandhence invertible.Toestablishthatitisarotation,weneedtoshowthatitsdeterminantequals unity.Thisfollowsfromthethefactthatthecofactorofatensoristhederivativeofits determinant,i.e.,

whichvanishesbecause Ω isskew,implyingthat JQ(u) = JQ(0) =1,asclaimed. Returningtothetaskathand,considertheone-parameterfamily

(2.21) with Q(u) asintheforegoing.Becausethispertainstoasingle(butarbitrary)material point,thefactthat F isthegradientofadeformationdoesnotimposeanyrestrictionon itsvaluesbeyond JF0 >0,assumingthereferenceconfigurationtobeoccupiable.We thenhave

Accordingly,forthischoice(2.16)reducesto 0= ΨF · F = Ψ, (2.23)

orsimplythat Ψ(F(u)) = Ψ(F0),wherewehaveagainsuppressedthepassiveargument x. Droppingthesubscriptandreinstatingthisargument,weconcludethatthesymmetry oftheCauchystressimpliestheinvarianceoftheenergyundersuperposedrotations, i.e.,

foranyrotation Q. For Q spatiallyuniform,thisispreciselytheconditionofframeinvarianceoftheenergy,whichimpliesthatitisinsensitivetoarbitraryrigid-bodymotions

superposedonthedeformation χ(x, t),where c isanarbitraryvector.Seethetreatment offrameinvarianceintheimportantpaperby Murdoch anditsadaptationtoelasticity inthebookby Steigmann

Wehaveshownthat(2.24)isnecessaryfor(1.34).Itisalsosufficient.Todemonstrate this,recallthedefinition(1.19)oftheCauchy–Greendeformationtensor.Considertwo deformationgradients F and F andlet Q = FF 1 .Let C and C respectivelybethe Cauchy–Greentensorsformedfrom F and ˜ F.

Problem2.1 If ˜ C = C,showthat ˜ Q t ˜ Q = i,sothat ˜ Q isorthogonal.Conversely,show thatif ˜ Q isorthogonal,then ˜ C = C.

Supposethat Ψ(F; x) = Ψ(F;x) whenever F = QF,with Q arotationandhence orthogonal.Thisissimplyarestatementof(2.24).Then,fromtheproblem,itfollows that Ψ( ˜ F; x) = Ψ(F;x) whenever C = C.Thismeansthat Ψ dependson F throughthe inducedCauchy–Greentensor,andhencethat

Ψ(F;x) = ˆ Ψ(C;x) (2.26)

forsomefunction ˆ Ψ.Equivalently, Ψ(F;x) = U(E;x), (2.27) where,from(1.20), U(E;x) = ˆ Ψ(2E + I; x).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.