Where can buy Magnetic communications: theory and techniques liu ebook with cheap price

Page 1


Magnetic Communications: Theory and Techniques Liu

Visit to download the full and correct content document: https://ebookmass.com/product/magnetic-communications-theory-and-techniques-liu/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Digital Communications 1: Fundamentals and Techniques

Safwan El Assad

https://ebookmass.com/product/digitalcommunications-1-fundamentals-and-techniques-safwan-el-assad/

Bayesian Optimization : Theory and Practice Using Python Peng Liu

https://ebookmass.com/product/bayesian-optimization-theory-andpractice-using-python-peng-liu/

Supply Chain Analytics: Concepts, Techniques and Applications 1st Edition Kurt Y. Liu

https://ebookmass.com/product/supply-chain-analytics-conceptstechniques-and-applications-1st-edition-kurt-y-liu/

Tensors for Data Processing. Theory, Methods, and Applications Yipeng Liu

https://ebookmass.com/product/tensors-for-data-processing-theorymethods-and-applications-yipeng-liu/

Deep Reinforcement Learning for Wireless Communications and Networking: Theory, Applications and Implementation

https://ebookmass.com/product/deep-reinforcement-learning-forwireless-communications-and-networking-theory-applications-andimplementation-dinh-thai-hoang/

Magnetic Ferrites and Related Nanocomposites Ali Ghasemi

https://ebookmass.com/product/magnetic-ferrites-and-relatednanocomposites-ali-ghasemi/

Bancroft’s Theory and Practice of Histological Techniques 8th Edition Kim S Suvarna

https://ebookmass.com/product/bancrofts-theory-and-practice-ofhistological-techniques-8th-edition-kim-s-suvarna/

The Earths Magnetic Field Lowrie

https://ebookmass.com/product/the-earths-magnetic-field-lowrie/

Liu, Volpe, and Galetta’s Neuro-Ophthalmology: Diagnosis and Management, 3rd Edition Grant T. Liu

https://ebookmass.com/product/liu-volpe-and-galettas-neuroophthalmology-diagnosis-and-management-3rd-edition-grant-t-liu/

MagneticCommunications

Theidealreferencebookprovidingalltheinformationneededtofullyunderstand magneticcommunicationsinaself-containedsource,writtenbyexpertsinthefield. Thisbookoffersacomprehensiveintroductiontomagneticcommunicationusing easy-to-understandlanguagetoexplainconceptsthroughoutandintroducesthetheory stepbystepwithexamples.Acarefulbalanceofcombinedtheoreticalandpractical perspectiveisgiventhroughoutthebookwithinterdisciplinaryand multidisciplinary considerationsforanin-depthanddiverseunderstanding.Thisbookcoversthebackground,developments,fundaments,antennas,channels,performance,protocolrelated tomagneticcommunications,aswellasapplicationsthatareofcurrentinterest,such asInternetofThings(IoT),multiple-inputmultiple-output(MIMO),andwireless powertransfer.Thefiguresofmeritwithinmagneticcommunicationsystemcomponentsareincluded,demonstratinghow tobothmodelandanalyzethem.Thisbookwill beofgreatbenefittograduatestudents,researchers,andelectricalengineersworking inthefieldsofwirelesscommunicationsandtheIoT.

ErwuLiu isanIET(InstituteofEngineeringandTechnology)fellowandthefounding Editor-in-ChiefofIET/WileyBlockchain.HisteamdevelopedthefirstmagneticcommunicationsysteminChinaandhaswonvariousawards,includingtheSpecialAward intheChinaInternationalIndustryFair(2014)andtheFirstPlaceintheMicrosoft IndoorLocalizationCompetition(2016).

ZhiSun receivedhisPh.D.degreeinElectrical andComputerEngineeringfromGeorgiaInstituteofTechnology(2011).Heisa tenuredassociateprofessoratTsinghua University.Priortothat,hewasanassociateprofessorattheUniversityatBuffalo. ZhiSunisarecipientoftheUSNationalScienceFoundation(NSF)CAREERAward andaseniormemberoftheInstituteofElectricalandElectronicsEngineers(IEEE).

RuiWang receivedhisPh.D.degreeinEngineeringfromShanghaiJiaoTongUniversity.HeisanassociateprofessorintheDepartmentofComputerScienceand EngineeringatTongjiUniversity.Priortothat,hewaswithTheChineseUniversityof HongKong,asapost-doctoralresearchassociatebetween2013and2014.

HongzhiGuo receivedhisPh.D.degreeinElectrical andElectronicsEngineeringfrom TheStateUniversityofNewYorkatBuffalo(2017).Heisanassistantprofessorat NorfolkStateUniversity.Previously,hewasanassistantprofessoratUniversityof SouthernMaine.HongzhiGuoisarecipientoftheUSNSFCAREERAwardanda seniormemberofIEEE.

MagneticCommunications

TheoryandTechniques

ERWULIU

TongjiUniversity

ZHISUN

TsinghuaUniversity

RUIWANG

TongjiUniversity

HONGZHIGUO

NorfolkStateUniversity

ShaftesburyRoad,CambridgeCB28EA,UnitedKingdom

OneLibertyPlaza,20thFloor,NewYork,NY10006,USA

477WilliamstownRoad,PortMelbourne,VIC3207,Australia

314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India

103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467

CambridgeUniversityPressispartofCambridgeUniversityPress&Assessment, adepartmentoftheUniversityofCambridge.

WesharetheUniversity’smissiontocontributetosocietythroughthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence.

www.cambridge.org

Informationonthistitle: www.cambridge.org/9781108481670

DOI: 10.1017/9781108674843

© ErwuLiu,ZhiSun,RuiWang,andHongzhiGuo2024

Thispublicationisincopyright.Subjecttostatutoryexceptionandtotheprovisions ofrelevantcollectivelicensingagreements,noreproductionofanypartmaytake placewithoutthewrittenpermissionofCambridgeUniversityPress&Assessment. Firstpublished2024

AcataloguerecordforthispublicationisavailablefromtheBritishLibrary

ACataloging-in-Publicationdatarecordforthisbookisavailablefromthe LibraryofCongress

ISBN978-1-108-48167-0Hardback

CambridgeUniversityPress&Assessmenthasnoresponsibilityforthepersistence oraccuracyofURLsforexternalorthird-partyinternetwebsitesreferredtointhis publicationanddoesnotguaranteethatanycontentonsuchwebsitesis,orwill remain,accurateorappropriate.

Preface

Usingthenearfieldofacoiltotransmitasignalinsteadofpropagationwaves,magneticcommunicationturnsouttobeaneffectiveandreliablecommunicationapproach forextremelyharshenvironmentsthatarehostiletowirelesscommunicationssuchas sensornetworkingundergroundorunderwater.Magneticcommunicationtechnologies havenotonlythegreatsignificanceforthedevelopmentofcommunicationtheorybut alsothegreatpotentialforalargenumberofengineeringapplicationsintheInternet ofThings(IoT)era.

Theso-calledmagneticcommunicationmakesuseofthetime-varyingmagnetic fieldproducedbythetransmittingantenna,sothatthereceivingantennareceivesthe energysignalbymutualinductance.Researchesshowthatthepenetrabilityofamagneticcommunicationsystemdependsonthemagneticpermeabilityofthemedium. Becausethemagneticpermeabilityofthelayer,rock,ice,soil,andorebedisclose totheair,channelconditionsbringlesseffectstomagnetictransmissionthanelectrictransmission.Therefore,thecommunicationnetworkbasedondeep-penetrating magneticinduction(MI)canexpandtheperceptionabilityandsensingrangeofinformationtechnologyeffectively,whichcanbeappliedtocomplexenvironments,suchas underground,underwater,tunnel,mountain,rock,ice,andforest.Thesubjectiscurrentlyreceivinggreatscientificattention, andseveralimportantnewresultshavebeen recentlyobtained.Thisbookwillpresenta comprehensiveaccountofthisemerging field.

Thebookcomprisesthreeparts.

-PartI:IntroductionandPropertiesofMI

Twoinitialchapters(Chapters1–2)ofthispartgiveanintroductionabout magneticcommunications.Chapter1presentsthehistory,stateoftheart,and researchchallengesofmagneticcommunications.Chapter2brieflydiscussesthe differencesbetweenmagneticcommunicationsandotherwireless communications.Italsodescribessomebasicperformanceindicatorsofmagnetic communications.Thischapterconstitutesthereferencepointforappreciatingthe resultsthatMIholds.

Subsequently,twochaptersaredevotedtoantennatechnologyformagnetic communication(Chapter3)andchannelcharacteristics(Chapter4).

-PartII:TheoreticalBasis

Thispartmainlyexpoundsthetheoryofmagneticcommunicationfromdifferent aspects.Specifically,theMIconnection(Chapter5),networkperformance (Chapter6),andprotocolstacks(Chapter7)areanalyzed.

-PartIII:Applications

Thispart(Chapter8)discussescertainMIapplicationstovalidatethepreviously introducedtheories.

Recentyearshaveseenagrowingtrendintheapplicationofcommunication technologiesinextremelyharshenvironments.Magneticcommunicationisusually necessarywhenwewantreliablesignalpropagationthroughradio-frequency-hostile (RF-hostile)media.Inprinciple,magneticcommunicationiscomplementarytowirelesscommunications.Thisiswhyitisimportanttounderstandthefiguresofmeritof thecomponentsofamagneticcommunicationsystem,howtomodelthem,andhowto analyzethem.Moreover,withthefastpenetrationoftheIoTservicesintoRF-hostile environments,anin-depthunderstandingofmagneticcommunicationtechnologiesis highlydesired.Althoughseveralresearchpapersonmagneticcommunicationsare availabletodate,theavailableinformationisverylimited.Itistheappropriatetime tohaveareferencebookprovidingalltheinformationneededtounderstandmagnetic communicationsinasinglevolume.Werecognizethatasingle-volumebookcannot coveralltechniques,norisitourintentiontocovereverythinginonesinglebook. Instead,wehopethisbookwillserveourpurposeofofferingafirstcourseonthis importantandboomingsubjectofmagneticcommunicationsandwillraisetheinterest neededtotakemagneticcommunicationresear ch,development,andstandardization activitiestothenextlevel.

Thisbookwillbeofinterestforgraduatestudents,researchers,andelectricalengineersworkinginthefieldsofwirelessandtheIoT.Itwillprovideacomprehensive introductiontomagneticcommunicationfromacombinedtheoreticalandpracticalperspective,andthereadersareexpectedtohavebasicknowledgeinwireless communicationsandelectromagnetictheory.

PartI

1 Introduction

Asoneofthemostvibrantareasinthecommunicationfield,wirelesscommunication hasbeengoingthroughrapiddevelopment.Ontheotherhand,therehasbeenanexplosiveincreaseindemandfortetherlessaccessinmoreandmorescenarios.TheInternet ofThings(IoT),forinstance,isanimportantdevelopmentstageofinformationage. ThevisionofIoTistoachieve“InternetofEverything”;thekeytotherealizationof thegoalistobuildafullyconnectedmultiusernetworkthatcanbeappliedtodiversifiedcommunications.AsIoTapplicationsareextendingtomoreandmorescenarios, commonwirelesscommunicationtechniquesusingelectromagnetic(EM)wavesare becomingdissatisfactoryinbothcoverageandconnectivity.EMwavesexperience highlevelsofattenuationduetoabsorptionbyanaturalmedium,suchassoil,rock, andwater,whichleadstoitsinabilitytotransmitinsomechallengingenvironments (underground,deepmine,mountain,rock,ice,tunnel,underwater,forest, ...)aswell asrestrictionstothedevelopmentofIoT.

Toovercomethisdifficulty,deeppenetrationtechniques,suchasmagneticcommunications(MC),havebroughtsolutionstothesetransmissionproblems.Theso-called MCmakesuseofthetime-varyingmagneticfieldproducedbythetransmitting antenna,sothatthereceivingantennareceivestheenergysignalbymutualinductance. ResearchesshowthatthepenetrabilityoftheMCsystemdependsonthemagnetic permeabilityofthemedium.Becausethemagneticpermeabilityofthelayer,rock, ice,soil,andorebedisclosetotheair,channelconditionsbringlesseffectstomagnetictransmissionthanelectrictransmission.Therefore,thecommunicationnetwork basedondeep-penetratingmagneticinduction(MI)canexpandtheperceptionabilityandsensingrangeofinformationtechnologyeffectively,whichcanbeappliedto complexenvironments,suchasunderground,underwater,tunnel,mountain,rock,ice, andforest.WecanconcludethatthenetworkconstructionofIoTbasedonMCisof greatvalueandcanberegardedasoneofthereliabletechnologiestoimprovethe connectivityofawirelessnetwork.

Thedeep-penetratingMCtechnologyisbasedontheprincipleofmutualinductance ofthemagneticfield.Thealternatingmagneticfieldisgeneratedbythetransmittingcoil,andthereceivingterminalalsousesthecoilantennatomeasurethemutual inductanceofthetime-varyingmagneticfieldinthespacetoobtaintheinformation encodedinthetime-varyingsignal(Fig.1.1).InMCtechnology,inordertoachieve reliablelong-distancepenetratingtransmission,thesensitivityofthereceivingantenna isusuallyrequiredtoreachthepT(picoTesla)level.Inaddition,theperformance

optimizationofthetransmittercircuitin MC,antennadesign,andreceivingsignal noisefilteringareverychallengingtechnicalaspects.

FundamentalEMfieldandcircuittheoriesforMCareincludedinthischapter.AdvancedMCtheoryandlatestMIapplicationsarediscussedinthefollowing chapters.

1.1MagneticCommunicationandWirelessCommunication

Inthelasttwodecades,drivenbyawealth oftheoreticaldevelopmentandpractical requirement,manykindsofcommunicationtechnologiesunderdifferentsituations drewtheattentionofresearchcommunity.Atpresent,themainstreamcommunicationtechnologiesincludeacousticcommunication,opticalwavescommunication, EMwavecommunication,andMC.This chaptercoversthesubjectofthedifferences betweenMCandwirelesscommunication.

1.1.1TheComparisonbetweenMagneticCommunicationandOtherWireless Communications

Formostchallengingenvironmentsmentionedinthebeginning,therearenowirelesscommunicationsdeploymentattemptsbeforeIoTapplications.Ontheotherhand, otherwirelesscommunicationtechnologiesarenotabletoprovidereliablecoverageandconnectivityinsuchenvironments.Takeundergroundmineforexample, EM-wave-basedwirelesscommunicationcanonlysupportasemi-wirelesssystem, inwhichthelinksbetweenthesurfaceandundergroundarewired.Suchasystemis vulnerable,especiallyinadisastersituation.

However,inanunderwaterenvironment,manywirelesscommunicationtechnologieshavebeenstudiedforbothindustryandmilitarydemands.Themajorityofthe workonunderwatercommunicationismainlybasedonacousticcommunication, whileitexhibitshighpropagationdelaysalongwithverylowdatarates,andhighly

Figure1.1 Wirelessmagneticcommunication

Figure1.2 Communicationscenariosunderruggedenvironment environment-dependentchannelbehavior.Thehighlyenvironment-dependentchannelbehaviorinunderwatercommunicationiscausedbycomplexmultipathfading, prevalentDopplereffects,andsignificantvariationofthesepropertiesduetotemperature,salinity,orpressure[1].Opticalwavesdonotsufferfromhighattenuationbut experiencemultiplescatteringoflight,whichresultsininter-symbolinterferenceand shorttransmissionrange[2].Moreover,thetransmissionofopticalsignalsrequires highprecisioninpointingthenarrowlaserbeams.Traditionalwirelesscommunication techniquesusingEMwavesencounterthreemajorproblems:highpathloss,dynamic channelcondition,andlargeantennasize[3].EMwavesexperiencehighattenuation thatseverelylimitstheachievablecommunicationrange.Toincreasethecommunicationrange,largeantennasarerequiredfor low-frequencyEMcommunication,which isnotpracticalforsmallunderwatervehiclesandrobots.

Tosumup,thepenetrationabilityofthetraditionalapproachesisrelativelyweak, leadingtopropagationdifficultiesinachallengingenvironment,suchasunderground, deepmine,mountainarea,terrane,tunnel,underwater,andforests,asshownin Fig.1.2.

1.1.2BenefitsofMagneticCommunication

Magneticcommunicationisapromisingalternativetechniqueprovidingsolutions forthementionedproblems.Itutilizesthetransmittingantennastogenerateatimevaryingmagneticfieldsinthemedium,thus enablingthereceivingantennastoreceive theenergysignalinasenseofmutualinductance.OurresearchshowsthatthedielectricpenetrationperformanceoftheMCsystemdependsmainlyonthemagnetic conductivityofthemedium.

UsingMIcouldhaveseveralbenefits.Oneofthesebenefitsisthatdensemedia (suchassoilandwater)causelittlevariationintherateofattenuationofmagnetic fieldsfromthatofair,sincethemagneticpenetrabilityforeachofthesematerials isalmostthesame[4].Althoughgenerallyunfavorableforopen-aircommunication sincethemagneticfieldstrengthfallsfasterthanthatinEMwaves,thereductionin signallosscausedbypropagationthroughsoilcompensatesforthisintheunderground scenario.

AnotherfavorablepropertyofMIisthatsincethemagneticfieldisgeneratedin thenearfield,itisnon-propagating[4],whichmeansthatmultipathfadingisnota problemforMC.Moreover,sincecommunicationisachievedbycouplinginthenonpropagatingnearfield,atransmittingdevicecandetectthepresenceofanyactive receiversviatheinducedloadonthecoil.Thispropertymayprovidevaluableinformationforprotocols,actingasatypeofacknowledgementthatthetransmissionwas sensedbyaremotedevice.

InanMCsystem,theantennadesignisaccomplishedwiththeuseofacoilofwire forbothtransmissionandreception.Thestrengthofthemagneticfieldproducedby agivencoilisproportionaltothenumberofturnsofwire,thecross-sectionalareaof thecoil,andthemagneticpermeabilityofanymaterialplacedinthecoreofthecoil. TheuseofwirecoilsforMItransmissionandreceptionrepresentsasubstantialbenefitovertheuseofantennasforpropagatingEMwaves.Lowfrequenciesnecessary forthepropagationofEMwavesmeanthatlargeantennasarenecessaryforreasonableefficiency,whichobviouslyconflictswiththenecessitythatundergroundsensors remainsmall.

Wetaketheunderwaterscenario,forinstance,asshowninTable1.1.Althoughthe bandwidthoftheMIsystemissmallerthanthatoftheEMwavesystem,MCprovides alongertransmissionrange.MCalsohastheadvantagethatitsperformanceisnot influencedbythepropertiesofthemedium.

Basedontheadvantagesdiscussedabove,anMCnetworkcaneffectivelyexpand theawarenessandperceptionofthenetwork.Ithasagoodperformanceeveninsome harshscenarioswithmanynaturalmediumsormediumboundaries,suchasunderground,underwater,tunnels,massif,rockstratum,icelayer,andforest.TheMIsystem enablesareliableandstablecommunicationinsomechallengingenvironmentsinstead oftheEMsystem.

1.1.3ApplicationsofMagneticCommunication

DifferentfromthetraditionalEMcommunicationsystems,thetransmittingantennaof anMCsystemisequivalenttoamagneticdipole,whichalmostdoesnotgeneratean electricfield.Hence,theMIcarrierisnot apropagatingwave,anditcanberegarded asaquasi-staticmagneticfieldgeneratedintheair.So,theMIsignalsarefreefrom theinfluenceofmultipathpropagationcomparedwithordinarywirelesssignals.Due tothefactthatthepermeabilityofsoilandwaterisclosetothatofair,MIsignals

Table1.1 ComparisonofunderwaterMI,EM,acoustic,andopticalcommunications

CommunicationparadigmPropagationspeedDataratesCommunicationranges

MI3 33 × 108 m/sMb/s10–100m

EM3. 33 × 108 m/sMb/s ≤ 10m

Acoustic1,500m/skb/skm

Optical3. 33 × 108 m/sMb/s

CommunicationparadigmChanneldependencyStealthoperation

MIConductivityYes

EMConductivity,multipathYes

AcousticMultipath,Dropper, temperature,Audible pressure,salinity, environmentalsoundnoise

OpticalLightscattering,Visible line-of-sightcommunication, ambientlightnoise

caneasilypenetratemediumssuchaswater,sedimentlayer,androck.Therefore,MC enablemanyimportantapplications.

In[5],theauthorsintroducedMItechnologiestoawirelesssensornetworkfor undergroundpipelinemonitoring.ThisMCsystemcanprovidealow-costandrealtimeleakagedetectionandlocalizationtechniqueforundergroundpipelines.The authorsof[6]and[7]analyzedtheperformanceofanMCsystemunderwaterto measurebasiccommunicationmetrics,suchasthesignal-to-noiseratio,biterror rate(BER),connectivity,andcommunicationbandwidth.AnMCsystemcanalsobe appliedtoaddresstheissueofwatershortageconfrontingirrigation,whichwasstudiedin[8].Theauthorsof[8]usedtheMCnetworkforWirelessUndergroundSensor Networks(WUSN)insteadoftheEMwavecommunicationforWUSNtorealizean irrigationcontrolsysteminhorticultureinAustralia.Inadistrictheatingsystem,MC technologiesalsoplayabigroleincopingwiththechallengingundergroundchannel environmentdiscussedin[9].Inaddition,MCtechnologiescanbeofgreatbenefits inrescuingpeopleifthere’saminingdisaster,flooding,oracollapseofunderground tunnels[10].

Besidestheautomationandcommunicationapplicationspresentedabove,another importantapplicationofMCtechnologiesislocalization.MIlocalizationdoesnotrely onapropagatingwavebutgeneratesaquasi-staticmagneticfieldintheair.Thisdirectionhasdrawnmuchattentionrecently.Ateam attheUniversityofOxforddeveloped anMI-basedlocalizationsystemthatisshowninFig. 1.3 toprovide3Dlocalization in[11].Thisincrementallydeployedsystemcanquicklylocalizeachallengingundergroundscenariowithaccuracyaround1m.In[12],theMIsystemwasappliedto indoorlocalization.MIlocalizationhasahugeadvantagethatobstacles,suchaswalls, floors,andpeople,whichheavilyimpact theperformanceofEMwavesarealmost “transparent”totheMCsystem.However,theMIsystemhasitsowndrawback,i.e.,it

Figure1.3 MI-basedlocalizationsystem issensitivetomaterials.Byusingsignalprocessingandsensorfusionacrossmultiplesystemlayersagainstthesensitivitytomaterials,theMIlocalizationsystemcanget 3Dpositioningwithlocalizationerrorsbelow0.8meveninsomeheavilydistorted areas.

1.2Preliminaries

1.2.1PolarCoordinate

Polarcoordinatehasbeenfrequentlyusedinthisbook.AsshowninFig. 1.4,weuse er , eθ ,and eφ torepresentthreeunitcoordinatevectorsofapolarcoordinatesystem. Let ex , ey ,and ez betheunitcoordinatevectorsofarectangularcoordinatesystem. Thenwehavethefollowingrelationships:

1.2.2LoopAntenna

MCareaccomplishedwiththeuseofloopantennas.Asingle-turncircularloop antennaisshowninFig. 1.5 onthe x y planeat z = 0.Let a representtheradius ofthecoil.Letthewireisassumedtobeverythinandthecurrent I = I0 ,where I0 is aconstant[13].

Thentheradiatedfieldsofsuchaloopantennaatanarbitrarypoint N0 are approximatelyexpressedunderthesphericalcoordinateswiththemagneticfield components[13]:

whiletheelectric-fieldcomponents[13]:

where k = 2 π/λ

ThesignalenergyofMCistransmittedinanear-fieldregion,i.e., kr 1.With thisassumption,theexpressionsofthefieldsgivenby(1.2)and(1.3)canbesimplified as[34]:

Figure1.5 Circularloopantenna

1.2.3MagneticMoment

MagneticmomentisafundamentalmetrictomeasurethecapacityofanMIloop antenna;itismeasuredbythefollowingequation:

where A representstheareaofloop.Additionally,inastandardcircularloop,wehave A = π a2 .Inthiscase,themagneticmomentofaloopantennaof N turnsisgivenby

AnMIantennawithalargermagneticmomentcanradiateastrongermagneticfield signal.

InanMCsystem,themagneticfieldismeasuredinthe B-fieldwithSIunittesla (symbol: T ).Consideringaconstantvalueoftransmittingcurrent I ,wehavethefrequency f = 0and k = 0,andconsequently e jkr = 1.Themagneticfieldvectoratthe point N0 (Fig. 1.5)inauniformvacuumspaceis

Table1.2 Resistivity

Material

Carbon(graphene)1 × 10 8

Silver1. 59 × 10 8

Copper1. 68 × 10 8

Annealedcopper1 72 × 10 8

Gold2 44 × 10 8

Aluminum2 82 × 10 8

Tungsten5. 6 × 10 8

Iron9. 71 × 10 8

where μ0 = 4 π × 10 7 T · m/Aisthepermeabilityofvacuum.Hence,themagnitude of B is

Equation(1.9)revealsthat,foragivenrange r ,themagneticfieldstrengthisproportionaltothemagneticmoment m,whileforagivenreceivingmagneticfieldstrength threshold,thetransmittingrange r ∝ m1/3 .Weconcludethatthreewayscanbeapplied toimprovethemagneticfieldsignalandthetransmittingrangefrom(1.9):enlarging thearea A,addingloopturns N ,andincreasingtransmittingcurrent I .Althoughthe threeparameters A, N ,and I areproportionaltothemagneticmoment,theconsequent increasesofconsumingpoweraredifferent.

Thepowerconsumedontheantennaloopisdirectlyrelatedwiththecurrent I ,i.e., P ∝ I 2 .Ontheotherhand,increasesinthenumberofturns N andarea A leadtothe growthofthedirect-current(DC)resistance.AfundamentalwaytocalculatetheDC resistanceofaloopisPouillet’slaw

inwhich ρ istheresistivityoftheloopmaterial, lw = 2 π aN representsthetotalwire length,and Aw isthecross-sectionalareaofthewire.Weprovidetheresistivityof someconductivematerialsinTable 1.2.Usually,theantennaloopismadeofthewire followingtheAmericanWireGauge(AWG)standard,whoseresistanceperlength rangesfrom2 × 10 4 Ω · m 1 to3Ω · m 1 withdifferentwirediameter).Thus,wecan useresistanceperlengthtocalculatethetotalDCresistance:

Foracircularloop, lw = 2a π

Afterwefigureoutthecalculationofantennaresistance,wecanfindthatthenumberofturns N isproportionaltotheDCresistance.Ontheotherhand,thelooparea A isrelatedtothecircumferenceaswellasthetotallength: lw ∝ A0 5 .Giventhatthe

power P ∝ R,weconcludethatenlargingthelooparea A isthemostefficientwayto increasethemagneticmoment.AnormalizedDCpowerversusmagneticmomentis showninFig. 1.6.Themagneticmomentsvaryfrom1to100timesbychanging A, N , and I ,respectively.

ItshouldbenotedthatonlyDCresistanceandDCpowerareconsideredinthis section;inductiveresistanceandconductiveresistanceinthecaseofalternatingcurrent(AC)willbediscussedinChapter2.Staticmagneticfieldstrengthcanbetreated asafundamentalmeasurementoftheMIsignal.Themagneticfieldsensitivityisa keyparameterforareceiver,becauseadvancedMCtechnologiesareallbasedon thereceivingofthemagneticfieldsignal.However,thesensitivityperformanceofa receiverdependsonthetechnologiesofantennadesign,antennamanufacturing,and receivingcircuit,whichiscostlyandempirical.

1.3MutualInductanceCircuit

Inordertoanalyzethecommunicationperformance,amutualinductancemodelis usedaspresentedinFig. 1.7.Inthismodel,wetakethesignalfrequencyintoconsideration.Thismodelisabletohelpustofigureoutthepower-transmittingprocessin MC.Similartothewirelesspowertransport,anMCchannelevaluatedbyanelectric voltageischaracterizedbythefollowingequation:

Figure1.6 NormalizedDCpowerandmagneticmoments

Here UM istheinducedvoltageatthereceivingside,whichcanfurtherbeusedto derivethereceivingpowerinSection1.4, Us isthesourcevoltageatthetransmitting side, Rt and Rr aretheDCresistancesofthetransmittingloopandreceivingloop, respectively,while Lt and Lr representtheinductanceoftransmittingandreceiving coil,respectively. Cr and Ct arethecapacitancesthataredecidedbytheresonant signalfrequencygivenasfollows:

1.3.1Self-Inductance

Accordingtothedefinitionofinductance,weestablishthatacurrent I inthetransmittingloopproducesamagneticflux ΦB throughthecentralregionoftheloop.Withthe fluxknown,theself-inductanceisobtainedas[14]

Figure1.7 Equivalentmutualinductioncircuit

where L istheself-inductance, N isthenumberofloopturns, ΦB isthemagneticflux, and I isthecurrent.

Themagneticflux ΦB iscalculatedasfollows:

,

where l isthelengthnearthemiddleoftheloop, n isthenumberofturnsperlength, and A istheareaoftheloop.Themagnitude

where μ isthemagneticpermeabilityofspacemedium,andfromEq.(1.14),wehave

Foranidealloop,when n = N and l issetto0 5a [15],theself-inductanceof transmittingandreceivingloopis

1.3.2MutualInductance

Similartothecalculationofself-induction,weassumethatthecurrent I producesa magneticflux Φr throughthereceivingloop.Themutualinductanceofthetwoloops inFig. 1.7 isthenobtainedas

Sincethemutualinductanceisdefined underastaticsituation,weuseequation(1.8) tocalculatethemagneticflux Φr :

Asaresult,wehave

1.3.3SkinEffect

Becauseofthechangesinthemagneticfield,MCareinfluencedbytheskineffect[16]. ThealternatingmagneticfieldoftheMIsystemcausedanalternatingelectriccurrent

tobecomedistributedwithaconductivematerial,andtheelectriccurrentflowsmainly betweentheoutersurfaceandalevelcalledtheskindepth, δ .Theskineffectcanbe ignorediftheoperatingfrequencyislow,becausetheskindepthisverylargeand theconsequentEMfieldexistedanywhereinthemedium[16].However,fortheMI systemwithahighcarrierfrequencyofuptotensofmegahertz[15, 17], δ becomes muchsmaller,andtheEMfieldhasenoughstrengthwithinashortrangearoundthe MIloop,whichsignificantlyweakensthemutualinductionbetweenantennaloops.

Inordertomodeltheinfluenceofskineffect,weintroduceanadditionattenuation factor G tothemutualinductance[16].Theadditionattenuationfactor G isafunction ofdistance r betweentheantennaloopsandtheskindepth δ inthemedium.According tothemodelprovedin[18],wehave

Let and σ representthemediumpermittivityandconductivity,respectively;then theskindepth δ canbycalculatedby[19]

Althoughtheskineffectisaccuratelycharacterizedby G ( r ,δ ),equation(1.22)is notfavorableinmostapplications.Therefore,ithasbeenapproximatedbasedona numericalmethodbyanexponentialfunction r δ in[16]:

FortheMCchannel,theskineffectleadstoadeclineinthemutualinduction betweentwoantennacoilsexpressedasfollows:

TheMIsignalpenetratesanundergroundandunderwaterlossymediummuchmore efficientlythanEMwaves[20].However,theimpactofthemediumisnon-ignorable. ExistingMIresearchismainlybasedonasimpleenvironment,suchasasingleuniformmediumspaceoranunderwaterenvironmentwithsurfacereflectionandlateral waves[20].StatisticalchannelsforacomplexenvironmentlikeaRayleighfading channelarelacked.

Conductivity

Conductivitymeasuresamater ial’sabilitytoconductanelectriccurrent.ItiscommonlyrepresentedbytheGreekletter σ .Theconductivityofamaterialoftenvaries

Table1.3 Conductivity

MaterialConductivity σ ( S/m )at20 ◦ C

Carbon(graphene)1 00 × 108

Copper5. 96 × 107

Aluminum3. 50 × 107

Calcium2 98 × 107

Seawater4. 80

Drinkingwater5 00 × 10 4 to5 00 × 10 2

Deionizedwater5 50 × 10 6

Silicon1 56 × 10 3

Air3. 00 × 10 15 to8. 00 × 10 15

Table1.4 Permeability

MaterialPermeability μ ( H /m )Relativepermeability μ μ 0

Vacuum4 π × 10 7 ( μ 0 )1

Air1 25663753 × 10 6 1.00000037

Water1 256627 × 10 6 0.999992

Concrete(dry)4 π × 10 7 1

Aluminum1 256665 × 10 6 1.000022

Platinum1. 256970 × 10 6 1.000265

Wood1. 2566376 × 10 6 1.00000043

Copper1 256629 × 10 6 0.999994

withdifferentfactors,includingtemperature, purity,andconcentrationofwaterthat containsdissolvedsalts(theconductivityofsomecommonmaterialscanbefound inTable1.3).Inaradiofrequency(RF)-challengedenvironment,thetransmission mediumismostlyanonconductivematerial.However,therecanbeanonnegligible levelofconductivityduetohumidityandmineralsubstances.

Permeability

Determiningthepermeabilityofacoalmineisacomplexproblem;therelativepermeabilityofcoaltogasandwaterdependsonthenatureofgas,theoperationalpressure, andfluid–mineralinteractions(thepermeabilityofothercommonmaterialscanbe foundinTable1.4forreference).

1.3.5Metamaterial

MetamaterialsforEMwaveshaveunusualphysicalfeatures,suchasthenegative refractionindex,includingpermittivity ε andpermeability μ.Toachieveacertain refractiveindex,metamaterialsarecarefullybuilttohaveasmallerstructurefeature thanthewavelengthoftherespectiveEMwave.Anegativerefractionindexisan importantcharacteristicofmetamaterialstodistinguishthemfromnaturalexisting materialsasillustratedinFig.1.8.

Figure1.8 Negativerefractiveindexofmetamaterial

ApplicationofMetamaterials

Metamaterialsarewidelyusedindifferentkindsoffields.Forexample,MRIcanbe enhancedusingmetamaterials.Long-TermEvolution(LTE)handsetsdeploymetamaterialsforantennaarray.Metamaterialscanalsobedeployedinmagneticcommunicationstoenhanceboththewirelesscommunicationsusingpoint-to-pointMIandMI waveguide.ComparedtoEMwave-basedcommunication,MIcaneasilypenetratethe lossymediuminRF-challengingenvironments.Onemajordrawbackisthelimited transmissiondistanceduetothefastattenuationofmagneticfields.Thetechniquesto enhancemagneticfieldsusingmetamaterialswillbediscussedlater.

1.3.6WaveguideStructure

ThetransmissiondistanceofanMIsystemsuffersfromfastpathlossdespiteitsrelativelystablechannelconditioncomparedtotheEMwave.Tothisend,awaveguide structureusingseveralpassiverelaydevicesisemployed.Therelaypointisusuallya simplecoilthatinducesasinusoidalcurrentinthenextcoilandsoonuntilitpasses tothereceivernode.Hence,therelaypointneedsnoenergysourcesorprocessing devices.Thewaveguidesystemisillustratedin[17]andtheequivalentcircuitdiagram ofwhichisshowninFig.1.9.

Weassumethatthewaveguidestructureusesthesametypeofcoilswiththesame parameters.Tobespecific,welet L bethecoilself-induction, M bethemutualinductancebetweenadjacentcoils, Ut bethevoltageofthetransmitterenergysource, R be thecopperresistanceofthecoil, C bethecapacitorloadedineachcoil,and ZL bethe loadimpedanceofthereceiver.Therearetotally( k 1)passiverelaysthatareplaced equidistantlybetweenthetransceivers.

Figure1.9 BlockdiagramofanMIwaveguidewithatransmitter,areceiver,and( k 1)relays

Thepathlossfunctionisgivenby

Theloadimpedanceismatchedonlytotheequivalentimpedance Ze atthecarrier frequencyusingaresistor,i.e.,

1.4.1ReceivedPower

MCisanear-fieldtechniquewherecommunicationisachievedbycouplinginthenonpropagatingnear-field.TheradiationresistanceinMCissosmallthattheradiation powercanbeneglected.Therefore,theinducedpowerconsumedattheMIreceiveris themajorpowerconsumption.ThetransmittingpoweroftheMIsystemconsistsof theinducedpowerconsumedattheMIreceiverandthepowerconsumedinthecoil resistance.Iftheantennaimpedanceisverysmall,theratioofthereceivedenergyto thepropagationenergyis1becausethepropagationenergyandthereceivedenergyare consistentwiththedistancevariation.TheadvantageofMCisthatmostoftheenergy inthistechniqueisdeliveredtothereceiver,andlimitedenergypropagationiswasted inthesurroundingenvironment.UsingthecircuitmodelinFig. 1.7,thetransmitted power Pt oftheprimarycoilandthereceivedpower Pr aregivenasfollows:

where It istransmittingcurrent.InthecasethatMCworkattheresonancefrequency (

),

andthereceivedpowerareobtainedas

1.4.2PathLoss

Pathlossisthereductioninthepowerdensity(attenuation)ofanEMwaveasitpropagatesthroughspaceormedia.Itisalsoamajorcomponentintheanalysisanddesign ofanMIsystem.Asthedistanceincreases,thereceiverwillreceivelessandless energybecauseof pathloss.Itshouldbenotedthatthepowerisnotreallylostbutnot transmitted.ThepathlossoftheMIsystemwithatransmissiondistanceisdefinedas

where“lg”denotes“log10 ,” Pr ( r )isthereceivedpoweratthereceiverthatis r meters awayfromthetransmitterandsatisfy(1.31),and Pt ( r0 )isthereferencetransmittingpowerwhenthetransmissiondistanceisaverysmallvalueandcanbelooked as(1.30).Inwhatfollows,wewilldiscussthecommonlyusedscenarios.

Underthescenariosofhighoperatingfrequency(Rt ωμ, Rr ωμ)andconsideringthat r0 isadequatelysmall, Pt ( r0 ) U 2 s /Rt .ThepathlossoftheMCsystemis simplifiedas

EMwavesVWC1%

Figure1.10 PathlossoftheEMwavesystemandthatoftheMIsystemwithdifferentsoilwater content

ThepathlossoftheMIsystemandthatoftheEMwavesystemareevaluatedusing MATLAB.FortheMIsystem,theoperatingfrequency f issetto10MHz,i.e.,

ω = 2 π f = 2 π × 107 ;thetransmitterandthereceivercoilshavethesamenumber ofturns5(Nt = Nr = 5)andradius(at = ar = 0 . 15m).Thecoilismadeofthecopper wirewith1.45-mmdiameterandwiththeresistanceofunitlength R0 = 0 01 Ω/m. FortheEMwavesystem,theoperatingfrequencyissetto300MHz.Thepermeabilityoftheundergroundtransmissionmediumisthesameasthatintheair,whichis 4 π × 10 7 H/m.InFig. 1.10,thepathlossoftheMIsystemandthatoftheEMwave systemareshownindBversusthetransmissiondistancewithdifferentsoilvolumetric watercontent(VWC).Itisinterestingtoseethat,comparedwiththepathlossofthe EMwavesystem,thepathlossoftheMIsystemislessaffectedbytheearthlayersince thepermeabilityisalmostunchanged.Therefore,theMIsystemcanachievesmaller pathlossthantheEMwavesystemafterasufficientlongtransmissiondistanceeven intheverydrysoilmedium,whichmakesMCapromisingwirelesstechnologyfor undergroundenvironments.

Let’snowconsiderthescenarioswheretheoperatingfrequencyislowandall antennasoftransceiversareidentical.Supposethattheresistanceofthetransmitter andthatofthereceiverhavethesamevalue R,andtheMIsystemworksataresonancefrequency ω thatisapproximatelyequaltotheresonanceangularfrequency ω0 . Accordingto(1.32)and(1.33),thepathloss LMI isthenobtainedas

1.4.3BitErrorRateandCommunicationRange

BERisthenumberofbiterrorsperunittime.Itmaybeaffectedbytransmissionchannelnoise,interference,distortion,attenuation,wirelessmultipathfading,etc.Owning tothequasi-staticchannelofMC,theBERcharacteristicdependsmainlyonthree factors:thepathloss,thenoiselevel,andthemodulationschemeusedbythesystem. Whenthesignallevelremainsthesame,thenoiselevelisinverselyproportionaltothe signal-to-noiseratio(SNR),whichcanbecalculatedbySNR = Pt LMI Pn ,where Pt isthetransmittingpowerand Pn istheaveragenoiselevel.Themodulationschemeis animportantfactorinfluencingtheBER.Forexample,inthecaseofQPSKand2PSK modulationintheAWGNchannel,theBERasafunctionoftheSNRisgivenbyBER = 1 2 erfc( √ SNR),whereerfc( )istheerrorfunction.

WhenBERoftheMIlinkbetweenthetransmitterandthereceiverincreasesabove athreshold(BERth = 1%),thecommunicationcanbelookedasinvalidifthereare lotsoferrordatathatcannotbecorrected.Nowthatthepathloss LMI isthefunctionofdistance(r )asdepictedin(1.35),thefactthattheSNRisinrelationship withthedistanceresultsinBER = BER( r ).Therefore,thecommunicationrange rmax satisfy

Equation(1.37)exhibitsthatthecommunicationrangeincreaseswiththeincrease of Pt Pn .AsdescribedinFig. 1.11,whereweset Pt as10dBm,thetransmissionrangeof theMIsystemisalwayslargerthantheEMwavesysteminalownoisescenario.However,inthehighnoisescenario,thetransmissionrangeoftheMIsystemisbetween therangeoftheEMwavesystemindrysoilandthesysteminwetsoil.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.