Where can buy Applied statistics: from bivariate through multivariate techniques second ebook with c

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/applied-statistics-from-bivariate-through-multivariate-t echniques-second/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Applied Statistics: From Bivariate Through Multivariate Techniques Second Edition – Ebook PDF Version

https://ebookmass.com/product/applied-statistics-from-bivariatethrough-multivariate-techniques-second-edition-ebook-pdf-version/

Applied Univariate, Bivariate, and Multivariate Statistics: Understanding Statistics for Social and Natural Scientists, With Applications in SPSS and R 2nd Edition Daniel J. Denis

https://ebookmass.com/product/applied-univariate-bivariate-andmultivariate-statistics-understanding-statistics-for-social-andnatural-scientists-with-applications-in-spss-and-r-2nd-editiondaniel-j-denis/

Using Multivariate Statistics 7th Edition Barbara G. Tabachnick

https://ebookmass.com/product/using-multivariate-statistics-7thedition-barbara-g-tabachnick/

Statistics : learning from data Second Edition. Edition Thomas H. Short

https://ebookmass.com/product/statistics-learning-from-datasecond-edition-edition-thomas-h-short/

Applied medical statistics 1st Edition Jingmei Jiang

https://ebookmass.com/product/applied-medical-statistics-1stedition-jingmei-jiang/

Applied Statistics in Business and Economics 5th Edition David Doane

https://ebookmass.com/product/applied-statistics-in-business-andeconomics-5th-edition-david-doane/

Applied Statistics: Theory and Problem Solutions with R Dieter Rasch Rostock

https://ebookmass.com/product/applied-statistics-theory-andproblem-solutions-with-r-dieter-rasch-rostock/

Applied Statistics with R: A Practical Guide for the Life Sciences Justin C. Touchon

https://ebookmass.com/product/applied-statistics-with-r-apractical-guide-for-the-life-sciences-justin-c-touchon/

Methods of Multivariate Analysis (Wiley Series in Probability and Statistics Book 709) 3rd Edition –Ebook PDF Version

https://ebookmass.com/product/methods-of-multivariate-analysiswiley-series-in-probability-and-statistics-book-709-3rd-editionebook-pdf-version/

Chapter19.MultivariateAnalysisofVariance

Chapter20 PrincipalComponentsandFactorAnalysis

Chapter21.Reliability,Validity,andMultiple-ItemScales

Chapter22.AnalysisofRepeatedMeasures

Chapter23.BinaryLogisticRegression

AppendixA:ProportionsofAreaUnderaStandardNormalCurve

AppendixB:CriticalValuesfortDistribution

AppendixC:CriticalValuesofF

AppendixD:CriticalValuesofChi-Square

AppendixE:CriticalValuesofthePearsonCorrelationCoefficient

AppendixF:CriticalValuesoftheStudentizedRangeStatistic

AppendixG:Transformationofr(PearsonCorrelation)toFisherZ

Glossary

References

Index

Preface

Acknowledgments

AbouttheAuthor

DETAILEDCONTENTS

Chapter1.ReviewofBasicConcepts

1.1Introduction

12ASimpleExampleofaResearchProblem

1.3DiscrepanciesBetweenRealandIdealResearchSituations

1.4SamplesandPopulations

15DescriptiveVersusInferentialUsesofStatistics

1.6LevelsofMeasurementandTypesofVariables

1.7TheNormalDistribution

18ResearchDesign

181ExperimentalDesign

1.8.2Quasi-ExperimentalDesign

183NonexperimentalResearchDesign

184Between-SubjectsVersusWithin-SubjectsorRepeatedMeasures

1.9CombinationsofTheseDesignElements

110ParametricVersusNonparametricStatistics

111AdditionalImplicitAssumptions

1.12SelectionofanAppropriateBivariateAnalysis

113Summary ComprehensionQuestions

Chapter2.BasicStatistics,SamplingError,andConfidenceIntervals

21Introduction

22ResearchExample:DescriptionofaSampleofHRScores

2.3SampleMean(M)

24SumofSquaredDeviations(SS)andSampleVariance(s2)

25DegreesofFreedom(df)foraSampleVariance

2.6WhyIsThereVariance?

27SampleStandardDeviation(s)

28AssessmentofLocationofaSingleXScoreRelativetoaDistributionofScores

2.9AShiftinLevelofAnalysis:TheDistributionofValuesofMAcrossManySamplesFromtheSame Population

2.10AnIndexofAmountofSamplingError:TheStandardErroroftheMean(σM)

2.11EffectofSampleSize(N)ontheMagnitudeoftheStandardError(σM)

212SampleEstimateoftheStandardErroroftheMean(SEM)

2.13TheFamilyoftDistributions

2.14ConfidenceIntervals

2141TheGeneralFormofaCI

2.14.2SettingUpaCIforMWhenσIsKnown

2.14.3SettingUpaCIforMWhentheValueofσIsNotKnown

2144ReportingCIs

2.15Summary

AppendixonSPSS

ComprehensionQuestions

Chapter3.StatisticalSignificanceTesting

3.1TheLogicofNullHypothesisSignificanceTesting(NHST)

32TypeIVersusTypeIIError

33FormalNHSTProcedures:ThezTestforaNullHypothesisAboutOnePopulationMean

3.3.1ObtainingaRandomSampleFromthePopulationofInterest

332FormulatingaNullHypothesis(H0)fortheOne-SamplezTest

333FormulatinganAlternativeHypothesis(H1)

3.3.4ChoosingaNominalAlphaLevel

335DeterminingtheRangeofzScoresUsedtoRejectH0

336DeterminingtheRangeofValuesofMUsedtoRejectH0

3.3.7Reportingan“Exact”pValue

34CommonResearchPracticesInconsistentWithAssumptionsandRulesforNHST

341UseofConvenienceSamples

3.4.2ModificationofDecisionRulesAftertheInitialDecision

343ConductingLargeNumbersofSignificanceTests

344ImpactofViolationsofAssumptionsonRiskofTypeIError

3.5StrategiestoLimitRiskofTypeIError

351UseofRandomandRepresentativeSamples

352AdherencetotheRulesforNHST

3.5.3LimittheNumberofSignificanceTests

354Bonferroni-CorrectedPer-ComparisonAlphaLevels

355ReplicationofOutcomeinNewSamples

3.5.6Cross-Validation

36InterpretationofResults

361InterpretationofNullResults

3.6.2InterpretationofStatisticallySignificantResults

37WhenIsatTestUsedInsteadofazTest?

3.8EffectSize

3.8.1Evaluationof“Practical”(vs.Statistical)Significance

382FormalEffect-SizeIndex:Cohen’sd

3.9StatisticalPowerAnalysis

3.10NumericalResultsforaOne-SampletTestObtainedFromSPSS

311GuidelinesforReportingResults

3.12Summary

3.12.1LogicalProblemsWithNHST

3122OtherApplicationsofthetRatio

3.12.3WhatDoesItMeantoSay“p<.05”?

ComprehensionQuestions

Chapter4 PreliminaryDataScreening

41Introduction:ProblemsinRealData

4.2QualityControlDuringDataCollection

43ExampleofanSPSSDataWorksheet

44IdentificationofErrorsandInconsistencies

4.5MissingValues

46EmpiricalExampleofDataScreeningforIndividualVariables

461FrequencyDistributionTables

4.6.2RemovalofImpossibleorExtremeScores

463BarChartforaCategoricalVariable

464HistogramforaQuantitativeVariable

4.7IdentificationandHandlingofOutliers

48ScreeningDataforBivariateAnalyses

481BivariateDataScreeningforTwoCategoricalVariables

4.8.2BivariateDataScreeningforOneCategoricalandOneQuantitativeVariable

483BivariateDataScreeningforTwoQuantitativeVariables

49NonlinearRelations

4.10DataTransformations

411VerifyingThatRemediesHadtheDesiredEffects

412MultivariateDataScreening

4.13ReportingPreliminaryDataScreening

414SummaryandChecklistforDataScreening

415FinalNotes

ComprehensionQuestions

Chapter5.ComparingGroupMeansUsingtheIndependentSamplestTest

51ResearchSituationsWheretheIndependentSamplestTestIsUsed

5.2AHypotheticalResearchExample

53AssumptionsAbouttheDistributionofScoresontheQuantitativeDependentVariable

5.3.1Quantitative,ApproximatelyNormallyDistributed

5.3.2EqualVariancesofScoresAcrossGroups(theHomogeneityofVarianceAssumption)

533IndependentObservationsBothBetweenandWithinGroups

5.3.4RobustnesstoViolationsofAssumptions

5.4PreliminaryDataScreening

55IssuesinDesigningaStudy

5.6FormulasfortheIndependentSamplestTest

5.6.1ThePooledVariancestTest

562ComputationoftheSeparateVariancestTestandItsAdjusteddf

5.6.3EvaluationofStatisticalSignificanceofatRatio

5.6.4ConfidenceIntervalAroundM1 –M2

57ConceptualBasis:FactorsThatAffecttheSizeofthetRatio

5.7.1DesignDecisionsThatAffecttheDifferenceBetweenGroupMeans,M1 –M2

5.7.2DesignDecisionsThatAffectPooledWithin-GroupVariance,s2 p

573DesignDecisionsAboutSampleSizes,n1 andn2

574Summary:FactorsThatInfluencetheSizeoft

5.8Effect-SizeIndexesfort

581EtaSquared(η2)

582Cohen’sd

5.8.3PointBiserialr(rpb)

59StatisticalPowerandDecisionsAboutSampleSizefortheIndependentSamplestTest

510DescribingtheNatureoftheOutcome

5.11SPSSOutputandModelResultsSection

512Summary ComprehensionQuestions

Chapter6.One-WayBetween-SubjectsAnalysisofVariance

61ResearchSituationsWhereOne-WayBetween-SubjectsAnalysisofVariance(ANOVA)IsUsed

62HypotheticalResearchExample

6.3AssumptionsAboutScoresontheDependentVariableforOne-WayBetween-SANOVA

64IssuesinPlanningaStudy

65DataScreening

6.6PartitionofScoresIntoComponents

67ComputationsfortheOne-WayBetween-SANOVA

671ComparisonBetweentheIndependentSamplestTestandOne-WayBetween-SANOVA

6.7.2SummarizingInformationAboutDistancesBetweenGroupMeans:ComputingMSbetween 673SummarizingInformationAboutVariabilityofScoresWithinGroups:ComputingMSwithin 674TheFRatio:ComparingMSbetween WithMSwithin

6.7.5PatternsofScoresRelatedtotheMagnitudesofMSbetween andMSwithin 676ExpectedValueofFWhenH0 IsTrue

6.7.7ConfidenceIntervals(CIs)forGroupMeans

6.8Effect-SizeIndexforOne-WayBetween-SANOVA

69StatisticalPowerAnalysisforOne-WayBetween-SANOVA

6.10NatureofDifferencesAmongGroupMeans

6.10.1PlannedContrasts

6102PostHocor“Protected”Tests

6.11SPSSOutputandModelResults

6.12Summary

ComprehensionQuestions

Chapter7.BivariatePearsonCorrelation

7.1ResearchSituationsWherePearson’srIsUsed

72HypotheticalResearchExample

73AssumptionsforPearson’sr

7.4PreliminaryDataScreening

75DesignIssuesinPlanningCorrelationResearch

76ComputationofPearson’sr

7.7StatisticalSignificanceTestsforPearson’sr

771TestingtheHypothesisThatρXY =0

772TestingOtherHypothesesAboutρXY

7.7.3AssessingDifferencesBetweenCorrelations

774ReportingManyCorrelations:NeedtoControlInflatedRiskofTypeIError

7741LimitingtheNumberofCorrelations

7.7.4.2Cross-ValidationofCorrelations

7743BonferroniProcedure:AMoreConservativeAlphaLevelforTestsofIndividualCorrelations

78SettingUpCIsforCorrelations

7.9FactorsThatInfluencetheMagnitudeandSignofPearson’sr

791PatternofDataPointsintheX,YScatterPlot

792BiasedSampleSelection:RestrictedRangeorExtremeGroups

7.9.3CorrelationsforSamplesThatCombineGroups

794ControlofExtraneousVariables

795DisproportionateInfluencebyBivariateOutliers

7.9.6ShapesofDistributionsofXandY

797CurvilinearRelations

798TransformationsofData

7.9.9AttenuationofCorrelationDuetoUnreliabilityofMeasurement

7910Part-WholeCorrelations

7911AggregatedData

710Pearson’srandr2 asEffect-SizeIndexes

7.11StatisticalPowerandSampleSizeforCorrelationStudies

712InterpretationofOutcomesforPearson’sr

7121“CorrelationDoesNotNecessarilyImplyCausation”(SoWhatDoesItImply?)

7.12.2InterpretationofSignificantPearson’srValues

7123InterpretationofaNonsignificantPearson’srValue

713SPSSOutputandModelResultsWrite-Up

7.14Summary

ComprehensionQuestions

Chapter8.AlternativeCorrelationCoefficients

8.1CorrelationsforDifferentTypesofVariables

82TwoResearchExamples

83CorrelationsforRankorOrdinalScores

8.4CorrelationsforTrueDichotomies

841PointBiserialr(rpb)

842PhiCoefficient(ϕ)

8.5CorrelationsforArtificiallyDichotomizedVariables

851Biserialr(rb)

852Tetrachoricr(rtet)

8.6AssumptionsandDataScreeningforDichotomousVariables

87AnalysisofData:DogOwnershipandSurvivalAfteraHeartAttack

88Chi-SquareTestofAssociation(ComputationalMethodsforTablesofAnySize)

8.9OtherMeasuresofAssociationforContingencyTables

810SPSSOutputandModelResultsWrite-Up

811Summary

ComprehensionQuestions

Chapter9.BivariateRegression

91ResearchSituationsWhereBivariateRegressionIsUsed

92AResearchExample:PredictionofSalaryFromYearsofJobExperience

9.3AssumptionsandDataScreening

94IssuesinPlanningaBivariateRegressionStudy

95FormulasforBivariateRegression

9.6StatisticalSignificanceTestsforBivariateRegression

97SettingUpConfidenceIntervalsAroundRegressionCoefficients

98FactorsThatInfluencetheMagnitudeandSignofb

9.8.1FactorsThatAffecttheSizeofthebCoefficient

982ComparisonofCoefficientsforDifferentPredictorsorforDifferentGroups

99EffectSize/PartitionofVarianceinBivariateRegression

9.10StatisticalPower

911RawScoreVersusStandardScoreVersionsoftheRegressionEquation

9.12RemovingtheInfluenceofXFromtheYVariablebyLookingatResidualsFromBivariateRegression

9.13EmpiricalExampleUsingSPSS

9131InformationtoReportFromaBivariateRegression

9.14Summary ComprehensionQuestions

Chapter10 AddingaThirdVariable:PreliminaryExploratoryAnalyses

101Three-VariableResearchSituations

10.2FirstResearchExample

103ExploratoryStatisticalAnalysesforThree-VariableResearchSituations

104SeparateAnalysisoftheX1,YRelationshipforEachLeveloftheControlVariableX2

10.5PartialCorrelationBetweenX1 andY,ControllingforX2

106UnderstandingPartialCorrelationastheUseofBivariateRegressiontoRemoveVariancePredictable byX2 FromBothX1 andY

10.7ComputationofPartialrFromBivariatePearsonCorrelations

108IntuitiveApproachtoUnderstandingPartialr

109SignificanceTests,ConfidenceIntervals,andStatisticalPowerforPartialCorrelations

10.9.1StatisticalSignificanceofPartialr

1092ConfidenceIntervalsforPartialr

1093EffectSize,StatisticalPower,andSampleSizeGuidelinesforPartialr

10.10InterpretationofVariousOutcomesforrY1.2 andrY1

1011Two-VariableCausalModels

1012Three-VariableModels:SomePossiblePatternsofAssociationAmongX1,Y,andX2

10.12.1X1 andYAreNotRelatedWhetherYouControlforX2 orNot

10122X2 IsIrrelevanttotheX1,YRelationship

10123WhenYouControlforX2,theX1,YCorrelationDropsto0orCloseto0

10.12.3.1CompletelySpuriousCorrelation

101232CompletelyMediatedAssociationBetweenX1 andY

10124WhenYouControlforX,theCorrelationBetweenX2 andY1 BecomesSmaller(butDoesNot Dropto0andDoesNotChangeSign)

101241X2 PartlyAccountsfortheX1,YAssociation,orX1 andX2 AreCorrelatedPredictorsofY

101242X2 PartlyMediatestheX1,YRelationship

10.12.5Suppression:WhenYouControlforX2,theX1,YCorrelationBecomesLargerThanr1Y or BecomesOppositeinSignRelativetor1Y

101251SuppressionofErrorVarianceinaPredictorVariable

10.12.5.2SignofX1 asaPredictorofYReversesWhenControllingforX2

101253PredictorVariablesWithOppositeSigns

10126“NoneoftheAbove”

10.13MediationVersusModeration

10131PreliminaryAnalysistoIdentifyPossibleModeration

10.13.2PreliminaryAnalysistoDetectPossibleMediation

10.13.3ExperimentalTestsforMediationModels

1014ModelResults

10.15Summary

ComprehensionQuestions

Chapter11 MultipleRegressionWithTwoPredictorVariables

111ResearchSituationsInvolvingRegressionWithTwoPredictorVariables

11.2HypotheticalResearchExample

113GraphicRepresentationofRegressionPlane

114Semipartial(or“Part”)Correlation

11.5GraphicRepresentationofPartitionofVarianceinRegressionWithTwoPredictors

116AssumptionsforRegressionWithTwoPredictors

117FormulasforRegressionCoefficients,SignificanceTests,andConfidenceIntervals

11.7.1FormulasforStandardScoreBetaCoefficients

1172FormulasforRawScore(b)Coefficients

1173FormulaforMultipleRandMultipleR2

11.7.4TestofSignificanceforOverallRegression:OverallFTestforH0:R=0

1175TestofSignificanceforEachIndividualPredictor:tTestforH0:bi =0

1176ConfidenceIntervalforEachbSlopeCoefficient

11.8SPSSRegressionResults

119ConceptualBasis:FactorsThatAffecttheMagnitudeandSignofβandbCoefficientsinMultiple RegressionWithTwoPredictors

11.10TracingRulesforCausalModelPathDiagrams

1111ComparisonofEquationsforβ,b,pr,andsr

1112NatureofPredictiveRelationships

11.13Effect-SizeInformationinRegressionWithTwoPredictors

11131EffectSizeforOverallModel

11132EffectSizeforIndividualPredictorVariables

11.14StatisticalPower

1115IssuesinPlanningaStudy

11151SampleSize

11.15.2SelectionofPredictorVariables

11153MulticollinearityAmongPredictors

11154RangeofScores

11.16Results

1117Summary

ComprehensionQuestions

Chapter12.DummyPredictorVariablesinMultipleRegression

121ResearchSituationsWhereDummyPredictorVariablesCanBeUsed

12.2EmpiricalExample

12.3ScreeningforViolationsofAssumptions

124IssuesinPlanningaStudy

12.5ParameterEstimatesandSignificanceTestsforRegressionsWithDummyVariables

12.6GroupMeanComparisonsUsingOne-WayBetween-SANOVA

1261GenderDifferencesinMeanSalary

12.6.2CollegeDifferencesinMeanSalary

12.7ThreeMethodsofCodingforDummyVariables

1271RegressionWithDummy-CodedDummyPredictorVariables

12.7.1.1Two-GroupExampleWithaDummy-CodedDummyVariable

12.7.1.2Multiple-GroupExampleWithDummy-CodedDummyVariables

1272RegressionWithEffect-CodedDummyPredictorVariables

12.7.2.1Two-GroupExampleWithanEffect-CodedDummyVariable

12.7.2.2Multiple-GroupExampleWithEffect-CodedDummyVariables

1273OrthogonalCodingofDummyPredictorVariables

128RegressionModelsThatIncludeBothDummyandQuantitativePredictorVariables

12.9EffectSizeandStatisticalPower

1210NatureoftheRelationshipand/orFollow-UpTests

1211Results

12.12Summary

ComprehensionQuestions

Chapter13.FactorialAnalysisofVariance

13.1ResearchSituationsandResearchQuestions

1311FirstNullHypothesis:TestofMainEffectforFactorA

1312SecondNullHypothesis:TestofMainEffectforFactorB

13.1.3ThirdNullHypothesis:TestoftheA×BInteraction

132ScreeningforViolationsofAssumptions

133IssuesinPlanningaStudy

13.4EmpiricalExample:DescriptionofHypotheticalData

135ComputationsforBetween-SFactorialANOVA

1351NotationforSampleStatisticsThatEstimateScoreComponentsinFactorialANOVA

13.5.2NotationforTheoreticalEffectTerms(orUnknownPopulationParameters)inFactorialANOVA

1353FormulasforSumsofSquaresandDegreesofFreedom

136ConceptualBasis:FactorsThatAffecttheSizeofSumsofSquaresandFRatiosinFactorialANOVA

13.6.1DistancesBetweenGroupMeans(MagnitudeoftheαandβEffects)

1362NumberofScores(n)WithinEachGrouporCell

1363VariabilityofScoresWithinGroupsorCells(MagnitudeofMSwithin)

13.7Effect-SizeEstimatesforFactorialANOVA

138StatisticalPower

13.9NatureoftheRelationships,Follow-UpTests,andInformationtoIncludeintheResults

13.9.1NatureofaTwo-WayInteraction

1392NatureofMainEffectDifferences

13.10FactorialANOVAUsingtheSPSSGLMProcedure

13.10.1FurtherDiscussionofResults:ComparisonoftheFactorialANOVA(inFigures13.7and13.8) WiththeOne-WayANOVA(inFigure131)

13.11Summary

Appendix:NonorthogonalFactorialANOVA(ANOVAWithUnbalancedNumbersofCasesintheCells orGroups)

ComprehensionQuestions

Chapter14.MultipleRegressionWithMoreThanTwoPredictors

141ResearchQuestions

142EmpiricalExample

14.3ScreeningforViolationsofAssumptions

144IssuesinPlanningaStudy

145ComputationofRegressionCoefficientsWithkPredictorVariables

14.6MethodsofEntryforPredictorVariables

1461StandardorSimultaneousMethodofEntry

1462SequentialorHierarchical(User-Determined)MethodofEntry

14.6.3Statistical(Data-Driven)OrderofEntry

147VariancePartitioninginRegressionforStandardorSimultaneousRegressionVersusRegressionsThat InvolveaSeriesofSteps

14.8SignificanceTestforanOverallRegressionModel

149SignificanceTestsforIndividualPredictorsinMultipleRegression

1410EffectSize

14.10.1EffectSizeforOverallRegression(MultipleR)

14102EffectSizesforIndividualPredictorVariables(sr2)

1411ChangesinFandRasAdditionalPredictorsAreAddedtoaModelinSequentialorStatistical Regression

1412StatisticalPower

1413NatureoftheRelationshipBetweenEachXPredictorandY(ControllingforOtherPredictors)

14.14AssessmentofMultivariateOutliersinRegression

1415SPSSExampleandResults

14151SPSSScreenShots,Output,andResultsforStandardRegression

14.15.2SPSSScreenShots,Output,andResultsforSequentialRegression

14153SPSSScreenShots,Output,andResultsforStatisticalRegression

1416Summary

Appendix14.A:AReviewofMatrixAlgebraNotationandOperationsandApplicationofMatrixAlgebra toEstimationofSlopeCoefficientsforRegressionWithMoreThankPredictorVariables

Appendix14.B:TablesfortheWilkinsonandDallal(1981)TestofSignificanceofMultipleR2inMethod =ForwardStatisticalRegression

ComprehensionQuestions

Chapter15.Moderation:TestsforInteractioninMultipleRegression

15.1ModerationVersusMediation

152SituationsinWhichResearchersTestInteractions

1521FactorialANOVADesigns

15.2.2RegressionAnalysesThatIncludeInteractionTerms

153WhenShouldInteractionTermsBeIncludedinRegressionAnalysis?

154TypesofPredictorVariablesIncludedinInteractions

15.4.1InteractionBetweenTwoCategoricalPredictorVariables

1542InteractionBetweenaQuantitativeandaCategoricalPredictorVariable

1543InteractionBetweenTwoQuantitativePredictorVariables

15.5AssumptionsandPreliminaryDataScreening

156IssuesinDesigningaStudy

157SampleSizeandStatisticalPowerinTestsofModerationorInteraction

15.8EffectSizeforInteraction

159AdditionalIssuesinAnalysis

1510PreliminaryExample:OneCategoricalandOneQuantitativePredictorVariableWithNoSignificant Interaction

1511Example1:SignificantInteractionBetweenOneCategoricalandOneQuantitativePredictorVariable

1512GraphingRegressionLinesforSubgroups

15.13InteractionWithaCategoricalPredictorWithMoreThanTwoCategories

1514ResultsSectionforInteractionInvolvingOneCategoricalandOneQuantitativePredictorVariable

1515Example2:InteractionBetweenTwoQuantitativePredictors

15.16ResultsforExample2:InteractionBetweenTwoQuantitativePredictors

1517GraphingtheInteractionforSelectedValuesofTwoQuantitativePredictors

1518ResultsSectionforExample2:InteractionofTwoQuantitativePredictors

15.19AdditionalIssuesandSummary ComprehensionQuestions

Chapter16 Mediation

16.1DefinitionofMediation

16.1.1PathModelNotation

1612CircumstancesWhenMediationMayBeaReasonableHypothesis

16.2AHypotheticalResearchExampleInvolvingOneMediatingVariable

16.3LimitationsofCausalModels

1631ReasonsWhySomePathCoefficientsMayBeNotStatisticallySignificant

16.3.2PossibleInterpretationsforaStatisticallySignificantPath

164QuestionsinaMediationAnalysis

16.5IssuesinDesigningaMediationAnalysisStudy

16.5.1TypeandMeasurementofVariablesinMediationAnalysis

1652TemporalPrecedenceorSequenceofVariablesinMediationStudies

16.5.3TimeLagsBetweenVariables

16.6AssumptionsinMediationAnalysisandPreliminaryDataScreening 167PathCoefficientEstimation

16.8ConceptualIssues:AssessmentofDirectVersusIndirectPaths

16.8.1TheMediatedorIndirectPath:ab

1682MediatedandDirectPathasPartitionofTotalEffect

16.8.3MagnitudeofMediatedEffect

16.9EvaluatingStatisticalSignificance

1691Causal-StepsApproach

16.9.2JointSignificanceTest

16.9.3SobelTestofH0:ab=0

1694BootstrappedConfidenceIntervalforab

1610Effect-SizeInformation

16.11SampleSizeandStatisticalPower

1612AdditionalExamplesofMediationModels

16121TestsofMultipleMediatingVariables

16.12.2Multiple-StepMediatedPaths

16123MediatedModerationandModeratedMediation

1613UseofStructuralEquationModelingProgramstoTestMediationModels

16.13.1ComparisonofRegressionandSEMTestsofMediation

16132StepsinRunningAmos

16133OpeningtheAmosGraphicsProgram

16.13.4AmosTools

16135FirstStepsTowardDrawingandLabelinganAmosPathModel

16136AddingAdditionalVariablesandPathstotheAmosPathDiagram

16.13.7AddingErrorTermsforDependentVariables

16138CorrectingMistakesandPrintingthePathModel

16139OpeningaDataFileFromAmos

16.13.10SpecificationofAnalysisMethodandRequestforOutput

161311RunningtheAmosAnalysisandExaminingPreliminaryResults

161312UnstandardizedPathCoefficientsonPathDiagram

16.13.13ExaminingTextOutputFromAmos

161314LocatingandInterpretingOutputforBootstrappedCIfortheabIndirectEffect

161315WhyUseAmos/SEMRatherThanOLSRegression?

16.14ResultsSection

16.15Summary ComprehensionQuestions

Chapter17.AnalysisofCovariance

17.1ResearchSituationsandResearchQuestions

172EmpiricalExample

173ScreeningforViolationsofAssumptions

17.4VariancePartitioninginANCOVA

175IssuesinPlanningaStudy

176FormulasforANCOVA

17.7ComputationofAdjustedEffectsandAdjustedY*Means

178ConceptualBasis:FactorsThatAffecttheMagnitudeofSSAadj andSSresidual andthePatternof AdjustedGroupMeans

179EffectSize

1710StatisticalPower

17.11NatureoftheRelationshipandFollow-UpTests:InformationtoIncludeintheResultsSection 1712SPSSAnalysisandModelResults

1713AdditionalDiscussionofANCOVAResults

17.14Summary

Appendix:AlternativeMethodsfortheAnalysisofPretest/PosttestData ComprehensionQuestions

Chapter18.DiscriminantAnalysis

18.1ResearchSituationsandResearchQuestions

182IntroductionofanEmpiricalExample

18.3ScreeningforViolationsofAssumptions

18.4IssuesinPlanningaStudy

185EquationsforDiscriminantAnalysis

18.6ConceptualBasis:FactorsThatAffecttheMagnitudeofWilks’sΛ 18.7EffectSize

188StatisticalPowerandSampleSizeRecommendations

18.9Follow-UpTeststoAssessWhatPatternofScoresBestDifferentiatesGroups 18.10Results

1811One-WayANOVAonScoresonDiscriminantFunctions

1812Summary

Appendix:Eigenvalue/EigenvectorProblem ComprehensionQuestions

Chapter19.MultivariateAnalysisofVariance

19.1ResearchSituationsandResearchQuestions

192IntroductionoftheInitialResearchExample:AOne-WayMANOVA

19.3WhyIncludeMultipleOutcomeMeasures?

194EquivalenceofMANOVAandDA

19.5TheGeneralLinearModel

19.6AssumptionsandDataScreening

197IssuesinPlanningaStudy

19.8ConceptualBasisofMANOVAandSomeFormulasforMANOVA

19.9MultivariateTestStatistics

1910FactorsThatInfluencetheMagnitudeofWilks’sΛ

19.11EffectSizeforMANOVA

19.12StatisticalPowerandSampleSizeDecisions

1913SPSSOutputforaOne-WayMANOVA:CareerGroupDataFromChapter18

19.14A2×3FactorialMANOVAoftheCareerGroupData

19.14.1PotentialFollow-UpTeststoAssesstheNatureofSignificantMainEffects

19142PossibleFollow-UpTeststoAssesstheNatureoftheInteraction

19.14.3FurtherDiscussionofProblemsWithThis2×3FactorialMANOVA

19.15ASignificantInteractionina3×6MANOVA

1916ComparisonofUnivariateandMultivariateFollow-UpAnalysesforMANOVA

1917Summary ComprehensionQuestions

Chapter20 PrincipalComponentsandFactorAnalysis

201ResearchSituations

20.2PathModelforFactorAnalysis

203FactorAnalysisasaMethodofDataReduction

204IntroductionofanEmpiricalExample

20.5ScreeningforViolationsofAssumptions

206IssuesinPlanningaFactor-AnalyticStudy

207ComputationofLoadings

20.8StepsintheComputationofPrincipalComponentsorFactorAnalysis

2081ComputationoftheCorrelationMatrixR

2082ComputationoftheInitialLoadingMatrixA

20.8.3LimitingtheNumberofComponentsorFactors

2084RotationofFactors

2085NamingorLabelingComponentsorFactors

20.9Analysis1:PrincipalComponentsAnalysisofThreeItemsRetainingAllThreeComponents

2091CommunalityforEachItemBasedonAllThreeComponents

2092VarianceReproducedbyEachoftheThreeComponents

20.9.3ReproductionofCorrelationsFromLoadingsonAllThreeComponents

2010Analysis2:PrincipalComponentAnalysisofThreeItemsRetainingOnlytheFirstComponent

20101CommunalityforEachItemBasedonOneComponent

20.10.2VarianceReproducedbytheFirstComponent

20103PartialReproductionofCorrelationsFromLoadingsonOnlyOneComponent

20.11PrincipalComponentsVersusPrincipalAxisFactoring

20.12Analysis3:PAFofNineItems,TwoFactorsRetained,NoRotation 20121CommunalityforEachItemBasedonTwoRetainedFactors

20.12.2VarianceReproducedbyTwoRetainedFactors

20.12.3PartialReproductionofCorrelationsFromLoadingsonOnlyTwoFactors

2013GeometricRepresentationofCorrelationsBetweenVariablesandCorrelationsBetweenComponents orFactors

20.13.1FactorRotation

2014TheTwoSetsofMultipleRegressions

20.14.1ConstructionofFactorScores(SuchasScoreonF1)FromzScores

20.14.2PredictionofStandardScoresonVariables(zxi)FromFactors(F1,F2,…,F9)

2015Analysis4:PAFWithVarimaxRotation

20.15.1VarianceReproducedbyEachFactoratThreeStagesintheAnalysis

20152RotatedFactorLoadings

20153ExampleofaReverse-ScoredItem

20.16QuestionstoAddressintheInterpretationofFactorAnalysis

20161HowManyFactorsorComponentsorLatentVariablesAreNeededtoAccountfor(or Reconstruct)thePatternofCorrelationsAmongtheMeasuredVariables?

20.16.2How“Important”AretheFactorsorComponents?HowMuchVarianceDoesEachFactoror ComponentExplain?

20163What,ifAnything,DotheRetainedFactorsorComponentsMean?CanWeLabelorNameOur Factors?

20164HowAdequatelyDotheRetainedComponentsorFactorsReproducetheStructureintheOriginal Data ThatIs,theCorrelationMatrix?

20.17ResultsSectionforAnalysis4:PAFWithVarimaxRotation

2018FactorScoresVersusUnit-WeightedComposites

2019SummaryofIssuesinFactorAnalysis

20.20Optional:BriefIntroductiontoConceptsinStructuralEquationModeling Appendix:TheMatrixAlgebraofFactorAnalysis ComprehensionQuestions

Chapter21.Reliability,Validity,andMultiple-ItemScales

211AssessmentofMeasurementQuality

2111Reliability

21.1.2Validity 2113Sensitivity

2114Bias

21.2CostandInvasivenessofMeasurements

21.2.1Cost

2122Invasiveness

21.2.3ReactivityofMeasurement

21.3EmpiricalExamplesofReliabilityAssessment 2131DefinitionofReliability

21.3.2Test-RetestReliabilityAssessmentforaQuantitativeVariable

21.3.3InterobserverReliabilityAssessmentforScoresonaCategoricalVariable 214ConceptsFromClassicalMeasurementTheory

21.4.1ReliabilityasPartitionofVariance

21.4.2AttenuationofCorrelationsDuetoUnreliabilityofMeasurement 215UseofMultiple-ItemMeasurestoImproveMeasurementReliability

21.6ComputationofSummatedScales

21.6.1Assumption:AllItemsMeasureSameConstructandAreScoredinSameDirection

2162Initial(Raw)ScoresAssignedtoIndividualResponses

21.6.3VariableNaming,ParticularlyforReverse-WordedQuestions

21.6.4FactorAnalysistoAssessDimensionalityofaSetofItems

2165RecodingScoresforReverse-WordedItems

2166SummingScoresAcrossItemstoComputeTotalScore:HandlingMissingData

21.6.7Sumsof(Unit-Weighted)ItemScoresVersusSavedFactorScores

21671SimpleUnit-WeightedSumofRawScores

21672SimpleUnit-WeightedSumofzScores

21.6.7.3SavedFactorScoresorOtherOptimallyWeightedLinearComposites 21674CorrelationBetweenSumsofItemsVersusFactorScores 21675ChoiceAmongMethodsofScoring

21.7AssessmentofInternalHomogeneityforMultiple-ItemMeasures:Cronbach’sAlphaReliability Coefficient

2171Cronbach’sAlpha:ConceptualBasis

21.7.2EmpiricalExample:Cronbach’sAlphaforFiveSelectedCES-DScaleItems 2173ImprovingCronbach’sAlphabyDroppinga“Poor”Item 2174ImprovingCronbach’sAlphabyIncreasingtheNumberofItems

21.7.5OtherMethodsofReliabilityAssessmentforMultiple-ItemMeasures 21751Split-HalfReliability

21752ParallelFormsReliability

21.8ValidityAssessment

2181ContentandFaceValidity

2182Criterion-OrientedValidity

21.8.2.1ConvergentValidity

21822DiscriminantValidity

21823ConcurrentValidity

21.8.2.4PredictiveValidity

21.8.3ConstructValidity:Summary

219TypicalScaleDevelopmentProcess

21.9.1GeneratingandModifyingthePoolofItemsorMeasures

21.9.2AdministerSurveytoParticipants

2193FactorAnalyzeItemstoAssesstheNumberandNatureofLatentVariablesorConstructs

21.9.4DevelopmentofSummatedScales

21.9.5AssessScaleReliability

2196AssessScaleValidity

21.9.7IterativeProcess

21.9.8CreatetheFinalScale

2110ModernMeasurementTheory

21.11ReportingReliabilityAssessment

21.12Summary

Appendix:TheCES-DScale ComprehensionQuestions

Chapter22.AnalysisofRepeatedMeasures

221Introduction

222EmpiricalExample:ExperimenttoAssessEffectofStressonHeartRate

22.2.1AnalysisofDataFromtheStress/HRStudyasaBetween-SorIndependentSamplesDesign

2222IndependentSamplestTestfortheStress/HRData

2223One-WayBetween-SANOVAfortheStress/HRData

22.3DiscussionofSourcesofWithin-GroupErrorinBetween-SVersusWithin-SData

224TheConceptualBasisforthePairedSamplestTestandOne-WayRepeatedMeasuresANOVA

225ComputationofaPairedSamplestTesttoCompareMeanHRBetweenBaselineandPainConditions

22.6SPSSExample:AnalysisofStress/HRDataUsingaPairedSamplestTest

227ComparisonBetweenIndependentSamplestTestandPairedSamplestTest

228SPSSExample:AnalysisofStress/HRDataUsingaUnivariateOne-WayRepeatedMeasures ANOVA

229UsingtheSPSSGLMProcedureforRepeatedMeasuresANOVA

2210ScreeningforViolationsofAssumptionsinUnivariateRepeatedMeasures

22.11TheGreenhouse-GeisserεandHuynh-FeldtεCorrectionFactors

2212MANOVAApproachtoAnalysisofRepeatedMeasuresData

2213EffectSize

22.14StatisticalPower

2215PlannedContrasts

2216Results

22.17DesignProblemsinRepeatedMeasuresStudies

2218MoreComplexDesigns

2219AlternativeAnalysesforPretestandPosttestScores

22.20Summary

ComprehensionQuestions

Chapter23.BinaryLogisticRegression

23.1ResearchSituations

2311TypesofVariables

2312ResearchQuestions

23.1.3AssumptionsRequiredforLinearRegressionVersusBinaryLogisticRegression

232SimpleEmpiricalExample:DogOwnershipandOddsofDeath

233ConceptualBasisforBinaryLogisticRegressionAnalysis

23.3.1WhyOrdinaryLinearRegressionIsInadequate

2332ModifyingtheMethodofAnalysistoHandleTheseProblems

234DefinitionandInterpretationofOdds

23.5ANewTypeofDependentVariable:TheLogit

236TermsInvolvedinBinaryLogisticRegressionAnalysis

2361EstimationofCoefficientsforaBinaryLogisticRegressionModel

23.6.2AssessmentofOverallGoodnessofFitforaBinaryLogisticRegressionModel

2363AlternativeAssessmentsofOverallGoodnessofFit

2364InformationAboutPredictiveUsefulnessofIndividualPredictorVariables

23.6.5EvaluatingAccuracyofGroupClassification

237AnalysisofDataforFirstEmpiricalExample:DogOwnership/DeathStudy

2371SPSSMenuSelectionsandDialogWindows

23.7.2SPSSOutput

23721NullModel

23722FullModel

23.7.3ResultsfortheDogOwnership/DeathStudy

238IssuesinPlanningandConductingaStudy

2381PreliminaryDataScreening

23.8.2DesignDecisions

2383CodingScoresonBinaryVariables

239MoreComplexModels

23.10BinaryLogisticRegressionforSecondEmpiricalAnalysis:DrugDoseandGenderasPredictorsof OddsofDeath

2311ComparisonofDiscriminantAnalysistoBinaryLogisticRegression

23.12Summary

ComprehensionQuestions

AppendixA:ProportionsofAreaUnderaStandardNormalCurve

AppendixB:CriticalValuesfortDistribution

AppendixC:CriticalValuesofF

AppendixD:CriticalValuesofChi-Square

AppendixE:CriticalValuesofthePearsonCorrelationCoefficient

AppendixF:CriticalValuesoftheStudentizedRangeStatistic

AppendixG:Transformationofr(PearsonCorrelation)toFisherZ

Glossary

References

Index

PREFACE

I

am grateful to the readers of the first edition who provided feedback about errors and made suggestions for improvement; your input has been extremely helpful I have corrected all typographical errors that were noticed in the first edition and added some clarifications based on reader feedback. I welcome communication from teachers, students, and readers; please email me at rmw@unhedu with comments, corrections, or suggestions Instructor and student support materials are available for download from www.sagepub.com/warner2e.

Thefollowingmaterialsareavailableforinstructors:

PowerPointpresentationsthatoutlineissuesineachchapterandincludeallfiguresandtablesfromthe textbook

Answersforallcomprehensionquestionsattheendofeachchapter(instructorsmaywishtousesome ofthesequestionsonexamsoraspartofhomeworkassignments)

Forbothinstructorsandstudents,theseadditionalmaterialsareavailable:

AlldatasetsusedinexamplesinthechapterscanbedownloadedaseitherSPSSorExcelfiles OptionalhandoutsshowhowalloftheanalysesdoneusingSPSSinthebookcanberunusingSAS Version93,includingscreenshots,anddetailsaboutinputandoutputfiles

ChangesintheSecondEdition

AllSPSSscreenshotsandoutputhavebeenupdatedtoIBMSPSSVersion19

Chapter4(datascreening)hasbriefnewsectionsaboutexaminationofthepatterninmissingdata, imputationofmissingvalues,andproblemswithdichotomizingscoresonquantitativevariables

Chapter9(bivariateregression)nowincludesreferencestothediscussionofproblemswithcomparison ofstandardizedregressioncoefficientsacrossgroups.

Chapter10includesanewsectiononinconsistentmediationasonetypeofsuppression.

Chapter13hasnewexamplesusingbargraphswitherrorbarstoreportmeansinfactorialanalysisof variance(ANOVA).

In the first edition, mediation was discussed briefly in Chapters 10 and 11, and moderation/analysis of interaction in regression was introduced in Chapter 12 In the second edition, this material has been moved intoseparatenewchaptersandsubstantiallyexpanded

NewChapter15,Moderation,discussestheanalysisofinteractioninmultipleregression,includinghow togeneratelinegraphstodescribethenatureofinteractionsbetweenquantitativepredictors

NewChapter16,Mediation,providesathoroughandupdateddiscussionoftestsforhypothesesabout mediatedcausalmodels.Thischapterincludescompleteinstructionsonhowtodomediationanalysisif youdonothaveaccesstoastructuralequationmodelingprogram,aswellasanoptionalbrief introductiontotheAmosstructuralequationmodelingprogram,availableasanSPSSadd-on,as anotherwaytotestmediatedmodels.

Becausetwonewchapterswereaddedinthemiddleofthebook,allchaptersfromChapter15 to the end ofthebookhavebeenrenumberedinthesecondedition

Chapter21(Chapter19inthefirstedition)hasanewsectiononthedifferentwaysthatSPSShandles missingscoreswhenformingsummatedscalesusingtheSPSSMeanandSumfunctions

SuggestedWaystoUseThisBook

In a two-semester or full-year course, it may be possible to cover most of the material in this textbook This provides basic coverage of methods for comparisons of means in between and within S designs, as well as an introduction to linear regression. The coverage of path models in Chapter10 and latent variables in Chapter 20providesthebackgroundstudentswillneedtomoveontomoreadvancedtopicssuchasstructuralequation modeling

Several different one-semester courses can be taught using selected chapters (and, of course, students can be referred to chapters that are not covered in class for review as needed) If further coverage is desired (for example, polytomous logistic regression), monographs from the SAGE series “Quantitative Applications in theSocialSciences”areexcellentsupplements.

One-SemesterCourse:ComparisonofGroupMeans

Chapter1:ReviewofBasicConcepts

Chapter2:BasicStatistics,SamplingError,andConfidenceIntervals

Chapter3:StatisticalSignificanceTesting

Chapter4:PreliminaryDataScreening

Chapter5:ComparingGroupMeansUsingtheIndependentSamplestTest

Chapter6:One-WayBetween-SubjectsAnalysisofVariance

Chapter13:FactorialAnalysisofVariance

Chapter17:AnalysisofCovariance

Chapter 19: Multivariate Analysis of Variance (perhaps also Chapter 18, Discriminant Analysis, for follow-upanalyses)

Chapter22:AnalysisofRepeatedMeasures

SAGEmonographssuggestedassupplementsforANOVA:

ExperimentalDesignandAnalysis,byStevenR.BrownandLawrenceE.Melamed MissingData,byPaulD Allison

NonparametricStatistics:AnIntroduction,byJeanD Gibbons

RandomFactorsinANOVA,bySallyJacksonandDaleE.Brashers

One-SemesterCourse:CorrelationandRegression,IncludingMediation/Moderation

Chapter1:ReviewofBasicConcepts

Chapter2:DescriptiveStatistics,SamplingError,andConfidenceIntervals

Chapter3:StatisticalSignificanceTesting

Chapter4:PreliminaryDataScreening

Chapter7:BivariatePearsonCorrelation

(Optional:Chapter8:AlternativeCorrelationCoefficients)

Chapter9:BivariateRegression

Chapter10:AddingaThirdVariable:PreliminaryExploratoryAnalyses

Chapter11:MultipleRegressionWithTwoPredictorVariables

(Optional:Chapter12:DummyPredictorVariablesinMultipleRegression)

Chapter14:MultipleRegressionWithMoreThanTwoPredictors

Chapter15:Moderation:TestsforInteractioninMultipleRegression

Chapter16:Mediation

(Optional:Chapter23:BinaryLogisticRegression)

SAGEmonographssuggestedassupplementsforregressionanalysis:

AppliedLogisticRegressionAnalysis,SecondEdition,byScottMenard

Bootstrapping:ANonparametricApproachtoStatisticalInference, by Christopher Z. Mooney and Robert D Duval

InteractionEffectsinLogisticRegression,byJamesJaccard

LatentGrowthCurveModeling,byKristopherJ.Preacher,AaronL.Wichman,RobertC.MacCallum, andNancyE Briggs

LogisticRegressionModelsforOrdinalResponseVariables,byAnnA O’Connell

LogitandProbit:OrderedandMultinomialModels,byVaniKantBorooah

LogitModeling:PracticalApplications,byAlfredDeMaris

MissingData,byPaulD.Allison

ModernMethodsforRobustRegression,byRobertAndersen

MultilevelModeling,byDouglasA Luke

MultipleandGeneralizedNonparametricRegression,byJohnFox

NonparametricStatistics:AnIntroduction,byJeanD.Gibbons

NonrecursiveModels:Endogeneity,ReciprocalRelationships,andFeedbackLoops, by Pamela Paxton, John R Hipp,andSandraMarquart-Pyatt

RegressionDiagnostics:AnIntroduction,byJohnFox

UnderstandingRegressionAssumptions,byWilliamD.Berry

One-SemesterCourse:DevelopmentofMultiple-ItemScalesandReliability/ValidityAssessment

Chapter1:ReviewofBasicConcepts

Chapter2:DescriptiveStatistics,SamplingError,andConfidenceIntervals

Chapter3:StatisticalSignificanceTesting

Chapter4:PreliminaryDataScreening

Chapter7:BivariatePearsonCorrelation

Chapter8:AlternativeCorrelationCoefficients

Chapter20:PrincipalComponentsandFactorAnalysis

Chapter21:Reliability,Validity,andMultiple-ItemScales

SAGEmonographssuggestedassupplementsformultiple-itemscales/measurement/reliabilityanalysis:

DifferentialItemFunctioning,SecondEdition,byStevenJ OsterlindandHowardT Everson

MissingData,byPaulD Allison

OrdinalItemResponseTheory:MokkenScaleAnalysis,byWijbrandtH vanSchuur

PolytomousItemResponseTheoryModels,byRemoOstiniandMichaelL.Nering

RaschModelsforMeasurement,byDavidAndrich

SummatedRatingScaleConstruction:AnIntroduction,byPaulE Spector

Survey Questions: Handcrafting the Standardized Questionnaire, by Jean M Converse and Stanley Presser

Translating Questionnaires and Other Research Instruments: Problems and Solutions, by Orlando Behling andKennethS Law

OtherSAGEmonographsforuseinanyofthecoursesoutlinedabove:

InternetDataCollection,bySamuelJ.BestandBrianS.Kruege

Meta-Analysis:QuantitativeMethodsforResearchSynthesis,byFredricM.Wolf

OtherRemarks

This book was written to provide a bridge between the many excellent statistics books that already exist at introductoryandadvancedlevels Ihavebeenpersuadedbyyearsofteachingthatmoststudentsdonothavea clear understanding of statistics after their first or second courses The concepts covered in an introductory course include some of the most difficult and controversial issues in statistics, such as level of measurement and null hypothesis significance testing Until students have been introduced to the entire vocabulary and system of thought, it is difficult for them to integrate all these ideas I believe that understanding statistics requires multiple-pass learning. I have included a review of basic topics (such as null hypothesis significance testprocedures)alongwithintroductionstomoreadvancedtopicsinstatistics Studentsneedvaryingamounts ofreviewandclarification;thistextbookisdesignedsothateachstudentcanreviewasmuchbasicmaterialas necessarypriortothestudyofmoreadvancedtopicssuchasmultipleregression.Somestudentsneedareview ofconceptsinvolvedinbivariateanalyses(suchaspartitionofvariance),andmoststudentscanbenefitfroma thorough introduction to statistical control in simple three-variable research situations This textbook differs from many existing textbooks for advanced undergraduate- and beginning graduate-level statistics courses because it includes a review of bivariate methods that clarifies important concepts and a thorough discussion of methods for statistically controlling for a third variable (X2) when assessing the nature and strength of the association between an X1 predictor and a Y outcome variable. Later chapters present verbal explanations of widelyusedmultivariatemethodsappliedtospecificresearchexamples

Writingatextbookrequiresdifficultdecisionsaboutwhattopicstoincludeandwhattoleaveoutandhow to handle topics where there is disagreement among authorities This textbook does not cover nonparametric statistics or complex forms of factorial analysis of variance, nor does it cover all the advanced topics found in more encyclopedic treatments (such as time-series analysis, multilevel modeling, survival analysis, and loglinear models) The topics that are included provide a reasonably complete set of tools for data analysis at the advanced undergraduate or beginning graduate level along with explanations of some of the fundamental concepts that are crucial for further study of statistics. For example, comprehension of structural equation modeling (SEM) requires students to understand path or “causal” models, latent variables, measurement models,andthewayinwhichobservedcorrelations(orvariancesandcovariances)canbereproducedfromthe coefficients in a model. This textbook introduces path models and the tracing rule as a way of understanding linearregressionwithtwopredictorvariables Theexplanationofregressionwithtwopredictorsmakesitclear how estimates of regression slope coefficients are deduced from observed correlations and how observed correlations among variables can be reproduced from the coefficients in a regression model. Explaining regression in this way helps students understand why the slope coefficient for each X predictor variable is context dependent (i.e., the value of the slope coefficient for each X predictor variable changes depending on which other X predictor variables are included in the regression analysis). This explanation also sets the stage for an understanding of more advanced methods, such as SEM, that use model parameters to reconstruct observed variances and covariances I have tried to develop explanations that will serve students well whether they use them only to understand the methods of analysis covered in this textbook or as a basis for further studyofmoreadvancedstatisticalmethods

ACKNOWLEDGMENTS

Writers depend on many other people for intellectual preparation and moral support My understanding of statistics was shaped by several exceptional teachers, including the late Morris de Groot at Carnegie Mellon University, and my dissertation advisers at Harvard, Robert Rosenthal and David Kenny Several of the teachers who have most strongly influenced my thinking are writers I know only through their books and journal articles I want to thank all the authors whose work is cited in the reference list. Authors whose work has greatly influenced my understanding include Jacob and Patricia Cohen, Barbara Tabachnick, Linda Fidell, James Jaccard, Richard Harris, Geoffrey Keppel, and JamesStevens

I wish to thank the University of New Hampshire (UNH) for sabbatical leave time and Mil Duncan, director of the Carsey Institute at UNH, for release time from teaching I also thank my department chair, KenFuld,whogavemelightcommitteeresponsibilitieswhileIwasworkingonthisbook Thesegiftsoftime madethecompletionofthebookpossible.

Special thanks are due to the reviewers who provided exemplary feedback on the first drafts of the chapters:

Forthefirstedition:

DavidJ Armor,GeorgeMasonUniversity

MichaelD.Biderman,UniversityofTennesseeatChattanooga

SusanCashin,UniversityofWisconsin–Milwaukee

RuthChilds,UniversityofToronto

Young-HeeCho,CaliforniaStateUniversity,LongBeach

JenniferDunn,CenterforAssessment

WilliamA.Fredrickson,UniversityofMissouri–KansasCity

RobertHanneman,UniversityofCalifornia,Riverside

AndrewHayes,OhioStateUniversity

LawrenceG Herringer,CaliforniaStateUniversity,Chico

JasonKing,BaylorCollegeofMedicine

PatrickLeung,UniversityofHouston

ScottE.Maxwell,UniversityofNotreDame

W JamesPotter,UniversityofCalifornia,SantaBarbara

KyleL Saunders,ColoradoStateUniversity

JosephStevens,UniversityofOregon

JamesA.Swartz,UniversityofIllinoisatChicago

KeithThiede,UniversityofIllinoisatChicago

Forthesecondedition:

DianeBagwell,UniversityofWestFlorida

GeraldR Busheé,GeorgeMasonUniversity

EvitaG Bynum,UniversityofMarylandEasternShore

RalphCarlson,TheUniversityofTexasPanAmerican

JohnJ.Convey,TheCatholicUniversityofAmerica

KimberlyA Kick,DominicanUniversity

TraceyD Matthews,SpringfieldCollege

HidekiMorooka,FayettevilleStateUniversity

DanielJ.Mundfrom,NewMexicoStateUniversity

ShantaPandey,WashingtonUniversity

BeverlyL Roberts,UniversityofFlorida

JimSchwab,UniversityofTexasatAustin

MichaelT Scoles,UniversityofCentralArkansas

CarlaJ.Thompson,UniversityofWestFlorida

MichaelD Toland,UniversityofKentucky

PaigeL Tompkins,MercerUniversity

Their comments were detailed and constructive I hope that revisions based on their reviews have improved this book substantially. The publishing team at SAGE, including Vicki Knight, Lauren Habib, Kalie Koscielak, Laureen Gleason, and Gillian Dickens, provided extremely helpful advice, support, and

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.