Introduction to mathematical statistics, 8th global edition robert v. hogg 2024 scribd download

Page 1


V. Hogg

Visit to download the full and correct content document: https://ebookmass.com/product/introduction-to-mathematical-statistics-8th-global-editi on-robert-v-hogg/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

(eTextbook PDF) for Introduction to Mathematical Statistics 8th Edition by Robert V.

https://ebookmass.com/product/etextbook-pdf-for-introduction-tomathematical-statistics-8th-edition-by-robert-v-hogg/

Human Development: A Life-Span View 8th Edition Robert V. Kail

https://ebookmass.com/product/human-development-a-life-spanview-8th-edition-robert-v-kail/

Introduction to Mathematical Analysis I 3rd Edition Beatriz Lafferriere

https://ebookmass.com/product/introduction-to-mathematicalanalysis-i-3rd-edition-beatriz-lafferriere/

Introduction To Embedded Systems 2nd Edition K. V Shibu

https://ebookmass.com/product/introduction-to-embeddedsystems-2nd-edition-k-v-shibu/

Introduction to global studies Second Edition John Mccormick

https://ebookmass.com/product/introduction-to-global-studiessecond-edition-john-mccormick/

Mathematical Statistics with Applications 7th Edition –Ebook PDF Version

https://ebookmass.com/product/mathematical-statistics-withapplications-7th-edition-ebook-pdf-version/

SOC 6: Introduction to Sociology 6th Edition Nijole V. Benokraitis

https://ebookmass.com/product/soc-6-introduction-tosociology-6th-edition-nijole-v-benokraitis/

Introduction to Global Politics 4th Edition Lamy

https://ebookmass.com/product/introduction-to-globalpolitics-4th-edition-lamy/

Introduction to Quantitative Ecology: Mathematical and Statistical Modelling for Beginners Essington

https://ebookmass.com/product/introduction-to-quantitativeecology-mathematical-and-statistical-modelling-for-beginnersessington/

Introduction to MathematicalStatistics

EighthEdition

GlobalEdition

RobertV.Hogg UniversityofIowa

JosephW.McKean WesternMichiganUniversity

AllenT.Craig LateProfessorofStatistics UniversityofIowa

Director,PortfolioManagement:DeirdreLynch

CoursewarePortfolioManager:PatrickBarbera

PortfolioManagementAssistant:Morgan

Danna

AssociateEditor,GlobalEdition:Shaoni

Mukherjee

ContentProducer:LaurenMorse

ManagingProducer:ScottDisanno

ProductMarketingManager:YvonneVannatta

FieldMarketingManager:EvanSt.Cyr

MarketingAssistant:JonBryant

SeniorAuthorSupport/TechnologySpecialist: JoeVetere

PearsonEducationLimited

KAOTwo

KAOPark

HockhamWay

Harlow

Essex

CM179SR

UnitedKingdom

andAssociatedCompaniesthroughouttheworld

ManagingEditor,DigitalMedia,Global Edition:GargiBanerjee Manager,RightsandPermissions:Gina Cheselka ManufacturingBuyer:CarolMelville, LSCCommunications ManufacturingBuyer,GlobalEdition: KayHolman

ArtDirector:BarbaraAtkinson ProductionCoordinationandIllustrations: Integra CoverDesign:LuminaDatamatics CoverImage:AnnaMente/Shutterstock

VisitusontheWorldWideWebat: www.pearsonglobaleditions.com

© PearsonEducationLimited2020

TherightsofRobertV.Hogg,JosephW.McKean,andAllenT.Craigtobeidentifiedasthe authorsofthisworkhavebeenassertedbytheminaccordancewiththeCopyright,Designsand PatentsAct1988.

AuthorizedadaptationfromtheUnitedStatesedition,entitled IntroductiontoMathematical Statistics, 8thEdition,ISBN978-0-13-468699-8,byRobertV.Hogg,JosephW.McKean,and AllenT.Craig,publishedbyPearsonEducation © 2019.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem, ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,withouteitherthepriorwrittenpermissionofthepublisheroralicensepermitting restrictedcopyingintheUnitedKingdomissuedbytheCopyrightLicensingAgencyLtd,SaffronHouse,6–10KirbyStreet,LondonEC1N8TS.Forinformationregardingpermissions,request formsandtheappropriatecontactswithinthePearsonEducationGlobalRights&Permissions department,pleasevisitwww.pearsoned.com/permissions/.

Alltrademarksusedhereinarethepropertyoftheirrespectiveowners.Theuseofanytrademark inthistextdoesnotvestintheauthororpublisheranytrademarkownershiprightsinsuchtrademarks,nordoestheuseofsuchtrademarksimplyanyaffiliationwithorendorsementofthisbook bysuchowners.

PEARSONandALWAYSLEARNINGareexclusivetrademarksownedbyPearsonEducation, Inc.oritsaffiliatesintheU.S.and/orothercountries.Unlessotherwiseindicatedherein,any third-partytrademarksthatmayappearinthisworkarethepropertyoftheirrespectiveowners andanyreferencestothird-partytrademarks,logosorothertradedressarefordemonstrativeor descriptivepurposesonly.Suchreferencesarenotintendedtoimplyanysponsorship,endorsement,authorization,orpromotionofPearson’sproductsbytheownersofsuchmarks,orany relationshipbetweentheownerandPearsonEducation,Inc.oritsaffiliates,authors,licenseesor distributors.

ThiseBookisastandaloneproductandmayormaynotincludeallassetsthatwerepartofthe printversion.ItalsodoesnotprovideaccesstootherPearsondigitalproductslikeMyLaband Mastering.ThepublisherreservestherighttoremoveanymaterialinthiseBookatanytime.

ISBN10:1-292-26476-4

ISBN13:978-1-292-26476-9 eBookISBN13:978-1-292-26478-3

BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary TypesetbyIntegraSoftwareServicesPvt.Ltd.

DedicatedtomywifeMarge andtothememoryofBobHogg

This page intentionally left blank

1ProbabilityandDistributions 15 1.1Introduction ................................15 1.2Sets....................................17

1.2.1ReviewofSetTheory ......................18

1.2.2SetFunctions ...........................21

1.3TheProbabilitySetFunction ......................26

1.3.1CountingRules ..........................30

1.3.2AdditionalPropertiesofProbability ..............32

1.4ConditionalProbabilityandIndependence ...............37

1.4.1Independence ...........................42

1.4.2Simulations ............................45

1.5RandomVariables............................51

1.6DiscreteRandomVariables.......................59

1.6.1Transformations... ......................61

1.7ContinuousRandomVariables.....................63

1.7.1Quantiles .............................65

1.7.2Transformations... ......................67

1.7.3MixturesofDiscreteandContinuousTypeDistributions...70

1.8ExpectationofaRandomVariable ...................74

1.8.1RComputationforanEstimationoftheExpectedGain...79

1.9SomeSpecialExpectations. ......................82

1.10ImportantInequalities ..........................92

2MultivariateDistributions 99

2.1DistributionsofTwoRandomVariables ................99

2.1.1MarginalDistributions ......................103

2.1.2Expectation ............................107

2.2Transformations:BivariateRandomVariables... ..........114

2.3ConditionalDistributionsandExpectations ..............123

2.4IndependentRandomVariables .....................131

2.5TheCorrelationCoefficient. ......................139

2.6ExtensiontoSeveralRandomVariables................148

2.6.1 ∗ MultivariateVariance-CovarianceMatrix. ..........154

2.7TransformationsforSeveralRandomVariables.. ..........157

2.8LinearCombinationsofRandomVariables ...............165

3SomeSpecialDistributions 169

3.1TheBinomialandRelatedDistributions ................169

3.1.1NegativeBinomialandGeometricDistributions ........173

3.1.2MultinomialDistribution ....................174

3.1.3HypergeometricDistribution ..................176

3.2ThePoissonDistribution.. ......................181

3.3TheΓ, χ2 ,and β Distributions .....................187

3.3.1The χ2 -Distribution. ......................192

3.3.2The β -Distribution.. ......................194

3.4TheNormalDistribution... ......................200

3.4.1 ∗ ContaminatedNormals .....................207

3.5TheMultivariateNormalDistribution .................212

3.5.1BivariateNormalDistribution ..................212

3.5.2 ∗ MultivariateNormalDistribution,GeneralCase .......213

3.5.3 ∗ Applications ...........................220

3.6 t-and F -Distributions ..........................224

3.6.1The t-distribution.. ......................224

3.6.2The F -distribution.. ......................226

3.6.3Student’sTheorem.. ......................228

3.7 ∗ MixtureDistributions ..........................232

4SomeElementaryStatisticalInferences 239

4.1SamplingandStatistics... ......................239

4.1.1PointEstimators... ......................240

4.1.2HistogramEstimatesofpmfsandpdfs... ..........244

4.2ConfidenceIntervals ...........................252

4.2.1ConfidenceIntervalsforDifferenceinMeans ..........255

4.2.2ConfidenceIntervalforDifferenceinProportions .......257

4.3 ∗ ConfidenceIntervalsforParametersofDiscreteDistributions ....262

4.4OrderStatistics ..............................267

4.4.1Quantiles .............................271

4.4.2ConfidenceIntervalsforQuantiles ...............275

4.5IntroductiontoHypothesisTesting ...................281

4.6AdditionalCommentsAboutStatisticalTests... ..........289

4.6.1ObservedSignificanceLevel, p-value..............293

4.7Chi-SquareTests.............................297

4.8TheMethodofMonteCarlo.......................306

4.8.1Accept–RejectGenerationAlgorithm ..............312

4.9BootstrapProcedures ..........................317

4.9.1PercentileBootstrapConfidenceIntervals. ..........317

4.9.2BootstrapTestingProcedures ..................322

4.10 ∗ ToleranceLimitsforDistributions ...................329

5ConsistencyandLimitingDistributions 335

5.1ConvergenceinProbability. ......................335

5.1.1SamplingandStatistics .....................338

5.2ConvergenceinDistribution. ......................341

5.2.1BoundedinProbability .....................347

5.2.2Δ-Method .............................348

5.2.3MomentGeneratingFunctionTechnique.. ..........350

5.3CentralLimitTheorem... ......................355

5.4 ∗ ExtensionstoMultivariateDistributions ...............362

6MaximumLikelihoodMethods 369

6.1MaximumLikelihoodEstimation ....................369

6.2Rao–Cram´erLowerBoundandEfficiency ...............376

6.3MaximumLikelihoodTests.......................390

6.4MultiparameterCase:Estimation ....................400

6.5MultiparameterCase:Testing ......................409

6.6TheEMAlgorithm ............................418

7Sufficiency 427

7.1MeasuresofQualityofEstimators ...................427

7.2ASufficientStatisticforaParameter ..................433

7.3PropertiesofaSufficientStatistic ....................440

7.4CompletenessandUniqueness ......................444

7.5TheExponentialClassofDistributions .................449

7.6FunctionsofaParameter.. ......................454

7.6.1BootstrapStandardErrors ...................458

7.7TheCaseofSeveralParameters.....................461

7.8MinimalSufficiencyandAncillaryStatistics ..............468

7.9Sufficiency,Completeness,andIndependence... ..........475

8OptimalTestsofHypotheses 483

8.1MostPowerfulTests...........................483

8.2UniformlyMostPowerfulTests.....................493

8.3LikelihoodRatioTests ..........................501

8.3.1LikelihoodRatioTestsforTestingMeansofNormalDistributions ..............................502

8.3.2LikelihoodRatioTestsforTestingVariancesofNormalDistributions .............................509

8.4 ∗ TheSequentialProbabilityRatioTest .................514

8.5 ∗ MinimaxandClassificationProcedures ................521

8.5.1MinimaxProcedures. ......................521

8.5.2Classification ...........................524

9InferencesAboutNormalLinearModels 529

9.1Introduction ................................529

9.2One-WayANOVA ............................530

9.3Noncentral χ2 and F -Distributions ...................536

9.4MultipleComparisons ..........................539

9.5Two-WayANOVA............................545

9.5.1InteractionbetweenFactors ...................548

9.6ARegressionProblem..........................553

9.6.1MaximumLikelihoodEstimates .................554

9.6.2 ∗ GeometryoftheLeastSquaresFit..............560

9.7ATestofIndependence... ......................565

9.8TheDistributionsofCertainQuadraticForms... ..........569

9.9TheIndependenceofCertainQuadraticForms.. ..........576

10NonparametricandRobustStatistics 583

10.1LocationModels .............................583

10.2SampleMedianandtheSignTest ....................586

10.2.1AsymptoticRelativeEfficiency .................591

10.2.2EstimatingEquationsBasedontheSignTest .........596

10.2.3ConfidenceIntervalfortheMedian ...............598

10.3Signed-RankWilcoxon ..........................600

10.3.1AsymptoticRelativeEfficiency .................605

10.3.2EstimatingEquationsBasedonSigned-RankWilcoxon...607

10.3.3ConfidenceIntervalfortheMedian ...............608

10.3.4MonteCarloInvestigation ....................609

10.4Mann–Whitney–WilcoxonProcedure ..................612

10.4.1AsymptoticRelativeEfficiency .................616

10.4.2EstimatingEquationsBasedontheMann–Whitney–Wilcoxon618

10.4.3ConfidenceIntervalfortheShiftParameterΔ .........618

10.4.4MonteCarloInvestigationofPower ..............619

10.5 ∗ GeneralRankScores ..........................621

10.5.1Efficacy ..............................624

10.5.2EstimatingEquationsBasedonGeneralScores ........626

10.5.3Optimization:BestEstimates ..................626

10.6 ∗ AdaptiveProcedures ..........................633

10.7SimpleLinearModel ...........................639

10.8MeasuresofAssociation... ......................645

10.8.1Kendall’s τ ............................645

10.8.2Spearman’sRho... ......................648

10.9RobustConcepts .............................652

10.9.1LocationModel ..........................652

10.9.2LinearModel ...........................659

11BayesianStatistics

11.1BayesianProcedures ...........................669

11.1.1PriorandPosteriorDistributions

11.1.2BayesianPointEstimation

11.1.3BayesianIntervalEstimation ..................676

11.1.4BayesianTestingProcedures

11.1.5BayesianSequentialProcedures

11.2MoreBayesianTerminologyandIdeas

11.3GibbsSampler

11.4ModernBayesianMethods..

11.4.1EmpiricalBayes...

B.2ProbabilityDistributions...

B.3RFunctions

B.4Loops...................................713

B.5InputandOutput

This page intentionally left blank

Preface

Wehavemadesubstantialchangesinthiseditionof IntroductiontoMathematical Statistics.Someofthesechangeshelpstudentsappreciatetheconnectionbetween statisticaltheoryandstatisticalpracticewhileotherchangesenhancethedevelopmentanddiscussionofthestatisticaltheorypresentedinthisbook.

Manyofthechangesinthiseditionreflectcommentsmadebyourreaders.One ofthesecommentsconcernedthesmallnumberofrealdatasetsintheprevious editions.Inthisedition,wehaveincludedmorerealdatasets,usingthemto illustratestatisticalmethodsortocomparemethods.Further,wehavemadethese datasetsaccessibletostudentsbyincludingtheminthefreeRpackage hmcpkg TheycanalsobeindividuallydownloadedinanRsessionattheurllistedonpage12. Ingeneral,theRcodefortheanalysesonthesedatasetsisgiveninthetext.

WehavealsoexpandedtheuseofthestatisticalsoftwareR.WeselectedR becauseitisapowerfulstatisticallanguagethatisfreeandrunsonallthreemain platforms(Windows,Mac,andLinux).Instructors,though,canselectanother statisticalpackage.WehavealsoexpandedouruseofRfunctionstocompute analysesandsimulationstudies,includingseveralgames.Wehavekeptthelevelof codingforthesefunctionsstraightforward.Ourgoalistoshowstudentsthatwith afewsimplelinesofcodetheycanperformsignificantcomputations.AppendixB containsabriefRprimer,whichsufficesfortheunderstandingoftheRusedinthe text.Aswiththedatasets,theseRfunctionscanbesourcedindividuallyatthe citedurl;however,theyarealsoincludedinthepackage hmcpkg.

WehavesupplementedthemathematicalreviewmaterialinAppendixA,placing itinthedocument MathematicalPrimerforIntroductiontoMathematicalStatistics Itisfreelyavailableforstudentstodownloadatthelistedurl.Besidessequences, thissupplementreviewsthetopicsofinfiniteseries,differentiation,andintegration(univariateandbivariate).Wehavealsoexpandedthediscussionofiterated integralsinthetext.Wehaveaddedfigurestoclarifydiscussion.

Wehaveretainedtheorderofelementarystatisticalinferences(Chapter4)and asymptotictheory(Chapter5).InChapters5and6,wehavewrittenbriefreviews ofthematerialinChapter4,sothatChapters4and5areessentiallyindependent ofoneanotherand,hence,canbeinterchanged.InChapter3,wenowbeginthe sectiononthemultivariatenormaldistributionwithasubsectiononthebivariate normaldistribution.Severalimportanttopicshavebeenadded.Thisincludes Tukey’smultiplecomparisonprocedureinChapter9andconfidenceintervalsfor thecorrelationcoefficientsfoundinChapters9and10.Chapter7nowcontainsa

discussiononstandarderrorsforestimatesobtainedbybootstrappingthesample. SeveraltopicsthatwerediscussedintheExercisesarenowdiscussedinthetext. Examplesincludequantiles,Section1.7.1,andhazardfunctions,Section3.3.In general,wehavemademoreuseofsubsectionstobreakupsomeofthediscussion. Also,severalmoresectionsarenowindicatedby ∗ asbeingoptional.

ContentandCoursePlanning

Chapters1and2developprobabilitymodelsforunivariateandmultivariatevariableswhileChapter3discussesmanyofthemostwidelyusedprobabilitymodels. Chapter4discussesstatisticaltheoryformuchoftheinferencefoundinastandardstatisticalmethodscourse.Chapter5presentsasymptotictheory,concluding withtheCentralLimitTheorem.Chapter6providesacompleteinference(estimationandtesting)basedonmaximumlikelihoodtheory.TheEMalgorithmis alsodiscussed.Chapters7–8containoptimalestimationproceduresandtestsof statisticalhypotheses.Thefinalthreechaptersprovidetheoryforthreeimportant topicsinstatistics.Chapter9containsinferencefornormaltheorymethodsfor basicanalysisofvariance,univariateregression,andcorrelationmodels.Chapter 10presentsnonparametricmethods(estimationandtesting)forlocationandunivariateregressionmodels.Italsoincludesdiscussionontherobustconceptsof efficiency,influence,andbreakdown.Chapter11offersanintroductiontoBayesian methods.ThisincludestraditionalBayesianproceduresaswellasMarkovChain MonteCarlotechniques.

Severalcoursescanbedesignedusingourbook.Thebasictwo-semestercourse inmathematicalstatisticscoversmostofthematerialinChapters1–8withtopics selectedfromtheremainingchapters.Forsuchacourse,theinstructorwouldhave theoptionofinterchangingtheorderofChapters4and5,thusbeginningthesecond semesterwithanintroductiontostatisticaltheory(Chapter4).Aone-semester coursecouldconsistofChapters1–4withaselectionoftopicsfromChapter5. Underthisoption,thestudentseesmuchofthestatisticaltheoryforthemethods discussedinanon-theoreticalcourseinmethods.Ontheotherhand,aswiththe two-semestersequence,aftercoveringChapters1–3,theinstructorcanelecttocover Chapter5andfinishthecoursewithaselectionoftopicsfromChapter4.

ThedatasetsandRfunctionsusedinthisbookandtheRpackage hmcpkg can bedownloadedfromthistitle’spageatthesite: www.pearsonglobaleditions.com

Acknowledgments

BobHoggpassedawayin 2014,sohedidnotworkonthiseditionofthebook. Often,though,whenIwastryingtodecidewhetherornottomakeachangeinthe manuscript,IfoundmyselfthinkingofwhatBobwoulddo.Inhismemory,Ihave retainedtheorderoftheauthorsforthisedition.

Aswithearliereditions,commentsfromreadersarealwayswelcomedandappreciated.Wewouldliketothankthesereviewersofthepreviousedition:James Baldone,VirginiaCollege;StevenCulpepper,UniversityofIllinoisatUrbanaChampaign;YuichiroKakihara,CaliforniaStateUniversity;JaechoulLee,Boise StateUniversity;MichaelLevine,PurdueUniversity;TingniSun,Universityof Maryland,CollegePark;andDanielWeiner,BostonUniversity.Weappreciated andtookintoconsiderationtheircommentsforthisrevision.Weappreciatethe helpfulcommentsofThomasHettmanspergerofPennStateUniversity,AshAbebe ofAuburnUniversity,andProfessorIoannisKalogridisoftheUniversityofLeuven. AspecialthankstoPatrickBarbera(PortfolioManager,Statistics),LaurenMorse (ContentProducer,Math/Stats),YvonneVannatta(ProductMarketingManager), andtherestofthestaffatPearsonfortheirhelpinputtingthiseditiontogether. ThanksalsotoRichardPonticelli,NorthShoreCommunityCollege,whoaccuracy checkedthepageproofs.Also,aspecialthankstomywifeMargeforherunwavering supportandencouragementofmyeffortsinwritingthisedition.

AcknowledgmentsfortheGlobalEdition

Pearsonwouldliketothankandacknowledgethefollowingpeoplefortheirwork onthisGlobalEdition.

Contributors

PolinaDolmatova,AmericanUniversityofCentralAsia TsungFeiKhang,UniversityofMalaya EricA.L.LI,TheUniversityofHongKong ChoungMinNg,UniversityofMalaya NeeleshS.Upadhye,IndianInstituteofTechnologyMadras Reviewers

SampritChakrabarti,ICFAIBusinessSchoolKolkata Rub´enGarciaBerasategui,JakartaInternationalCollege AneeshKumarK.,MahatmaGandhiCollege,Iritty JesperRyd´en,SwedishUniversityofAgriculturalSciences PoojaSengupta,InternationalManagementInstituteKolkata NeeleshS.Upadhye,IndianInstituteofTechnologyMadras

This page intentionally left blank

Chapter1

ProbabilityandDistributions

1.1Introduction

Inthissection,weintuitivelydiscusstheconceptsofaprobabilitymodelwhichwe formalizeinSecton1.3Manykindsofinvestigationsmaybecharacterizedinpart bythefactthatrepeatedexperimentation,underessentiallythesameconditions, ismoreorlessstandardprocedure.Forinstance,inmedicalresearch,interestmay centerontheeffectofadrugthatistobeadministered;oraneconomistmaybe concernedwiththepricesofthreespecifiedcommoditiesatvarioustimeintervals;or anagronomistmaywishtostudytheeffectthatachemicalfertilizerhasontheyield ofacerealgrain.Theonlywayinwhichaninvestigatorcanelicitinformationabout anysuchphenomenonistoperformtheexperiment.Eachexperimentterminates withan outcome.Butitischaracteristicoftheseexperimentsthattheoutcome cannotbepredictedwithcertaintypriortotheexperiment.

Supposethatwehavesuchanexperiment,buttheexperimentisofsuchanature thatacollectionofeverypossibleoutcomecanbedescribedpriortoitsperformance. Ifthiskindofexperimentcanberepeatedunderthesameconditions,itiscalled a randomexperiment,andthecollectionofeverypossibleoutcomeiscalledthe experimentalspaceorthe samplespace.Wedenotethesamplespaceby C .

Example1.1.1. Inthetossofacoin,lettheoutcometailsbedenotedby T andlet theoutcomeheadsbedenotedby H .Ifweassumethatthecoinmayberepeatedly tossedunderthesameconditions,thenthetossofthiscoinisanexampleofa randomexperimentinwhichtheoutcomeisoneofthetwosymbols T or H ;that is,thesamplespaceisthecollectionofthesetwosymbols.Forthisexample,then, C = {H,T }.

Example1.1.2. Inthecastofonereddieandonewhitedie,lettheoutcomebethe orderedpair(numberofspotsuponthereddie,numberofspotsuponthewhite die).Ifweassumethatthesetwodicemayberepeatedlycastunderthesameconditions,thenthecastofthispairofdiceisarandomexperiment.Thesamplespace consistsofthe36orderedpairs: C = {(1, 1),..., (1, 6), (2, 1),..., (2, 6),..., (6, 6)}

ProbabilityandDistributions

WegenerallyusesmallRomanlettersfortheelementsof C suchas a,b, or c.Oftenforanexperiment,weareinterestedinthechancesofcertainsubsetsof elementsofthesamplespaceoccurring.Subsetsof C areoftencalled events andare generallydenotedbycapitolRomanletterssuchas A,B, or C .Iftheexperiment resultsinanelementinanevent A,wesaytheevent A hasoccurred.Weare interestedinthechancesthataneventoccurs.Forinstance,inExample1.1.1we maybeinterestedinthechancesofgettingheads;i.e.,thechancesoftheevent A = {H } occurring.Inthesecondexample,wemaybeinterestedintheoccurrence ofthesumoftheupfacesofthedicebeing“7”or“11;”thatis,intheoccurrenceof theevent A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1), (5, 6), (6, 5)}

Nowconceiveofourhavingmade N repeatedperformancesoftherandomexperiment.Thenwecancountthenumber f oftimes(the frequency)thatthe event A actuallyoccurredthroughoutthe N performances.Theratio f/N iscalled the relativefrequency oftheevent A inthese N experiments.Arelativefrequencyisusuallyquiteerraticforsmallvaluesof N ,asyoucandiscoverbytossing acoin.Butas N increases,experienceindicatesthatweassociatewiththeevent A anumber,say p,thatisequalorapproximatelyequaltothatnumberaboutwhich therelativefrequencyseemstostabilize.Ifwedothis,thenthenumber p canbe interpretedasthatnumberwhich,infutureperformancesoftheexperiment,the relativefrequencyoftheevent A willeitherequalorapproximate.Thus,although we cannot predicttheoutcomeofarandomexperiment,we can,foralargevalue of N ,predictapproximatelytherelativefrequencywithwhichtheoutcomewillbe in A.Thenumber p associatedwiththeevent A isgivenvariousnames.Sometimesitiscalledthe probability thattheoutcomeoftherandomexperimentisin A;sometimesitiscalledthe probability oftheevent A;andsometimesitiscalled the probabilitymeasure of A.Thecontextusuallysuggestsanappropriatechoiceof terminology.

Example1.1.3. Let C denotethesamplespaceofExample1.1.2andlet B be thecollectionofeveryorderedpairof C forwhichthesumofthepairisequalto seven.Thus B = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2)(6, 1)}.Supposethatthediceare cast N =400timesandlet f denotethefrequencyofasumofseven.Supposethat 400castsresultin f =60.Thentherelativefrequencywithwhichtheoutcome wasin B is f/N = 60 400 =0 15.Thuswemightassociatewith B anumber p thatis closeto0.15,and p wouldbecalledtheprobabilityoftheevent B .

Remark1.1.1. Theprecedinginterpretationofprobabilityissometimesreferred toasthe relativefrequencyapproach,anditobviouslydependsuponthefactthatan experimentcanberepeatedunderessentiallyidenticalconditions.However,many personsextendprobabilitytoothersituationsbytreatingitasarationalmeasure ofbelief.Forexample,thestatement p = 2 5 foranevent A wouldmeantothem thattheir personal or subjective probabilityoftheevent A isequalto 2 5 .Hence, iftheyarenotopposedtogambling,thiscouldbeinterpretedasawillingnesson theirparttobetontheoutcomeof A sothatthetwopossiblepayoffsareinthe ratio p/(1 p)= 2 5 / 3 5 = 2 3 .Moreover,iftheytrulybelievethat p = 2 5 iscorrect, theywouldbewillingtoaccepteithersideofthebet:(a)win3unitsif A occurs andlose2ifitdoesnotoccur,or(b)win2unitsif A doesnotoccurandlose3if

itdoes.However,sincethemathematicalpropertiesofprobabilitygiveninSection 1.3areconsistentwitheitheroftheseinterpretations,thesubsequentmathematical developmentdoesnotdependuponwhichapproachisused.

Theprimarypurposeofhavingamathematicaltheoryofstatisticsistoprovide mathematicalmodelsforrandomexperiments.Onceamodelforsuchanexperimenthasbeenprovidedandthetheoryworkedoutindetail,thestatisticianmay, withinthisframework,makeinferences(thatis,drawconclusions)abouttherandomexperiment.Theconstructionofsuchamodelrequiresatheoryofprobability. Oneofthemorelogicallysatisfyingtheoriesofprobabilityisthatbasedonthe conceptsofsetsandfunctionsofsets.TheseconceptsareintroducedinSection1.2.

1.2Sets

Theconceptofa set ora collection ofobjectsisusuallyleftundefined.However, aparticularsetcanbedescribedsothatthereisnomisunderstandingastowhat collectionofobjectsisunderconsideration.Forexample,thesetofthefirst10 positiveintegersissufficientlywelldescribedtomakeclearthatthenumbers 3 4 and 14arenotintheset,whilethenumber3isintheset.Ifanobjectbelongstoa set,itissaidtobean element oftheset.Forexample,if C denotesthesetofreal numbers x forwhich0 ≤ x ≤ 1,then 3 4 isanelementoftheset C .Thefactthat 3 4 isanelementoftheset C isindicatedbywriting 3 4 ∈ C .Moregenerally, c ∈ C meansthat c isanelementoftheset C .

Thesetsthatconcernusarefrequently setsofnumbers.However,thelanguage ofsetsof points provessomewhatmoreconvenientthanthatofsetsofnumbers. Accordingly,webrieflyindicatehowweusethisterminology.Inanalyticgeometry considerableemphasisisplacedonthefactthattoeachpointonaline(onwhich anoriginandaunitpointhavebeenselected)therecorrespondsoneandonlyone number,say x;andthattoeachnumber x therecorrespondsoneandonlyonepoint ontheline.Thisone-to-onecorrespondencebetweenthenumbersandpointsona lineenablesustospeak,withoutmisunderstanding,ofthe“point x”insteadofthe “number x.”Furthermore,withaplanerectangularcoordinatesystemandwith x and y numbers,toeachsymbol(x,y )therecorrespondsoneandonlyonepointinthe plane;andtoeachpointintheplanetherecorrespondsbutonesuchsymbol.Here again,wemayspeakofthe“point(x,y ),”meaningthe“orderednumberpair x and y .”Thisconvenientlanguagecanbeusedwhenwehavearectangularcoordinate systeminaspaceofthreeormoredimensions.Thusthe“point(x1 ,x2 ,...,xn )” meansthenumbers x1 ,x2 ,...,xn intheorderstated.Accordingly,indescribingour sets,wefrequentlyspeakofasetofpoints(asetwhoseelementsarepoints),being careful,ofcourse,todescribethesetsoastoavoidanyambiguity.Thenotation C = {x :0 ≤ x ≤ 1} isread“C istheone-dimensionalsetofpoints x forwhich 0 ≤ x ≤ 1.”Similarly, C = {(x,y ):0 ≤ x ≤ 1, 0 ≤ y ≤ 1} canberead“C isthe two-dimensionalsetofpoints(x,y )thatareinteriorto,orontheboundaryof,a squarewithoppositeverticesat(0, 0)and(1, 1).”

Wesayaset C is countable if C isfiniteorhasasmanyelementsasthereare positiveintegers.Forexample,thesets C1 = {1, 2,..., 100} and C2 = {1, 3, 5, 7,...}

ProbabilityandDistributions

arecountablesets.Theintervalofrealnumbers(0, 1],though,isnotcountable.

1.2.1ReviewofSetTheory

AsinSection1.1,let C denotethesamplespacefortheexperiment.Recallthat eventsaresubsetsof C .Weusethewordseventandsubsetinterchangeablyinthis section.Anelementaryalgebraofsetswillprovequiteusefulforourpurposes.We nowreviewthisalgebrabelowalongwithillustrativeexamples.Forillustration,we alsomakeuseof Venndiagrams.ConsiderthecollectionofVenndiagramsin Figure1.2.1.Theinterioroftherectangleineachplotrepresentsthesamplespace C.TheshadedregioninPanel(a)representstheevent A

Figure1.2.1: AseriesofVenndiagrams.ThesamplespaceCisrepresentedby theinterioroftherectangleineachplot.Panel(a)depictstheevent A;Panel(b) depicts A ⊂ B ;Panel(c)depicts A ∪ B ;andPanel(d)depicts A ∩ B

Wefirstdefinethecomplementofanevent A.

Definition1.2.1. The complement ofanevent A isthesetofallelementsinC whicharenotin A.Wedenotethecomplementof A by Ac .Thatis, Ac = {x ∈C : x/ ∈ A}.

Thecomplementof A isrepresentedbythewhitespaceintheVenndiagramin Panel(a)ofFigure1.2.1.

Theemptysetistheeventwithnoelementsinit.Itisdenotedby φ.Note that C c = φ and φc = C .Thenextdefinitiondefineswhenoneeventisasubsetof another.

Definition1.2.2. Ifeachelementofaset A isalsoanelementofset B ,theset A iscalleda subset oftheset B .Thisisindicatedbywriting A ⊂ B .If A ⊂ B and also B ⊂ A,thetwosetshavethesameelements,andthisisindicatedbywriting A = B .

Panel(b)ofFigure1.2.1depicts A ⊂ B .

Theevent A or B isdefinedasfollows:

Definition1.2.3. Let A and B beevents.Thenthe union of A and B istheset ofallelementsthatarein A orin B orinboth A and B .Theunionof A and B isdenotedby A ∪ B

Panel(c)ofFigure1.2.1shows A ∪ B .

Theeventthatboth A and B occurisdefinedby,

Definition1.2.4. Let A and B beevents.Thenthe intersection of A and B is thesetofallelementsthatareinboth A and B .Theintersectionof A and B is denotedby A ∩ B

Panel(d)ofFigure1.2.1illustrates A ∩ B

Twoeventsare disjoint iftheyhavenoelementsincommon.Moreformallywe define

Definition1.2.5. Let A and B beevents.Then A and B are disjoint if A ∩ B = φ

If A and B aredisjoint,thenwesay A ∪ B formsa disjointunion. Thenexttwo examplesillustratetheseconcepts.

Example1.2.1. Supposewehaveaspinnerwiththenumbers1through10on it.Theexperimentistospinthespinnerandrecordthenumberspun.Then C = {1, 2,..., 10}.Definetheevents A, B ,and C by

,

},

= {

, 3, 4},and C = {3, 4, 5, 6},respectively. Ac = {3, 4,..., 10}; A ∪ B = {1, 2, 3, 4}; A ∩ B = {2}

Thereadershouldverifytheseresults.

Example1.2.2. Forthisexample,supposetheexperimentistoselectarealnumber intheopeninterval(0, 5);hence,thesamplespaceis C =(0, 5).Let A =(1, 3),

B =(2, 4),and C =[3, 4.5).

,

ProbabilityandDistributions

Asketchoftherealnumberlinebetween0and5helpstoverifytheseresults.

Expressions(1.2.1)–(1.2.2)and(1.2.3)–(1.2.4)areillustrationsofgeneral distributivelaws.Foranysets A, B ,and C ,

Thesefollowdirectlyfromsettheory.Toverifyeachidentity,sketchVenndiagrams ofbothsides.

Thenexttwoidentitiesarecollectivelyknownas DeMorgan’sLaws.Forany sets A and B ,

Forinstance,inExample1.2.1,

while,fromExample1.2.2, (A ∩ B )c =(2, 3)c =(0, 2] ∪ [3, 5)=[(0, 1] ∪ [3, 5)] ∪ [(0

Asthelastexpressionsuggests,itiseasytoextendunionsandintersectionstomore thantwosets.If A1 ,A2 ,...,An areanysets,wedefine A1 ∪ A2 ∪···∪ An = {x : x ∈ Ai , forsome i =1, 2,...,n} (1.2.8) A1 ∩ A2 ∩···∩ A

Weoftenabbreviativetheseby ∪n i=1 Ai and ∩n i=1 Ai ,respectively.Expressionsfor countableunionsandintersectionsfollowdirectly;thatis,if A1 ,A2 ,...,An ... isa sequenceofsetsthen

Thenexttwoexamplesillustratetheseideas.

Example1.2.3. Suppose C = {1, 2, 3,...}.If An = {1, 3,..., 2n 1} and Bn = {n,n +1,...},for n =1, 2, 3,...,then

,

,...

Example1.2.4. Suppose C istheintervalofrealnumbers(0, 5).Suppose Cn = (1 n 1 , 2+ n 1 )and Dn =(n 1 , 3 n 1 ),for n =1, 2, 3,.... Then

, 3);

Weoccassionallyhavesequencesofsetsthatare monotone.Theyareoftwo types.Wesayasequenceofsets {An } is nondecreasing,(nestedupward),if An ⊂ An+1 for n =1, 2, 3,....Forsuchasequence,wedefine

Thesequenceofsets An = {1, 3,..., 2n 1} ofExample1.2.3issuchasequence. Sointhiscase,wewritelimn→∞ An = {1, 3, 5,...}.Thesequenceofsets {Dn } of Example1.2.4isalsoanondecreasingsuquenceofsets. Thesecondtypeofmonotonesetsconsistsofthe nonincreasing,(nested downward) sequences.Asequenceofsets {An } is nonincreasing,if An ⊃ An+1 for n =1, 2, 3,....Inthiscase,wedefine

Thesequencesofsets {Bn } and {Cn } ofExamples1.2.3and1.2.4,respectively,are examplesofnonincreasingsequencesofsets.

1.2.2SetFunctions

Manyofthefunctionsusedincalculusandinthisbookarefunctionsthatmapreal numbersintorealnumbers.Weareconcernedalsowithfunctionsthatmapsets intorealnumbers.Suchfunctionsarenaturallycalledfunctionsofasetor,more simply, setfunctions.Nextwegivesomeexamplesofsetfunctionsandevaluate themforcertainsimplesets.

Example1.2.5. Let C = R,thesetofrealnumbers.Forasubset A in C ,let Q(A) beequaltothenumberofpointsin A thatcorrespondtopositiveintegers.Then Q(A)isasetfunctionoftheset A.Thus,if A = {x :0 <x< 5},then Q(A)=4; if A = {−2, 1},then Q(A)=0;andif A = {x : −∞ <x< 6},then Q(A)=5.

Example1.2.6. Let C = R2 .Forasubset A of C ,let Q(A)betheareaof A if A hasafinitearea;otherwise,let Q(A)beundefined.Thus,if A = {(x,y ): x2 + y 2 ≤ 1},then Q(A)= π ;if A = {(0, 0), (1, 1), (0, 1)},then Q(A)=0;andif A = {(x,y ):0 ≤ x, 0 ≤ y,x + y ≤ 1},then Q(A)= 1 2

Oftenoursetfunctionsaredefinedintermsofsumsorintegrals.1 Withthisin mind,weintroducethefollowingnotation.Thesymbol A f (x) dx

1 PleaseseeChapters2and3of MathematicalComments,atsitenotedinthePreface,fora reviewofsumsandintegrals

ProbabilityandDistributions

meanstheordinary(Riemann)integralof f (x)overaprescribedone-dimensional set A andthesymbol

g (x,y ) dxdy

meanstheRiemannintegralof g (x,y )overaprescribedtwo-dimensionalset A Thisnotationcanbeextendedtointegralsover n dimensions.Tobesure,unless thesesets A andthesefunctions f (x)and g (x,y )arechosenwithcare,theintegrals frequentlyfailtoexist.Similarly,thesymbol

f (x)

meansthesumextendedoverall x ∈ A andthesymbol

g (x,y )

meansthesumextendedoverall(x,y ) ∈ A.Aswithintegration,thisnotation extendstosumsover n dimensions.

Thefirstexampleisforasetfunctiondefinedonsumsinvolvinga geometric series.AspointedoutinExample2.3.1of MathematicalComments, 2 if |a| < 1, thenthefollowingseriesconvergesto1/(1 a):

Example1.2.7. Let C bethesetofallnonnegativeintegersandlet A beasubset of C .Definethesetfunction Q by

Itfollowsfrom(1.2.18)that Q(C )=3.If A = {1, 2, 3} then Q(A)=38/27.Suppose B = {1, 3, 5,...} isthesetofalloddpositiveintegers.Thecomputationof Q(B )is givennext.Thisderivationconsistsofrewritingtheseriessothat(1.2.18)canbe applied.Frequently,weperformsuchderivationsinthisbook.

Inthenextexample,thesetfunctionisdefinedintermsofanintegralinvolving theexponentialfunction f (x)= e x .

2 DownloadableatsitenotedinthePreface

Example1.2.8. Let C betheintervalofpositiverealnumbers,i.e., C =(0, ∞). Let A beasubsetof C .Definethesetfunction Q by

Q(A)= A e x dx, (1.2.20)

providedtheintegralexists.Thereadershouldworkthroughthefollowingintegrations:

x

[(1, 3) ∪ [3, 5)]=

Q(C )= ∞ 0 e x dx =1

Ourfinalexample,involvesan n dimensionalintegral.

= Q[(1, 3)]+ Q([3, 5)]

Example1.2.9. Let C = Rn .For A in C definethesetfunction

(A)= A

,

providedtheintegralexists.Forexample,if A = {(x1 ,x2 ,...,xn ):0 ≤ x1 ≤ x2 , 0 ≤ xi ≤ 1, for i =2,3,...,n},thenuponexpressingthemultipleintegralas aniteratedintegral3 weobtain

If B = {(x1 ,x

(B )=

where n!= n(n 1) 3 2 1.

≤ 1},then

3 Foradiscussionofmultipleintegralsintermsofiteratedintegrals,seeChapter3of MathematicalComments.

ProbabilityandDistributions

EXERCISES

1.2.1. Findtheunion C1 ∪ C2 andtheintersection C1 ∩ C2 ofthetwosets C1 and C2 ,where

(a) C1 = {2, 3, 5, 7}, C2 = {1, 3, 5}

(b) C1 = {x :0 ≤ x ≤ 3}, C2 = {x :2 <x< 4}

(c) C1 = {(x,y ):0 <x< 1, 0 <y< 3}, C2 = {(x,y ):0 <x< 2, 2 ≤ y< 3}

1.2.2. Findthecomplement C c oftheset C withrespecttothespace C if

(a) C = {x :0 <x< 2}, C = x :0 <x< 2 3 .

(b) C = (x,y,z ): x2 +2y 2 +3z 2 ≤ 4 , C = (x,y,z ): x2 +2y 2 +3z 2 < 4

(c) C = (x,y ): x2 + y 2 ≤ 1 , C = {(x,y ): |x| + |y | < 1}

1.2.3. Listallpossiblearrangementsofthefourletters l , a, m,and b.Let C1 be thecollectionofthearrangementsinwhich b isinthefirstposition.Let C2 bethe collectionofthearrangementsinwhich a isinthethirdposition.Findtheunion andtheintersectionof C1 and C2 .

1.2.4. ConcerningDeMorgan’sLaws(1.2.6)and(1.2.7):

(a) UseVenndiagramstoverifythelaws.

(b) Showthatthelawsaretrue.

(c) Generalizethelawstocountableunionsandintersections.

1.2.5. BytheuseofVenndiagrams,inwhichthespace C isthesetofpoints enclosedbyarectanglecontainingthecircles C1 ,C2 , and C3 ,comparethefollowing sets.Theselawsarecalledthe distributivelaws.

(a) C1 ∩ (C2 ∪ C3 )and(C1 ∩ C2 ) ∪ (C1 ∩ C3 ).

(b) C1 ∪ (C2 ∩ C3 )and(C1 ∪ C2 ) ∩ (C1 ∪ C3 ).

1.2.6. Showthatthefollowingsequencesofsets, {Ck },arenondecreasing,(1.2.16), thenfindlimk →∞ Ck .

(a) Ck = {x :1/k ≤ x ≤ 3 1/k }, k =1, 2, 3,... .

(b) Ck = {(x,y ):1/k ≤ x2 + y 2 ≤ 4 1/k }, k =1, 2, 3,...

1.2.7. Showthatthefollowingsequencesofsets, {Ck },arenonincreasing,(1.2.17), thenfindlimk →∞ Ck .

(a) Ck = {x :2 1/k<x ≤ 2}, k =1, 2, 3,... .

(b) Ck = {x :2 <x ≤ 2+1/k }, k =1, 2, 3,... .

(c) Ck = {(x,y ):0 ≤ x2 + y 2 ≤ 1/k }, k =1, 2, 3,... .

1.2.8. Foreveryone-dimensionalset C ,definethefunction Q (C )= C f (x), where f (x)= 3 4 1 4 x , x =0, 1, 2,...,zeroelsewhere.If C1 = {x : x =0, 2, 4} and C2 = {x : x =0, 1, 2,...},find Q (C1 )and Q (C2 ) . Hint :Recallthat Sn = a + ar + + ar n 1 = a(1 r n )/(1 r )and,hence,it followsthatlimn→∞ Sn = a/(1 r )providedthat |r | < 1.

1.2.9. Foreveryone-dimensionalset C forwhichtheintegralexists,let Q(C )= C f (x) dx,where f (x)= 3 4 (1 x2 ), 1 <x< 1,zeroelsewhere;otherwise,let Q(C ) beundefined.If C1 = {x : 1 3 <x< 1 3 }, C2 = {0},and C3 = {x : 1 <x< 5}, find Q(C1 ), Q(C2 ),and Q(C3 ).

1.2.10. Foreverytwo-dimensionalset C containedin R2 forwhichtheintegral exists,let Q(C )= C (x2 + y 2 ) dxdy .If C1 = {(x,y ): 1 ≤ x ≤ 1, 1 ≤ y ≤ 1}, C2 = {(x,y ): 1 ≤ x = y ≤ 1},and C3 = {(x,y ): x2 + y 2 ≤ 1},find Q(C1 ),Q(C2 ), and Q(C3 ).

1.2.11. Let C denotethesetofpointsthatareinteriorto,orontheboundaryof,a squarewithoppositeverticesatthepoints(0,0)and(1,1).Let Q(C )= C dydx

(a) If C ⊂C istheset {(x,y ):0 <y/2 <x< 1/2},compute Q(C ).

(b) If C ⊂C istheset {(x,y ):0 <x< 1,x + y =1},compute Q(C ).

(c) If C ⊂C istheset {(x,y ):0 <x/2 <y ≤ x +1/4 < 1},compute Q(C ).

1.2.12. Let C bethesetofpointsinteriortoorontheboundaryofacubewith edgeoflength1.Moreover,saythatthecubeisinthefirstoctantwithonevertex atthepoint(0, 0, 0)andanoppositevertexatthepoint(1, 1, 1).Let Q(C )= C dxdydz

(a) If C ⊂C istheset {(x,y,z ):0 <x<y<z< 1},compute Q(C ).

(b) If C isthesubset {(x,y,z ):0 <x = y = z< 1},compute Q(C ).

1.2.13. Let C denotetheset {(x,y,z ): x2 + y 2 + z 2 ≤ 1}.Usingsphericalcoordinates,evaluate Q(C )= C x2 + y 2 + z 2 dxdydz.

1.2.14. Tojoinacertainclub,apersonmustbeeitherastatisticianoramathematicianorboth.Ofthe35membersinthisclub,25arestatisticiansand17 aremathematicians.Howmanypersonsintheclubarebothastatisticiananda mathematician?

1.2.15. Afterahard-foughtfootballgame,itwasreportedthat,ofthe11starting players,7hurtahip,5hurtanarm,7hurtaknee,3hurtbothahipandanarm, 3hurtbothahipandaknee,2hurtbothanarmandaknee,and1hurtallthree. Commentontheaccuracyofthereport.

ProbabilityandDistributions

1.3TheProbabilitySetFunction

Givenanexperiment,let C denotethesamplespaceofallpossibleoutcomes.As discussedinSection1.1,weareinterestedinassigningprobabilitiestoevents,i.e., subsetsof C .Whatshouldbeourcollectionofevents?If C isafiniteset,thenwe couldtakethesetofallsubsetsasthiscollection.Forinfinitesamplespaces,though, withassignmentofprobabilitiesinmind,thisposesmathematicaltechnicalitiesthat arebetterlefttoacourseinprobabilitytheory.Weassumethatinallcases,the collectionofeventsissufficientlyrichtoincludeallpossibleeventsofinterestandis closedundercomplementsandcountableunionsoftheseevents.UsingDeMorgan’s Laws,(1.2.6)–(1.2.7),thecollectionisthenalsoclosedundercountableintersections. Wedenotethiscollectionofeventsby B .Technically,suchacollectionofeventsis calleda σ -field ofsubsets.

Nowthatwehaveasamplespace, C ,andourcollectionofevents, B ,wecandefine thethirdcomponentinourprobabilityspace,namelyaprobabilitysetfunction.In ordertomotivateitsdefinition,weconsidertherelativefrequencyapproachto probability.

Remark1.3.1. Thedefinitionofprobabilityconsistsofthreeaxiomswhichwe motivatebythefollowingthreeintuitivepropertiesofrelativefrequency.Let C be asamplespaceandlet A ⊂C .Supposewerepeattheexperiment N times.Then therelativefrequencyof A is fA =#{A}/N ,where#{A} denotesthenumberof times A occurredinthe N repetitions.Notethat fA ≥ 0and fC =1.Theseare thefirsttwoproperties.Forthethird,supposethat A1 and A2 aredisjointevents. Then fA1 ∪A2 = fA1 + fA2 .Thesethreepropertiesofrelativefrequenciesformthe axiomsofaprobability,exceptthatthethirdaxiomisintermsofcountableunions. Aswiththeaxiomsofprobability,thereadersshouldcheckthatthetheoremswe provebelowaboutprobabilitiesagreewiththeirintuitionofrelativefrequency.

Definition1.3.1 (Probability). Let C beasamplespaceandlet B bethesetof events.Let P beareal-valuedfunctiondefinedon B .Then P isa probabilityset function if P satisfiesthefollowingthreeconditions:

1. P (A) ≥ 0,forall A ∈B .

2. P (C )=1

3.If {An } isasequenceofeventsin B and Am ∩ An = φ forall m = n,then

Acollectionofeventswhosemembersarepairwisedisjoint,asin(3),issaidto bea mutuallyexclusive collectionanditsunionisoftenreferredtoasa disjoint union.Thecollectionisfurthersaidtobe exhaustive iftheunionofitseventsis thesamplespace,inwhichcase ∞ n=1 P (An )=1.Weoftensaythatamutually exclusiveandexhaustivecollectionofeventsformsa partition of C .

Aprobabilitysetfunctiontellsushowtheprobabilityisdistributedovertheset ofevents, B .Inthissensewespeakofadistributionofprobability.Weoftendrop theword“set”andreferto P asaprobabilityfunction.

Thefollowingtheoremsgiveussomeotherpropertiesofaprobabilitysetfunction.Inthestatementofeachofthesetheorems, P (A)istaken,tacitly,tobea probabilitysetfunctiondefinedonthecollectionofevents B ofasamplespace C

Theorem1.3.1. Foreachevent A ∈B , P (A)=1 P (Ac ).

Proof: Wehave C = A ∪ Ac and A ∩ Ac = φ.Thus,from(2)and(3)ofDefinition 1.3.1,itfollowsthat

1= P (A)+ P (Ac ), whichisthedesiredresult.

Theorem1.3.2. Theprobabilityofthenullsetiszero;thatis, P (φ)=0.

Proof: InTheorem1.3.1,take A = φ sothat Ac = C .Accordingly,wehave

P (φ)=1 P (C )=1 1=0 andthetheoremisproved.

Theorem1.3.3. If A and B areeventssuchthat A ⊂ B ,then P (A) ≤ P (B ).

Proof: Now B = A ∪ (Ac ∩ B )and A ∩ (Ac ∩ B )= φ.Hence,from(3)ofDefinition 1.3.1, P (B )= P (A)+ P (Ac ∩ B ).

From(1)ofDefinition1.3.1, P (Ac ∩ B ) ≥ 0.Hence, P (B ) ≥ P (A).

Theorem1.3.4. Foreach A ∈B , 0 ≤ P (A) ≤ 1

Proof: Since φ ⊂ A ⊂C ,wehavebyTheorem1.3.3that P (φ) ≤ P (A) ≤ P (C )or0 ≤ P (A) ≤ 1, thedesiredresult.

Part(3)ofthedefinitionofprobabilitysaysthat P (A ∪ B )= P (A)+ P (B )if A and B aredisjoint,i.e., A ∩ B = φ .Thenexttheoremgivestheruleforanytwo eventsregardlessiftheyaredisjointornot.

Theorem1.3.5. If A and B areeventsin C ,then P (A ∪ B )= P (A)+ P (B ) P (A ∩ B )

Proof: Eachofthesets A ∪ B and B canberepresented,respectively,asaunionof nonintersectingsetsasfollows:

A ∪ B = A ∪ (Ac ∩ B )and B =(A ∩ B ) ∪ (Ac ∩ B ) (1.3.1)

ProbabilityandDistributions

Thattheseidentitiesholdforallsets A and B followsfromsettheory.Also,the VenndiagramsofFigure1.3.1offeraverificationofthem.

Thus,from(3)ofDefinition1.3.1,

and

Ifthesecondoftheseequationsissolvedfor P (Ac ∩ B )andthisresultissubstituted inthefirstequation,weobtain

Thiscompletestheproof.

Panel (a)

Panel (b)

Figure1.3.1: Venndiagramsdepictingthetwodisjointunionsgiveninexpression (1.3.1).Panel(a)depictsthefirstdisjointunionwhilePanel(b)showsthesecond disjointunion.

Example1.3.1. Let C denotethesamplespaceofExample1.1.2.Lettheprobabilitysetfunctionassignaprobabilityof 1 36 toeachofthe36pointsin C ;thatis,the dicearefair.If C1 = {(1, 1), (2, 1), (3, 1), (4, 1), (5, 1)} and C2 = {(1, 2), (2, 2), (3, 2)}, then P (C1 )= 5 36 , P (C2 )= 3 36 , P (C1 ∪ C2 )= 8 36 ,and P (C1 ∩ C2 )=0.

Example1.3.2. Twocoinsaretobetossedandtheoutcomeistheorderedpair (faceonthefirstcoin,faceonthesecondcoin).Thusthesamplespacemaybe representedas C = {(H,H ), (H,T ), (T,H ), (T,T )}.Lettheprobabilitysetfunction assignaprobabilityof 1 4 toeachelementof C .Let C1 = {(H,H ), (H,T )} and C2 = {(H,H ), (T,H )}.Then P (C1 )= P (C2 )= 1 2 , P (C1 ∩ C2 )= 1 4 ,and,in accordancewithTheorem1.3.5, P (C1 ∪ C2 )= 1 2 + 1 2 1 4 = 3 4 .

Forafinitesamplespace,wecangenerateprobabilitiesasfollows.Let C = {x1 ,x2 ,...,xm } beafinitesetof m elements.Let p1 ,p2 ,...,pm befractionssuch that 0

Supposewedefine P by

Then P (A) ≥ 0and P (C )=1.Further,itfollowsthat P (A ∪ B )= P (A)+ P (B ) when A ∩ B = φ.Therefore, P isaprobabilityon C .Forillustration,eachofthe followingfourassignmentsformsaprobabilityon C = {1, 2,..., 6}.Foreach,we alsocompute P (A)fortheevent A = {1, 6}

Notethattheindividualprobabilitiesforthefirstprobabilitysetfunction, (1.3.4),arethesame.Thisisanexampleoftheequilikelycasewhichwenow formallydefine.

Definition1.3.2 (EquilikelyCase). Let C = {x1 ,x2 ,...,xm } beafinitesample space.Let pi =1/m forall i =1, 2,...,m andforallsubsets A of C define

where #(A) denotesthenumberofelementsin A.Then P isaprobabilityon C and itisrefereedtoasthe equilikelycase.

Equilikelycasesarefrequentlyprobabilitymodelsofinterest.Examplesinclude: theflipofafaircoin;fivecardsdrawnfromawellshuffleddeckof52cards;aspinof afairspinnerwiththenumbers1through36onit;andtheupfacesoftherollofa pairofbalanceddice.Foreachoftheseexperiments,asstatedinthedefinition,we onlyneedtoknowthenumberofelementsinaneventtocomputetheprobability ofthatevent.Forexample,acardplayermaybeinterestedintheprobabilityof gettingapair(twoofakind)inahandoffivecardsdealtfromawellshuffleddeck of52cards.Tocomputethisprobability,weneedtoknowthenumberoffivecard handsandthenumberofsuchhandswhichcontainapair.Becausetheequilikely caseisoftenofinterest,wenextdevelopsomecountingruleswhichcanbeusedto computetheprobabilitiesofeventsofinterest.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.