Topology, 2/e james munkres all chapter instant download

Page 1


Topology, 2/E James Munkres

Visit to download the full and correct content document: https://ebookmass.com/product/topology-2-e-james-munkres/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Topology 2nd Edition James Munkres

https://ebookmass.com/product/topology-2nd-edition-james-munkres/

Point-Set Topology with Topics: Basic General Topology for Graduate Studies Robert Andre

https://ebookmass.com/product/point-set-topology-with-topicsbasic-general-topology-for-graduate-studies-robert-andre/

Multiscale Structural Topology Optimization 1st Edition Liang Xia

https://ebookmass.com/product/multiscale-structural-topologyoptimization-1st-edition-liang-xia/

Wicked Beauty (Wicked Trilogy Book 2) M. James

https://ebookmass.com/product/wicked-beauty-wicked-trilogybook-2-m-james/

The Dating Disaster (Franklin U Book 2) Saxon James

https://ebookmass.com/product/the-dating-disaster-franklin-ubook-2-saxon-james/

Not Dating Material (Accidental Love Book 2) Saxon

James

https://ebookmass.com/product/not-dating-material-accidentallove-book-2-saxon-james/

Advances in Quantum Chemical Topology Beyond QTAIM Juan I. Rodriguez

https://ebookmass.com/product/advances-in-quantum-chemicaltopology-beyond-qtaim-juan-i-rodriguez/

False Sins (Redemption Creek Romantic Suspense Book 2)

Edie James

https://ebookmass.com/product/false-sins-redemption-creekromantic-suspense-book-2-edie-james/

Topology Optimization in Engineering Structure Design 1st Edition Edition Weihong Zhang

https://ebookmass.com/product/topology-optimization-inengineering-structure-design-1st-edition-edition-weihong-zhang/

Topology SecondEdition

LibraryofCongressCataloging-in-PublicationData

Munkres,Jame8R Topology/JamesRaymondMunkres--2nded p cm

Includesbibliographicalreferencesandindex.

ISBN0-13-181629-2

1 Topology I.Title. QA61IP482 2000 514--dc2l

99-052942 CIP

AcquisitionsEditor:GeorgeLobell AssistantVicePresidentofProductionandManufactunngDavidWRiccardi ExecutiveManagingEditorKathleenSchiaparelli SeniorManagingEditor.LrndaMihoIovBehrens ProductionEditorLynnM.Savino ManufactunngBuyer.AlanFischer ManufactunngManager.TrudyPisciotti MarketingManager.MelodyMarcus MarketingAssistantVuweJansen DirectorofMarketingJohn EditonalAssistantGaleEpps ArtDirectorJayneConte CoverDesignerBruceKensdaar CompositionMacroTeXServices

©2000,1975byPrenticeHail,Inc. UpperSaddleRiver,NJ07458

AllngbtsreservedNopartofthisbookmay bereproduced,inanyformorbyanymeans, withoutpermissioninwntingfromthepublisher.

PrintedintheUnitedStatesofAmenca 10987

ISBN0—3.3—3.83.629—2

PRENTICE-HALLINTERNATEONAL(UK)LEMETED,LONDON

PRENTECE-HALLOFAUSTRALEAPrYLEMETED,SYDNEY PRENTICE-HALLCANADA,INC,TORONTO

PRENTECE-HALLHESPANOAMERECANA,SA,MExICO

PRENTECE-HALLOFINDIAPREVATELEMITED,NEWDELHE

PRENTECE-HALLOFJAPAN,INC,ToKYo

PEARSONEDUCATEONASEAPTELTD

EDETORAPRENTICE-HALLDOBRASEL,LTDA,RIODEJANEERO

ForBarbara

Chapter12ClassificationofSurfaces

74FundamentalGroupsofSurfaces

75HomologyofSurfaces

76CuttingandPasting

77TheClassificationTheorem

78ConstructingCompactSurfaces

Chapter13ClassificationofCoveringSpaces

79EquivalenceofCoveringSpaces 80TheUniversalCoveringSpace

CoveringTransformations

82ExistenceofCoveringSpaces ssuppLementaryExercises:TopologicalPropertiesand

Chapter14ApplicationstoGroupTheory.

83CoveringSpacesofaGraph

84TheFundamentalGroupofaGraph

85SubgroupsofFreeGroups

Bibliography Index

Preface

Thisbookisintendedasatextforaone-ortwo-semesterintroductiontotopology,at thesenioror graduatelevel.

ThesubjectoftopoLogyisofinterestinitsownright,anditalsoservestolaythe foundationsforfuturestudyinanalysis,ingeometry,andinalgebraictopology.There isnouniversalagreementamongmathematiciansastowhatafirstcourseintopology shouldinclude;therearemanytopicsthatareappropriatetosuchacourse,andnotall areequallyrelevanttothesedifferingpurposes.Inthechoiceofmaterialtobetreated, Ihavetriedtostrikeabalanceamongthevariouspointsofview.

Prerequisites.Therearenoformalsubjectmatterprerequisitesforstudyingmostof thisbook.Idonotevenassumethereaderknowsmuchsettheory.Havingsaidthat, ImusthastentoaddthatunlessthereaderhasstudiedabitofanaLysisor"rigorous calculus:'muchofthemotivationfortheconceptsintroducedinthefirstpartofthe bookwillbemissing.Thingswillgomoresmoothlyifheorshealreadyhashadsome experiencewithcontinuousfunctions,openandclosedsets,metricspaces.andthe like,althoughnoneoftheseactuallyassumed.InPartII,wedoassumefamiliarity withtheelementsofgrouptheory.

Moststudentsinatopologycoursthave,inmyexperience,someknowledgeof thefoundationsofmathematics.Buttheamountvariesagreatdealfromonestudent toanother.Therefore,Ibeginwithafairlythoroughchapteronsettheoryandlogic.It startsatanelementarylevelandworksuptoalevelthatmightbedescribedas"semisophisticated."Ittreatsthosetopics(andonlythose)thatwillbeneededlaterinthe book.Moststudentswillalreadybefamiliarwiththematerialofthefirstfewsections, butmanyofthemwillfindtheirexpertisedisappearingsomewhereaboutthemiddle

ofthechapter.Howmuchtimeandefforttheinstructor11needtospendonthis chapterwilLthusdependLargelyonthemathematicalsophisticationandexperienceof thestudents.Abilitytodotheexercisesfairlyreadily(andcorrectly!)shouldserveas areasonablecriterionfordeterminingwhetherthestudent'smasteryofsettheoryis sufficientforthestudenttobeginthestudyoftopology.

Manystudents(andinstructors!)wouldprefertoskipthefoundationalmaterial ofChapter1andjumprightintothestudyoftopology.Oneignoresthefoundations, however,onlyattheriskoflaterconfusionanderror.Whatonecandoistotreat initiallyonlythosesectionsthatareneededatonce,postponingtheremainderuntil theyareneeded.Thefirstsevensections(throughcountability)areneededthroughout thebook;Iusuallyassignsomeofthemasreadingandlectureontherest.Sections9 and10,ontheaxiomofchoiceandwell-ordering,arenotneededuntilthediscussion ofcompactnessinChapter3.Section11,onthemaximumprinciple,canbepostponed evenlonger;itisneededonlyfortheTychonofftheorem(Chapter5)andthetheorem onthefundamentalgroupofalineargraph(Chapter14).

Howthebookisorganized.Thisbookcanbeusedforanumberofdifferentcourses. Ihaveattemptedtoorganizeasflexiblyaspossible.soastoenabLetheinstructorto followhisorherownpreferencesinthematter.

PartI,consistingofthefirsteightchapters,isdevotedtothesubjectcommonly calledgeneraltopology.Thefirstfourchaptersdealwiththebodyofmaterialthat, inmyopinion,shouldbeincludedinanyintroductorytopologycourseworthyofthe name.Thismaybeconsideredthe"irreduciblecore"ofthesubject,treatingasitdoes settheory,topologicalspaces,connectedness,compactness(throughcompactnessof finiteproducts),andthecountabilityandseparationaxioms(throughtheUrysohn metrizationtheorem).TheremainingfourchaptersofPartIexploreadditionaltopics; theyareessentiallyindependentofoneanother,dependingononlythecorematerial ofChapters1-4.Theinstructormaytakethemupinanyorderheorshechooses.

PartIIconstitutesanintroductiontothesubjectofAlgebraicTopology.Itdepends ononlythecorematerialofChapters1—4.Thispartofthebooktreatswithsome thoroughnessthenotionsoffundamentalgroupandcoveringspace,alongwiththeir manyandvariedapplications.SomeofthechaptersofPartIIareindependentofone another;thedependenceamongthemisexpressediiithefoLlowingdiagram:

Certainsectionsofthebookaremarkedwithanasterisk;thesesectionsmaybe omittedorpostponedwithnolossofcontinuity.Certaintheoremsaremarkedsimilarly.Anydependenceoflatermaterialontheseasteriskedsectionsortheoremsis indicatedatthetime,andagainwhentheresultsareneeded.Someoftheexercises alsodependonearlierasteriskedmaterial,butinsuchcasesthedependenceisobvious.

Setsofsupplementaryexercisesappearattheendsofseveralofthechapters.They provideanopportunityforexplorationoftopicsthatdivergesomewhatfromthemain thrustofthebook;anambitiousstudentmightuseoneasabasisforanindependent paperorresearchproject.Mostarefairlyself-contained,buttheoneontopological groupshasasasequelanumberofadditionalexercisesonthetopicthatappearinlater sectionsofthebook.

Possiblecourseoutlines.Mostinstructorswhousethistextforacourseingeneral topologywillwishtocoverChapters1—4,alongwiththe theoreminChapter5.Manywillcoveradditionaltopicsaswell.Possibilitiesincludethefollowing: theStone-techcompactification metrizationtheorems(Chapter6),thePeano curve Ascoli'stheorem and/or§47),anddimensiontheory Ihave, indifferentsemesters,followedeachoftheseoptions.

Foraone-semestercourseinalgebraictopology,onecanexpecttocovermostof PartH.

Itisalsopossibletotreatbothaspectsoftopologyinasinglesemester,although withsomecorrespondinglossofdepth.Onefeasibleoutlineforsuchacoursewould consistofChapters1—3,followedbyChapter9;thelatterdoesnotdependonthe materialofChapter4.(Thenon-asteriskedsectionsofChapters10and13alsoare independentofChapter4.)

Commentsonthisedition.Thereaderwhoisfamiliarwiththefirsteditionofthis bookwillfindnosubstantialchangesinthepartofthebookdealingwithgeneral topology.Ihaveconfinedmyselflargelyto"fine-tuning"thetextmaterialandthe exercises.However,thefinalchapterofthefirstedition,whichdealtwithalgebraic topology,hasbeensubstantiallyexpandedandrewritten.IthasbecomePartIIofthis book.Intheyearssincethefirsteditionappeared,ithasbecomeincreasinglycommon tooffertopologyasatwo-termcourse,thefirstdevotedtogeneraltopologyandthe secondtoalgebraictopology.Byexpandingthetreatmentofthelattersubject,Ihave intendedtomakethisrevisionservetheneedsofsuchacourse.

Acknowledgments.MostofthetopologistswithwhomIhavestudied,orwhose booksIhaveread,havecontributedinonewayoranothertothisbook;Imention onlyEdwinMoise,RaymondWilder,GailYoung,andRaoulBott,buttherearemany others.Fortheirhelpfulcommentsconcerningthisbook,mythankstoKenBrown, RussMcMillan,RobertMosher,andJohnHemperly,andtomycolleaguesGeorge WhiteheadandKennethHoffman.

ThetreatmentofalgebraictopologyhasbeensubstantiallyinfluencedbytheexcellentbookbyWilliamMasseyEM],towhomIexpressappreciation.Finally,thanksare

dueAdamLewenbergofMacroTeXforhisextraordinaryskillandpatienceinsetting textandjugglingfigures.

ButmostofaLl,tomystudentsgomymostheartfeltthanks.FromthemIlearned atleastasmuchastheydidfromme;withoutthemthisbookwouldbeverydifferent.

ANotetotheReader

Twomattersrequirecomment—theexercisesandtheexamples.

Workingproblemsisacrucialpartoflearningmathematics.Noonecanlearn topologymerelybyporingoverthedefinitions,theorems,andexamplesthatareworked outinthetext.Onemustworkpartofitoutforoneself.Toprovidethatopportunityis thepurposeoftheexercises.

Theyvaryindifficulty,withtheeasieronesusuallygivenfirst.Someareroutine verificationsdesignedtotestwhetheryouhaveunderstoodthedefInitionsorexamples oftheprecedingsection.OthersarelessroutineYoumay,forinstance,beaskedto generalizeatheoremofthetext.Althoughtheresultobtainedmaybeinterestinginits ownright,themainpurposeofsuchanexerciseistoencourageyoutoworkcarefully throughtheproofinquestion,masteringitsideasthoroughly—morethoroughly(I hope!)thanmerememorizationwoulddemand.

Someexercisesarephrasedinan"open-ended"fashionStudentsoftenfIndthis practicefrustrating.Whenfacedwithanexercisethatasks,"IseveryregularLindelöf spacenormal?"theyrespondinexasperation,"Idon'tknowwhatI'msupposedtodo! AmIsupposetoproveitorfindacounterexarnpleorwhat?"Butmathematics(outside textbooks)isusuallylikethis.Moreoftenthannot,allamathematicianhastowork withisaconjectureorquestion,andheorshedoesn'tknowwhatthecorrectanswer is.Youshouldhavesomeexperiencewiththissituation.

Afewexercisesthataremoredifficultthantherestaremarkedwithasterisks.But nonearesodifficultbutthatthebeststudentinmyclasscanusuallysolvethem.

AnotherimportantpartofmasteringanymathematicalsubjectisacquiringarepertoireofusefuLexamples.Oneshould,ofcourse,cometoknowthosemajorexamples fromwhosestudythetheoryitselfderives,andtowhichtheimportantapplications aremade.ButoneshouldaLsohaveafewcounterexampLesathandwithwhichtotest plausibleconjectures.

Nowitisalltooeasyinstudyingtopologytospendtoomuchtimedealingwith "weirdcounterexamples."Constructingthemrequiresingenuityandisoftengreat fun.Buttheyarenotreallywhattopologyisabout.Fortunately,onedoesnotneed toomanysuchcounterexamplesforafirstcourse;thereisafairlyshortlistthatwill sufficeformostpurposes.Letmegiveithere:

theproductofthereallinewithitself,intheproduct,uniform,andboxtopologies.

RethereaLlineinthetopologyhavingtheintervals[a,b)asabasis.

Sc2theminimaluncountablewell-orderedset.

theclosedunitsquareinthedictionaryordertopology.

Thesearetheexamplesyoushouldmasterandremember;theywillbeexploited againandagain.

PartI GENERALTOPOLOGY

Chapter1

SetTheoryandLogic

Weadopt,asmostmathematiciansdo,thenaivepointofviewregardingsettheory. Weshallassumethatwhatismeantbyasetofobjectsi5intuitivelyclear,andweshall proceedonthatbasiswithoutanalyzingtheconceptfurther.Suchananalysisproperly belongstothefoundationsofmathematicsandtomathematfcallogEc,anditisnotour purposetoinitiatethestudyofthosefields.

Logicianshaveanalyzedsettheoryingreatdetail,andtheyhaveformulatedaxiomsforthesubject.Eachoftheiraxiomsexpressesapropertyofsetsthatmathematicianscommonlyaccept,andcollectivelytheaxiomsprovideafoundationbroad enoughandstrongenoughthattherestofmathematfcscanbebuiltonthem.

Itisunfortunatelytruethatcarelessuseofsettheory,relyingonintuitionalone, canleadtocontradictions.Indeed,oneofthereasonsfortheaxiomatizationofset theorywastoformulaterulesfordealingwithsetsthatwouldavoidthesecontradictions.Althoughweshallnotdealwiththeaxiomsexplicitly,theruleswefollowin dealingwithsetsderivefromthem.Inthisbook,youwilllearnhowtodealwithsets inan"apprentice"fashion,byobservinghowwehandlethemandbyworkingwith themyourself.Atsomepointofyourstudies,youmaywishtostudysettheorymore carefullyandingreaterdetail;thenacourseinlogicorfoundationswillbeinorder.

§1FundamentalConcepts

Hereweintroducetheideasofsettheory,andestablishthebasicterminologyand notation.Wealsodiscusssomepointsofelementarylogicthat,inourexperience,are apttocauseconfusion.

BasicNotation

CommonlyweshallusecapitallettersA,B,...todenotesets,andlowercaseletters a,b,...todenotetheobjectsorelementsbelongingtothesesets.Ifanobjecta belongstoasetA,weexpressthisfactbythenotation

IfadoesnotbelongtoA,weexpressthisfactbywriting

Theequalitysymbol=isusedthroughoutthisbooktomeanlogicalidentity.Thus, whenwewritea=b,wemeanthat"a"and"b"aresymbolsforthesameobject.This iswhatonemeansinarithmetic,forexample,whenonewrites=Similarly,the equationA=Bstatesthat"A"and"B"aresymboLsforthesameset;thatis,AandB consistofpreciselythesameobjects.

Ifaandbaredifferentobjects,wewriteab;andifAandBaredifferentsets, wewriteAB.Forexample,ifAisthesetofallnonnegativerealnumbers,andB isthesetofallpositiverealnumbers,thenAB,becausethenumber0belongstoA andnottoB.

WesaythatAisasubsetofBifeveryelementofAisalsoanelementofB;and weexpressthisfactbywriting ACB.

NothinginthisdefinitionrequiresAtobedifferentfromB;infact,ifA=B,itistrue thatbothAcBandBcA.IfACBandAisdifferentfromB,wesaythatAisa propersubsetofB,andwewrite

AçB.

Therelationscandçarecalledinclusionandproperinclusion,respectively.If ACB,wealsowriteBA,whichisread"BcontainsA."

Howdoesonegoaboutspecifyingaset?Ifthesethasonlyafewelements,one cansimplylisttheobjectsintheset,writing"Aisthesetconsistingoftheelementsa, b,andc."Insymbols,thisstatementbecomes A=(a,b,c), wherebracesareusedtoenclosethelistofeLements.

Theusualwaytospecifyaset,however,istotakesomesetAofobjectsandsome propertythatelementsofAmayormaynotpossess,andtoformthesetconsistfng ofallelementsofAhavingthatproperty.Forinstance,onemighttakethesetof realnumbersandformthesubsetBconsistingofallevenintegers.Insymbols,this statementbecomes

B={xxisaneveninteger).

Herethebracesstandforthewords"thesetof,"andtheverticalbarstandsforthe words"suchthat."Theequationisread"Bisthesetofallxsuchthatxaneven integer."

TheUnionofSetsandtheMeaningof"or"

GiventwosetsAandB,onecanformasetfromthemthatconsistsofalltheelements ofAtogetherwithalltheelementsofB.ThissetiscalledtheunionofAandBand isdenotedbyAUB.Formally,wedefine

AUB={xIxEAorxEB).

Butwemustpauseatthispointandmakesureexactlywhatwemeanbythestatement "xEAorxEB."

InordinaryeverydayEnglish,theword"or"isambiguous.Sometimesthestatement"PorQ"means"PorQ,orboth"andsometimesitmeans"PorQ,butnot both."Usuallyonedecidesfromthecontextwhichmeaningisintended.Forexample, supposeIspoketotwostudentsasfollows:

"MissSmith,everystudentregisteredforthiscoursehastakeneitheracoursein linearalgebraoracoursernanalysis."

"Mr.Jones,eitheryougetagradeofatleast70onthefinalexamoryouwillflunk thiscourse"

Inthecontext,MissSmithknowsperfectlywellthatImean"everyonehashadlinear algebraoranalysis,orboth:'andMr.JonesknowsImean"eitherhegetsatleast70 orheflunks,butnotboth."Indeed,Mr.JoneswouLdbeexceedinglyunhappyifboth statementsturnedouttobetrue!

Inmathematics,onecannottoleratesuchambiguity.Onehastopickjustone meaningandstickwithit,orconfusionwillreign.Accordingly,mathematicianshave agreedthattheywillusetheword"or"inthefirstsense,sothatthestatement"PorQ" alwaysmeans"PorQ,orboth."Ifonemeans"PorQ,butnotboth,"thenonehasto includethephrase"butnotboth"explicitly.

Withthisunderstanding,theequationdefiningAUBisunambiguous;itstatesthat AUBisthesetconsistingofallelementsxthatbelongtoAortoBortoboth.

TheIntersectionofSets,theEmptySet,andtheMeaningof"If...Then"

GivensetsAandB,anotherwayonecanformasetistotakethecommonpartofA andB.ThissetiscalledtheintersectionofAandBandisdenotedbyAflB.Formally, wedefine

AflB—{xxEAandxEB).

ButjustaswiththedefinitionofAUB,thereisadifficulty.Thedifficultyisnotinthe meaningoftheword"and";itisofadifferentsort.ItariseswhenthesetsAandB happentohavenoelementsincommon.WhatmeaningdoesthesymbolAflBhave insuchacase?

Totakecareofthiseventuality,wemakeaspecialconvention.Weintroducea specialsetthatwecalltheemptyset,denotedby0,whichwethinkofas"theset havingnoelements."

Usingthisconvention,weexpressthestatementthatAandBhavenoelementsin commonbytheequation

AflB=e.

WealsoexpressthisfactbysayingthatAandBaredisjoint.

Nowsomestudentsarebotheredbythenotionofan"emptyset.""How,"theysay, "canyouhaveasetwithnothinginit?"Theproblemissimilartothatwhicharose manyyearsagowhenthenumber0wasfirstintroduced.

Theemptysetisonlyaconvention,andmathematicscouldverywellgetalong withoutit.Butitisaveryconvenientconvention,foritsavesusagooddealof awkwardnessinstatingtheoremsandinprovingthem.Withoutthisconvention,for instance,onewouldhavetoprovethatthetwosetsAandBdohaveelementsin commonbeforeonecouldusethenotationAflB.Similarly,thenotation

C={xIxEAandxhasacertainproperty)

couldnotbeusedifithappenedthatnoelementxofAhadthegivenproperty.Itis muchmoreconvenienttoagreethatAflBandCequaltheemptysetinsuchcases.

Sincetheemptyset0ismerelyaconvention,wemustmakeconventionsrelating ittotheconceptsalreadyintroduced.Because0isthoughtofas"thesetwithno elements,"itisclearweshouldmaketheconventionthatforeachobjectx,therelation xE0doesnothold.Similarly,thedefinitionsofunionandintersectionshowthatfor everysetAweshouldhavetheequations

AUO=A andAflO=0.

Theinclusionrelationisabitmoretricky.GivenasetA,shouldweagreethat 0CA?Oncemore,wemustbecarefulaboutthewaymathematiciansusetheEnglish language.Theexpression0CAisashorthandwayofwritingthesentence,"Every elementthatbelongstotheemptysetalsobelongstothesetA."Ortoputitmore

formally,"Foreveryobjectx,ifxbelongstotheemptyset,thenxalsobelongstothe setA."

Isthisstatementtrueornot?Somemightsay"yes"andotherssay'no."You willneversettlethequestionbyargument,onlybyagreement.Thisisastatementof theform"IfP,thenQ,"andineverydayEnglishthemeaningofthe"if...then' constructionisambiguous.ItalwaysmeansthatifPistrue,thenQistruealso. Sometimesthatisallitmeans;othertimesitmeanssomethingmore:thatifPisfalse, Qmustbefalse.Usuallyonedecidesfromthecontextwhichinterpretationiscorrect.

Thesituationissimilartotheambiguityintheuseoftheword"or."OnecanreformulatetheexamplesinvolvingMissSmithandMr.Jonestoillustratetheanibiguity. SupposeIsaidthefollowing:

"MissSmith,ifanystudentregisteredforthiscoursehasnottakenacoursein linearalgebra.thenhehastakenacourseinanalysis."

"Mr.Jones,ifyougetagradebelow70onthefinal,youaregoingtoflunkthis course."

Inthecontext,MissSmithunderstandsthatifastudentinthecoursehasnothadlinear algebra,thenhehastakenanalysis,butifhehashadlinearalgebra,hemayormaynot havetakenanalysisaswell.AndMr.Jonesknowsthatifhegetsagradebelow70,he willflunkthecourse,buthegetsagradeofatleast70,hewillpass.

Again,mathematicscannottolerateambiguity,soachoiceofmeaningsmustbe made.Mathematicianshaveagreedalwaystouse"if...then"inthefirstsense,so thatastatementoftheform"IfP.thenQ"meansthatifPistrue,Qistruealso,but ifPisfalse,Qmaybeeithertrueorfalse.

Asanexample,considerthefollowingstatementaboutrealnumbers:

Ifx>0.thenx30.

Itisastatementoftheform,"IfP,thenQ,"wherePisthephrase"x>0"(called thehypothesisofthestatement)andQisthephrase"x30"(calledtheconclusion ofthestatement).Thisisatruestatement,forineverycaseforwhichthehypothesis x>0holds,theconclusionx30holdsaswell.

Anothertruestatementaboutrealnumbersisthefollowing:

Ifx2<0,thenx=23;

ineverycaseforwhichthehypothesisholds,theconclusionholdsaswell.Ofcourse, ithappensinthisexamplethattherearenocasesforwhichthehypothesisholds.A statementofthissortissometimessaidtobevacuouslytrue.

Toreturnnowtotheemptysetandinclusion,weseethattheinclusion0CA doesholdforeverysetA.Writing0CAisthesameassaying,"IfxE0,then xEA?'andthisstatementisvacuouslytrue.

ContrapositiveandConverse

Ourdiscussionofthe"if...then"constructionleadsustoconsideranotherpointof elementarylogicthatsometimescausesdifficulty.Itconcernstherelationbetweena statement,itscontrapositive,anditsconverse.

Givenastatementoftheform"IfP,thenQ,"itscontrapositiveisdefinedtobe thestatement"IfQisnottrue,thenPisnottrue."Forexample,thecontrapositiveof thestatement

ifx>0,thenx30, isthestatement

Ifx3=0,thenitisnottruethatx>0.

Notethatboththestatementanditscontrapositivearetrue.Similarly,thestatement

Ifx2<0.thenx=23, hasasitscontrapositivethestatement

Ifx23,thenitisnottruethatx2<0.

Again,botharetruestatementsaboutrealnumbers.

Theseexamplesmaymakeyoususpectthatthereissomerelationbetweenastatementanditscontrapositive.Andindeedthereis;theyaretwowaysofsayingprecisely thesamething.Eachistrueifandonlyiftheotheristrue;theyarelogically lent.

Thisfactisnothardtodemonstrate.Letusintroducesomenotationfirst.Asa shorthandforthestatement"IfP,thenQ'wewrite

whichisread"PimpliesQ."Thecontrapositivecanthenbeexpressedintheform (notQ) (notP), where"notQ"standsforthephrase"Qisnottrue."

Nowtheonlywayinwhichthestatement"PQ"canfailtobecorrectisifthe hypothesisPistrueandtheconclusionQisfalse.Otherwiseitiscorrect.Similarly, theonlywayinwhichthestatement(notQ) (notP)canfailtobecorrectisif thehypothesis"notQ"istrueandtheconclusion"notP"isfalse.Thisisthesame assayingthatQisfalseandPistrue.Andthis,inturn,ispreciselythesituationin whichPQfailstobecorrect.Thus,weseethatthetwostatementsareeitherboth correctorbothincorrect;theyarelogicallyequivalent.Therefore,weshaLlaccepta proofofthestatement"notQ notP"asaproofofthestatement"P Q."

ThereisanotherstatementthatcanbeformedfromthestatementPQ.Itis thestatement

whichiscalledtheconverseofP Q.Onemustbecarefultodistinguishbetweena statement'sconverseanditscontrapositive.Whereasastatementanditscontrapositive arelogicallyequivalent,thetruthofastatementsaysnothingatallaboutthetruthor falsityofitsconverse.Forexample,thetruestatement

Ifx>0,thenx30,

hasasitsconversethestatement

Ifx30,thenx>0, whichisfalse.Similarly,thetruestatement

Ifx2<0,thenx=23, hasasitsconversethestatement

Ifx=23,then whichisfalse.

IfitshouldhappenthatboththestatementP QanditsconverseQ Pare true,weexpressthisfactbythenotation

P

Q, whichisread"PholdsifandonlyifQholds."

Negation

IfonewishestoformthecontrapositiveofthestatementP Q,onehastoknow howtoformthestatement"notP,"whichiscalledthenegationofP.Inmanycases, thiscausesnodifficulty;butsometimesconfusionoccurswithstatementsinvolvingthe phrases"forevery"and"foratleastone."Thesephrasesarecalledlogicalquantifiers.

Toillustrate,supposethatXisaset,AisasubsetofX,andPisastatementabout thegeneralelementofX.Considerthefollowingstatement:

(*) ForeveryxEA,statementPholds.

Howdoesoneformthenegationofthisstatement?Letustranslatetheprobleminto thelanguageofsets.SupposethatweletBdenotethesetofallthoseelementsx ofXforwhichPholds.Thenstatement(*)isjustthestatementthatAisasubset ofB.Whatisitsnegation?Obviously,thestatementthatAisnotasubsetofB;that is,thestatementthatthereexistsatleastoneelementofAthatdoesnotbelongtoB. Translatingbackintoordinarylanguage,thisbecomes

ForatleastonexEA,statementPdoesnothold

Therefore,toformthenegationofstatement(*),onereplacesthequantifier"forevery" bythequantifier"foratleastone,"andonereplacesstatementPbyitsnegation.

ForatleastonexEA,statementQholds,

Theprocessworksinreversejustaswell;thenegationofthestatement isthestatement

ForeveryxEA,statementQdoesnothold.

TheDifferenceofTwoSets

Wereturnnowtoourdiscussionofsets.Thereisoneotheroperationonsetsthatis occasionallyuseful.Itisthedifferenceoftwosets,denotedbyA—B,anddefinedas thesetconsistingofthoseelementsofAthatarenotinB.Formally,

ItissometimescalledthecomplementofBrelativetoA,orthecomplementofBinA. OurthreesetoperationsarerepresentedschematicallyinFigure1.1. Al

RulesofSetTheory

Givenseveralsets,onemayformnewsetsbyapplyingtheset-theoreticoperationsto them.Asinalgebra,oneusesparenthesestoindicateinwhatordertheoperationsare tobeperformed.Forexample,AU(BflC)denotestheunionofthetwosetsAand BflC,while(AUB)flCdenotestheintersectionofthetwosetsAUBandC.The setsthusformedarequitedifferent,asFigure1.2shows.

Figure1.2 B
Figure1.1

Sometimesdifferentcombinationsofoperationsleadtothesameset;whenthat happens,onehasaruleofsettheory.Forinstance,itistruethatforanysetsA,B, andCtheequation

Afl(BUC)=(AflB)U(AflC)

holds.TheequationisillustratedinFigure1.3;theshadedregionrepresentsthesetin question,asyoucancheckmentally.Thisequationcanbethoughtofasa"distributive law"fortheoperationsflandU.

Otherexamplesofset-theoreticrulesincludethesecond"distributivelaw,"

AU(BflC)=(AUB)fl(AUC), andDeMorgan'slaws,

A—(BUC)=(A—B)fl(A—C), A—(BflC)=(A—B)U(A—C).

Weleaveittoyoutochecktheserules.Onecanstateotherrulesofsettheory,but thesearethemostimportantones.DeMorgan'slawsareeasiertorememberifyou verbalizethemasfollows:

Thecomplementoftheunionequalstheintersectionofthecomplements. Thecomplementoftheintersectionequalstheunionofthecomplements.

CollectionsofSets

Theobjectsbelongingtoasetmaybeofanysort.Onecanconsiderthesetofalleven integers,andthesetofallblue-eyedpeopleinNebraska,andthesetofalldecksof playingcardsintheworld.Someoftheseareoflimitedmathematicalinterest,we admit!Butthethirdexampleillustratesapointwehavenotyetmentioned:namely, thattheobjectsbelongingtoasetmaythemselvesbesets.Foradeckofcardsisitself aset,oneconsistingofpiecesofpasteboardwithcertainstandarddesignsprintedon them.Thesetofalldecksofcardsintheworldisthusasetwhoseelementsare themselvessets(ofpiecesofpasteboard).

Figure1.3

Wenowhaveanotherwaytoformnewsetsfromoldones.GivenasetA,wecan considersetswhoseelementsaresubsetsofA.Inparticular,wecanconsidertheset ofallsubsetsofA.Thissetissometimesdenotedbythesymbol andiscalled thepowersetofA(forreasonstobeexplainedlater).

Whenwehaveasetwhoseelementsaresets,weshalloftenrefertoitasacollectionofsetsanddenoteitbyascriptlettersuchasAor£.Thisdevicewillhelpus inkeepingthingsstraightinargumentswherewehavetoconsiderobjects,andsetsof objects,andcollectionsofsetsofobjects,allatthesametime.Forexample,wemight useAtodenotethecollectionofalldecksofcardsintheworld,lettinganordinary capitalletterAdenoteadeckofcardsandalowercaseletteradenoteasingleplaying card.

Acertainamountofcarewithnotationisneededatthispoint.Wemakeadistinctionbetweentheobjecta,whichisanelementofasetA,andtheone-elementset{a}, whichisasubsetofA.Toillustrate,ifAistheset{a,b,c),thenthestatements

andIntersections

Wehavealreadydefinedwhatwemeanbytheunionandtheintersectionoftwosets. Thereisnoreasontolimitourselvestojusttwosets,forwecanjustaswellformthe unionandintersectionofarbitrarilymanysets.

GivenacollectionAofsets,theunionoftheelementsofAisdefinedbythe equation

A={xxEAforatleastoneAEA).

TheintersectionoftheelementsofAisdefinedbytheequation

ThereisnoproblemwiththesedefinitionsifoneoftheelementsofAhappenstobe theemptyset.Butitisabittrickytodecidewhat(ifanything)thesedefinitionsmean ifweallowAtobetheemptycollection.Applyingthedefinitionsliterally,weseethat noelementxsatisfiesthedefiningpropertyfortheunionoftheelementsofA.Soitis reasonabletosaythat

ifAisemptyOntheotherhand,everyxsatisfies(vacuously)thedefiningpropertyfor theintersectionoftheelementsofA.Thequestionis,everyxinwhatset?Ifonehasa givenlargesetXthatisspecifIedattheoutsetofthediscussiontobeone's"universeof discourse,"andoneconsidersonlysubsetsofXthroughout,itisreasonabletolet

whenAisemptyNotallmathematiciansfollowthisconvention,however.Toavoid difficulty,weshallnordefinetheintersectionwhenAisempty.

CartesianProducts

Thereisyetanotherwayofformingnewsetsfromoldones;itinvolvesthenotionofan "orderedpair"ofobjects.Whenyoustudiedanalyticgeornetiy,thefirstthingyoudid wastoconvinceyourselfthatafteronehaschosenanx-axisanday-axisintheplane, everypointintheplanecanbemadetocorrespondtoauniqueorderedpair(x,y)of realnumbers.(Inamoresophisticatedtreatmentofgeometry,theplaneismorelikely tobedefinedasthesetofallorderedpairsofrealnumbers!)

Thenotionoforderedpaircarriesovertogeneralsets.GivensetsAandB,we definetheircartesianproductAxBtobethesetofallorderedpairs(a,b)forwhicha isanelementofAandbisanelementofB.Formally,

Thisdefinitionassumesthattheconceptof"orderedpair"isalreadygiven.Itcanbe takenasaprimitiveconcept,aswasthenotionof"set';oritcanbegivenadefinitionin termsofthesetoperationsalreadyintroduced.Onedefinitionintermsofsetoperationsis expressedbytheequation

(a,b)=ffaj,

fa,bJJ;

itdefinestheorderedpair(a,b)asacollectionofsets.Ifab,thisdefinitionsaysthat (a,b)isacollectioncontainingtwosets,oneofwhichisaone-elementsetandtheother atwo-elementset.Thefirstcoordinateoftheorderedpairisdefinedtobetheelement belongingtobothsets,andthesecondcoordinateistheelementbelongingtoonlyoneof thesets.Ifa=b,then(a,b)isacollectioncontainingonlyonesetfa},since(a,bJ= a,aJ=(aJinthiscase.Itsfirstcoordinateandsecondcoordinatebothequaltheelement inthissingleset.

Ithinkitisfairtosaythatmostmathematiciansthinkofanorderedpairasapnmitive conceptratherthanthinkingofitasacollectionofsets!

Letusmakeacommentonnotation.Itisanunfortunatefactthatthenotation(a,b) isfirmlyestablishedinmathematicswithtwoentirelydifferentmeanings.Onemeaning,asanorderedpairofobjects,wehavejustdiscussed.Theothermeaningisthe oneyouarefamiliarwithfromanalysis;ifaandbarerealnumbers,thesymbol(a,b) isusedtodenotetheintervalconsistingofallnumbersxsuchthata<x<b.Mostof thetime,thisconflictinnotationwillcausenodifficultybecausethemeaningwillbe clearfromthecontext.Wheneverasituationoccurswhereconfusionispossible,we shalladoptadifferentnotationfortheorderedpair(a,b),denotingitbythesymbol

instead.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.