Fundamentals of probability, with stochastic processes saeed ghahramani 2024 scribd download

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/fundamentals-of-probability-with-stochastic-processe s-saeed-ghahramani/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Engineering Fundamentals: An Introduction to Engineering, SI Edition Saeed Moaveni

https://ebookmass.com/product/engineering-fundamentals-anintroduction-to-engineering-si-edition-saeed-moaveni/

Engineering Fundamentals: An Introduction to Engineering, 6th Edition Moaveni Saeed

https://ebookmass.com/product/engineering-fundamentals-anintroduction-to-engineering-6th-edition-moaveni-saeed/

Schaum's Outline of Probability, Random Variables, and Random Processes, Fourth Edition Hwei P. Hsu

https://ebookmass.com/product/schaums-outline-of-probabilityrandom-variables-and-random-processes-fourth-edition-hwei-p-hsu/

Stochastic processes and random matrices : lecture notes of the Les Houches Summer School First Edition. Edition Altland

https://ebookmass.com/product/stochastic-processes-and-randommatrices-lecture-notes-of-the-les-houches-summer-school-firstedition-edition-altland/

Tribology and Fundamentals of Abrasive Machining Processes 3rd Edition Bahman Azarhoushang

https://ebookmass.com/product/tribology-and-fundamentals-ofabrasive-machining-processes-3rd-edition-bahman-azarhoushang/

Energy Sources. Fundamentals of Chemical Conversion Processes and Applications 1st Edition Balasubramanian Viswanathan

https://ebookmass.com/product/energy-sources-fundamentals-ofchemical-conversion-processes-and-applications-1st-editionbalasubramanian-viswanathan/

Statistical Topics and Stochastic Models for Dependent Data With Applications Vlad Stefan Barbu

https://ebookmass.com/product/statistical-topics-and-stochasticmodels-for-dependent-data-with-applications-vlad-stefan-barbu/

Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes 1st Edition Ch. Venkateswarlu Satya Eswari Jujjavarapu

https://ebookmass.com/product/stochastic-global-optimizationmethods-and-applications-to-chemical-biochemical-pharmaceuticaland-environmental-processes-1st-edition-ch-venkateswarlu-satyaeswari-jujjavarapu/

Energy, Environment, and Sustainability 2nd Edition Saeed. Moaveni

https://ebookmass.com/product/energy-environment-andsustainability-2nd-edition-saeed-moaveni/

OF

PROBABILITY

WITH STOCHASTIC PROCESSES

THIRD EDITION

SAEED GHAHRAMANI

FUNDAMENTALS OF PROBABILITY WITH STOCHASTIC PROCESSES

THIRD EDITION

SAEED GHAHRAMANI

Western New England University

Springfield, Massachusetts, USA

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300

Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Version Date: 20151005

International Standard Book Number-13: 978-1-4987-5502-3 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

ToLili,Adam,andAndrew

This page intentionally left blank

1.1Introduction1

1.2SampleSpaceandEvents3

1.3AxiomsofProbability10

1.4BasicTheorems17

1.5ContinuityofProbabilityFunction25

1.6Probabilities0and127

1.7RandomSelectionofPointsfromIntervals28 ReviewProblems33

2CombinatorialMethods36

2.1Introduction36

2.2CountingPrinciple36

NumberofSubsetsofaSet 40 TreeDiagrams 40

2.3Permutations44

2.4Combinations50

2.5Stirling’sFormula66 ReviewProblems68

3ConditionalProbabilityandIndependence71

3.1ConditionalProbability71 ReductionofSampleSpace 75

3.2LawofMultiplication80

3.3LawofTotalProbability83

3.4Bayes’Formula94

3.5Independence102

3.6ApplicationsofProbabilitytoGenetics119 Hardy-WeinbergLaw 123 Sex-LinkedGenes 125 ReviewProblems128

4 DistributionFunctionsand DiscreteRandomVariables

4.1RandomVariables131

4.2DistributionFunctions135

4.3DiscreteRandomVariables144

4.4ExpectationsofDiscreteRandomVariables150

4.5VariancesandMomentsofDiscreteRandomVariables165 Moments 170

4.6StandardizedRandomVariables173

ReviewProblems174

5SpecialDiscreteDistributions177

5.1BernoulliandBinomialRandomVariables177

ExpectationsandVariancesofBinomialRandomVariables 183

5.2PoissonRandomVariable189

PoissonasanApproximationtoBinomial 189 PoissonProcess 194

5.3OtherDiscreteRandomVariables202

GeometricRandomVariable 202

NegativeBinomialRandomVariable 205

HypergeometricRandomVariable 207

ReviewProblems214

6ContinuousRandomVariables218

6.1ProbabilityDensityFunctions218

6.2DensityFunctionofaFunctionofaRandomVariable227

6.3ExpectationsandVariances232

ExpectationsofContinuousRandomVariables 232

VariancesofContinuousRandomVariables 238

ReviewProblems244

7SpecialContinuousDistributions246

7.1UniformRandomVariable246

7.2NormalRandomVariable252

CorrectionforContinuity 255

7.3ExponentialRandomVariables268

7.4GammaDistribution274

7.5BetaDistribution280

7.6SurvivalAnalysisandHazardFunction286 ReviewProblems290

8BivariateDistributions292

8.1JointDistributionofTwoRandomVariables292

JointProbabilityMassFunctions 292

JointProbabilityDensityFunctions 296

8.2IndependentRandomVariables310

IndependenceofDiscreteRandomVariables 310 IndependenceofContinuousRandomVariables 313

8.3ConditionalDistributions322

ConditionalDistributions:DiscreteCase 322

ConditionalDistributions:ContinuousCase 327

8.4TransformationsofTwoRandomVariables334 ReviewProblems342

9MultivariateDistributions346

9.1JointDistributionof n> 2 RandomVariables346

JointProbabilityMassFunctions 346

JointProbabilityDensityFunctions 354 RandomSample 358

9.2OrderStatistics363

9.3MultinomialDistributions369 ReviewProblems373

10MoreExpectationsandVariances375

10.1ExpectedValuesofSumsofRandomVariables375 PatternAppearance 382

10.2Covariance388

10.3Correlation402

10.4ConditioningonRandomVariables407

10.5BivariateNormalDistribution421 ReviewProblems425

11.1Moment-GeneratingFunctions428

11.2SumsofIndependentRandomVariables438

11.3MarkovandChebyshevInequalities446

Chebyshev’sInequalityandSampleMean 450

11.4LawsofLargeNumbers455

ProportionversusDifferenceinCoinTossing 463

11.5CentralLimitTheorem466

ReviewProblems475

12 StochasticProcesses

12.1Introduction478

12.2MoreonPoissonProcesses479

WhatIsaQueuingSystem? 490

PASTA:PoissonArrivalsSeeTimeAverage 491

12.3MarkovChains494

ClassificationsofStatesofMarkovChains 503

AbsorptionProbability 513 Period 517

Steady-StateProbabilities 518

12.4Continuous-TimeMarkovChains530

Steady-StateProbabilities 536

BirthandDeathProcesses 539

12.5BrownianMotion548

FirstPassageTimeDistribution 555

TheMaximumofaBrownianMotion 556

TheZerosofBrownianMotion 556

BrownianMotionwithDrift 559

GeometricBrownianMotion 560

ReviewProblems563 13Simulation568

13.1Introduction568

13.2SimulationofCombinatorialProblems572

13.3SimulationofConditionalProbabilities575

13.4SimulationofRandomVariables578

13.5MonteCarloMethod586

This page intentionally left blank

Preface

Thisone-ortwo-termbasicprobabilitytextiswrittenformajorsinmathematics,physicalsciences,engineering,statistics,actuarialscience,businessand finance,operations research,andcomputerscience.Itcanalsobeusedbystudentswhohavecompletedabasiccalculuscourse.Ouraimistopresentprobabilityinanaturalway:throughinteresting andinstructiveexamplesandexercisesthatmotivatethetheory,definitions,theorems,and methodology.Examplesandexerciseshavebeencarefullydesignedtoarousecuriosityand henceencouragethestudentstodelveintothetheorywithenthusiasm.

Thisisanewprintingofthethirdeditionof FundamentalsofProbabilitywithStochasticProcesses previouslypublishedbyPearson.Allthedetectedtypographicalandother errorshavebeencorrectedinthis Chapman&Hall/CRC edition.

Authorsareusuallyfacedwithtwoopposingimpulses.Oneisatendencytoputtoo muchintothebook,because everything isimportantand everything hastobesaidthe author’sway!Ontheotherhand,authorsmustalsokeepinmindacleardefinitionofthe focus,thelevel,andtheaudienceforthebook,therebychoosingcarefullywhatshould be“in”andwhat“out.”Hopefully,thisbook isanacceptableresolutionofthetension generatedbytheseopposingforces.

Instructorsshouldenjoytheversatilityofthistext.Theycanchoosetheirfavorite problemsandexercisesfromacollectionof1558and,ifnecessary,omitsomesections and/ortheoremstoteachatanappropriatelevel.

Exercisesformostsectionsaredividedintotwocategories:AandB.Thoseincategory Aareroutine,andthoseincategoryBarechallenging.However,notallexercisesincategoryBareuniformlychallenging.Someofthoseexercisesareincludedbecausestudents findthemsomewhatdifficult.

Ihavetriedtomaintainanapproachthatismathematicallyrigorousand,atthesame time,closelymatchesthehistoricaldevelopmentofprobability.Wheneverappropriate,I includehistoricalremarks,andalsoincludediscussionsofanumberofprobabilityproblemspublishedinrecentyearsinjournalssuchas MathematicsMagazine and American MathematicalMonthly. Theseareinterestingandinstructiveproblemsthatdeservediscussioninclassrooms.

Chapter13concernscomputersimulation.Thatchapterisdividedintoseveralsections, presentingalgorithmsthatareusedto findapproximatesolutionstocomplicatedprobabilisticproblems.Thesesectionscanbediscussedindependentlywhenrelevantmaterialsfrom earlierchaptersarebeingtaught,ortheycanbediscussedconcurrently,towardtheendof thesemester.AlthoughIbelievethattheemphasisshouldremainonconcepts,methodology,andthemathematicsofthesubject,Ialsothinkthatstudentsshouldbeaskedtoread thematerialonsimulationandperhapsdosomeprojects.Computersimulationisanexcellentmeanstoacquireinsightintothenatureofaproblem,itsfunctions,itsmagnitude,and thecharacteristicsofthesolution.

OtherContinuingFeatures

• Thehistoricalrootsandapplicationsofmanyofthetheoremsanddefinitionsare presentedindetail,accompaniedbysuitableexamplesorcounterexamples.

• Asmuchaspossible,examplesandexercisesforeachsectiondonotrefertoexercisesinotherchaptersorsections—astylethatoftenfrustratesstudentsandinstructors.

• Wheneveranewconceptisintroduced,itsrelationshiptoprecedingconceptsand theoremsisexplained.

• Althoughtheusualanalyticproofsaregiven,simpleprobabilisticargumentsarepresentedtopromotedeeperunderstandingofthesubject.

• Thebookbeginswithdiscussionsonprobabilityanditsdefinition,ratherthanwith combinatorics.Ibelievethatcombinatoricsshouldbetaughtafterstudentshave learnedthepreliminaryconceptsofprobability.Theadvantageofthisapproach isthattheneedformethodsofcountingwilloccurnaturallytostudents,andthe connectionbetweenthetwoareasbecomesclearfromthebeginning.Moreover, combinatoricsbecomesmoreinterestingandenjoyable.

• Studentsbeginningtheirstudyofprobabilityhaveatendencytothinkthatsample spacesalwayshavea finitenumberofsamplepoints.Tominimizethisproclivity,the conceptof randomselectionofapointfromaninterval isintroducedinChapter1 andappliedwhereappropriatethroughoutthebook.Moreover,sincethebasisof simulatingindeterministicproblemsisselectionofrandompointsfrom (0, 1),in ordertounderstandsimulations,studentsneedtobethoroughlyfamiliarwiththat concept.

• Often,whenwethinkofacollectionofevents,wehaveatendencytothinkabout themineithertemporalorlogicalsequence.So,if,forexample,asequenceofevents A1 , A2 , , An occurintimeorinsomelogicalorder,wecanusuallyimmediately writedowntheprobabilities

withoutmuchcomputation.However,wemaybeinterestedinprobabilitiesofthe intersectionofevents,orprobabilitiesofeventsunconditionalontherest,orprobabilitiesofearlierevents,givenlaterevents.Thesethreequestionsmotivatedtheneed forthelawofmultiplication,thelawoftotalprobability,andBayes’theorem.Ihave giventhelawofmultiplicationasectionofitsownsothat eachofthesefundamental usesofconditionalprobabilitywouldhaveitsfullshareofattentionandcoverage.

• Theconceptsofexpectationandvarianceareintroducedearly,becauseimportant conceptsshouldbedefinedandusedassoonaspossible.Onebenefitofthispractice isthat,whenrandomvariablessuchasPoissonandnormalarestudied,theassociated parameterswillbeunderstoodimmediatelyratherthanremainingambiguousuntil expectationandvarianceareintroduced.Therefore,fromthebeginning,students willdevelopanaturalfeelingaboutsuchparameters.

• SpecialattentionispaidtothePoissondistribution;itismadeclearthatthisdistributionisfrequentlyapplicable,fortworeasons: first,becauseitapproximatesthe

binomialdistributionand,second,itisthemathematicalmodelforanenormous classofphenomena.ThecomprehensivepresentationofthePoissonprocessandits applicationscanbeunderstoodbyjunior-andsenior-levelstudents.

• Studentsoftenhavedifficultiesunderstandingfunctionsorquantitiessuchasthe densityfunctionofacontinuousrandomvariableandtheformulaformathematical expectation.Forexample,theymaywonderwhy xf (x) dx istheappropriatedefinitionfor E (X ) andwhycorrectionforcontinuityisnecessary.Ihaveexplainedthe reasonbehindsuchdefinitions,theorems,andconcepts,andhavedemonstratedwhy theyarethenaturalextensionsofdiscretecases.

• The firstsixchaptersincludemanyexamplesandexercisesconcerningselectionof randompointsfromintervals.Consequently,inChapter7,whendiscussinguniform randomvariables,Ihavebeenabletocalculatethedistributionand(bydifferentiation)thedensityfunctionof X ,arandompointfromaninterval (a,b ).Inthisway theconceptofauniformrandomvariableandthedefinitionofitsdensityfunction arereadilymotivated.

• InChapters7and8theusefulnessofuniformdensitiesisshownbyusingmany examples.Inparticular,applicationsofuniformdensityin geometricprobability theory areemphasized.

• Normaldensity,arguablythemostimportantdensityfunction,isreadilymotivated byDeMoivre’stheorem.InSection7.2,Iintroducethestandardnormaldensity, theelementaryversionofthecentrallimittheorem,andthenormaldensityjustas theyweredevelopedhistorically.Experienceshowsthistobeagoodpedagogical approach.Whenteachingthisapproach,thenormaldensitybecomesnaturaland doesnotlooklikeastrangefunctionappearingoutoftheblue.

• Exponentialrandomvariablesnaturallyoccuras timesbetweenconsecutiveeventsof Poissonprocesses.Thetimeofoccurrenceofthe ntheventofaPoissonprocesshas agammadistribution.ForthesereasonsIhavemotivatedexponentialandgamma distributionsbyPoissonprocesses.Inthiswaywecanobtainmanyexamplesof exponentialandgammarandomvariablesfromtheabundantexamplesofPoisson processesalreadyknown.Anotheradvantageisthatithelpsusvisualizememoryless randomvariablesbylookingattheintereventtimesofPoissonprocesses.

• Jointdistributionsandconditioningareoftentroubleareasforstudents.Adetailed explanationandmanyapplicationsconcerningtheseconceptsandtechniquesmake thesematerialssomewhateasierforstudentstounderstand.

• Theconceptsofcovarianceandcorrelationaremotivatedthoroughly.

• AsubsectiononpatternappearanceispresentedinSection10.1.Eventhoughthe methoddiscussedinthissubsectionisintuitiveandprobabilistic,itshouldhelpthe studentsunderstandsuchparadoxical-lookingresultsasthefollowing.Ontheaverage,ittakesalmosttwiceasmany flipsofafaircointoobtainasequenceof five successiveheadsasitdoestoobtainatailfollowedbyfourheads.

• Theanswerstotheodd-numberedexercisesareincludedattheendofthebook.

NewToThisEdition

Since2000,whenthesecondeditionofthisbookwaspublished,Ihavereceivedmuchadditionalcorrespondenceandfeedbackfromfacultyandstudentsinthiscountryandabroad. Thecomments,discussions,recommendations,andreviewshelpedmetoimprovethebook inmanyways.Alldetectederrorswerecorrected,andthetexthasbeen fine-tunedforaccuracy.Moreexplanationsandclarifyingcommentshavebeenaddedtoalmosteverysection. Inthisedition,278newexercisesandexamples,mostlyofanappliednature,havebeen added.Moreinsightfulandbettersolutionsaregivenforanumberofproblemsandexercises.Forexample,IhavediscussedBorel’snormalnumbertheorem,andIhavepresented aversionofafamoussetwhichisnotanevent.Ifafaircoinistossedaverylargenumber oftimes,thegeneralperceptionisthatheadsoccursasoftenastails.Inanewsubsection, inSection11.4,Ihaveexplainedwhatismeantby“headsoccursasoftenastails.”

Someoftheotherfeaturesofthepresentrevisionarethefollowing:

• Anintroductorychapteronstochasticprocessesisadded.Thatchaptercoversmore in-depthmaterialonPoissonprocesses.ItalsopresentsthebasicsofMarkovchains, continuous-timeMarkovchains,andBrownianmotion.Thetopicsarecoveredin somedepth.Therefore,thecurrenteditionhasenoughmaterialforasecondcourse inprobabilityaswell.Thelevelofdifficultyofthechapteronstochasticprocesses isconsistentwiththerestofthebook.Ibelievetheexplanationsinthenewedition ofthebookmakesomechallengingmaterialmoreeasilyaccessibletoundergraduateandbeginninggraduatestudents.Weassumeonlycalculusasaprerequisite. Throughoutthechapter,asexamples,certainimportantresultsfromsuchareasas queuingtheory,randomwalks,branchingprocesses,superpositionofPoissonprocesses,andcompoundPoissonprocessesarediscussed.Ihavealsoexplainedwhat thefamoustheorem,PASTA, PoissonArrivalsSeeTimeAverage,states.Inshort,the chapteronstochasticprocessesislayingthefoundationonwhichstudents’further pureandappliedprobabilitystudiesandworkcanbuild.

• Somepractical,meaningful,nontrivial,andrelevantapplicationsofprobabilityand stochasticprocessesin finance,economics,andactuarialsciencesarepresented.

• Eversince1853,whenGregorJohannMendel(1822–1884)beganhisbreedingexperimentswiththegardenpea Pisumsativum,probabilityhasplayedanimportant roleintheunderstandingoftheprinciplesofheredity.Inthisedition,Ihaveincluded moregeneticsexamplestodemonstratetheextentofthatrole.

• Tostudytheriskorrateof“failure,”perunitoftimeof“lifetimes”thathavealready survivedacertainlengthoftime,Ihaveaddedanewsection,SurvivalAnalysisand HazardFunctions,toChapter7.

• Forrandomsumsofrandomvariables,IhavediscussedWald’sequationanditsanalogouscaseforvariance.CertainapplicationsofWald’sequationhavebeendiscussed intheexercises,aswellasinChapter12,StochasticProcesses.

• Tomaketheorderoftopicsmorenatural,thepreviouseditions’Chapter8isbroken intotwoseparatechapters,BivariateDistributionsandMultivariateDistributions. Asaresult,thesectionTransformationsofTwoRandomVariableshasbeencovered

earlieralongwiththematerialonbivariatedistributions,andtheconvolutiontheorem hasfoundabetterhomeasanexampleoftransformationmethods.Thattheoremis nowpresentedasamotivationforintroducingmoment-generatingfunctions,sinceit cannotbeextendedsoeasilytomanyrandomvariables.

SampleSyllabi

Foraone-termcourseonprobability,instructorshavebeenabletoomitmanysections withoutdifficulty.Thebookisdesignedforstudentswithdifferentlevelsofability,and avarietyofprobabilitycourses,appliedand/orpure,canbetaughtusingthisbook.A typicalone-semestercourseonprobabilitywouldcoverChapters1and2;Sections3.1–3.5;Chapters4,5,6;Sections7.1–7.4;Sections8.1–8.3;Section9.1;Sections10.1–10.3; andChapter11.

Afollow-upcourseonintroductorystochasticprocesses,oronamoreadvancedprobabilitywouldcovertheremainingmaterialinthebookwithanemphasisonSections8.4, 9.2–9.3,10.4and,especially,theentireChapter12.

Acourseon discreteprobability wouldcoverSections1.1–1.5;Chapters2,3,4,and 5;ThesubsectionsJointProbabilityMassFunctions,IndependenceofDiscreteRandom Variables,andConditionalDistributions:DiscreteCase,fromChapter8;thesubsection JointProbabilityMassFunctions,fromChapter9;Section9.3;selecteddiscretetopics fromChapters10and11;andSection12.3.

SolutionsManual

Ihavewrittenan Instructor’sSolutionsManual thatgivesdetailedsolutionstovirtuallyall ofthe1224exercisesofthebook.Thismanualisavailable,directlyfromPrenticeHall, onlyforthoseinstructorswhoteachtheircoursesfromthisbook.

Acknowledgments

Whilewritingthemanuscript,manypeoplehelpedmeeitherdirectlyorindirectly.Lili, mybelovedwife,deservesanaccoladeforherpatienceandencouragement;asdomy wonderfulchildren.

AccordingtoEcclesiastes12:12,“ofthemakingofbooks,thereisnoend.”Improvementsandadvancementtodifferentlevelsofexcellencecannotpossiblybeachievedwithoutthehelp,criticism,suggestions,andrecommendationsofothers.Ihavebeenblessed withsomanycolleagues,friends,andstudentswhohavecontributedtotheimprovement ofthistextbook.OnereasonIlikewritingbooksisthepleasureofreceivingsomanysuggestionsandsomuchhelp,support,andencouragementfromcolleaguesandstudentsall overtheworld.Myexperiencefromwritingthethreeeditionsofthisbookindicatesthat collaborationandcamaraderieinthescientificcommunityistrulyoverwhelming.

Forthethirdeditionofthisbookanditssolutionsmanual,mybrother,Dr.Soroush Ghahramani,aprofessorofarchitecturefromSinclairCollegeinOhio,usingAutoCad,

withutmostpatienceandmeticulosity,resketchedeachandeveryoneofthe figures.Asa result,theillustrationsaremore accurateandclearerthantheywereinthepreviouseditions. Iammostindebtedtomybrotherforhishardwork.

Forthethirdedition,Iwrotemanynew AMS-LATEX files.Myassistants,AnnGuyotte andAvrilCouture,withutmostpatience,keeneyes,positiveattitude,andeagernessput thesehand-written filesontothecomputer.Mycolleague,ProfessorAnnKizanis,whois knownforbeingaperfectionist,read,verycarefully,thesenew filesandmademanygood suggestions.Whilewritingabouttheapplicationofgeneticstoprobability,Ihadseveral discussionswithWesternNewEngland’sdistinguishedgeneticist,Dr.LorraineSartori.I learnedalotfromLorraine,whoalsoreadmymaterialongeneticscarefullyandmade valuablesuggestions.Dr.MichaelMeeropol,theChairofourEconomicsDepartment, readpartsofmymanuscriptson financialapplicationsandmentionedsomenewideas. Dr.DavidMazurwasteachingfrommybookevenbeforewe werecolleagues.Overthe pastfouryears,Ihaveenjoyedhearinghiscommentsandsuggestionsaboutmybook.It givesmeadistinctpleasuretothankAnnGuyotte,Avril,AnnKizanis,Lorraine,Michael, andDavefortheirhelp.

ProfessorJayDevorefromCaliforniaPolytechnicInstitute—SanLuisObispo,made excellentcommentsthatimprovedthemanuscriptsubstantiallyforthe firstedition.From BostonUniversity,ProfessorMarkE.Glickman’scarefulreviewandinsightfulsuggestions andideashelpedmeinwritingthesecondedition.Iwasveryluckytoreceivethorough reviewsofthethirdeditionfromProfessorJamesKuelbsofUniversityofWisconsin,Madison,ProfessorRobertSmitsofNewMexicoStateUniversity,andMs.EllenGundlachfrom PurdueUniversity.Thethoughtfulsuggestionsandideasofthesecolleaguesimprovedthe currenteditionofthisbookinseveralways.IammostgratefultoDrs.Devore,Glickman, Kuelbs,Smits,andMs.Gundlach.

Forthe firsttwoeditionsofthebook,mycolleaguesandfriendsatTowsonUniversityreadortaughtfromvariousrevisionsofthetextandofferedusefuladvice.Inparticular,IamgratefultoProfessorsMostafaAminzadeh,RaoufBoules,JeromeCohen, JamesP.Coughlin,GeoffreyGoodson,SharonJones,OhoeKim,BillRose,MarthaSiegel, HoushangSohrab,EricTissue,andmylatedearfriendSayeedKayvan.Iwanttothank mycolleaguesProfessorsCoughlinandSohrab,especially,fortheirkindnessandthegenerositywithwhichtheyspenttheirtimecarefullyreadingtheentiretexteverytimeitwas revised.

Iamalsogratefultothefollowingprofessorsfortheirvaluablesuggestionsandconstructivecriticisms:ToddArbogast,TheUniversityofTexasatAustin;RobertB.Cooper, FloridaAtlanticUniversity;RichardDeVault,NorthwesternStateUniversityofLouisiana; BobDillon,AuroraUniversity;DanFitzgerald,KansasNewmanUniversity;SergeyFomin, MassachusettsInstituteofTechnology;D.H.Frank,IndianaUniversityofPennsylvania; JamesFrykman,KentStateUniversity;M.LawrenceGlasser,ClarksonUniversity;Moe Habib,GeorgeMasonUniversity;PaulT.Holmes,ClemsonUniversity;EdwardKao,UniversityofHouston;JoeKearney,DavenportCollege;EricD.Kolaczyk,BostonUniversity; PhilippeLoustaunau,GeorgeMasonUniversity;JohnMorrison,UniversityofDelaware; ElizabethPapousek,FiskUniversity;RichardJ.Rossi,CaliforniaPolytechnicInstitute— SanLuisObispo;JamesR.Schott,UniversityofCentralFlorida;SiavashShahshahani, SharifUniversityofTechnology,Tehran,Iran;YangShangjun,AnhuiUniversity,Hefei,

China;KyleSiegrist,UniversityofAlabama—Huntsville;LorenSpice,myformeradvisee, aprodigywhobecameaPh.D.studentatage16andafacultymemberattheUniversity ofMichiganatage21;OlafStackelberg,KentStateUniversity;andDonD.Warren,Texas LegislativeCouncil.

SpecialthanksareduetoCRC’svisionaryeditor,DavidGrubbs,forhisencouragement andassistanceinseeingthisneweffortthrough.

Last,butnotleast,IwanttoexpressmygratitudeforallthetechnicalhelpIreceived, for17years,frommygoodfriendandcolleagueProfessorHowardKaplonofTowson University,andalltechnicalhelpIregularlyreceivefromBillLandry,myfriendandcolleagueatWesternNewEnglandUniversity.IamalsogratefultoProfessorNakhl´eAsmar, fromtheUniversityofMissouri,whogenerouslysharedwithmehisexperiencesinthe professionaltypesettingofhisownbeautifulbook.

SaeedGhahramani sghahram@wne.edu

This page intentionally left blank

Chapter1

A xioms of Probability

1.1INTRODUCTION

Insearchofnaturallawsthatgovernaphenomenon,scienceoftenfaces“events”thatmay ormaynotoccur.Theeventof disintegrationofagivenatomofradium isonesuchexample because,inanygiventimeinterval,suchanatommayormaynotdisintegrate.Theevent of findingnodefectduringinspectionofamicrowaveoven isanotherexample,sincean inspectormayormaynot finddefectsinthemicrowaveoven.Theeventthatan orbital satelliteinspaceisatacertainposition isathirdexample.Inanyexperiment,anevent thatmayormaynotoccuriscalled random.Iftheoccurrenceofaneventisinevitable,it iscalled certain,andifitcanneveroccur,itiscalled impossible.Forexample,theevent thatanobjecttravelsfasterthanlightisimpossible,andtheeventthatinathunderstorm flashesoflightning precedeanythunderechoesiscertain.

Knowingthataneventisrandomdeterminesonlythattheexistingconditionsunder whichtheexperimentisbeingperformeddonotguaranteeitsoccurrence.Therefore,the knowledgeobtainedfromrandomnessitselfishardlydecisive.Itishighlydesirableto determinequantitativelytheexactvalue,oranestimate,ofthechanceoftheoccurrence ofarandomevent.Thetheoryofprobabilityhasemergedfromattemptstodealwiththis problem.Inmanydifferent fieldsofscienceandtechnology,ithasbeenobservedthat, underalongseriesofexperiments,theproportionofthetimethataneventoccursmay appeartoapproachaconstant.Itistheseconstantsthatprobabilitytheory(andstatistics) aimsatpredictinganddescribingasquantitativemeasuresofthechanceofoccurrence ofevents.Forexample,ifafaircoinistossedrepeatedly,theproportionoftheheads approaches 1/2.Henceprobabilitytheorypostulatesthatthenumber 1/2 beassignedto theeventof gettingheadsinatossofafaircoin.

Historically,fromthedawnofcivilization,humanshavebeeninterestedingamesof chanceandgambling.However,theadventofprobabilityasamathematicaldisciplineis relativelyrecent.AncientEgyptians,about3500 B.C.,wereusingastragali,afour-sided die-shapedbonefoundintheheelsofsomeanimals,toplayagamenowcalled houndsand jackals.Theordinarysix-sideddiewasmadeabout1600 B.C. andsincethenhasbeenused inallkindsofgames.Theordinarydeckofplayingcards,probablythemostpopulartool ingamesandgambling,ismuchmorerecentthandice.Although itisnotknownwhere andwhendiceoriginated,therearereasonstobelievethattheywereinventedinChina sometimebetweentheseventhandtenthcenturies.Clearly,throughgamblingandgames

ofchancepeoplehavegainedintuitiveideasaboutthefrequencyofoccurrenceofcertain eventsand,hence,aboutprobabilities.Butsurprisingly,studiesofthechancesofevents werenotbegununtilthe fifteenthcentury.TheItalianscholarsLucaPaccioli(1445–1514), Niccol`oTartaglia(1499–1557),GirolamoCardano(1501–1576),andespeciallyGalileo Galilei(1564–1642)wereamongthe firstprominentmathematicianswhocalculatedprobabilitiesconcerningmanydifferentgamesofchance.Theyalsotriedtoconstructamathematicalfoundationforprobability.Cardanoevenpublishedahandbookongambling,with sectionsdiscussingmethodsofcheating.Nevertheless,realprogressstartedinFrancein 1654,whenBlaisePascal(1623–1662)andPierredeFermat(1601–1665)exchangedseverallettersinwhichtheydiscussedgeneralmethodsforthecalculationofprobabilities.In 1655,theDutchscholarChristianHuygens(1629–1695)joinedthem.In1657Huygens publishedthe firstbookonprobability, DeRatiocinatesinAleaeLudo(OnCalculationsin GamesofChance).Thisbookmarkedthebirthofprobability.Scholarswhoreaditrealizedthattheyhadencounteredanimportanttheory.Discussionsofsolvedandunsolved problemsandthesenewideasgeneratedreadersinterestedinthischallengingnew field.

AftertheworkofPascal,Fermat,andHuygens,thebookwrittenbyJamesBernoulli (1654–1705)andpublishedin1713andthatbyAbrahamdeMoivre(1667–1754)in1730 weremajorbreakthroughs.Intheeighteenthcentury,studiesbyPierre-SimonLaplace (1749–1827),Sim´eonDenisPoisson(1781–1840),andKarlFriedrichGauss(1777–1855) expandedthegrowthofprobabilityanditsapplicationsveryrapidlyandinmanydifferent directions.Inthenineteenthcentury,prominentRussianmathematiciansPafnutyChebyshev(1821–1894),AndreiMarkov(1856–1922),andAleksandrLyapunov(1857–1918) advancedtheworksofLaplace, DeMoivre,andBernoulliconsiderably.Bytheearlytwentiethcentury,probabilitywasalreadyadevelopedtheory,butitsfoundationwasnot firm. Amajorgoalwastoputiton firmmathematicalgrounds.Untilthen,amongotherinterpretationsperhapsthe relativefrequencyinterpretation ofprobabilitywasthemostsatisfactory.Accordingtothisinterpretation,todefine p,theprobabilityoftheoccurrenceof anevent A ofanexperiment,westudyaseriesofsequentialorsimultaneousperformances oftheexperimentandobservethattheproportionoftimesthat A occursapproachesaconstant.Thenwecount n(A),thenumberoftimesthat A occursduring n performancesofthe experiment,andwedefine p =limn→∞ n(A)/n.Thisdefinitionismathematicallyproblematicandcannotbethebasisofarigorousprobabilitytheory.Someofthedifficulties thatthisdefinitioncreatesareasfollows:

1. Inpractice, limn→∞ n(A)/n cannotbecomputedsinceitisimpossibletorepeatan experimentinfinitelymanytimes.Moreover,ifforalarge n, n(A)/n istakenasan approximationfortheprobabilityof A,thereisnowaytoanalyzetheerror.

2. Thereisnoreasontobelievethatthelimitof n(A)/n,as n →∞,exists.Also,if theexistenceofthislimit isacceptedasanaxiom,manydilemmasarisethatcannot besolved.Forexample,thereisnoreasontobelievethat,inadifferentseriesof experimentsandforthesameevent A,thisratioapproachesthesamelimit.Hencethe uniquenessoftheprobabilityoftheevent A isnotguaranteed.

3. Bythisdefinition,probabilitiesthatarebasedonourpersonalbeliefandknowledgeare notjustifiable.Thusstatementssuchasthefollowingwouldbemeaningless.

• Theprobabilitythatthepriceofoilwillberaisedinthenextsixmonthsis60%.

• Theprobabilitythatthe50,000thdecimal figureofthenumber π is7exceeds 10%.

• TheprobabilitythatitwillsnownextChristmasis30%.

• TheprobabilitythatMozartwaspoisonedbySalieriis18%.

In1900,attheInternationalCongressofMathematiciansinParis,DavidHilbert(1862–1943)proposed23problemswhosesolutionswere,inhisopinion,crucialtotheadvancementofmathematics.Oneoftheseproblemswastheaxiomatictreatmentofthetheory ofprobability.Inhislecture,HilbertquotedWeierstrass,whohadsaid,“The finalobject, alwaystobekeptinmind,istoarriveatacorrectunderstandingofthefoundationsofthe science.”Hilbertaddedthatathoroughunderstandingofspecialtheoriesofascienceis necessaryforsuccessfultreatmentofitsfoundation.Probabilityhadreachedthatpoint andwasstudiedenoughtowarrantthecreationofa firmmathematicalfoundation.Some worktowardthisgoalhadbeendoneby ´ EmileBorel(1871–1956),SergeBernstein(1880–1968),andRichardvonMises(1883–1953),butitwasnotuntil1933thatAndreiKolmogorov(1903–1987),aprominentRussianmathematician,successfullyaxiomatizedthe theoryofprobability.InKolmogorov’swork,whichisnowuniversally accepted,threeselfevidentandindisputablepropertiesofprobability(discussedlater)aretakenas axioms, and theentiretheoryofprobabilityisdevelopedandrigorouslybasedontheseaxioms.Inparticular,theexistenceofaconstant p,asthelimitoftheproportionofthenumberoftimes thattheevent A occurswhenthenumberofexperimentsincreasesto ∞,insomesense, isshown.Subjectiveprobabilitiesbasedonourpersonalknowledge,feelings,andbeliefs mayalsobemodeledandstudiedbythisaxiomaticapproach.

Inthisbookwestudythemathematicsofprobabilitybasedontheaxiomaticapproach. Sinceinthisapproachtheconceptsof samplespace and event playacentralrole,wenow explaintheseconceptsindetail.

1.2SAMPLESPACEANDEVENTS

Iftheoutcomeofanexperimentisnotcertainbutallofitspossibleoutcomesarepredictable inadvance,thenthesetofallthesepossibleoutcomesiscalledthe samplespace ofthe experimentandisusuallydenotedby S .Therefore,thesamplespaceofanexperiment consistsofallpossibleoutcomesoftheexperiment.Theseoutcomesaresometimescalled samplepoints, orsimply points, ofthesamplespace.In thelanguage ofprobability, certainsubsetsof S arereferredtoas events.Soeventsaresetsofpointsofthesample space.Someexamplesfollow.

Example1.1 Fortheexperimentof tossingacoinonce,thesamplespace S consistsof twopoints(outcomes),“heads”(H)and“tails”(T).Thus S = {H, T}.

Example1.2 Supposethatanexperimentconsistsoftwosteps.Firstacoinis flipped. Iftheoutcomeistails,adieistossed.Iftheoutcomeisheads,thecoinis flippedagain. Thesamplespaceofthisexperimentis S = {T1, T2, T3, T4, T5, T6, HT, HH}.Forthis

experiment,theeventof headsinthe first flipofthecoin is E = {HT, HH},andtheevent of anoddoutcome whenthedieistossedis F = {T1, T3, T5}

Example1.3 Considermeasuringthelifetimeofalightbulb.Sinceanynonnegative realnumbercanbeconsideredasthelifetimeofthelightbulb(inhours),thesamplespace is S = {x : x ≥ 0}.Inthisexperiment, E = {x : x ≥ 100} istheeventthat thelightbulb lastsatleast100hours, F = {x : x ≤ 1000} istheeventthat itlastsatmost1000hours, and G = {505.5} istheeventthat itlastsexactly505.5hours.

Example1.4 Supposethatastudyisbeingdoneonallfamilieswithone,two,orthree children.Lettheoutcomesofthestudybethegendersofthechildrenindescendingorder oftheirages.Then

S = b,g,bg,gb,bb,gg,bbb,bgb,bbg,bgg,ggg,gbg,ggb,gbb .

Heretheoutcome b meansthatthechildisaboy,and g meansthatitisagirl.Theevents F = {b,bg,bb,bbb,bgb,bbg,bgg } and G = {gg,bgg,gbg,ggb} representfamilieswhere theeldestchildisaboyandfamilieswithexactlytwogirls,respectively.

Example1.5 Abuswithacapacityof34passengersstopsatastationsometimebetween11:00 A.M. and11:40 A.M. everyday.Thesamplespaceoftheexperiment,consisting ofcountingthenumberofpassengersonthebusandmeasuringthearrivaltimeofthebus, is

where i representsthenumberofpassengersand t thearrivaltimeofthebusinhoursand fractionsofhours.Thesubsetof S definedby F = (27,t):11 1 3 <t< 11 2 3 istheevent thatthebusarrivesbetween11:20 A.M. and11:40 A.M. with27passengers.

Remark1.1 Differentmanifestationsofoutcomesofanexperimentmightleadtodifferentrepresentationsforthesamplespaceofthesameexperiment.Forinstance,inExample 1.5,theoutcomethatthe busarrivesat t with i passengers isrepresentedby (i,t),where t isexpressedinhoursandfractionsofhours.Bythisrepresentation,(1.1)isthesample spaceoftheexperiment.Nowifthesameoutcomeisdenotedby (i,t),where t isthe numberofminutesafter11 A.M. thatthebusarrives,thenthesamplespacetakestheform S1 = (i,t):0 ≤ i ≤ 34, 0 ≤ t ≤ 40 .

Totheoutcomethatthe busarrivesat 11:20 A.M. with 31 passengers,in S thecorresponding pointis 31, 11 1 3 ,whilein S1 itis (31, 20).

Example1.6(Round-OffError) Supposethat eachtimeJaychargesanitemtohis creditcard,hewillroundtheamounttothenearestdollarinhisrecords.Therefore,the round-offerror,whichisthetruevaluechargedminustheamountrecorded,israndom, withthesamplespace

wherewehaveassumedthatforanyintegerdollaramount a,Jayrounds a.50 to a +1.The eventofroundingoffatmost3centsinarandomchargeisgivenby

0, 0 01, 0 02, 0 03, 0 01, 0 02, 0 03

Iftheoutcomeofanexperimentbelongstoanevent E ,wesaythattheevent E has occurred.Forexample,ifwedrawtwocardsfromanordinarydeckof52cardsandobserve thatoneisaspadeandtheotheraheart,alloftheevents {sh}, {sh,dd}, {cc,dh,sh}, {hc,sh,ss,hh}, and {cc,hh,sh,dd} haveoccurredbecause sh,theoutcomeoftheexperiment,belongstoallofthem.However,noneoftheevents {dh,sc}, {dd}, {ss,hh,cc}, and {hd,hc,dc,sc,sd} hasoccurredbecause sh doesnotbelongtoanyofthem.

Inthestudyofprobabilitytheorytherelationsbetweendifferenteventsofanexperimentplayacentralrole.Intheremainderofthissectionwestudytheserelations.Inallof thefollowingdefinitionstheeventsbelongtoa fixedsamplespace S .

Subset

Equality

Intersection

Anevent E issaidtobea subset oftheevent F if,whenever E occurs, F alsooccurs.Thismeansthatallofthesamplepointsof E arecontained in F .Henceconsidering E and F solelyastwosets, E isasubsetof F intheusualset-theoreticsense:thatis, E ⊆ F

Events E and F aresaidtobe equal iftheoccurrenceof E impliesthe occurrenceof F ,andviceversa;thatis,if E ⊆ F and F ⊆ E ,hence E = F .

Aneventiscalledthe intersection oftwoevents E and F ifitoccurs onlywhenever E and F occursimultaneously.Inthelanguageofsets thiseventisdenotedby EF or E ∩ F becauseitisthesetcontaining exactlythecommonpointsof E and F .

Union

Complement

Difference

Aneventiscalledthe union oftwoevents E and F ifitoccurswhenever atleastoneofthemoccurs.Thiseventis E ∪ F sinceallofitspointsare in E or F orboth.

Aneventiscalledthe complement oftheevent E ifitonlyoccurswhenever E doesnotoccur.Thecomplementof E isdenotedby E c .

Aneventiscalledthe difference oftwoevents E and F ifitoccurswhenever E occursbut F doesnot.Thedifferenceoftheevents E and F is denotedby E F .Itisclearthat E c = S E and E F = E ∩ F c .

Certainty

Impossibility

Aneventiscalled certain ifitsoccurrenceisinevitable.Thusthesample spaceisacertainevent.

Aneventiscalled impossible ifthereiscertaintyinitsnonoccurrence. Therefore,theemptyset ∅,whichis S c ,isanimpossibleevent.

MutuallyExclusiveness

Ifthejointoccurrenceoftwoevents E and F isimpossible, wesaythat E and F are mutuallyexclusive.Thus E and F aremutually exclusiveiftheoccurrenceof E precludestheoccurrenceof F ,andvice versa.Sincetheeventrepresentingthejointoccurrenceof E and F is

EF ,theirintersection, E and F ,aremutuallyexclusiveif EF = ∅. Asetofevents {E1 ,E2,...} iscalled mutuallyexclusive ifthejoint occurrenceofanytwoofthemisimpossible,thatis,if ∀i = j , E i E j = ∅ Thus {E 1 ,E2 ,...} ismutuallyexclusiveifandonlyifeverypairofthem ismutuallyexclusive.

Theevents n i=1 E i , n i=1 E i , ∞ i=1 E i ,and ∞ i=1 E i aredefinedinawaysimilarto E 1 ∪ E 2 and E 1 ∩ E 2 .Forexample,if {E 1 ,E2,...,En } isasetofevents,by n i=1 E i we meantheeventinwhichatleastoneoftheevents E i , 1 ≤ i ≤ n,occurs.By n i=1 E i we meananeventthatoccursonlywhenalloftheevents E i , 1 ≤ i ≤ n,occur.

SometimesVenndiagramsareusedtorepresenttherelationsamongeventsofasample space.Thesamplespace S oftheexperimentisusuallyshownasalargerectangleand, inside S ,circlesorothergeometricalobjectsaredrawntoindicatetheeventsofinterest. Figure1.1presentsVenndiagramsfor EF , E ∪ F , E c ,and (E c G) ∪ F .Theshadedregions aretheindicatedevents.

Figure1.1 Venndiagramsoftheeventsspecified.

first-servedbasis.Let

E = thereareatleast fiveplaneswaitingtoland, F = thereareatmostthreeplaneswaitingtoland, H = thereareexactlytwoplaneswaitingtoland.

Then

1. E c istheeventthatatmostfourplanesarewaitingtoland.

2. F c istheeventthatatleastfourplanesarewaitingtoland.

3. E isasubsetof F c ;thatis,if E occurs,then F c occurs.Therefore, EF c = E.

4. H isasubsetof F ;thatis,if H occurs,then F occurs.Therefore, FH = H .

5. E and F aremutuallyexclusive;thatis, EF = ∅ E and H arealsomutually exclusivesince EH = ∅.

6. FH c istheeventthatthenumberofplaneswaitingtolandiszero,one,orthree.

Unions,intersections,andcomplementationssatisfymanyusefulrelationsbetween events.Afewoftheserelationsareasfollows:

E c )c = E,E ∪ E c = S,ES = E, and EE c = ∅

Commutativelaws:

Associativelaws:

Distributivelaws:

∪ F =

Anotherusefulrelationbetween E and F ,twoarbitraryeventsofasamplespace S ,is

Thisequalityreadilyfollowsfrom E = ES anddistributivity: E = ES = E (F ∪ F c )= EF ∪ EF c .

Theseandsimilaridentitiesareusuallyprovedbythe elementwisemethod.Theidea istoshowthattheeventsonbothsidesoftheequationareformedofthesamesample points.Tousethismethod,weprovesetinclusioninbothdirections.Thatis,sample pointsbelongingtotheeventontheleftalsobelongtotheeventontheright,andvice versa.Anexamplefollows.

Example1.8 ProveDeMorgan’s firstlaw:For E and F ,twoeventsofasamplespace S , (E ∪ F )c = E c F c .

Proof: Firstweshowthat (E ∪ F )c ⊆ E c F c ;thenweprovethereverseinclusion E c F c ⊆ (E ∪ F )c .Toshowthat (E ∪ F )c ⊆ E c F c ,let x beanoutcomethatbelongsto (E ∪ F )c . Then x doesnotbelongto E ∪ F ,meaningthat x isneitherin E norin F .So x belongs toboth E c and F c andhenceto E c F c .Toprovethereverseinclusion,let x ∈ E c F c .Then x ∈ E c and x ∈ F c ,implyingthat x ∈ E and x ∈ F .Therefore, x ∈ E ∪ F andthus x ∈ (E ∪ F )c

NotethatVenndiagramsareanexcellentwaytogiveintuitivejustificationforthe validityofrelationsortocreatecounterexamplesandshowinvalidityofrelations.However, theyarenotappropriatetoproverelations.Thisisbecauseofthelargenumberofcases thatmustbeconsidered(particularlyifmorethantwoeventsareinvolved).Forexample, supposethatbymeansofVenndiagrams,wewanttoprovetheidentity (EF )c = E c ∪ F c . Firstwemustdrawappropriaterepresentationsforallpossiblewaysthat E and F canbe related:casessuchas EF = ∅, EF = ∅, E = F , E = ∅, F = S ,andsoon.Thenineach particularcaseweshould findtheregionsthatrepresent (EF )c and E c ∪ F c andobserve thattheyarethesame.Evenifthesetwosetshavedifferentrepresentationsinonlyone case,theidentitywouldbefalse.

EXERCISES

A1. Adeckofsixcardsconsistsofthreeblackcardsnumbered1,2,3,andthreeredcards numbered1,2,3.First,Vanndrawsacardatrandomandwithout replacement.Then Pauldrawsacardatrandomandwithoutreplacementfromtheremainingcards.Let A betheeventthatPaul’scardhasalargernumberthanVann’scard.Let B bethe eventthatVann’scardhasalargernumberthanPaul’scard.

(a) Are A and B mutuallyexclusive?

(b) Are A and B complementsofoneanother?

2. Aboxcontainsthreeredand fiveblueballs.Defineasamplespacefortheexperimentofrecordingthecolorsofthreeballsthataredrawnfromthebox,onebyone, withreplacement.

3. Defineasamplespacefortheexperimentofchoosinganumberfromtheinterval (0, 20).Describetheeventthatsuchanumberisaninteger.

4. Defineasamplespacefortheexperimentofputtingthreedifferentbooksonashelf inrandomorder.Iftwoofthesethreebooksareatwo-volumedictionary,describe theeventthatthesevolumesstandinincreasingorderside-by-side(i.e.,volumeI precedesvolumeII).

5. Twodicearerolled.Let E betheeventthatthesumoftheoutcomesisoddand F betheeventofatleastone1.Interprettheevents EF , E c F ,and E c F c

6. Defineasamplespacefortheexperimentofdrawingtwocoinsfromapursethat containstwoquarters,threenickels,onedime,andfourpennies.Forthesameexperimentdescribethefollowingevents:

(a) drawing26cents;

(b) drawingmorethan9butlessthan25cents;

(c) drawing29cents.

7. Atelephone callfromacertainpersonisreceivedsometimebetween7:00 A.M. and 9:10 A.M. everyday.Defineasamplespaceforthisphenomenon,anddescribethe eventthatthecallarriveswithin15minutesofthehour.

8. Let E , F ,and G bethreeevents;explainthemeaningoftherelations E ∪ F ∪ G = G and EFG = G

9. Alimousinethatcarriespassengersfromanairporttothreedifferenthotelsjustleft theairportwithtwopassengers.Describethesamplespaceofthestopsandtheevent thatbothofthepassengersgetoffatthesamehotel.

10. Findthesimplestpossibleexpressionforthefollowingevents.

(a) (E ∪ F )(F ∪ G).

(b) (E ∪ F )(E c ∪ F )(E ∪ F c ).

11. Atacertainuniversity,everyyeareightto12professorsaregrantedUniversityMerit Awards.ThisyearamongthenominatedfacultyareDrs.Jones,Smith,andBrown. Let A, B ,and C denotetheevents,respectively,thattheseprofessorswillbegiven awards.Intermsof A, B ,and C , findanexpressionfortheeventthattheawardgoes to(a)onlyDr.Jones;(b)atleastoneofthethree;(c)noneofthethree;(d)exactly twoofthem;(e)exactlyoneofthem;(f)Drs.JonesorSmithbutnotboth.

12. Provethattheevent B isimpossibleifandonlyifforeveryevent A, A =(B ∩ Ac ) ∪ (B c ∩ A).

13. Let E,F ,and G bethreeevents.Determinewhichofthefollowingstatementsare

correctandwhichareincorrect.Justifyyouranswers.

(a) (E EF ) ∪ F = E ∪ F .

(b) F c G ∪ E c G = G(F ∪ E )c

(c) (E ∪ F )c G = E c F c G.

(d) EF ∪ EG ∪ FG ⊂ E ∪ F ∪ G.

14. Inanexperiment,cardsaredrawn,one byone,atrandomandsuccessivelyfroman ordinarydeckof52cards.Let An betheeventthatnofacecardoraceappearsonthe first n 1 drawings,andthe nthdrawisanace.Intermsof An ’s, findanexpression fortheeventthatanaceappearsbeforeafacecard,(a)ifthecardsaredrawnwith replacement;(b)iftheyare drawnwithoutreplacement.

B15. ProveDeMorgan’ssecondlaw, (AB )c = Ac ∪ B c , (a)byelementwiseproof;(b)by applyingDeMorgan’s firstlawto Ac and B c

16. Let A and B betwoevents.Provethefollowingrelationsbytheelementwise method.

(a) (A AB ) ∪ B = A ∪ B .

(b) (A ∪ B ) AB = AB c ∪ Ac B

17. Let {An }∞ n=1 beasequenceofevents.Provethatforeveryevent B , (a) B ∞ i=1 Ai = ∞ i=1 BAi (b) B ∞ i=1 Ai = ∞ i=1 (B ∪ Ai ).

18. Defineasamplespacefortheexperimentofputtinginarandomordersevendifferent booksonashelf.Ifthreeofthesesevenbooksareathree-volumedictionary,describe theeventthatthesevolumesstandinincreasingordersidebyside(i.e.,volumeI precedesvolumeIIandvolumeIIprecedesvolumeIII).

19. Let {A1 ,A2 ,A3 ,...} beasequenceofevents.Findanexpressionfortheeventthat infinitelymanyofthe Ai ’soccur.

20. Let {A1 ,A2 ,A3 ,...} beasequenceofeventsofasamplespace S .Findasequence {B1 ,B2 ,B3 ,...} ofmutuallyexclusiveeventssuchthatforall n ≥ 1, n i=1 Ai = n i=1 Bi

Inmathematics,thegoalsofresearchersaretoobtainnewresultsandprovetheircorrectness,createsimpleproofsforalreadyestablishedresults,discoverorcreateconnections

betweendifferent fieldsofmathematics,constructandsolvemathematicalmodelsforrealworldproblems,andsoon.Todiscovernewresults,mathematiciansusetrialanderror, instinctandinspiredguessing,inductiveanalysis,studiesofspecialcases,andothermethods.Butwhenanewresultisdiscovered,itsvalidityremainssubjecttoskepticismuntilit isrigorouslyproven.Sometimesattemptstoprovearesultfailandcontradictoryexamples arefound.Suchexamplesthatinvalidatearesultarecalled counterexamples.Nomathematicalpropositionissettledunlessitiseitherprovenorrefutedbyacounterexample.If aresultisfalse,acounterexampleexiststorefuteit.Similarly,ifaresultisvalid,aproof mustbefoundforitsvalidity,althoughinsome casesitmighttakeyears,decades,oreven centuriesto findit.

Proofsinprobabilitytheory(andvirtuallyanyothertheory)aredoneintheframework ofthe axiomaticmethod.Bythismethod,ifwewanttoconvinceanyrationalperson,say Sonya,thatastatement L1 iscorrect,wewillshowherhow L1 canbededucedlogically fromanotherstatement L2 thatmightbeacceptabletoher.However,ifSonyadoesnotaccept L2 ,weshoulddemonstratehow L2 canbededucedlogicallyfromasimplerstatement L3 .Ifshedisputes L3 ,wemustcontinuethisprocessuntil,somewherealongthewaywe reachastatementthat,withoutfurtherjustification,isacceptabletoher.Thisstatementwill thenbecomethebasisofourargument.Itsexistenceisnecessarysinceotherwisetheprocesscontinuesadinfinitumwithoutanyconclusions.Therefore,intheaxiomaticmethod, firstweadoptcertainsimple,indisputable,andconsistentstatementswithoutjustifications. Theseare axioms or postulates.Thenweagreeonhowandwhenonestatementisalogical consequenceofanotheroneand, finally,usingthetermsthatarealreadyclearlyunderstood, axiomsanddefinitions,weobtainnewresults.Newresultsfoundinthismannerarecalled theorems.Theoremsarestatementsthatcanbeproved.Uponestablishment,theyareused fordiscoveryofnewtheorems,andtheprocesscontinuesandatheoryevolves.

Inthisbook,ourapproachisbasedontheaxiomaticmethod.Therearethreeaxioms uponwhichprobabilitytheoryisbasedand,exceptforthem,everythingelseneedstobe proved.Wewillnowexplaintheseaxioms.

Definition(ProbabilityAxioms) Let S bethesamplespaceofarandomphenomenon.Supposethattoeachevent A of S ,anumberdenotedby P (A) isassociated with A.If P satisfiesthefollowingaxioms,thenitiscalleda probability andthenumber P (A) issaidtobethe probabilityof A

Axiom1 P (A) ≥ 0

Axiom2 P (S )=1.

Axiom3 If {A1 ,A2 ,A3 ,...} isasequenceofmutuallyexclusiveevents(i.e.,the jointoccurrenceofeverypairofthemisimpossible: Ai Aj = ∅ when i = j ),then

Notethattheaxiomsofprobabilityareasetofrulesthatmustbesatisfiedbefore S and P canbeconsideredaprobabilitymodel.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.