Where can buy Introduction to linear algebra for science and engineering, 3rd edition daniel norman

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/introduction-to-linear-algebra-for-science-and-engine ering-3rd-edition-daniel-norman/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Introduction to Linear Algebra for Science and Engineering 2nd Edition (Student Edition) Edition

Daniel Norman

https://ebookmass.com/product/introduction-to-linear-algebra-forscience-and-engineering-2nd-edition-student-edition-editiondaniel-norman/

Introduction to Environmental Engineering and Science 3rd Edition Gilbert M. Masters

https://ebookmass.com/product/introduction-to-environmentalengineering-and-science-3rd-edition-gilbert-m-masters/

Linear Algebra: A Modern Introduction 4th Edition, (Ebook PDF)

https://ebookmass.com/product/linear-algebra-a-modernintroduction-4th-edition-ebook-pdf/

The Oxford Linear Algebra for Scientists Andre Lukas

https://ebookmass.com/product/the-oxford-linear-algebra-forscientists-andre-lukas/

Algebra Linear 2nd Edition Alfredo Steinbruch

https://ebookmass.com/product/algebra-linear-2nd-edition-alfredosteinbruch/

Linear Algebra 6th Edition Seymour Lipschutz

https://ebookmass.com/product/linear-algebra-6th-edition-seymourlipschutz/

Linear Algebra and Its Applications, Global Edition Lay

https://ebookmass.com/product/linear-algebra-and-itsapplications-global-edition-lay/

Introduction to Veterinary Science 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/introduction-to-veterinaryscience-3rd-edition-ebook-pdf/

Introduction to Reliability Engineering 3rd Edition

James E. Breneman

https://ebookmass.com/product/introduction-to-reliabilityengineering-3rd-edition-james-e-breneman/

AN INTRODUCTION TO LINEAR ALGEBRA FOR

SCIENCE AND ENGINEERING

DANIEL NORMAN • DAN WOLCZUK

THIRD EDITION

An Introduction to Linear Algebra for Science and Engineering

PearsonCanadaInc.,26PrinceAndrewPlace,NorthYork,OntarioM3C2H4.

Copyright c 2020,2012,2005PearsonCanadaInc.Allrightsreserved.

PrintedintheUnitedStatesofAmerica.Thispublicationis protectedbycopyright,andpermissionshouldbeobtainedfrom thepublisherpriortoanyprohibitedreproduction,storageinaretrievalsystem,ortransmissioninanyformorbyanymeans, electronic,mechanical,photocopying,recording,orotherwise.Forinformationregardingpermissions,requestforms,andthe appropriatecontacts,pleasecontactPearsonCanada’sRightsandPermissionsDepartmentbyvisiting www.pearson.com/ca/en/contact-us/permissions.html.

Usedbypermission.Allrightsreserved.ThiseditionisauthorizedforsaleonlyinCanada.

Attributionsofthird-partycontentappearontheappropriatepagewithinthetext.

Coverimage: c TamasNovak/EyeEm/GettyImages.

PEARSONisanexclusivetrademarkownedbyPearsonCanadaInc.oritsaffiliatesinCanadaand/orothercountries.

Unlessotherwiseindicatedherein,anythirdpartytrademarksthatmayappearinthisworkarethepropertyoftheirrespective ownersandanyreferencestothirdpartytrademarks,logos, orothertradedressarefordemonstrativeordescriptivepurposes only.Suchreferencesarenotintendedtoimplyanysponsorship,endorsement,authorization,orpromotionofPearsonCanada productsbytheownersofsuchmarks,oranyrelationshipbetweentheownerandPearsonCanadaoritsaffiliates,authors, licensees,ordistributors.

IfyoupurchasedthisbookoutsidetheUnitedStatesorCanada,youshouldbeawarethatithasbeenimportedwithoutthe approvalofthepublisherortheauthor.

9780134682631

120

LibraryandArchivesCanadaCataloguinginPublication

Norman,Daniel,1938-,author Introductiontolinearalgebraforscienceandengineering / Daniel Norman,DanWolczuk,UniversityofWaterloo.–Thirdedition.

ISBN978-0-13-468263-1(softcover)

1.Algebras,Linear–Textbooks.2.Textbooks.I.Wolczuk,Dan, 1972-,authorII.Title.

QA184.2.N672018 512’.5 C2018-906600-8

2.3

CHAPTER3

CHAPTER4

4.1

4.5 GeneralLinearMappings..................................................................273

4.7 IsomorphismsofVectorSpaces.........................

CHAPTER5 Determinants.......................................

5.1 DeterminantsinTermsofCofactors........................................................307

5.2 PropertiesoftheDeterminant..............................................................317

5.3 InversebyCofactors,Cramer’sRule....................

5.4 Area,Volume,andtheDeterminant.........................................................337

CHAPTER6 EigenvectorsandDiagonalization.....................

6.1 EigenvaluesandEigenvectors.........................

6.2 Diagonalization....................................

6.3

CHAPTER7 InnerProductsandProjections.......................383

7.1 OrthogonalBasesin

7.2 ProjectionsandtheGram-SchmidtProcedure.............

7.3 MethodofLeastSquares...............................

7.4 InnerProductSpaces......................................................................410 7.5 FourierSeries......................................

CHAPTER8 SymmetricMatricesandQuadraticForms............425

8.1 DiagonalizationofSymmetricMatrices.....................................................425

8.2 QuadraticForms..........................................................................431

8.3 GraphsofQuadraticForms................................................................439

8.4 ApplicationsofQuadraticForms.......................

8.5 SingularValueDecomposition.........................

CHAPTER9 ComplexVectorSpaces...............................465

9.1 ComplexNumbers.....................................

9.2 SystemswithComplexNumbers..........................

9.3 ComplexVectorSpaces................................

9.4 ComplexDiagonalization.............................

9.5 UnitaryDiagonalization...................................................................500

This page intentionally left blank

ANotetoStudents

LinearAlgebra–WhatIsIt?

Welcometothethirdeditionof AnIntroductiontoLinearAlgebraforScienceandEngineering!Linearalgebraisessentiallythestudyofvectors,matrices,andlinearmappings,andisnowanextremelyimportanttopic inmathematics.Itsapplicationandusefulnessinavariety ofdifferentareasisundeniable.Itencompasses technologicalinnovation,economicdecisionmaking,industrydevelopment,andscientificresearch.Weare literallysurroundedbyapplicationsoflinearalgebra.

Mostpeoplewhohavelearnedlinearalgebraandcalculusbelievethattheideasofelementarycalculus (suchaslimitsandintegrals)aremoredifficultthanthoseofintroductorylinearalgebra,andthatmostproblemsencounteredincalculuscoursesareharderthanthosefoundinlinearalgebracourses.So,atleastbythis comparison,linearalgebraisnothard.Still,somestudentsfindlearninglinearalgebrachallenging.Wethink twofactorscontributetothedifficultysomestudentshave.

First,studentsdonotalwaysseewhatlinearalgebraisgood for.Thisiswhyitisimportanttoreadthe applicationsinthetext–evenifyoudonotunderstandthemcompletely.Theywillgiveyousomesenseof wherelinearalgebrafitsintothebroaderpicture.

Second,mathematicsisoftenmistakenlyseenasacollectio nofrecipesforsolvingstandardproblems. Studentsareoftenuncomfortablewiththefactthatlinearalgebrais“abstract”andincludesalotof“theory.” However,studentsneedtorealizethattherewillbenolong-termpayoff insimplymemorizingtherecipes–computerscarrythemoutfarfasterandmoreaccuratelythan anyhuman.Thatbeingsaid,practicingthe proceduresonspecificexamplesisoftenanimportantsteptowardsamuchmoreimportantgoal:understandingthe concepts usedinlinearalgebratoformulateandsolveproblems,andlearningtointerprettheresultsof calculations.Suchunderstandingrequiresustocometotermswithsometheory.Inthistext,whenworking throughtheexamplesandexercises–whichareoftensmall–keepinmindthatwhenyoudoapplythese ideaslater,youmayverywellhaveamillionvariablesandamillionequations,butthetheoryandmethods remainconstant.Forexample,Google’sPageRanksystemusesamatrixthathasthirtybillioncolumnsand thirtybillionrows–youdonotwanttodothatbyhand! Whenyouaresolvingcomputationalproblems, alwaystrytoobservehowyourworkrelatestothetheoryyouhavelearned.

Mathematicsisusefulinsomanyareasbecauseitis abstract :thesamegoodideacanunlocktheproblemsofcontrolengineers,civilengineers,physicists,socialscientists,andmathematiciansbecausetheidea hasbeenabstractedfromaparticularsetting.Onetechniquesolvesmanyproblemsbecausesomeonehas establisheda theory ofhowtodealwiththesekindsofproblems. Definitions arethewaywetrytocapture importantideas,and theorems arehowwesummarizeusefulgeneralfactsaboutthekindofproblemsweare studying. Proofs notonlyshowusthatastatementistrue;theycanhelpusunderstandthestatement,giveus practiceusingimportantideas,andmakeiteasiertolearna givensubject.Inparticular,proofsshowushow ideasaretiedtogether,sowedonothavetomemorizetoomany disconnectedfacts.

Manyoftheconceptsintroducedinlinearalgebraarenaturalandeasy,butsomemayseemunnaturaland “technical”tobeginners.Donotavoidtheseseeminglymore difficultideas;useexamplesandtheoremstosee howtheseideasareanessentialpartofthestoryoflinearalgebra.Bylearningthe“vocabulary”and“grammar”oflinearalgebra,youwillbeequippingyourselfwithconceptsandtechniquesthatmathematicians, engineers,andscientistsfindinvaluablefortacklinganextraordinarilyrichvarietyofproblems.

LinearAlgebra–WhoNeedsIt?

Mathematicians

Linearalgebraanditsapplicationsareasubjectofcontinuingresearch.Linearalgebraisvitaltomathematics becauseitprovidesessentialideasandtoolsinareasasdiverseasabstractalgebra,differentialequations, calculusoffunctionsofseveralvariables,differentialgeometry,functionalanalysis,andnumericalanalysis.

Engineers

Supposeyoubecomeacontrolengineerandhavetodesignorupgradeanautomaticcontrolsystem.The systemmaybecontrollingamanufacturingprocess,orperhapsanairplanelandingsystem.Youwillprobably startwithalinearmodelofthesystem,requiringlinearalgebraforitssolution.Toincludefeedbackcontrol, yoursystemmusttakeaccountofmanymeasurements(fortheexampleoftheairplane,position,velocity, pitch,etc.),anditwillhavetoassessthisinformationveryrapidlyinordertodeterminethecorrectcontrol responses.AstandardpartofsuchacontrolsystemisaKalman-Bucyfilter,whichisnotsomuchapiece ofhardwareasapieceofmathematicalmachineryfordoingtherequiredcalculations.Linearalgebraisan essentialpartoftheKalman-Bucyfilter.

Ifyoubecomeastructuralengineeroramechanicalengineer,youmaybeconcernedwiththeproblem ofvibrationsinstructuresormachinery.Tounderstandthe problem,youwillhavetoknowabouteigenvalues andeigenvectorsandhowtheydeterminethenormalmodesofoscillation.Eigenvaluesandeigenvectorsare someofthecentraltopicsinlinearalgebra.

Anelectricalengineerwillneedlinearalgebratoanalyzecircuitsandsystems;acivilengineerwillneed linearalgebratodetermineinternalforcesinstaticstructuresandtounderstandprincipalaxesofstrain.

Inadditiontothesefairlyspecificuses,engineerswillalsofindthattheyneedtoknowlinearalgebrato understandsystemsofdifferentialequationsandsomeaspectsofthecalculusoffunctionsoftwoormore variables.Moreover,theideasandtechniquesoflinearalg ebraarecentraltonumericaltechniquesforsolving problemsofheatandfluidflow,whicharemajorconcernsinmechanicalengineering.Also,theideasoflinear algebraunderlieadvancedtechniquessuchasLaplacetransformsandFourieranalysis.

Physicists

Linearalgebraisimportantinphysics,partlyforthereasonsdescribedabove.Inaddition,itisvitalinapplicationssuchastheinertiatensoringeneralrotatingmotion.Linearalgebraisanabsolutelyessentialtoolin quantumphysics(where,forexample,energylevelsmaybedeterminedaseigenvaluesoflinearoperators) andrelativity(whereunderstandingchangeofcoordinates isoneofthecentralissues).

LifeandSocialScientists

Input-outputmodels,describedbymatrices,areoftenused ineconomicsandothersocialsciences.Similar ideascanbeusedinmodelingpopulationswhereoneneedstokeeptrackofsub-populations(generations,for example,orgenotypes).Inallsciences,statisticalanaly sisofdataisofagreatimportance,andmuchofthis analysisuseslinearalgebra.Forexample,themethodofleastsquares(forregression)canbeunderstoodin termsofprojectionsinlinearalgebra.

ManagersandOtherProfessionals

Allmanagersneedtomakedecisionsaboutthebestallocatio nofresources.Enormousamountsofcomputer timearoundtheworldaredevotedtolinearprogrammingalgorithmsthatsolvesuchallocationproblems.In industry,thesamesortsoftechniquesareusedinproduction,networking,andmanyotherareas.

Whoneedslinearalgebra?Almosteverymathematician,engineer,scientist,economist,manager,orprofessionalwillfindlinearalgebraanimportantanduseful.So,whoneedslinearalgebra?Youdo!

Willtheseapplicationsbeexplainedinthisbook?

Unfortunately,mostoftheseapplicationsrequiretoomuch specializedbackgroundtobeincludedinafirstyearlinearalgebrabook.Togiveyouanideaofhowsomeoftheseconceptsareapplied,awidevarietyof applicationsarementionedthroughoutthetext.Youwillgettoseemanymoreapplicationsoflinearalgebra inyourfuturecourses.

HowToMaketheMostofThisBook:SQ3R

TheSQ3RreadingtechniquewasdevelopedbyFrancisRobinsontohelpstudentsreadtextbooksmoreeffectively.Hereisabriefsummaryofthispowerfulmethodforlearning.Itiseasytolearnmoreaboutthisand othersimilarstrategiesonline.

Survey:

Quicklyskimoverthesection.Makenoteofanyheadingorboldfacewords.Readoverthedefinitions,thestatementoftheorems,andthestatementofexamplesorexercises(donotreadproofsorsolutions atthistime).Also,brieflyexaminethefigures.

Question:

Makeapurposeforyourreadingbywritingdowngeneralquestionsabouttheheadings,boldfacewords,definitions,ortheoremsthatyousurveyed.Forexample,acoupleofquestionsforSection1.1 couldbe:

Howdoweusevectorsin R2 and R3 ?

HowdoesthismaterialrelatetowhatIhavepreviouslylearned?

Whatistherelationshipbetweenvectorsin R2 anddirectedlinesegments? Whatarethesimilaritiesanddifferencesbetweenvectorsandlinesin R2 andin R3 ?

Read:

Readthematerialinchunksofaboutonetotwopages.Readcarefullyandlookfortheanswersto yourquestionsaswellaskeyconceptsandsupportingdetails. Takethetimetosolvethemid-sectionexercises beforereadingpastthem.Also,trytosolveexamplesbefore readingthesolutions,andtrytofigureoutthe proofsbeforeyoureadthem.Ifyouarenotabletosolvethem,lookcarefullythroughthe providedsolution tofigureoutthestepwhereyougotstuck.

Recall:

Asyoufinisheachchunk,putthebookasideandsummarizetheimportantdetailsofwhatyou havejustread.Writedowntheanswerstoanyquestionsthatyoumadeandwritedownanyfurtherquestions thatyouhave.Thinkcriticallyabouthowwellyouhaveunderstoodtheconcepts,andifnecessary,goback andrereadapartordosomerelevantendofsectionproblems.

Review:

Thisisanongoingprocess.Onceyoucompleteanentiresection,gobackandreviewyournotes andquestionsfromtheentiresection.Testyourunderstandingbytryingtosolvetheend-of-sectionproblems withoutreferringtothebookoryournotes.Repeatthisagainwhenyoufinishanentirechapterandthenagain inthefutureasnecessary.

Yes,youaregoingtofindthatthismakesthereadinggomuchslowerforthefirstcoupleofchapters.However, studentswhousethistechniqueconsistentlyreportthattheyfeelthattheyendupspendingalotlesstime studyingforthecourseastheylearnthematerialsomuchbetteratthebeginning,whichmakesfutureconcepts mucheasiertolearn.

ANotetoInstructors

Welcometothethirdeditionof AnIntroductiontoLinearAlgebraforScienceandEngineering!Thanksto thefeedbackIhavereceivedfromstudentsandinstructorsaswellasmyownresearchintothescienceof teachingandlearning,Iamveryexcitedtopresenttoyouthisnewandimprovedversionofthetext.Overall, IbelievethemodificationsIhavemadecomplementmyoverall approachtoteaching.Ibelieveinintroducing thestudentsslowlytodifficultconceptsandhelpingstudentslearntheseconceptsmoredeeplybyexposing themtothesameconceptsmultipletimesoverspacedinterva ls.

OneaspectofteachinglinearalgebrathatIfindfascinating isthatsomanydifferentapproachescanbe usedeffectively.Typically,thebiggestdifferencebetweenmostcalculustextbooksiswhethertheyhave early orlatetranscendentals.However,linearalgebratextbooksandcoursescanbedoneinawidevarietyoforders. Forexample,inChinaitisnotuncommontobeginanintroductorylinearalgebracoursewithdeterminants andnotcoversolvingsystemsoflinearequationsuntilaftermatricesandgeneralvectorspaces.Examination oftheadvantagesanddisadvantagesofavarietyofthesemethodshasledmetomycurrentapproach.

Itiswellknownthatstudentsoflinearalgebratypicallyfindthecomputationalproblemseasybuthave greatdifficultyinunderstandingorapplyingtheabstractconceptsandthetheory.However,withmyapproach, Ifindnotonlythatveryfewstudentshavetroublewithconceptslikegeneralvectorspacesbutthattheyalso retaintheirmasteryofthelinearalgebracontentintheirupperyearcourses.

AlthoughIhavefoundmyapproachtobeverysuccessfulwithmystudents,Iseethevalueinamultitude ofotherwaysoforganizinganintroductorylinearalgebracourse.Therefore,Ihavetriedtowritethisbook toaccommodateavarietyoforders.SeeUsingThisTextToTeachLinearAlgebrabelow.

ChangestotheThirdEdition

• Someofthecontenthasbeenreorderedtomakeevenbetteruse ofthespacingeffect.Thespacing effectisawellknownandextensivelystudiedeffectfrompsychology,whichstatesthatstudentslearn conceptsbetteriftheyareexposedtothesameconceptmultipletimesoverspacedintervalsasopposed tolearningitallatonce.See:

Dempster,F.N.(1988). Thespacingeffect:Acasestudyinthefailuretoapplytheresultsof psychologicalresearch. AmericanPsychologist,43(8),627–634.

Fain,R.J.,Hieb,J.L.,Ralston,P.A.,Lyle,K.B.(2015,June), CantheSpacing EffectImprovetheEffectivenessofaMathInterventionCourseforEngineeringStudents? Paperpresentedat2015ASEEAnnualConference&Exposition,Seattle,Washington.

• Thenumberandtypeofapplicationshasbeengreatlyincreasedandareusedeithertomotivatethe needforcertainconceptsordefinitionsinlinearalgebra,ortodemonstratehowsomelinearalgebra conceptsareusedinapplications.

• Agreateremphasishasbeenplacedonthegeometryofmanyconcepts.Inparticular,Chapter1has beenreorganizedtofocusonthegeometryoflinearalgebrain R2 and R3 beforeexploring Rn

• Numeroussmallchangeshavebeenmadetoimprovestudentcomprehension.

ApproachandOrganization

Studentsoflinearalgebratypicallyhavelittletroublewithcomputationalquestions,buttheyoftenstruggle withabstractconceptsandproofs.Thisisproblematicbecausecomputersperformthecomputationsinthe vastmajorityofrealworldapplicationsoflinearalgebra. Humanusers,meanwhile,mustapplythetheory totransformagivenproblemintoalinearalgebracontext,inputthedataproperly,andinterprettheresult correctly.

Theapproachofthisbookisbothtousethespacingeffectandtomixtheoryandcomputationsthroughout thecourse.Additionally,itusesrealworldapplicationstobothmotivateandexplaintheusefulnessofsome oftheseeminglyabstractconcepts,anditusesthegeometry oflinearalgebrain R2 and R3 tohelpstudents visualizemanyoftheconcepts.Thebenefitsofthisapproach areasfollows:

• Itpreventsstudentsfrommistakinglinearalgebraasveryeasyandverycomputationalearlyinthe course,andthengettingoverwhelmedbyabstractconceptsandtheorieslater.

• Itallowsimportantlinearalgebraconceptstobedeveloped andextendedmoreslowly.

• Itencouragesstudentstousecomputationalproblemstohelpthemunderstandthetheoryoflinear algebraratherthanblindlymemorizealgorithms.

• Ithelpsstudentsunderstandtheconceptsandwhytheyareuseful.

Oneexampleofthisapproachisourtreatmentoftheconcepts ofspanningandlinearindependence.They arebothintroducedinSection1.2in R2 and R3 ,wheretheyaremotivatedinageometricalcontext.Theyare expandedtovectorsin Rn inSection1.4,andusedagainformatricesinSection3.1and polynomialsin Section4.1,beforetheyarefinallyextendedtogeneralvectorspacesinSection4.2.

Otherfeaturesofthetext’sorganizationinclude

• Theideaoflinearmappingsisintroducedearlyinageometricalcontext,andisusedtoexplainaspects ofmatrixmultiplication,matrixinversion,featuresofsystemsoflinearequations,andthegeometryof eigenvaluesandeigenvectors.Geometricaltransformatio nsprovideintuitivelysatisfyingillustrations ofimportantconcepts.

• Topicsareorderedtogivestudentsachancetoworkwithconceptsinasimplersettingbeforeusing theminamuchmoreinvolvedorabstractsetting.Forexample,beforereachingthedefinitionofa vectorspaceinSection4.2,studentswillhaveseenthetenvectorspaceaxiomsandtheconceptsof linearindependenceandspanningforthreedifferentvectorsspaces,andwillhavehadsomeexperience inworkingwithbasesanddimensions.Thus,insteadofbeing bombardedwithnewconceptsatthe introductionofgeneralvectorspaces,studentswilljustbegeneralizingconceptswithwhichtheyare alreadyfamiliar.

PedagogicalFeatures

Sincemathematicsisbestlearnedbydoing,thefollowingpedagogicalelementsareincludedinthetext:

• Aselectionofroutinemid-sectionexercisesareprovided, withanswersincludedinthebackofthe book.Theseallowstudentstouseandtesttheirunderstandingofoneconceptbeforemovingonto otherconceptsinthesection.

• Practiceproblemsareprovidedforstudentsattheendofeachsection.See“ANoteontheExercises andProblems”below.

Applications

Oftentheapplicationsoflinearalgebraarenotastransparent,concise,orapproachableasthoseofelementarycalculus.Mostconvincingapplicationsoflinearalge brarequireafairlylengthybuildupofbackground, whichwouldbeinappropriateinalinearalgebratext.However,withoutsomeoftheseapplications,many studentswouldfinditdifficulttoremainmotivatedtolearnlinearalgebra.Anadditio naldifficultlyisthatthe applicationsoflinearalgebraaresovariedthatthereisverylittleagreementonwhichapplicationsshouldbe covered.

Inthistextwebrieflydiscussafewapplicationstogivestudentssomeexposuretohowlinearalgebrais applied.

ListofApplications

• Forcevectorsinphysics(Sections1.1,1.3)

• Bravaislattice(Section1.2)

• Graphingquadraticforms(Sections1.2,6.2,8.3)

• Accelerationduetoforces(Section1.3)

• Areaandvolume(Sections1.3,1.5,5.4)

• Minimumdistancefromapointtoaplane(Section1.5)

• Bestapproximation(Section1.5)

• Forcesandmoments(Section2.1)

• Flowthroughanetwork(Sections2.1,2.4,3.1)

• Spring-masssystems(Sections2.4,3.1,3.5,6.1)

• Electricalcircuits(Sections2.4,9.2)

• Partialfractiondecompositions(Section2.4)

• Balancingchemicalequations(Section2.4)

• Planartrusses(Section2.4)

• Linearprogramming(Section2.4)

• Magicsquares(Chapter4Review)

• SystemsofLinearDifferenceEquations(Section6.2)

• Markovprocesses(Section6.3)

• Differentialequations(Section6.3)

• Curveofbestfit(Section7.3)

• Overdeterminedsystems(Section7.3)

• Fourierseries(Section7.5)

• Smalldeformations(Sections6.2,8.4)

• Inertiatensor(Section8.4)

• Effectiverank(Section8.5)

• Imagecompression(Section8.5)

Awidevarietyofadditionalapplicationsarementionedthroughoutthetext.

ANoteontheExercisesandProblems

Mostsectionscontainmid-sectionexercises.Thepurposeoftheseexercisesistogivestudentsawayof checkingtheirunderstandingofsomeconceptsbeforeproceedingtofurtherconceptsinthesection.Thus, whenreadingthroughachapter,astudentshouldalwayscompleteeachexercisebeforecontinuingtoread therestofthechapter.

Attheendofeachsection,problemsaredividedintoA,B,and CProblems.

TheAProblemsarepracticeproblemsandareintendedtoprovideasufficientvarietyandnumberof standardcomputationalproblemsandtheoddtheoreticalproblemforstudentstomasterthetechniquesof thecourse;answersareprovidedatthebackofthetext.Full solutionsareavailableintheStudentSolutions Manual.

TheBProblemsarehomeworkproblems.TheyaregenerallyidenticaltotheAProblems,withnoanswers provided,andcanbeusedbybyinstructorsforhomework.Ina fewcases,theBProblemsarenotexactly paralleltotheAProblems.

TheCProblemsusuallyrequirestudentstoworkwithgeneral cases,towritesimplearguments,orto inventexamples.Theseareimportantaspectsofmasteringmathematicalideas,andallstudentsshouldattempt atleastsomeofthese–andnotgetdiscouragediftheymakeslowprogress.Witheffortmoststudentswill beabletosolvemanyoftheseproblemsandwillbenefitgreatlyintheunderstandingoftheconceptsand connectionsindoingso.

Inadditiontothemid-sectionexercisesandend-of-sectionproblems,thereisasampleChapterQuizin theChapterReviewattheendofeachchapter.Studentsshouldbeawarethattheirinstructorsmayhavea differentideaofwhatconstitutesanappropriatetestonthismaterial.

Attheendofeachchapter,therearesomeFurtherProblems;thesearesimilartotheCProblemsand provideanextendedinvestigationofcertainideasorapplicationsoflinearalgebra.FurtherProblemsare intendedforadvancedstudentswhowishtochallengethemselvesandexploreadditionalconcepts.

UsingThisTextToTeachLinearAlgebra

Therearemanydifferentapproachestoteachinglinearalgebra.Althoughwesuggestcoveringthechapters inorder,thetexthasbeenwrittentotrytoaccommodateavarietyofapproaches.

EarlyVectorSpaces Webelievethatitisverybeneficialtointroducegeneralvectorspacesimmediatelyafterstudentshavegainedsomeexperienceinworking withafewspecificexamplesofvectorspaces. Studentsfinditeasiertogeneralizetheconceptsofspanning,linearindependence,bases,dimension,and linearmappingswhiletheearlierspecificcasesarestillfreshintheirminds.Additionally,wefeelthatitcan beunhelpfultostudentstohavedeterminantsavailabletoo soon.Somestudentsarefartooeagertolatch ontomindlessalgorithmsinvolvingdeterminants(forexample,tochecklinearindependenceofthreevectors inthree-dimensionalspace),ratherthanactuallycometotermswiththedefiningideas.Lastly,thisallows eigenvalues,eigenvectors,anddiagonalizationtobefocu sedonlaterinthecourse.Ipersonallyfindthatif diagonalizationistaughttoosoon,studentswillfocusmainlyonbeingabletodiagonalizesmallmatricesby hand,whichcausestheimportanceofdiagonalizationtobelost.

EarlySystemsofLinearEquations

Forcoursesthatbeginwithsolvingsystemsoflinearquestions,thefirsttwosectionsofChapter2maybecoveredprior tocoveringChapter1content.

EarlyDeterminantsandDiagonalization

Somereviewershavecommentedthattheywantto beabletocoverdeterminantsanddiagonalizationbeforeab stractvectorsspacesandthatinsomeintroductorycoursesabstractvectorspacesmaybeomittedentirely.Thus,thistexthasbeenwrittensothatChapter5, Chapter6,mostofChapter7,andChapter8maybetaughtprior toChapter4(notethatallrequiredinformationaboutsubspaces,bases,anddimensionfordiagonalizationofmatricesover R iscoveredinChapters1, 2,and3).Moreover,wehavemadesurethatthereisaverynaturalflowfrommatrixinversesandelementary matricesattheendofChapter3todeterminantsinChapter5.

EarlyComplexNumbers Someintroductorylinearalgebracoursesincludetheuseof complexnumbersfromthebeginning.WehavewrittenChapter9sothatthe sectionsofChapter9maybecoveredimmediatelyaftercoveringtherelevantmaterialover R

AMatrix-OrientedCourse Forbothoptionsabove,thetextisorganizedsothatsectionsorsubsectionsinvolvinglinearmappingsmaybeomittedwithoutloss ofcontinuity.

MyLabMath

MyLabMathandMathXLareonlinelearningresourcesavailabletoinstructorsandstudentsusing AnIntroductiontoLinearAlgebraforScienceandEngineering.

MyLabMathprovidesengagingexperiencesthatpersonalize,stimulate,andmeasurelearningforeach student.MyLab’scomprehensive onlinegradebook automaticallytracksyourstudents’resultsontests, quizzes,homework,andinthestudyplan.ThehomeworkandpracticeexercisesinMyLabMatharecorrelatedtotheexercisesinthetextbook,andMyLabprovides immediate,helpfulfeedback whenstudents enterincorrectanswers.The studyplan canbeassignedorusedforindividualpracticeandispersonalized toeachstudent,trackingareasforimprovementasstudents navigateproblems.Withover100questions(all algorithmic)addedtothethirdedition,MyLabMathfor AnIntroductiontoLinearAlgebraforScienceand Engineering isawell-equippedresourcethatcanhelpimproveindividualstudents’performance.

TolearnmoreabouthowMyLabcombinesprovenlearningapplicationswithpowerfulassessment,visit www.pearson.com/mylaborcontactyourPearsonrepresentative.

APersonalNote

Thethirdeditionof AnIntroductiontoLinearAlgebraforScienceandEngineering ismeanttoengage studentsandpiquetheircuriosity,aswellasprovideatemplateforinstructors.Iamconstantlyfascinated bythecountlesspotentialapplicationsoflinearalgebraineverydaylife,andIintendforthistextbookto beapproachabletoall.Iwillnotpretendthatmathematical prerequisitesandpreviousknowledgearenot required.However,theapproachtakeninthistextbookencouragesthereadertoexploreavarietyofconcepts andprovidesexposuretoanextensiveamountofmathematicalknowledge.Linearalgebraisanexciting discipline.Myhopeisthatthosereadingthisbookwillshareinmyenthusiasm.

Acknowledgments

Thanksareexpressedto:

AgnieszkaWolczukforhersupportandencouragement.

MikeLaCroixforalloftheamazingfiguresinthetext,andfor hisassistanceinediting,formatting,and LaTeX’ing.

PeiyaoZeng,DanielYu,AdamRadekMartinez,BrunoVerdugoParedes,andAlexLiaoforproof-reading andtheirmanyvaluablecommentsandsuggestions.

StephenNew,PaulMcGrath,KenMcCay,PaulKates,andmanyotherofmycolleagueswhohavehelped mebecomeabetterinstructor.

Toallofthereviewerswhosecomments,corrections,andrecommendationshaveresultedinmanypositiveimprovements.

CharlotteMorrison-Reedforallofherhardworkinmakingthethirdeditionofthistextpossibleandfor hersuggestionsandediting.

AveryspecialthankyoutoDanielNormanandallthosewhocontributedtothefirstandsecondeditions.

UniversityofWaterloo

CHAPTER1

EuclideanVectorSpaces

CHAPTEROUTLINE

1.1Vectorsin R2 and R3

1.2SpanningandLinearIndependencein R2 and R3

1.3LengthandAnglesin R2 and R3

1.4Vectorsin Rn

1.5DotProductsandProjectionsin Rn

Someofthematerialinthischapterwillbefamiliartomanystudents,butsomeideas thatareintroducedherewillbenewtomost.Inthischapterwewilllookatoperations onandimportantconceptsrelatedtovectors.Wewillalsolookatsomeapplications ofvectorsinthefamiliarsettingofEuclideanspace.Mostoftheseconceptswilllater beextendedtomoregeneralsettings.A rmunderstandingofthematerialfromthis chapterwillhelpgreatlyinunderstandingthetopicsintherestofthisbook.

1.1Vectorsin R2 and R3

Webeginbyconsideringthetwo-dimensionalplaneinCartesiancoordinates.Choose anorigin O andtwomutuallyperpendicularaxes,calledthe x1 -axisandthe x2 -axis, asshowninFigure1.1.1.Anypoint P intheplanecanbeuniquelyidentiedbythe 2-tuple( p1 , p2 ),calledthe coordinates of P.Inparticular, p1 isthedistancefrom P to the x2 -axis,with p1 positiveif P istotherightofthisaxisandnegativeif P istothe left,and p2 isthedistancefrom P tothe x1 -axis,with p2 positiveif P isabovethisaxis andnegativeif P isbelow.Youhavealreadylearnedhowtoplotgraphsofequations inthisplane. x1 x2

O P(p1, p2) p1 p2

Figure1.1.1 Coordinatesintheplane.

Denition

Forapplicationsinmanyareasofmathematics,andinmanysubjectssuchas physics,chemistry,economics,andengineering,itisusefultoviewpointsmoreabstractly.Inparticular,wewillviewthemas vectors andproviderulesforaddingthem andmultiplyingthembyconstants.

Welet R2 denotethesetofallvectorsoftheform x1 x2 ,where x1 and x2 arereal numberscalledthe components ofthevector.Mathematically,wewrite

Wesaytwovectors

Althoughweareviewingtheelementsof R2 asvectors,wecanstillinterpretthese geometricallyaspoints.Thatis,thevector � p = p1 p2 canbeinterpretedasthepoint P( p1 , p2 ).Graphically,thisisoftenrepresentedbydrawinganarrowfrom(0, 0)to ( p1 , p2 ),asshowninFigure1.1.2.Note,thatthepoint(0, 0)andthepointsbetween (0, 0)and( p1 , p2 )shouldnotbethoughtofaspoints“onthevector.”Therepresentation ofavectorasanarrowisparticularlycommoninphysics;forceandaccelerationare vectorquantitiesthatcanconvenientlyberepresentedbyanarrowofsuitable magnitudeanddirection. x2 P(p1, p2) x1 O = (0, 0) p = p1 p2

Figure1.1.2 Graphicalrepresentationofavector.

EXAMPLE1.1.1

Anobjectonafrictionlesssurfaceisbeingpulledbytwostringswithforceand directionasgiveninthediagram.

(a)Representeachforceasavectorin R2

(b)Representthenetforcebeingappliedtotheobjectasavectorin R2

Solution: (a)Theforce F 1 has150 N ofhorizontalforceand0 N ofverticalforce. Thus,wecanrepresentthiswiththevector

� F 1 = 150 0

Theforce F 2 hashorizontalcomponent 100cos π 3 = 50Nandverticalcomponent 100sin π 3 = 50 √3N.Therefore,wecan representthiswiththevector

F 2 = 50 50 √3

N 3

(b)Weknowfromphysicsthattogetthenetforceweaddthehorizontalcomponents oftheforcestogetherandweaddtheverticalcomponentsoftheforcestogether.Thus, thenethorizontalcomponentis150 N + 50 N = 200 N .Thenetverticalforceis

0 N + 50 √3 N = 50 √3 N .Wecanrepresentthisasthevector

� F = 200 50 √3

Theexampleshowsthatinphysicsweaddvectorsbyaddingtheircorresponding components.Similarly,we ndthatinphysicswemultiplyavectorbyascalarby multiplyingeachcomponentofthevectorbythescalar.

Sincewewantourgeneralizedconceptofvectorstobeabletohelpussolve physicalproblemsliketheseandmore,wedeneadditionandscalarmultiplicationof vectorsin R2 tomatch.

Denition

AdditionandScalar

Multiplicationin R2

Wedene scalarmultiplication of � x byafactorof t ∈ R,calleda scalar,by

Remark

Itisimportanttonotethat � x � y istobeinterpretedas � x + ( 1)� y

Figure1.1.3 Additionofvectors � p and � q

TheadditionoftwovectorsisillustratedinFigure1.1.3:constructaparallelogram withvectors � p and � q asadjacentsides;then � p + � q isthevectorcorrespondingtothe vertexoftheparallelogramoppositetotheorigin.Observethatthecomponentsreally areaddedaccordingtothedenition.Thisisoftencalledthe parallelogramrulefor addition.

EXAMPLE1.1.2

ScalarmultiplicationisillustratedinFigure1.1.4.Observethatmultiplicationby anegativescalarreversesthedirectionofthevector.

(1.5)d (–1)d d

Figure1.1.4 Scalarmultiplicationofthevector � d

EXAMPLE1.1.3

EXERCISE1.1.1

Solution: Weget

Denition

.Calculateeachofthefollowingandillustrate withasketch. (a) � u + � w (b) � v (c)(� u + � w) � v

Wewillfrequentlylookatsumsofscalarmultiplesofvectors.So,wemakethe followingdenition.

LinearCombination Let � v 1 ,..., � v k ∈ R2 and c1 ,..., ck ∈ R.Wecallthesum c1 � v 1 + + ck � v k a linear combination ofthevectors � v 1 ,..., � v k .

Itisimportanttoobservethat R2 hasthepropertythatanylinearcombinationof vectorsin R2 isavectorin R2 (combiningpropertiesV1,V6inTheorem1.1.1below). Althoughthispropertyisclearfor R2 ,itdoesnotholdformostsubsetsof R2 .Aswe willseeinSection1.4,inlinearalgebra,wearemostlyinterestedinsetsthathavethis property.

Theorem1.1.1 Forall � w, � x , � y ∈ R2 and s, t ∈ R wehave

V1 � x + � y ∈ R2 (closedunderaddition)

V2 � x + � y = � y + � x (additioniscommutative)

V3( � x + � y ) + � w = � x + (� y + � w) (additionisassociative)

V4Thereexistsavector � 0 ∈ R2 suchthat � z + � 0 = � z forall � z ∈ R2 (zerovector)

V5Foreach � x ∈ R2 thereexistsavector � x ∈ R2 suchthat � x + ( � x ) = � 0 (additiveinverses)

V6 s � x ∈ R2 (closedunderscalarmultiplication)

V7 s(t � x ) = ( st ) � x (scalarmultiplicationisassociative)

V8( s + t ) � x = s � x + t � x (adistributivelaw)

V9 s( � x + � y ) = s � x + s � y (anotherdistributivelaw)

V101 � x = � x (scalarmultiplicativeidentity)

ObservethatthezerovectorfrompropertyV4isthevector � 0 = 0 0 , andthe additiveinverseof � x fromV5is � x = ( 1) � x .

EXAMPLE1.1.4

TheVectorEquationofaLinein R2

InFigure1.1.4,itisapparentthatthesetofallmultiplesofanon-zerovector � d creates alinethroughtheorigin.Wemakethisourdenitionofalinein R2 :a linethrough theoriginin R2 isasetoftheform {t � d | t ∈ R}

Oftenwedonotuseformalsetnotationbutsimplywritea vectorequation oftheline:

= t � d , t ∈ R

Thenon-zerovector � d iscalleda directionvector oftheline. Similarly,wedenea linethrough � p withdirectionvector � d � 0tobetheset { � p + t � d | t ∈ R}

whichhasvectorequation

R

Thislineisparalleltothelinewithequation � x = t � d , t ∈ R becauseoftheparallelogram ruleforaddition.AsshowninFigure1.1.5,eachpointonthelinethrough � p canbe obtainedfromacorrespondingpointontheline � x = t � d , t ∈ R byaddingthevector � p Wesaythatthelinehasbeen translated by � p .Moregenerally,twolinesareparallel ifthedirectionvectorofonelineisanon-zeroscalarmultipleofthedirectionvector oftheotherline.

Avectorequationofthelinethroughthepoint P(2, 3)withdirectionvector 4 5 is

Figure1.1.5 Thelinewithvectorequation

EXAMPLE1.1.5

Writeavectorequationofthelinethrough P(1, 2)paralleltothelinewithvector equation

Solution: Sincetheyareparallel,wecanchoosethesamedirectionvector.Hence,a vectorequationofthelineis

EXERCISE1.1.2

Writeavectorequationofalinethrough P(0, 0)paralleltotheline

EXAMPLE1.1.6

Sometimesthecomponentsofavectorequationarewrittenseparately.In particular,expandingavectorequation

weget

Comparingentries,weget parametricequations oftheline:

Thefamiliar scalarequation ofthelineisobtainedbyeliminatingtheparameter t Providedthat d1 0wesolvethe rstequationfor t toget x1 p1 d1 = t

Substitutingthisintothesecondequationgivesthescalarequation

Whatcanyousayaboutthelineif d1 = 0?

Writeavectorequation,ascalarequation,andparametricequationsofthelinepassing throughthepoint P(3, 4)withdirectionvector

Solution: Avectorequationis

So,parametricequationsare

Hence,ascalarequationis

DirectedLineSegments

Fordealingwithcertaingeometricalproblems,itisusefultointroduce directedline segments.Wedenotethedirectedlinesegmentfrompoint P topoint Q by � PQ asin

Figure1.1.6.Wethinkofitasan“arrow”startingat P andpointingtowards Q.We shallidentifydirectedlinesegmentsfromtheoriginOwiththecorrespondingvectors; wewrite � OP = � p , � OQ = � q ,andsoon.Adirectedlinesegmentthatstartsattheorigin iscalledthe positionvector ofthepoint.

Figure1.1.6 Thedirectedlinesegment � PQ from P to Q

Formanyproblems,weareinterestedonlyinthedirectionandlengthofthedirectedlinesegment;wearenotinterestedinthepointwhereitislocated.Forexample, inFigure1.1.3onpage4,wemaywishtotreatthelinesegment � QR asifitwerethe sameas � OP.Takingourcuefromthisexample,forarbitrarypoints P, Q, R in R2 ,we dene � QR tobe equivalent to � OP if � r � q = � p .Inthiscase,wehaveusedonedirected linesegment � OP startingfromtheorigininourdenition.

Moregenerally,forarbitrarypoints Q, R, S ,and T in R2 ,wedene � QR tobe equivalentto � ST iftheyarebothequivalenttothesame � OP forsome P.Thatis,if � r � q = � p and � t � s = � p forthesame � p

Wecanabbreviatethisbysimplyrequiringthat

EXAMPLE1.1.7 Forpoints Q(1, 3), R(6, 1), S ( 2, 4),and T (3, 0),wehavethat � QR isequivalentto � ST because � r � q = 6 1 1 3 = 5 4 = 3

(–2, 4)

(1, 3)

4 = � t � s Ox1 x2

(3, 0) R(6, –1)

EXERCISE1.1.3

Insomeproblems,whereitisnotnecessarytodistinguishbetweenequivalent directedlinesegments,we“identify”them(thatis,wetreatthemasthesameobject) andwrite � PQ = � RS .Indeed,weidentifythemwiththecorrespondinglinesegment startingattheorigin,soinExample1.1.7wewrite � QR = � ST = 5 4

Remark

Writing � QR = � ST isabitsloppy—anabuseofnotation—because � QR isnotreally thesameobjectas � ST .However,introducingthepreciselanguageof“equivalence classes”andmorecarefulnotationwithdirectedlinesegmentsisnothelpfulatthis stage.Byintroducingdirectedlinesegments,weareencouragedtothinkaboutvectors thatarelocatedatarbitrarypointsinspace.Thisishelpfulinsolvingsomegeometrical problems,asweshallseebelow.

Findavectorequationofthelinethrough P(1, 2)and Q(3, 1).

Solution: Adirectionvectorofthelineis

2)

Hence,avectorequationofthelinewithdirection � PQ thatpassesthrough P(1, 2)is

Observeintheexampleabovethatwewouldhavethesamelineifwestartedatthe secondpointand“moved”towardthe rstpoint—orevenifwetookadirectionvector intheoppositedirection.Thus,thesamelineisdescribedbythevectorequations

Infact,thereareinnitelymanydescriptionsofaline:wemaychooseanypointon theline,andwemayuseanynon-zeroscalarmultipleofthedirectionvector.

Findavectorequationofthelinethrough P(1, 1)and Q( 2, 2).

EXAMPLE1.1.8

Vectors,Lines,andPlanesin R3

Everythingwehavedonesofarworksperfectlywellinthreedimensions.Wechoose anorigin O andthreemutuallyperpendicularaxes,asshowninFigure1.1.7.The x1 -axisisusuallypicturedcomingoutofthepage(orscreen),the x2 -axisto theright,andthe x3 -axistowardsthetopofthepicture.

Figure1.1.7 Thepositivecoordinateaxesin R3

Itshouldbenotedthatweareadoptingtheconventionthatthecoordinateaxes forma right-handedsystem.Onewaytovisualizearight-handedsystemistospread outthethumb,index nger,andmiddle ngerofyourrighthand.Thethumbis the x1 -axis;theindex ngeristhe x2 -axis;andthemiddle ngeristhe x3 -axis.See Figure1.1.8.

Figure1.1.8 Identifyingaright-handedsystem.

Wenowdene R3 tobethethree-dimensionalanalogof R2 .

Wesaytwovectors

Denition

AdditionandScalar

Multiplicationin R3

EXAMPLE1.1.9

Wedenethe scalarmultiplication

Additionstillfollowstheparallelogramrule.Itmayhelpyoutovisualizethis ifyourealizethattwovectorsin R3 mustliewithinaplanein R3 sothatthetwodimensionalpictureisstillvalid.SeeFigure1.1.9.

x1 O x2 x3

Figure1.1.9 Two-dimensionalparallelogramrulein R3

Solution: Wehave

EXAMPLE1.1.10

Asbefore,wecallasumofscalarmultiplesofvectorsin R3 alinearcombination. Moreover,ofcourse,vectorsin R3 satisfyallthesamepropertiesinTheorem1.1.1 replacing R2 by R3 inpropertiesV1,V4,V5,andV6.

Thezerovectorin

andtheadditiveinverseof

Directedlinesegmentsarethesameinthree-dimensionalspaceasinthetwodimensionalcase.

Thelinethroughthepoint P in R3 (correspondingtoavector � p )withdirection vector � d � 0canbedescribedbyavectorequation:

x = � p + t � d ,

CONNECTION

Itisimportanttorealizethatalinein R3 cannotbedescribedbyasinglescalar equation,asin R2 .WeshallseeinSection1.3thatasinglescalarequationin R3 describesaplanein R3 .

Findavectorequationandparametricequationsofthelinethatpassesthroughthe points P(1, 5, 2)and Q(4, 1, 3).

Solution: Adirectionvectoris � PQ =

thelineis

Hence,wehave

Consequently,correspondingparametricequationsare

EXERCISE1.1.5

Findavectorequationandparametricequationsofthelinethatpassesthroughthe points P(1, 2, 2)and Q(1, 2, 3).

Let � u and � v bevectorsin R3 thatarenotscalarmultiplesofeachother.Thisimplies thatthesets {t� u | t ∈ R} and { s � v | s ∈ R} arebothlinesin R3 throughtheoriginin differentdirections.Thus,thesetofallpossiblelinearcombinationsof � u and � v forms atwo-dimensionalplane.Thatis,theset

{t� u + s � v | s, t ∈ R} isa planethroughtheoriginin R3 .Aswedidwithlines,wecouldsaythat { � p + t� u + s � v | s, t ∈ R}

isa planethrough � p in R3 andthat

isa vectorequation fortheplane.Itisveryimportanttonotethatifeither � u or � v isa scalarmultipleoftheother,thentheset {t� u + s � v | s, t ∈ R} would not beaplane.

EXAMPLE1.1.11 Determinewhichofthefollowingvectorsareintheplanewithvectorequation

Solution: (a)Thevector � p isintheplaneifandonlyiftherearescalars s, t ∈ R such that

Performingthelinearcombinationontheright-handsidegives

Forthesevectorstobeequalwemusthave

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.