Buy ebook Water-resources engineering david a. chin cheap price

Page 1


Water-Resources Engineering David A. Chin

Visit to download the full and correct content document: https://ebookmass.com/product/water-resources-engineering-david-a-chin/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Water Resources Engineering 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/water-resources-engineering-3rdedition-ebook-pdf/

China's Water Resources Management: A Long March to Sustainability Seungho Lee

https://ebookmass.com/product/chinas-water-resources-managementa-long-march-to-sustainability-seungho-lee/

Water Resources in the Mediterranean Region 1st Edition Mehrez Zribi

https://ebookmass.com/product/water-resources-in-themediterranean-region-1st-edition-mehrez-zribi/

Pollutants and Water Management : Resources, Strategies and Scarcity 1st Edition Pardeep Singh

https://ebookmass.com/product/pollutants-and-water-managementresources-strategies-and-scarcity-1st-edition-pardeep-singh/

Engineering Drawing and Design, 6th edition David A. Madsen

https://ebookmass.com/product/engineering-drawing-and-design-6thedition-david-a-madsen/

Environmental Engineering Principles and Practices (Water Supply Engineering) N. S. Varandani

https://ebookmass.com/product/environmental-engineeringprinciples-and-practices-water-supply-engineering-n-s-varandani/

Handbook of Smart Photocatalytic Materials: Fundamentals, Fabrications and Water Resources Applications Chaudhery Mustansar Hussain

https://ebookmass.com/product/handbook-of-smart-photocatalyticmaterials-fundamentals-fabrications-and-water-resourcesapplications-chaudhery-mustansar-hussain/

Transboundary Water Resources in Afghanistan. Climate Change and Land-Use Implications 1st Edition John F. Shroder

https://ebookmass.com/product/transboundary-water-resources-inafghanistan-climate-change-and-land-use-implications-1st-editionjohn-f-shroder/

Water and Wastewater Engineering: Design Principles and Practice Second Edition Mackenzie L. Davis

https://ebookmass.com/product/water-and-wastewater-engineeringdesign-principles-and-practice-second-edition-mackenzie-l-davis/

LibraryofCongressCataloging-in-PublicationData Chin,DavidA. Water-resourcesengineering/DavidA.Chin.–3rded. p.cm.

ISBN-13:978-0-13-283321-9(alk.paper)

ISBN-10:0-13-283321-2(alk.paper) 1.Hydraulics.2.Hydrology.3.Waterworks.4.Waterresources development.I.Title.

TC160.C522014 627–dc232012018911

VicePresidentandEditorialDirector,ECS: MarciaJ.Horton

ExecutiveEditor: HollyStark

EditorialAssistant: CarlinHeinle

ExecutiveMarketingManager: TimGalligan

MarketingAssistant: JonBryant

PermissionsProjectManager: KarenSanatar

PearsonEducationAustraliaPty.Ltd., Sydney

PearsonEducationSingapore,Pte.Ltd.

PearsonEducationNorthAsiaLtd., HongKong

www.EasyEngineering.net

PearsonEducationCanada,Inc., Toronto

PearsonEducaci ´ ondeMexico,S.A.deC.V.

PearsonEducation—Japan, Tokyo

PearsonEducationMalaysia,Pte.Ltd.

PearsonEducation, UpperSaddleRiver,NewJersey

www.EasyEngineering.net

www.EasyEngineering.net

3.3.2Pumps...................................85

3.3.5FireHydrants...............................86

3.3.6Water-StorageReservoirs........................87

3.4PerformanceCriteriaforWater-DistributionSystems...

3.4.1ServicePressures.............................91

3.4.2AllowableVelocities...........................91

3.4.3WaterQuality...............................91 3.4.4NetworkAnalysis.............................92

3.5BuildingWater-SupplySystems.

3.5.1SpecificationofDesignFlows...

3.5.3DeterminationofPipeDiameters....................96

5.1Introduction..

5.2.1BestHydraulicSection..

5.2.2BoundaryShearStress..

5.2.3CohesiveversusNoncohesiveMaterials.

5.2.5ChannelSlopes.

5.2.6Freeboard

5.3DesignofChannelswithRigidLinings..

5.4DesignofChannelswithFlexibleLinings.

5.4.1GeneralDesignProcedure

5.4.2VegetativeLiningsandBareSoil.

5.4.3RECPLinings..

5.4.4Riprap,Cobble,andGravelLinings

5.4.5Gabions..................................203

5.5CompositeLinings.................................205

6DesignofSanitarySewers211

6.1Introduction..

6.2QuantityofWastewater.

6.2.1ResidentialSources

6.2.2NonresidentialSources..

6.2.3InflowandInfiltration(I/I)

6.2.4PeakingFactors. .............................214

6.3HydraulicsofSewers...............................216

6.3.1ManningEquationwithConstant

6.3.2ManningEquationwithVariable

6.3.3Self-Cleansing..

6.3.4ScourPrevention

6.3.5DesignComputationsforDiameterandSlope.............224

6.3.6HydraulicsofManholes.

7.2.1Hydraulics.................................250

7.2.1.1Submergedentrances..

7.2.3SizingCalculations............................264

7.2.3.1Fixed-headwatermethod

7.2.3.2Fixed-flowmethod

7.2.3.3Minimum-performancemethod

7.2.4RoadwayOvertopping..

7.2.5Riprap/OutletProtection.........................274

7.4.1Sharp-CrestedWeirs...

7.4.1.1Rectangularweirs

7.4.1.3Compoundweirs ........................291

7.4.1.4Othertypesofsharp-crestedweirs

7.4.2Broad-CrestedWeirs...

7.4.2.1Rectangularweirs

7.4.2.2Compoundweirs ........................297

7.4.2.3Gabionweirs..........................298

7.5Spillways ......................................299

7.5.1UncontrolledSpillways..

7.5.2Controlled(Gated)Spillways...

7.5.2.1Gatesseatedonthespillwaycrest

7.5.2.2Gatesseateddownstreamofthespillwaycrest.. .....309

7.6StillingBasins. ..................................312

7.6.1TypeSelection...............................312

7.6.2DesignProcedure .............................314

7.7DamsandReservoirs...............................318

7.7.1TypesofDams..

7.7.2ReservoirStorage.............................322

8.2.5.7Log-normaldistribution.

8.2.5.8Uniformdistribution......................363

8.2.5.9Extreme-valuedistributions...

8.2.5.10Chi-squaredistribution.

8.3AnalysisofHydrologicData...........................372

8.3.1EstimationofPopulationDistribution..

8.3.1.1Probabilitydistributionofobserveddata

8.3.1.2Hypothesistests ........................376

8.3.1.3Modelselectioncriteria.

8.3.2EstimationofPopulationParameters...

8.3.2.1Methodofmoments......................379

8.3.2.2Maximum-likelihoodmethod..

8.3.2.3MethodofL-moments.....................383

8.3.3FrequencyAnalysis ............................387

8.3.3.1Normaldistribution...

8.3.3.2Log-normaldistribution.

8.3.3.3Gamma/PearsonTypeIIIdistribution..

8.3.3.4Log-PearsonTypeIIIdistribution

8.3.3.5Extreme-valueTypeIdistribution

8.3.3.6Generalextreme-value(GEV)distribution .........394 8.4UncertaintyAnalysis.. .............................395 Problems.........................................397

9FundamentalsofSurface-WaterHydrologyI:RainfallandAbstractions401

9.1Introduction.. ..................................401 9.2Rainfall.......................................401

9.2.1MeasurementofRainfall.........................403

9.2.2StatisticsofRainfallData........................405

9.2.2.1RainfallstatisticsintheUnitedStates............410

9.2.2.2SecondaryestimationofIDFcurves... ..........410

9.2.3SpatialAveragingandInterpolationofRainfall.. ..........416

9.2.4DesignRainfall..............................421

9.2.4.1Returnperiod.........................421

9.2.4.2Rainfallduration........................422

10FundamentalsofSurface-WaterHydrologyII:Runoff473 10.1Introduction..

10.2MechanismsofSurfaceRunoff..

10.3.1OverlandFlow..............................474 10.3.1.1Kinematic-waveequation

10.3.3AccuracyofEstimates..

10.4Peak-RunoffModels..

10.4.1TheRationalMethod...

10.5.2InstantaneousUnitHydrograph..

10.5.3Unit-HydrographModels ........................502

10.5.3.1Snyderunit-hydrographmodel. ...............503

10.5.3.2NRCSdimensionlessunithydrograph.. ..........506

10.5.3.3Accuracyofunit-hydrographmodels.. ..........509

10.5.4Time-AreaModels ............................509

10.5.5Kinematic-WaveModel. ........................514

10.5.6Nonlinear-ReservoirModel .......................515

10.5.7SantaBarbaraUrbanHydrographModel ...............517

10.5.8ExtremeRunoffEvents. ........................519

10.6RoutingModels ..................................520

10.6.1HydrologicRouting............................520

10.6.1.1ModifiedPulsmethod.....................520

10.6.1.2Muskingummethod... ...................524

10.6.2HydraulicRouting............................531

10.7Water-QualityModels.. .............................533

10.7.1Event-MeanConcentrations .......................533

10.7.2RegressionEquations.. ........................535

10.7.2.1USGSmodel.. ........................535

12DesignofStormwater-ManagementSystems586

12.1Introduction..

12.3.1.4Designofoutletstructures..................593 12.3.1.5Designforfloodcontrol.

12.3.5BioretentionSystems...........................610

12.3.6ExfiltrationTrenches... ........................612

12.3.6.1Generaldesignguidelines ...................613

12.3.6.2Designforfloodcontrol. ...................614

12.3.6.3Designforwater-qualitycontrol...............616

12.3.7SubsurfaceExfiltrationGalleries. ...................617

12.4SelectionofSCMsforWater-QualityControl.................618

12.4.1NonstructuralSCMs...........................618

12.4.2StructuralSCMs..............................618

12.4.3OtherConsiderations...........................619 12.5MajorDrainageSystem. .............................619 Problems.........................................619

13EstimationofEvapotranspiration624

13.1Introduction.. ..................................624

13.2Penman–MonteithEquation... ........................624

13.2.1AerodynamicResistance. ........................625

13.7SelectionofETEstimationMethod.......................654 Problems.........................................654

14FundamentalsofGroundwaterHydrologyI:GoverningEquations656 14.1Introduction.. ..................................656 14.2Darcy’sLaw....................................662

14.2.1HydraulicConductivity.. ........................666

14.2.1.1Empiricalformulae......................666

14.2.1.2Classification.. ........................670 14.2.1.3Anisotropicproperties.....................670 14.2.1.4Stochasticproperties...

14.3GeneralFlowEquation. .............................676

14.4Two-DimensionalApproximations .......................681

14.4.1UnconfinedAquifers... ........................681 14.4.2ConfinedAquifers ............................687

14.5FlowintheUnsaturatedZone..........................691 Problems.........................................696

15FundamentalsofGroundwaterHydrologyII:Applications700

15.1Introduction.. ..................................700

15.2Steady-StateSolutions. .............................700

15.2.1UnconfinedFlowBetweenTwoReservoirs ..............700

15.2.2WellinaConfinedAquifer

15.2.3WellinanUnconfinedAquifer..

15.2.4WellinaLeakyConfinedAquifer.

15.2.5WellinanUnconfinedAquiferwithRecharge... ..........713 15.2.6PartiallyPenetratingWells ........................714

15.3Unsteady-StateSolutions .............................718

15.3.1WellinaConfinedAquifer

15.3.2WellinanUnconfinedAquifer..

15.3.3WellinaLeakyConfinedAquifer.

15.3.4OtherSolutions..............................741

15.4PrincipleofSuperposition ............................741

15.4.1MultipleWells...............................742

15.4.2WellinUniformFlow..........................744 15.5MethodofImages

16.4.4WellDrilling...

16.5DesignofAquiferPumpingTests........................794

16.5.1PumpingWell...............................794

16.5.2ObservationWells............................795

16.6DesignofSlugTests................................798

16.7DesignofExfiltrationTrenches.

16.8SeepageMeters

17.3.1.3Arithmetic-gradientfactors..................820

17.3.2.1Present-worthanalysis..

17.3.2.2Annual-worthanalysis..

17.3.2.3Rate-of-returnanalysis.

www.EasyEngineering.net

Preface

Water-resourcesengineersdesignsystemstocontrolthequantity,quality,timing,anddistributionofwatertosupporthumanhabitationandtheneedsoftheenvironment.Water-supply andflood-controlsystemsarecommonlyregardedasessentialinfrastructurefordeveloped areas,andassuchwater-resourcesengineeringisacorespecialtyareaincivilengineering. Water-resourcesengineeringisalsoaspecialtyareainenvironmentalengineering,particularlywithregardtothedesignofwater-supplysystems,wastewater-collectionsystems,and water-qualitycontrolinnaturalsystems.

Thetechnicalandscientificbasesformostwater-resourcesapplicationsareintheareas ofhydraulicsandhydrology,andthistextcoverstheseareaswithdepthandrigor.Thefundamentalsofclosed-conduitflow,open-channelflow,surface-waterhydrology,groundwater hydrology,andwater-resourcesplanningandmanagementareallcoveredindetail.Applicationsofthesefundamentalsincludethedesignofwater-distributionsystems,hydraulicstruc-

linings.Thedesignofsanitary-sewersystemsiscoveredinChapter6,whichincludesdesign approachesforestimatingthequantityofwastewatertobehandledbysewers;sizingsewer pipesbasedonself-cleansingandcapacityusingtheASCE-recommendedtractive-force method;andtheperformanceofmanholes,forcemains,pumpstations,andhydrogen-sulfide controlsystemsarealsocovered.Designofthemostwidelyusedhydraulicstructuresis coveredinChapter7,whichincludesthedesignofculverts,gates,weirs,spillways,stilling basins,anddams.Thischapterisparticularlyimportantsincemostwater-resourcesprojects relyontheperformanceofhydraulicstructurestoachievetheirobjectives.Thebasesfor thedesignofwater-resourcessystemsaretypicallyrainfalland/orsurfacerunoff,whichare randomvariablesthatmustgenerallybespecifiedprobabilistically.Applicationsofprobabilityandstatisticsinwater-resourcesengineeringarecoveredindetailinChapter8,with particularemphasisontheanalysisofhydrologicdataanduncertaintyanalysisinpredicting hydrologicvariables.Thefundamentalsofsurface-waterhydrologyarecoveredinChapters9 and10.Thesechapterscoverthestatisticalcharacterizationofrainfallfordesignapplications,methodologiesforestimatingpeakrunoffandrunoffhydrographs,methodologiesfor routingrunoffhydrographsthroughdetentionbasins,andmethodsforestimatingthequalityofsurfacerunoff.Thedesignofstormwater-collectionsystemsiscoveredinChapter11,

includingthedesignofstormwaterinletsandstormsewers.Stormwater-managementsystems aredesignedtotreatstormwaterpriortodischargeintoreceivingwaters,andthedesignof thesesystemsiscoveredinChapter12.Severalstate-of-the-artdesignexamplesforthemost commonlyusedstormwater-controlmeasuresareprovided,includingthedesignofinfiltrationbasins,swales,filterstrips,bioretentionsystems,andexfiltrationtrenches.Theestimation ofevapotranspiration,whichisusuallythedominantcomponentofseasonalandannual waterbudgetsinaridareasandacorecomponentinthedesignofirrigationsystems,iscoveredinChapter13.ThefundamentalsofgroundwaterhydrologyarecoveredinChapters14 and15,includinganexpositiononDarcy’slaw,derivationofthegeneralgroundwaterflow equation,practicalsolutionstothegroundwaterflowequation,andmethodstoassessand controlsaltwaterintrusionincoastalaquifers.Applicationsofgroundwaterhydrologytothe designofwellfields,thedelineationofwellheadprotectionareas,andthedesignofwells, aquiferpumpingtests,slugtests,andexfiltrationtrenchesareallcovered.Water-resources planningtypicallyincludesidentifyingalternativesandrankingthealternativesbasedon specifiedcriteria.Chapter17coverstheconventionalapproachesforidentifyingandranking alternativesandthebasesfortheeconomicevaluationofthesealternatives.

www.EasyEngineering.net

Insummary,thisbookprovidesanin-depthcoverageofthesubjectareasthatarefundamentaltothepracticeofwater-resourcesengineering.Afirmgraspofthematerialcovered

What’sNewintheThirdEdition

Thethirdeditionofthisbookcontainsmuchnewandupdatedmaterialandissignificantly reorganizedrelativetothepreviousedition.Themostnotablechangesareasfollows:

• Thebookcontains17chapterscomparedto7chaptersinthepreviousedition.Inthe previousedition,mostofthechapterswerequitelongandcontainedboththeoryand practicalexamples.Inthepresentedition,theory-orientedchaptershavebeenseparatedfrompractice-orientedchapters.Thematerialinallchaptershasbeenrevised andupdated,withsomechaptersbeingalmostentirelyrewrittenasdescribedbelow.

• Coverageofthedesignofdrainagechannels(Chapter5)hasbeencompletelyrewritten.Subsequenttothepreviouseditionofthebook,theFederalHighwayAdministrationthoroughlyrevisedtheirurbandrainagedesignmanual,HydraulicEngineering CircularNo.22(HEC-22),whichprovidestheprimarydesignguidelinesforthedesign ofdrainagechannelsintheUnitedStates.TheupdatedchapterinthisbookisconsistentwiththelatesteditionofHEC-22.AppendixFdescribingtheunifiedsoilclassificationsystemhasbeenaddedtosupportthedesignapplicationscontainedinthis chapter.

• Coverageofthedesignofsanitary-sewers(Chapter6)hasbeencompletelyrewrittento beconsistentwiththelatestversionoftheASCEManualofPracticeNo.60(MOP60) onthedesignofsanitarysewers.ThelatestversionofMOP60isasignificantdeparture frompreviousversionsofMOP60inthatthetractive-forcedesignapproachisnow recommendedasthepreferredapproachfordesigningsanitarysewers.Theupdated chapteremphasizesthetractive-forceapproachandcontainsthekeydesignaidsprovidedinASCEManualofPracticeNo.60.

• Coverageofthedesignofstormwater-managementsystems(Chapter12)hasbeen significantlyrevisedandupdated.Overthepastseveralyears,muchhasbeenlearned abouttheperformanceanddesignofvariousstormwatercontrolmeasures(SCMs)and thelatestdesignapproachestothesesystemsareincorporatedintherevisedchapter. ThesedesignapproachesareconsistentwiththelatestversionofASCEManualof PracticeNo.87.

• Inadditiontoupdatingthecoverageonmosttopicscoveredinthebook,several newtopicshavebeenadded.Forexample,coverageofwaterhammer,variable-speed pumps,water-surfaceprofilesacrossbridges,designofdamsandreservoirs,anduncertaintyanalysishaveallbeenadded.

www.EasyEngineering.net

CHAPTER1

Introduction

1.1Water-ResourcesEngineering

Water-resourcesengineeringisanareaofprofessionalpracticethatincludesthedesignof systemstocontrolthequantity,quality,timing,anddistributionofwatertomeettheneeds ofhumanhabitationandtheenvironment.Asidefromtheengineeringandenvironmental aspectsofwater-resourcesystems,theirfeasibilityfromlegal,economic,financial,political, andsocialviewpointsmustgenerallybeconsideredinthedevelopmentprocess.Infact,the successfuloperationofanengineeredsystemusuallydependsasmuchonnonengineering analyses(e.g.,economicandsocialanalyses)asonsoundengineeringdesign.Examplesof water-resourcesystemsincludedomestic,commercial,andindustrialwatersupply,wastewaprojects.

1.2TheHydrologicCycle

The hydrologiccycle isdefinedasthepathwayofwaterasitmovesinitsvariousphases throughtheatmosphere,totheearth,overandthroughtheland,totheocean,andbackto theatmosphere.ThemovementofwaterinthehydrologiccycleisillustratedinFigure1.1.A descriptionofthehydrologiccyclecanstartwiththeevaporationofwaterfromtheoceans, whichisdrivenbyenergyfromthesun.Theevaporatedwater,intheformofwatervapor, risesbyconvection,condensesintheatmospheretoformclouds,andprecipitatesontoland andoceansurfaces,predominantlyasrainorsnow.Rainfallonlandsurfacesispartiallyinterceptedbysurfacevegetation,partiallystoredinsurfacedepressions,partiallyinfiltratedinto theground,andpartiallyflowsoverlandintodrainagechannelsandriversthatultimately leadbacktotheocean.Rainfallthatisinterceptedbysurfacevegetationiseventuallyevaporatedintotheatmosphere;waterheldindepressionstorageeitherevaporatesorinfiltrates intotheground;andwaterthatinfiltratesintothegroundcontributestotherechargeof groundwater,whicheitherisutilizedbyplants,evaporates,isstored,orbecomessubsurface flowthatultimatelyemergesasrechargetostreamsordirectlytotheocean.Snowfallin

FIGURE1.1: Hydrologic cycle

: Snowmelt contributiontoriverflow

www.EasyEngineering.net

FIGURE1.2

TABLE1.1: ClassesofWaterContaminants

ContaminantclassExample

Oxygen-demandingwastesPlantandanimalmaterial

InfectiousagentsBacteriaandviruses

PlantnutrientsFertilizers,suchasnitratesandphosphates

OrganicchemicalsPesticides,detergents,oil,grease

InorganicchemicalsAcidsfromcoalminedrainage,inorganicchemicalssuchasiron fromsteelplants

SedimentfromlanderosionClaysiltonstreambed,whichmayreduceorevendestroylife formslivingatthesolid-liquidinterface

RadioactivesubstancesWasteproductsfromminingandprocessingofradioactive material,radioactiveisotopesafteruse

HeatfromindustryCoolingwaterusedinsteamgenerationofelectricity

Fresh10,5300.7630.1 Saline12,8700.93 Soilmoisture16.50.00120.05 Polarice24,023.51.768.6 Othericeandsnow340.60.0251.0 Lakes Fresh910.0070.26 Saline85.40.006 Marshes11.470.00080.03 Rivers2.120.00020.006 Biologicalwater1.120.00010.003 Atmosphericwater12.90.0010.04

Totalwater1,385,984.61100 Freshwater35,029.212.5100

Source:USSRNationalCommitteefortheInternationalHydrological Decade(1978).

TABLE1.3: FluxesinGlobalHydrologicCycle OceanicTerrestrial fluxflux Component(mm/yr)(mm/yr)

Precipitation1270800 Evaporation1400484 Runofftoocean(riversplusgroundwater)—316

Source:USSRNationalCommitteefortheInternationalHydrological Decade(1978).

thefluxofwaterintoandoutoftheatmospheredominatesthehydrologiccycle.Thetypicalresidencetimeforatmosphericwaterisontheorderofaweek,thetypicalresidence timeforsoilmoistureisontheorderofweekstomonths,andthetypicalresidencetime intheoceansisontheorderoftensofthousandsofyears(Wood,1991).Theestimated fluxesofprecipitation,evaporation,andrunoffwithintheglobalhydrologiccyclearegiven inTable1.3.Thesedataindicatethattheglobalaverageprecipitationoverlandisonthe

usuallybecontrolledwithareasonabledegreeofcoordination.Humanactivitiessuchas land-usechanges,damconstructionandreservoiroperation,surface-waterandgroundwater

TABLE1.4: ClimateSpectrum

MeanannualMeanannualLengthof precipitationevapotranspirationrainyseason Climate(mm)(mm)(months)

Superarid <100 <3000 <1

Hyperarid100–2002400–36001–2 Arid200–4002000–24002–3 Semiarid400–8001600–20003–4 Subhumid800–16001200–16004–6 Humid1600–320012006–9

Hyperhumid3200–640012009–12 Superhumid Ú 6400120012

Source:Ponceetal.(2000).

www.EasyEngineering.net

probabilityoftheevent.Inrisk-baseddesign,systemsaredesignedsuchthatthesumofthe capitalcostandthecostoffailureisminimized.Capitalcoststendtoincreaseandthecostof failuretendstodecreasewithincreasingsystemcapacity.Becauseanythreatstohumanlife aregenerallyassignedextremelyhighfailurecosts,structuressuchaslargedamsareusually designedforrarehydrologiceventswithlongreturnperiodsandcommensuratesmallfailure risks.Insomeextremecases,wheretheconsequencesoffailurearetrulycatastrophic,waterresourcesystemsaredesignedforthelargestpossiblemagnitudeofahydrologicevent.This approachiscalledcritical-eventdesign,andthevalueofthedesign(hydrologic)variablein thiscaseisreferredtoasthe estimatedlimitingvalue (ELV).

Water-resourcesystemscanbebroadlycategorizedas water-controlsystems or waterusesystems,withdesignobjectivesasshowninTable1.5;however,thesesystemsarenot mutuallyexclusive.Thefollowingsectionspresentabriefoverviewofthedesignobjectives inwater-controlandwater-usesystems.

1.3.1Water-ControlSystems

Water-controlsystemsareprimarilydesignedtocontrolthespatialandtemporaldistributionofsurfacerunoffresultingfromrainfallevents.Flood-controlstructuresandstorage impoundmentsreducethepeakflowsinstreams,rivers,anddrainagechannels,thereby

FIGURE1.3

TABLE1.5: DesignObjectivesofWater-ResourceSystems

Water-controlsystemsWater-usesystems

DrainageDomesticandindustrialwatersupply

FloodcontrolWastewatertreatment

SalinitycontrolIrrigation

SedimentcontrolHydropowergeneration

Pollutionabatement

reducingtheoccurrenceoffloods.A flood isdefinedasahighflowthatexceedsthecapacity ofastreamordrainagechannel,andtheelevationatwhichwateroverflowstheembankmentsofastreamordrainagechanneliscalledthe floodstage.A floodplain isthenormally drylandadjoiningrivers,streams,lakes,bays,oroceansthatisinundatedduringfloodevents. Typically,flowswithreturnperiodsfrom1.5to3yearsrepresentbankfullconditionsinnaturalstreams,withlargerflowscausinginundationofthefloodplain.The100-yearfloodhas beenadoptedbytheU.S.FederalEmergencyManagementAgency(FEMA)asthebase systems,water-distributionsystems,wastewater-collectionsystems,wastewater-treatmentsys-

Domesticwater-supplysystems. Thesesystemstypicallyincludewater-extractionfacilities, suchaswellfields,thatmustextractwaterfromthesourceatratesthatdonotcauseadverse effectsonthesourcewaterandthosethatdependonit;water-treatmentplantsthatmust producewaterofsufficientqualitytomeetdrinkingwaterstandards;andwater-distribution systemsthatmustdeliverpeakdemandswhilesustainingadequatewaterpressures.

Domesticwastewater-collectionsystems. Sanitarysewersandassociatedappurtenances musthavesufficientcapacitytotransportwasteswithoutoverflowingintothestreets.These systemstypicallyterminateinawastewater-treatmentplantthatmustprovideasufficient leveloftreatmentfortheintendeduseoftheeffluent,andeffluentdischargesystemsthatdo notdegradethereceivingwaters.

Irrigationsystems. Inagriculturalareas,waterrequirementsofcropsaremetbyacombinationofrainfallandirrigation.Thedesignofirrigationsystemsrequirestheestimationofcrop evapotranspirationratesandleachingrequirements.Usually,irrigationwaterisobtained fromgroundwaterandcaremustbetakentoensurethattheextractionratesaresustainable andlong-termdeclinesingroundwaterresourceswillnotoccur.

Section1.3DesignofWater-ResourceSystems 7

Hydroelectricpowersystems. Inriverswheretherearelargeseasonalvariationsinflow volumesanddroughtsoccurfrequently,constructionofdamsandthegenerationofhydroelectricpowermightbeeconomicallyfeasible.Insuchcases,waterreservoirsaresizedto providesufficientcapacitytostoreexcesswaterinyearsandseasonsofsurplus,andprovide watertosupporthumanhabitationinyearsandseasonsofwaterdeficit.Waterreleased fromthestoragereservoirsbehinddamscanbeusedtosupplyhydroelectricpower,whichis acleanandnonpollutingsourceofelectricity.

1.3.3SupportingFederalAgenciesintheUnitedStates

Thedesignofwater-resourcesystemsusuallyinvolvesinteractionwithgovernmentagencies.Collectionofhydrologicandgeologicdata,grantingofdevelopmentpermits,specificationofdesigncriteria,anduseofgovernment-developedcomputercodesfordeveloping modelsofwater-resourcesystemsaresomeofthemanyareasinwhichwater-resources engineersinteractwithgovernmentagencies.Thefollowingaresomeofthekeyfederal water-resourcesagenciesintheUnitedStates:

NationalClimaticDataCenter(NCDC). Theworld’slargestactivesourceofweatherdata;

federalresponsibilityforcollectionanddisseminationofmeasurementsofstreamdischargeandstage,reservoirandlakestageandstorage,groundwaterlevels,welland springdischarge,andthequalityofsurfaceandgroundwaterintheUnitedStates. USGSmaintainsanetworkofthousandsofstreamgagesandgroundwatermonitoring wells.

U.S.NationalWeatherService(NWS). NWS,underthedirectionoftheNationalOceanic andAtmosphericAdministration(NOAA),hasamandatetocollecthydrologicdata andprovideweather,hydrologic,andclimateforecasts.DatacollectedbyNWSinclude rainfall,temperature,andevaporationmeasurementsatover10,000locationsinthe UnitedStates.TheNWSusesitsRiverForecastSystemat13RiverForecastCenters toprovidedailyriver-stageforecastsatapproximately4000locations.

U.S.NaturalResourcesConservationService(NRCS). NRCSworkswithlandownerson privatelandstoconservenaturalresources.NRCSprovidestechnicalandfinancial assistancetofarmersandranchersforfloodprotection,recreation,andwater-supply developmentinwatershedswithareaslessthan100,000ha(400mi2 ).TheNRCS publishesgeneralsoilmapsforeachstateanddetailedsoilmapsforeachcountyin

TABLE1.6: FederalAgenciesRelevanttoWater-ResourcesEngineeringintheUnitedStates OrganizationWebaddress

NationalClimaticDataCenter(NCDC)www.ncdc.noaa.gov

U.S.ArmyCorpsofEngineers(USACE)www.usace.army.mil

U.S.BureauofReclamation(USBR)www.usbr.gov

U.S.EnvironmentalProtectionAgency(USEPA)www.epa.gov

U.S.GeologicalSurvey(USGS)www.usgs.gov

U.S.NationalWeatherService(NWS)www.nws.noaa.gov

U.S.NaturalResourcesConservationService(NRCS)www.nrcs.usda.gov

theUnitedStates.TheSnowpackTelemetry(SNOTEL)systemoperatedbyNRCS providesyear-roundtemperatureandprecipitationdatainremote,mountainousareas primarilyinthewesternUnitedStates.

www.EasyEngineering.net

Thesefederalagenciesprovideawealthofdataandinformationonwaterresources,

CHAPTER2 FundamentalsofFlow inClosedConduits

2.1Introduction

Flowinclosedconduitsincludesallcaseswheretheflowingfluidcompletelyfillstheconduit. Thecrosssectionsofclosedconduitscanbeofanyshapeorsizeandtheconduitscanbe madeofavarietyofmaterials.Engineeringapplicationsoftheprinciplesofflowinclosed conduitsincludethedesignofmunicipalwater-supplysystemsandtransmissionlines.The basicequationsgoverningtheflowoffluidsinclosedconduitsarethecontinuity,momentum,

Considertheapplicationofthecontinuityequationtothecontrolvolumeillustratedin Figure2.1.Fluidentersandleavesthecontrolvolumenormaltothecontrolsurfaces,withthe inflowvelocitydenotedby v1 (r)andtheoutflowvelocityby v2 (r),where r istheradialpositionvectororiginatingatthecenterlineoftheconduit.Boththeinflowandoutflowvelocities varyacrossthecontrolsurface.Thesteady-statecontinuityequationforanincompressible fluidcanbewrittenas

FIGURE2.1: Flow throughclosedconduit

Boundary of control volume

www.EasyEngineering.net

thesteady-statecontinuityequationbecomes Therefore,

Theflowrate, Q,isgivenby

Theaveragevelocityinthedischargepipelineis0.56m/s,andtheflowratethroughthepumpis 0.0177m3 /s.

2.2.2Steady-StateMomentumEquation

Considertheapplicationofthemomentumequationtothecontrolvolumeillustratedin Figure2.1.Understeady-stateconditions,thecomponentofthemomentumequationinthe directionofflow(x-direction)canbewrittenas

where Fx isthesumofthe x-componentsoftheforcesactingonthefluidinthecontrolvolume, ρ isthedensityofthefluid, vx isthecomponentoftheflowvelocityinthe x-direction,and v n isthecomponentoftheflowvelocitynormaltothecontrolsurface. Sincetheunitnormalvector, n,inEquation2.5isdirectedoutwardfromthecontrolvolume, themomentumequationforanincompressiblefluid(ρ = constant)canbewrittenas

wheretheintegraltermsdependonthevelocitydistributionsacrosstheinflowandoutflow controlsurfaces.Thevelocitydistributionacrosseachcontrolsurfaceisgenerallyaccounted forbythe momentumcorrectioncoefficient, β ,definedbytherelation

where A istheareaofthecontrolsurfaceand V istheaveragevelocityoverthecontrol

Inmanycasesofpracticalinterest,thevelocitydistributionacrossthecrosssectionofthe closedconduitisapproximatelyuniform,inwhichcasethemomentumcoefficients, β1 and β2 ,areapproximatelyequaltounityandthesteady-statemomentumequationbecomes

Considerthecommoncaseofflowinastraightpipewithauniformcircularcrosssection illustratedinFigure2.2,wheretheaveragevelocityremainsconstantateachcrosssection,

thenthesteady-statemomentumequationbecomes

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.