Physics for scientists and engineers with modern physics 4th edition douglas c. giancoli all chapter

Page 1


Physics for Scientists and Engineers with Modern Physics 4th Edition Douglas C. Giancoli

Visit to download the full and correct content document: https://ebookmass.com/product/physics-for-scientists-and-engineers-with-modern-phy sics-4th-edition-douglas-c-giancoli/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

eTextbook 978-0131495081 Physics for Scientists & Engineers with Modern Physics (4th Edition)

https://ebookmass.com/product/etextbook-978-0131495081-physicsfor-scientists-engineers-with-modern-physics-4th-edition/

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, 5th Edition, Global Edition Randall Knight

https://ebookmass.com/product/physics-for-scientists-andengineers-a-strategic-approach-with-modern-physics-5th-editionglobal-edition-randall-knight/

Physics for Scientists and Engineers with modern Physics Volume I -Technology Update 10th Edition R.A. Serway And J.W. Jewitt

https://ebookmass.com/product/physics-for-scientists-andengineers-with-modern-physics-volume-i-technology-update-10thedition-r-a-serway-and-j-w-jewitt/

Modern Physics for Scientists and Engineers 5th Edition

Stephen Thornton & Andrew Rex

https://ebookmass.com/product/modern-physics-for-scientists-andengineers-5th-edition-stephen-thornton-andrew-rex/

Physics for Scientists and Engineers 9th Edition, (Ebook PDF)

https://ebookmass.com/product/physics-for-scientists-andengineers-9th-edition-ebook-pdf/

Physics for Scientists and Engineers (MindTap Course List) 10th Edition Serway

https://ebookmass.com/product/physics-for-scientists-andengineers-mindtap-course-list-10th-edition-serway/

University Physics with Modern Physics (15th Edition)

https://ebookmass.com/product/university-physics-with-modernphysics-15th-edition/

Physics For Global Scientists and Engineers, Volume 2 2nd Edition Raymond A. Serway

https://ebookmass.com/product/physics-for-global-scientists-andengineers-volume-2-2nd-edition-raymond-a-serway/

Applied Numerical Methods with MATLAB for Engineers and Scientists 4th Edition Steven C. Chapra Dr.

https://ebookmass.com/product/applied-numerical-methods-withmatlab-for-engineers-and-scientists-4th-edition-steven-c-chapradr/

Giancoli, Douglas C.

Physics for scientists and engineers with modern physics / Douglas C. Giancoli.-4th ed.

p.cm.

Includes bibliographical references and index.

ISBN 0-13-149508-9

1. Physics-Textbooks. I. Title. QC21.3.GS39 2008 530---dc22

2006039431

President, Science: Paul Corey

Sponsoring Editor: Christian Botting

Executive Development Editor: Karen Karlin

Production Editor: Clare Romeo

Senior Managing Editor: Scott Disanno

Art Director and Interior & Cover Designer: John Christiana

Manager, Art Production: Sean Hogan

Copy Editor:Jocelyn Phillips

Proofreaders: Karen Bosch, Gina Cheselka, Traci Douglas, Nancy Stevenson, and Susan Fisher

Senior Operations Specialist: Alan Fischer

Art Production Editor: Connie Long

Illustrators: Audrey Simonetti and Mark Landis

Photo Researchers: Mary Teresa Giancoli and Truitt & Marshall

Senior Administrative Coordinator:Trisha Tarricone

Composition: Emilcomp/Prepare Inc.; Pearson Education/Lissette Quinones, Clara Bartunek

Photo credits appear on page A-72 which constitutes a continuation of the copyright page.

© 2009, 2000, 1989, 1984 by Douglas C. Giancoli

Published by Pearson Education, Inc.

Pearson Prentice Hall

Pearson Education, Inc.

•Upper Saddle River, KJ 07458

A II rights reserved. No part of this book may be reproduced, in any form or by any means, wi1hout permission in writing from the publisher.

Pearson Prentice Hall™ is a trademark of Pearson Education, Inc.

Printed in the United States of America 10 9 8 7 6 5 4 3 2 1

ISBN-13: 978 - 0-13-149508 -1

ISBN-10: D-13-149508 - 9

Pearson Education LID., London

Pearson Education Australia PTY, T,imitcd, Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong &mg

Pearson Education Canada, Ltd., Toronto

Pearson Educaci6n de Mexico, S.A. de C.V.

Pearson Education-Japan, Tokyo

Pearson Education Malayida, Ptc. I ,td.

QUESTlOKS

1 1 INTRODUCTION, MEASUREMENT, ESTIMATING

1-1 The Nature of Science 1-2 Models, Theories, and Laws 1-3 Measurement and Uncertainty; Significant Figures 1-4 Units, Standards, and the SI System 1-5 Converting Units 1-6 Order of Magnitude: Rapid Estimating

Dimensioni; and Dimensional Analyi;is

NEWroN's l.Aws: FruCTioN, CIRCUIAR MOTION, DRAG FORCES

AND NEWTON'S SYNTHESIS 139

6-1 Newton's Law of Univeri;al Gravitation 140

6-2 Vector Form of Newton's Law of Universal Gravitation 143

6-3 Gravity Near the Earth's Surface; Geophysical Applications 143

6-4 Satellites and "Weightlessness" 146

6-5 Kepler's Laws and Newton's Synthesis 149 "'6-6 Gravitational Field 154

6-7 Types of Forces in Nature 155

*6-8 Principle of Equivalence; Curvature of Space; Black Holes 155

SCMMARY 157 QUESTIONS 157 PROBLEMS 158 OE:>IERAL PROBLEMS HiO

7

WORK AND ENERGY

163

7-1 Work Done by a Constant Force 164

7-2 Scalar ProdU(,1 of Two Vectors 167

7-3 Work Done by a Varying Force 168

7--4 Kinetic Energy and the Work-Energy Principle 172

SL"l,,.IMARY 176 QUESTIONS 177 PROBLEMS 177 GE:>IERAL PROBLEMS 180

8

CONSERVATION OF ENERGY

183

8-1 Conservative and Nonconservative Forces 184

8-2 Potential Energy 186

8-3 Mechanical Energy and Its Conservation 189

8-4 Problem Solving Using Conservation of Mechanical Energy 190

8-5 111e Law of Conservation of Energy 196

8-6 Energy Conservation with Dissipative Forces: Solving Problems 197

8-7 Gravitational Potential Energy and Escape Velocity 199

8-8 Power 201

*8-9 Potential Energy Diagrams; Stable and Unstable Equilibrium 204

SD1MARY 205 QUESTIONS 205 PROillEMS 207 GE~ERAL PROBLEMS 211

9-1 Momentum and Its Relation to Force 215 9-2 Conservation of Momentum 217

9-3 Collisions and Impulse 220

9-4 Conservation of Energy and Momentum in Collisions 222

9-5 Elastic Collisions in One Dimension 222 9-6 Jnelastic Collisioni; 225 9-7 Collisions in Two or Three Dimensions 227

9-8 Center of Mass (C:\-1) 230 9-9 Center of Mass and Translational Motion 234

*9-10 Systems of Variable~; Rocket Propulsion 236 SUMMARY 239 Qt;RSTIONS 239 PROBLEMS 240 GENERAL PROBLEMS 245

10

ROTATIONAL MOTION 248

10-5 Rotational Dynamics; Torque and Rotational Inertia

1()-6 Solving Problems in Rotational Dynamics 26() 10-7 Determining Moments of Inertia 2(i3 10-8 Rotational Kinetic Energy 265 10-9 Rotational Plus Translational Motion; Rolling 267

*10-10 Why Doel$ a Rolling Sphere Slow Down? 273 SUMMARY 274 Ql."ESTIONS 275 PROBLEMS 276 GilNERAL PROBLnMS 281

11 ANGUlAR MOMENrnM; GENERAL ROTATION 284 11-1 Angular Momentum-Objects Rotating About a Fixed Axis 285 11-2 Vector Cross Product;Torque as a Vector 289

11-3 Angular Momentum of a Particle 291 11-4 Angular Momentum and Torque for a System of Particles; General Motion 292 11-5 Angular Momentum and Torque for a Rigid Object 294

11-6 Conservation of Angular Momentum 297

*11-7 The Spinning Top and Gyroscope 299

*11-8 Rotating Frames of Reference; Inertial Forces 300

*11-9 The Coriolis Effect

SUMMARY 302

OUl:iSTIO:,jS 303 PRORI.RMS 303

PROHLl:i.MS 308 301

CONTENTS 9 LINEAR MOMENTUM 214

12 STATIC EQUILIBRIUM; EIASTICfIY AND FRACTIJRE 311

12-1 The Conditions for Equilibrium 312 12-2 Solving Statics Problems 313

12-3 Stability and Balance 317

12-4 Elasticity; Stress and Strain 318

12-5 Fracture 322

*12-6 Trusses and Bridges 324

*12-7 Arches and Domes 327

SUMMARY 329 QUESTIONS 329 PROBI.RM$ 330 GENERAL PRORI.F.MS 334

13 FLums

13-1 Phases of Matter

13-2 Density and Specific Gravity

13-3 Pressure in Fluids

13-4 Atmospheric Pressure and Gauge Pressure 345

13-5 Pascal's Principle 346

l 3-6 Measurement of Pressure; Gauges and the Barometer 346 13-7 Buoyancy and Archimedes' Principle 348

13-8 Fluids in Motion; Flow Rate and the Equation of Continuity 352 13-9 Bernoulli's Equation 354

13-10 Applications of Bernoulli's Principle: Torricelli, Airplanes, Baseballs, TIA 356

*13-11 Viscosity 358

*13-12 Flow in Tubes: Poiseuille's Equation, Blood Flow 358

*13-13 Surface Tension and Capillarity 359

*13-14 Pumps, and the Heart 361

SUMMARY 361 QUESTIONS 362 PROBIBMS 363 GENERAL PROBLEMS 367

14 0SCIU.ATIONS

14-1 Oscillations of a Spring

14-2 Simple Harmonic Motion

14-3 Energy in the Simple Harmonic Oscillator

14-4 Simple Harmonic Motion Related to Uniform Circular Motion

14-5 The Simple Pendulum

*14-6 The Physical Pendulum and the Torsion Pendulum

14-7 Damped Harmonic Motion

14-8 Forced Oscillations; Resonance

SUMMARY 387 QUEST1O1'S 388 PROBLEMS 388 GEJ\"ERAL PROBLEMS 392 15

15-1 ChaTacteristic:, of Wave Motion

15-2 Types of Waves: Ttansven;e and Longitudinal

15-3 Energy Transported by Waves

15-4 Mathematical Representation of a Traveling Wave

* 15-5 The Wave Equation

15-6 The Principle of Superposition

15-7 Reflection and Transmission

15-8 Interference

15-9 Standing Waves; Resonance

~15-10 Refraction

* 15-11 Diffraction SUMMARY 417 QUESTrOl\'S 417 PROBLEMS 418 GEI\ERJ\L

16 SOUND

16-1 Characteristics of Sound

16-2 Mathematical Representation of Longitudinal Waves

16-3 Intensity of Sound: Decibels

16-4 Sources of Sound: Vibrating Strings and Air Columns

*16-5 Quality of Sound, and Noise; Superposition

16-6 Interference of Sound Waves; Beats

16-7 Doppler Effect

"16-8 Shock Waves and the Sonic Boom

* 16-9 Applicati.oni;: Sonar, Ultrasound,

and Medical Imaging

SUMMARY 446 QUESTlOKS 447 PROBLEMS 448 GEJ\"ERAL PROBLEMS

17-1AtomicTheoryof

*17-5ThermalStresses 463

17-6TheGasLawsand AbsoluteTemperature 463

17-7TheIdealGasLaw 465

17-8 ProblemSolving withthe IdealGasLaw 466

17-9 IdealGasLaw inTermsofMolecules: Avogadro’sNumber 468

*17-10IdealGasTemperatureScale a Standard 469

SUMMARY 470 QUESTIONS 471 PROBLEMS 471 GENERAL PROBLEMS 474

K inetic T heor of G ases 476

18-1TheIdealGasLawandtheMolecular InterpretationofTemperature476

18-2DistributionofMolecularSpeeds 480

18-3RealGasesand hangesofPhase 482

18-4Vapor PressureandHumidity 484

*18-5 Van derWaals Equationof State486

*18-6 MeanFreePath 487

*18-7Diffusion 489

SUMMARY 490 QUESTIONS 491 PROBLEMS 492 GENERAL PROBLEMS 494

19 H eatandthe F irst Law of T hermod namics 496 19-1 HeatasEnergyTransfer 497 19-2InternalEnergy 498 19-3Specific Heat 499 19-4 alorimetrySolving Problems500 19-5LatentHeat 502

19-6The First LawofThermodynamics505 19-7The First LawofThermodynamics Applied; alculatingtheWork507 19-8MolarSpecific HeatsforGases, andtheEquipartitionofEnergy511

19-9Adiabatic Expansionof a Gas514 19-10 HeatTransfer: onduction, onvection, Radiation 515

SUMMARY 520 QUESTIONS 521 PROBLEMS 522 GENERAL PROBLEMS 526 20 S econd Lawof T hermod namics

20-1TheSecondLawof ThermodynamicsIntroduction529 202HeatEngines 530 203ReversibleandIrreversible Processes; the arnot Engine 533 204Refrigerators,Air onditioners, and HeatPumps 536 205Entropy 539 206EntropyandtheSecondLawof Thermodynamics 541 207 Order toDisorder 544 208UnavailabilityofEnergy; Heat Death545

*20-9StatisticalInterpretationofEntropy andtheSecondLaw 546

*20-10ThermodynamicTemperature; ThirdLawofThermodynamics548 *20-11 ThermalPollution, GlobalWarming, andEnergyResources 549

SUMMARY 551 QUESTIONS 552 PROBLEMS 552 GENERAL PROBLEMS 556

/■%«E lectr c C hargeand Z1E lectr c F eld 559

211Static Electricity; Electric hargeandIts onservation 560

212Electric hargein the Atom 561

213Insulatorsand onductors 561

214Induced harge; theElectroscope562

215 oulomb’sLaw 563

216TheElectric Field 568

217Electric Field alculationsfor ontinuous hargeDistributions572

218FieldLines 575

219Electric Fields and onductors577

2110Motionofa hargedParticlein an Electric Field 578

21-11ElectricDipoles 579

*21-12 Electric ForcesinMolecularBiology; DNA 581

*21-13 PhotocopyMachinesand omputer PrintersUseElectrostatics 582

SUMMARY 584 QUESTIONS 584 PROBLEMS 585 GENERAL PROBLEMS 589 G auss ' s Law 591 221Electric Flux 592 222Gauss’sLaw 593 223Applicationsof Gauss’sLaw 595

*22-4ExperimentalBasis of Gauss’sand oulomb’sLaws 600 SUMMARY 601 QUESTIONS 601 PROBLEMS 601 GENERAL PROBLEMS 605

23 E lectric P otential 607

ElectricPotentialEnergyand

harges 612

Due toAny harge Distribution 614

Determinedfrom V 617

622 QUESTIONS 622

27 M agnetism 707

27-1MagnetsandMagneticFields 707

272 Electric urrentsProduceMagnetic Fields 710

27-3Forceonan Electric urrentin a Magnetic Field; DefinitionofB710

274Forceonan Electric hargeMoving in a MagneticField 714

27-5Torqueona urrentLoop;Magnetic DipoleMoment 718

*27-6Applications: Motors,Loudspeakers, Galvanometers 720

277DiscoveryandPropertiesofthe Electron 721

278TheHallEffect 723

*27-9 MassSpectrometer 724

SUMMARY 725 QUESTIONS 726 PROBLEMS 727 GENERAL PROBLEMS 730

S ources of M agnet c F eld 733

28-1MagneticFieldDuetoa StraightWire 734

282 ForcebetweenTwoParallelWires735

28-3DefinitionsoftheAmpereandthe oulomb 736

284 Ampere’sLaw 737

28-5MagneticFieldofa Solenoidand aToroid 741

286BiotSavartLaw 743

287Magnetic MaterialsFerromagnetism746

*28-8Electromagnetsand SolenoidsApplications 747

*28-9 Magnetic Fieldsin Magnetic Materials; Hysteresis 748

*28-10 ParamagnetismandDiamagnetism 749

SUMMARY 750 QUESTIONS 751 PROBLEMS 751 GENERAL PROBLEMS 755

E lectromagnet c I nduct on and Faraday' s Law 758

291Induced EMF 759

292Faraday’sLawofInduction; Lenz’sLaw 760

293EMFInducedina Moving onductor765

294ElectricGenerators 766

*29-5 BackEMFand ounterTorque; Eddy urrents 768

296TransformersandTransmissionofPower 770

297A hangingMagneticFluxProducesan Electric Field 773

*29-8 ApplicationsofInduction: SoundSystems, omputerMemory, Seismograph, GF I 775

SUMMARY 111 QUESTIONS 111 PROBLEMS 778 GENERAL PROBLEMS 782

Inductance , E lectromagnet c O sc llat ons, and AC C rcu ts 785

301 MutualInductance 786 302SelfInductance 788

303EnergyStoredina MagneticField790 304 LR ircuits 790 305 LC ircuitsandElectromagnetic Oscillations 793 306 LC Oscillations withResistance

axwell' s E quat onsand E lectromagnet c W aves 812

hangingElectricFields Produce Magnetic Fields; Ampere’sLawand Displacement urrent 813

817 315ElectromagneticWaves, and TheirSpeed, fromMaxwell’sEquations819 316Light asan ElectromagneticWave andtheElectromagneticSpectrum823 317MeasuringtheSpeedofLight 825

in EMWaves;the Poynting Vector 826

828

Wireless ommunication 829

832 QUESTIONS 832

32

L ght :R eflect on and R efract on 837

32-1TheRayModelofLight 838

322Reflection; ImageFormation bya PlaneMirror 838

32-3Formationof Imagesby Spherical Mirrors 842

324IndexofRefraction 850

32-5Refraction: Snell’sLaw 850

326 VisibleSpectrumandDispersion852

327Total InternalReflection; FiberOptics 854 *32-8Refractionata SphericalSurface856

SUMMARY 858 QUESTIONS 859 PROBLEMS 860 GENERAL PROBLEMS 864

rm yjiiwnin H r thenh(«lKpl4AJ.11lltL>Nirti ItuprodlMUavictualimujw.hWh

>^CLSmniriton nf rwirt IMIwcj*«ictmed. jfn (.^mpjfjsonulpjTL{JJ ^ ift KKtlyUIVf^alpuirL /viewed tihene rpoint wirfiSL**vcn>™wthe<*jw.i objectsubtends ttheeyeismuch / !kr rl(h>in m gniricttliimor mttgnifyingpower, rr ngle subtended by nobject when usinX^Sjfc^cr,JhlJ,lflHc un idedeye,withtheobject tthe ne ^P^^u^itn^duMnicih.L: norm l eye): »,h4: lN fDr*

where0 ndflr rsshowninFig.3333. lengthbynotingth t0 h/N (Fig, 3.1

vritcjWin[LinnL»1liltt«*l /tl (Hj(.3?.l.lij,wliLii; lc*#tcwialtk>rtandflrcijiml

* «.heheigh, ofIheobject and weJ 3 J ^buirsuitsandlungems,fftheeyeis j^tinfinityandtheot>ji.>elwillh> ^/ nd fl h/f.

33 Lensesand O pt cal I nstruments 866

33-1ThinLenses;RayTracing 867

332TheThinLensEquation; Magnification870

333 ombinationsof Lenses 874

*33-4Lensmaker’sEquation 876

335 ameras:FilmandDigital 878

336TheHumanEye; orrectiveLenses882

337Magnifying Glass 885

338Telescopes 887

*33-9 ompoundMicroscope 890

*33-10 AberrationsofLensesandMirrors891

892

894

893

34-1Waves Versus Particles;Huygens’ PrincipleandDiffraction Huygens’PrincipleandtheLaw of Refraction InterferenceYoung’sDoubleSlit Experiment

*34-4 IntensityintheDoubleSlit InterferencePattern Interferencein Thin Films MichelsonInterferometer LuminousIntensity

915

916

on and P olar zat on 921

351 Diffraction bya Single Slit orDisk922

*35-2 IntensityinSingle-Slit Diffraction Pattern 924

*35-3 Diffraction in theDoubleSlitExperiment927

354Limits ofResolution; ircularApertures929

355Resolutionof Telescopesand Microscopes; theALimit 931

*35-6 ResolutionoftheHumanEye andUseful Magnification 932

357DiffractionGrating 933

358TheSpectrometerandSpectroscopy935

*35-9 PeakWidths andResolvingPower fora DiffractionGrating 937

3510X-RaysandXRayDiffraction938

35-11 Polarization 940

*35-12Liquid rystal Displays(L D)943

*35-13 ScatteringofLight bytheAtmosphere945 summar 945 PROBLEMS 946 questions 946 GENERALPROBLEMS 949

*36-2

S pec al T heoryof R elat v ty 951

GalileanNewtonianRelativity952

TheMichelsonMorleyExperiment954

Postulatesof theSpecialTheory of Relativity957

Simultaneity 958

Time DilationandtheTwinParadox960

Length ontraction 964

FourDimensionalSpaceTime967

GalileanandLorentzTransformations968

Relativistic MomentumandMass971

TheUltimateSpeed 974

*36-12 36-13

Eme2; Mass andEnergy 974

DopplerShiftforLight 978

TheImpactofSpecial Relativity980

SUMMARY 981 QUESTIONS 981

PROBLEMS 982 GENERAL PROBLEMS 985

37

E arly Q uantum T heoryand M odelsofthe A tom 987

37-1Blackbody Radiation; Planck’sQuantumHypothesis987

372PhotonTheory; Photoelectric Effect 989

373PhotonEnergy, Mass, andMomentum993

374 omptonEffect 994

375PhotonInteractions;Pair Production996

376WaveParticleDuality; thePrincipleof omplementarity 997

377Wave Natureof Matter 997

*37-8ElectronMicroscopes 1000

379EarlyModelsofthe Atom 1000

3710AtomicSpectra:Key toAtomicStructure1001

37-11The BohrModel 1003

3712deBroglie’s HypothesisApplied toAtoms1009

SUMMARY 1010 QUESTIONS 1011

PROBLEMS 1012 GENERAL PROBLEMS 1014

38 Q uantum M echan cs 1017

38-1QuantumMechanicsANewTheory1018

382The Wave Functionand Its Interpretation; the DoubleSlitExperiment 1018

383TheHeisenbergUncertainty Principle1020

384PhilosophicImplications;Probability Versus Determinism 1024

385TheSchrodinger Equationin One DimensionTimeIndependent Form1025

*38-6TimeDependentSchrodinger Equation1027

387FreeParticles;PlaneWavesandWavePackets1028

388Particlein anInfinitelyDeep SquareWell Potential(aRigidBox)1030

389FinitePotentialWell 1035

3810Tunnelingthrougha Barrier 1036

SUMMARY 1039 QUESTIONS 1039

PROBLEMS 1040 GENERAL PROBLEMS 1042 X C NTENTS

391 QuantumMechanicalView ofAtoms1045

392HydrogenAtom: Schrodinger Equation andQuantumNumbers 1045

393HydrogenAtomWave Functions1049

394 omplexAtoms; theExclusion Principle1052

395PeriodicTableofElements 1053

396XRaySpectraandAtomic Number1054

*39-7 Magnetic DipoleMoment; Total Angular Momentum 1057

398FluorescenceandPhosphorescence1060 399Lasers 1061

*39-10Holography 1064

SUMMARY 1066 QUESTIONS 1066 PROBLEMS 1067 GENERAL PROBLEMS 1069

Bondingin Molecules 1071

for Molecules 1074 403Weak(vanderWaals) Bonds 1077

Solids 1085 406FreeElectronTheoryofMetals; FermiEnergy BandTheoryofSolids SemiconductorsandDoping SemiconductorDiodes

4010Transistors and Integrated ircuits( hips) 1097 1086 1090 1093 1094

SUMMARY 1098 QUESTIONS 1099 PROBLEMS 1099 GENERAL PROBLEMS 1102

41

N uclear P hys csand R ad oact v ty 1104

41-1StructureandPropertiesoftheNucleus 110543-1

412BindingEnergyandNuclear Forces1108432

41-3Radioactivity 1110

414AlphaDecay 1111 43-3

41-5BetaDecay 1114 434

416GammaDecay 111643-5

417 onservationofNucleon Number 436 andOther onservationLaws1117 437

418Half-LifeandRateofDecay 1117 438

419DecaySeries 1121 439

4110RadioactiveDating 1122 4310

41-11Detectionof Radiation 1124

SUMMARY 1126 QUESTIONS 1126 43-11 PROBLEMS 1127 GENERAL PROBLEMS 1129 4312

HighEnergyParticlesandAccelerators1165

Beginnings ofElementaryParticle

Physics—ParticleExchange 1171

ParticlesandAntiparticles 1174

ParticleInteractionsand onservationLaws1175

Neutrinos—Recent Results 1177

Particle lassification 1178

ParticleStabilityandResonances1180

Strangeness? harm?Towardsa NewModel 1181 Quarks 1182

TheStandard Model:Q Dand

ElectroweakTheory

GrandUnifiedTheories

StringsandSupersymmetry

SUMMARY 1189 QUESTIONS 1190

42

N uclear E nergy; E ffects and U sesof R ad at on 1131

42-1NuclearReactionsandthe TransmutationofElements 1132

422 ross Section 1135

423Nuclear Fission; Nuclear Reactors1136

424Nuclear Fusion 1141

425PassageofRadiationThroughMatter; RadiationDamage 1146

426

*42-7

*42-8

*42-9

MeasurementofRadiationDosimetry1147

RadiationTherapy 1150 Tracers inResearchandMedicine1151

Imaging by Tomography: ATScans andEmissionTomography 1153

*42-10 NuclearMagnetic Resonance(NMR); Magnetic ResonanceImaging(MRI)1156

SUMMARY 1159 QUESTIONS 1159

PROBLEMS 1160 GENERAL PROBLEMS 1162

PROBLEMS 1190 GENERAL PROBLEMS 1191 1184 1187 1189 A strophys csand C osmology 1193

44-1Stars andGalaxies 1194

442StellarEvolution: Nucleosynthesis, andtheBirth and Deathof Stars1197

443DistanceMeasurements 1203

444GeneralRelativity:Gravityandthe urvatureofSpace 1205

445TheExpandingUniverse: Redshiftand Hubble’sLaw 1209

446TheBig Bangandthe osmic MicrowaveBackground 1213

447TheStandard osmological Model: EarlyHistoryoftheUniverse1216

448Inflation 1219

449DarkMatterandDarkEnergy1221

4410LargeScaleStructureoftheUniverse1224 44-11 Finally... 1224

SUMMARY 1225 QUESTIONS 1226

PROBLEMS 1226 GENERALPROBLEMS 1227

A ppend ces

A pplic tions (selected)

Ch pter 1

The8000-mpeaks 8

Estimatingvolumeof a lake10

Height by triangulation 11

Radiusofthe Earth 11

Heartbeats in a lifetime 12

Particulatepollution(Pr30) 15

Global positioning satellites (Pr39) 16

Lung capacity (Pr65) 17

Ch pter2

Airport runway design 29

Automobileairbags 31

Brakingdistances 32

CD error correction(PrlO) 44

CD playing time(Prl3) 45

Golfing uphillordown (Pr79) 48

Rapidtransit(Pr83) 49

Ch pter3

Kicked football 66,69

Ballsports (Problems) 77,81,82

Extremesports (Pr41) 77

Ch pter4

Rocketacceleration 90

What forceaccelerates a car? 90

Howwe walk 90

Elevatorandcounterweight 99

Mechanical advantageofpulley100

Bearsling(Q24) 104

Highspeedelevators(Prl9)105

Mountain climbing(Pr31,82,83) 106,110

ity planning, carson hills(Pr71) 109

Bicyclists(Pr72,73) 109

“Doomsday”asteroid(Pr84) 110

Ch pter5

Push or pull a sled? 116

entrifugation 122

Not skidding ona curve 126-7

Bankedhighways 127

Simulated gravity (Q18, Pr48) 131,134

“Rotorride”(Pr82) 136

Ch pter6

Oil/mineral exploration144,420

Artificial Earth satellites 146

Geosynchronous satellites 147

Weightlessness 148

Free fall inathletics 149

Planetdiscovery, extrasolar planets152

Black holes 156

Asteroids(Pr44,78) 159,162

Navstar GPS(Pr58) 160

Black hole, galaxy center (Pr61,64) 160,161

Tides (Pr75) 162

Ch pter 7

arstoppingdistance of v2 174

Lever(Pr6) 177

Spiderman(Pr54) 179

Bicyclingonhills,gears (Pr85) 181

hild safety in car (Pr87) 181

Rockclimber’srope(Pr90) 182

Ch pter8

Downhill ski runs 183

Rollercoaster 191,198

Pole vault 192-3

Toy dart gun 193

xiiAPPLICATI NS

Escape velocity fromEarthorMoon 201

Stair climbing power 202

Power needsofcar 202-3 ardiactreadmill(Prl04) 213

Ch pter9

Tennisserve 216

Rocket propulsion 219,236-8

Rifle recoil 220

Karate blow 221

Billiards/bowling 223,228

Nuclear collisions 225,228

Ballistic pendulum 226 onveyor belt 237

Gravitational slingshot (Prl05)246 rashworthiness (Prl09) 247

Asteroids, planets(PrllO,112,113) 247

Ch pter 10

Harddrive and bitspeed 253

Wrench/tireiron 256

Flywheel energy 266,281

Yo-yo 271 ar braking forces 272-3

Bicycleodometer calibration(Ql)275

Tightrope walker(Qll) 275

Triceps muscle and throwing (Pr38,39) 278 D speed(Pr84) 281

Bicyclegears(Pr89) 281

Ch pter 11

Rotatingskaters, divers 284,286,309

Neutronstar collapse 287

Auto wheel balancing 296

Topandgyroscope 299-300 oriolis effect 301-2 Hurricanes 302

SUV possible rollover(Pr67) 308

Triple axel jump(Pr79) 309

Bat’s“sweet spot”(Pr82) 310

Ch pter 12

Tragic collapse 311,323

Lever’s mechanical advantage313 antilever 315

Bicepsmuscle force 315

Humanbalancewith loads318

Trussesand bridges324-6,335

Architecture: arches anddomes327-8

Forces onvertebrae(Pr87) 337

Ch pter 13

Lifting water 345,348

Hydrauliclift, brakes 346

Pressuregauges 346-7

Hydrometer 351

Heliumballoonlift 352,368

Bloodflow 353,357,361

Airplane wings,lift 356

Sailingagainst the wind 357 Baseball curve 357

Bloodtothebrain, TIA 357

Bloodflowand heartdisease 359

Surface tension,capillarity359-60 Walking onwater 360

Pumpsandtheheart 361 Reynolds

Ch pter 15

Echolocation by animals 400 Earthquakewaves401,403,416

Ch pter 16

Distancefrom lightning

Autofocus camera

Wide rangeof human hearing

Loudspeakerresponse

Stringedinstruments

Wind instruments

Tuning with beats

Doppler blood flow meter

Sonar: sonicboom

Ultrasound medical imaging

sensor (Pr5)

pter 17

pter 18

Ch pter23

Breakdown voltage 612

Lightning rods, corona 612

RT, oscilloscopes, TV monitors 620-1,723

Photocell (Pr75) 626

Geiger counter(Pr83) 627

VandeGraaff (Pr84) 627,607

Ch pter24

apacitor uses

628,631

Very highcapacitance 631

omputer key 631

ameraflash 636

Heartdefibrillator 638

DRAM(PrlO,57) 644,647

Electrostatic aircleaner (Pr20) 645

MOS circuits(Pr53) 647

Ch pter25

Light bulb 651,653,660

Battery construction 653

Loudspeakerwires 659

Resistancethermometer 660

Heatingelements, bulbfilament 660

Why bulbs burnout at turnon661

Lightning bolt 662

Householdcircuits, shorts 662-3

Fuses, circuit breakers6623,747,776

Extensioncorddanger 663

Nervous system, conduction 669-70

Strain gauge (Pr 24) 673

Ch pter26

ar batterycharging, jumpstart686,687

RC applications: flashers, wipers 691

Heart pacemaker 692,787

Electrichazards 692-4

Propergrounding 693-4

Heart fibrillation 692

Meters, analog anddigital 695-7

Potentiometersand bridges (Pr)704,705

Ch pter27

ompass anddeclination 709

Aurora borealis 717

Motors,loudspeakers, galvonometers7201

Mass spectrometer 724-5

Electromagnetic pumping (Q14) 726

yclotron (Pr66) 731

Beamsteering(Pr67) 731

Ch pter28

oaxial cable 740,789

Solenoid switches: car starters, doorbell 747

ircuit breakers,magnetic747,776

Relay(Q16) 751

Atom trap(Pr73) 757

Ch pter29

Induction stove 762

EMblood-flow meter 765

Power plant generators 766-7 aralternators 768

Motoroverload 769

Airport metal detector 770

Eddy current damping 770

Transformers and uses, power770-3 ar ignition, bulbballast772,773

Microphone 775

Read/writeondisksand tape775

Digital coding 775

redit card swipe 776

Ground fault circuit interrupter (GF I) 776

Betatron(Pr55) 782

Search coil(Pr68) 783

Inductive battery charger (Pr81)784

Ch pter30

Spark plug 785

Pacemaker 787

Surge protector 792

LC oscillators, resonance 794,802 apacitorsasfilters 799

Loudspeakercross-over 799

Impedancematching 802-3

Three-phaseA 803

0value(Pr86,87) 810

Ch pter31

Antennas 824,831

Phonecall lagtime 825

Solar sail 829

Optical tweezers 829

Wireless: AM/FM, TV,tuning, cell phones, remotes 829-32

Ch pter32

How tall a mirrordo you need840-1 lose upand wide-view mirrors 842,849,859

Where youcan see yourselfin a concave mirror 848

Optical illusions 851,903

Apparentdepth in water 852

Rainbows 853 olors underwater 854

Prism binoculars 855

Fiberoptics in telecommunications855-6,865

Medical endoscopes 856

Highway reflectors(Pr86) 865

Ch pter33

Where youcan see a lens image 869 ameras, digital and film 878 ameraadjustments 879-80

Pixelsandresolution 881

Humaneye 882-5,892 orrective lenses 883-5 ontact lenses 885

Seeing underwater 885

Magnifying glass 885-7

Telescopes 8879,9312

Microscopes 890-1,931,933

Ch pter34

Bubbles, reflectedcolor 900,912-3 Mirages 903

olors in thin soap film, details912-3

Lens coatings 913-4

Multiplecoating(Pr52) 919

Ch pter35

Lens and mirrorresolution 929-30

HubbleSpace Telescope 930

Eyeresolution, useful magnification 930,932-3

Radiotelescopes 931

Telescope resolution, Arule931

Spectroscopy 935-6

X-raydiffraction in biology 939

Polarizedsunglasses 942

L Dsliquidcrystal displays943-4

Skycolor 945

Ch pter36

Space travel 963

Global positioning system(GPS) 964

Ch pter37

Photocells 992

Photodiodes 992

Photosynthesis 993

Measuring bonedensity 995

Electron microscopes 1000

Ch pter38

Tunnelingthrougha QM barrier1038

Scanningtunneling electron microscope 1038-9

Ch pter39

Fluorescence analysis 1060

Fluorescent bulbs 1060

Phosphorescence, watch dials1061

Lasers 1061-5

DVD and D players 1063

Barcodes 1063

Laser surgery 1064

Holography 1064-5

Ch pter40

ellenergyactivationenergy,ATP 10757

Weak bonds in cells,DNA1077-8

Proteinsynthesis 1079-80

Transparency 1092

Semiconductor diodes, transistors 1094-8

Rectifier circuits 1096

LEDdisplays; photodiodes1096

Integratedcircuits( hips) 1098

Ch pter41

Smokedetectors 1114

arbon-14 dating 11223

Archeological, geological dating1123-4

Oldest Earth rocks andearliestlife1124

Ch pter42

Nuclear reactors and power plants 1138^40

Manhattan Project 1141

Stellar fusion 1142-3

Fusion energy reactors1131,1144-6

Biological radiation damage1146-7

Radiation dosimetry 1147-9

Radon 1148,1150

Human radiationexposure1148-9

Radiation sickness 1149

Radiation therapy 11501

Proton therapy 1151

Tracersin medicine and biology 1151-2

X-ray imaging 1153 AT scans 1153-5

Emission tomography:PET andSPET 1156

NMRand MRI 1156-9

Ch pter43

Antimatter 1174-5,1188

Ch pter44

Stars and galaxies 1194-9

Star evolution 1200-2

Supernovae 1201,1202,1203

Star distances 1194,1203^1

Black holes 1202,1208-9

urvedspace 1207-8

Big Bang 1212,1213-6

Evolution ofuniverse 1216-9

Darkmatterand darkenergy 1221-3

Preface

I wasmotivated from thebeginning towrite a textbookdifferent from othersthat present physics asa sequenceof facts,like a Sears catalog: “herearethefacts and you betterlearnthem.”Insteadof thatapproachin which topics arebegun formally anddogmatically, I havesought tobegineachtopicwithconcrete observations andexperiences studentscan relateto: start with specificsand only then goto thegreat generalizations and themoreformal aspectsofa topic, showing w y webelieve whatwe believe.This approachreflects how scienceisactuallypracticed.

Why FourthEdition?

Tworecenttrendsin physics texbooksaredisturbing: (1) theirrevisioncycles havebecomeshorttheyarebeingrevisedevery3or4years; (2) thebooksare gettinglarger, someover1500pages. I don’tsee how eithertrendcan beof benefittostudents. My response: (1) Ithas been8yearssincetheprevious editionofthisbook.(2) This bookmakesuseofphysics educationresearch, althoughit avoids thedetail a Professor may needtosay in classbut in a bookshuts downthereader. Andthisbookstill remainsamongtheshortest. Thisneweditionintroducessomeimportantnew pedagogictools. Itcontains new physics (such asin cosmology) andmanynewappealingapplications (list on previous page).Pages andpagebreakshavebeencarefully formattedtomakethe physicseasiertofollow: noturninga pagein themiddleof a derivation orExample. Greatefforts weremadeto makethebookattractive sostudents will want to read it. Some of thenewfeaturesarelistedbelow.

Wh t'sNew

C apter-OpeningQuestions :Each hapter begins witha multiple-choice question, whose responses include commonmisconceptions. Students areaskedtoanswer beforestartingthe hapter,togettheminvolved in thematerial andtoget any preconceivednotionsout onthetable. The issuesreappearlaterin the hapter, usually asExercises, afterthematerial has beencovered. The hapterOpening Questionsalsoshowstudentsthepowerandusefulness of Physics.

APPROACHparagrap in workedout numerical Examples.A short introductory paragraphbeforetheSolution, outlininganapproachandthestepswecan taketo getstarted. Brief NOTESaftertheSolution may remarkontheSolution, may give an alternateapproach, ormentionan application.

StepbyStepExamples: Aftermany ProblemSolvingStrategies(more than20in thebook),thenext Exampleisdonestep-by-step following precisely thestepsjust seen.

Exercises within thetext,afteran Exampleorderivation, give studentsachanceto see if theyhaveunderstoodenoughtoanswer a simple questionordo a simple calculation. Manyaremultiplechoice.

Greater clarity: No topic, noparagraphin this bookwas overlookedin thesearch toimprovetheclarity andconciseness ofthepresentation.Phrases andsentences thatmayslowdown theprincipalargument havebeeneliminated:keeptothe essentialsatfirst, give theelaborationslater.

F,y, B Vector notation,arrows: Thesymbols forvectorquantitiesinthetext andFigures now havea tiny arrowoverthem, sotheyaresimilar towhat wewriteby hand. Cosmological Revolution: Withgeneroushelpfromtopexpertsin thefield, readershavethelatestresults.

Page layout :morethanin thepreviousedition, seriousattentionhasbeenpaidto how each pageisformatted. Examples andallimportantderivations and argumentsareon facingpages. Studentsthendon’thavetoturnbackandforth. Throughout, readerssee, ontwo facingpages, an important sliceof physics. NewApplications'. L Ds, digital camerasandelectronicsensors( D, MOS), electrichazards,GF Is, photocopiers, inkjetandlaser printers, metaldetectors, underwatervision, curve balls, airplanewings,DNA, how we actually see images. (Turn backa pagetosee a longer list.)

Examplesmodified :moremathsteps arespelledout, andmanynewExamples added. About10%ofallExamples areEstimationExamples.

T isBookisS orter thanothercompletefull-servicebooks atthis level. Shorter explanationsareeasiertounderstandandmorelikelytoberead.

Content ndOrg niz tion lCh nges

• Rot tion l Motion: hapters10and11have beenreorganized. All of angular momentumisnow in hapter11.

• First l w ofthermodyn mics, in hapter19,has beenrewrittenandextended. The full form is given:AK +A U+ AEintQW, where internal energy is E te,and U ispotential energy;the form Q W iskept so that dWPdV.

• KinematicsandDynamics of ircular Motionarenow treatedtogetherin hapter5.

• Work andEnergy, hapters7and8,have beencarefully revised.

• Work donebyfriction isdiscussed now with energy conservation(energy terms duetofriction).

• haptersonInductanceandA ircuits havebeencombinedintoone: hapter30.

• Graphical Analysis andNumerical Integrationisa new optional Section 29. Problems requiringa computerorgraphingcalculator arefoundattheend of most hapters.

• Lengthofan objectisa script £ ratherthannormal /, which lookslike 1orI (moment ofinertia,current),asin FIIB. apital L isfor angular momentum,latentheat,inductance, dimensions of length [L\.

• Newton’slawofgravitationremainsin hapter6.Why? Becausethe 1/r2 lawistooimportanttorelegatetoa latechapterthatmightnotbecovered atalllatein thesemester; furthermore, itisoneof thebasic forces in nature. In hapter8we can treatrealgravitationalpotentialenergy andhavea fine instanceof using U JF• di.

• New Appendicesincludethedifferential formof Maxwell’sequationsand moreondimensional analysis.

• ProblemSolvingStrategies arefoundon pages30,58,64,96,102,125,166, 198,229,261,314,504,551,571,685,716,740,763,849,871,and913.

Org niz tion

Some instructors may find thatthisbookcontains morematerialthancan be coveredintheircourses.Thetextoffers greatflexibility.Sections markedwitha star*areconsideredoptional. Thesecontainslightlymoreadvancedphysics material,ormaterialnotusually coveredin typical courses and/orinteresting applications; theycontainnomaterialneededin later hapters(except perhapsin lateroptional Sections). Fora briefcourse, alloptionalmaterial couldbedropped aswellasmajorpartsof hapters1,13,16,26,30,and 35,andselectedpartsof hapters9,12,19,20,33,andthemodernphysics hapters. Topicsnotcoveredin classcan bea valuableresourceforlaterstudy by students. Indeed, this text can serve asa usefulreferenceforyearsbecauseof itswide rangeofcoverage.

VersionsofthisBook

Completeversion: 44 hapters including9 haptersof modern physics.

Cl ssicversion: 37 hapters includingoneeachonrelativity andquantumtheory.

3 Volumeversion: Available separatelyorpackagedtogether (Vols.1&2orall3Volumes): Volume1: hapters120on mechanics, including fluids, oscillations, waves, plusheat andthermodynamics.

Volume2: hapters2135on electricityandmagnetism, plus light andoptics.

Volume3: hapters3644on modernphysics:relativity, quantumtheory, atomicphysics, condensedmatter, nuclear physics,elementaryparticles, cosmologyandastrophysics.

Th nks

Manyphysics professorsprovidedinputordirectfeedbackoneveryaspectofthis textbook.Theyarelistedbelow, andI oweeachadebtofgratitude.

MarioAffatigato, oe ollege

Lorraine Allen,United States oastGuard Academy

ZavenAltounian, McGillUniversity

Bruce Barnett, Johns Hopkins University

MichaelBarnett, LawrenceBerkeleyLab

Anand Batra,Howard University

orneliusBennhold, George WashingtonUniversity

Bruce Birkett,University of aliforniaBerkeley

Dr.Robert Boivin,Auburn University

SubirBose,University of entral Florida

David Branning,Trinity ollege

Meade Brooks, ollin ounty ommunity ollege

Bruce Bunker, University of Notre Dame

Grant Bunker, IllinoisInstitute ofTechnology

Wayne arr, Stevens Institute of Technology

harles hiu,University ofTexasAustin

Robert oakley,University ofSouthern Maine

David urott, University ofNorth Alabama

BimanDas,SUNYPotsdam

Bob Davis,TaylorUniversity

KaushikDe,UniversityofTexasArlington

MichaelDennin,Universityof alifornia Irvine

KathyDimiduk, University of NewMexico

JohnDiNardo, Drexel University

ScottDudley,United StatesAirForceAcademy

JohnEssick,Reed ollege

assandraFesen, Dartmouth ollege

AlexFilippenko, University of aliforniaBerkeley

RichardFirestone,Lawrence BerkeleyLab

Mike Fortner, Northern Illinois University

Tom Furtak, oloradoSchoolof Mines

EdwardGibson, alifornia State University Sacramento JohnHardy,TexasA&M

J.Erik Hendrickson, University of Wisconsin Eau laire

Laurent Hodges,IowaState University

David Hogg,NewYork University

Mark Hollabaugh, Normandale ommunity ollege

AndyHollerman, University of Louisiana at Lafayette

WilliamHolzapfel,Universityof aliforniaBerkeley

BobJacobsen, University of aliforniaBerkeley

TerukiKamon, TexasA&M

Daryao Khatri,University of the District of olumbia JayKunze,IdahoState University

Jim LaBelle, Dartmouth ollege

M.A.K.Lodhi,TexasTech

Bruce Mason, University of Oklahoma

DanMazilu,VirginiaTech

Linda McDonald, North Park ollege

BillMcNairy,Duke University

RajMohanty,BostonUniversity

Giuseppe Molesini,Istituto Nazionale diOtticaFlorence

LisaK.Morris,WashingtonState University

BlaineNorum, University ofVirginia

Alexandria Oakes, Eastern MichiganUniversity

Michael Ottinger, MissouriWestern StateUniversity

LymanPage,Princeton andWMAP

BrucePartridge,Haverford ollege

R.Daryl Pedigo,University of Washington

Robert Pelcovitz,BrownUniversity

Vahe Peroomian, U LA

JamesRabchuk, Western IllinoisUniversity

MicheleRallis,OhioState University

Paul Richards, University of aliforniaBerkeley

Peter Riley,Universityof TexasAustin

LarryRowan, University of North arolina hapel Hill

indySchwarz,Vassar ollege

Peter Sheldon,Randolph-MaconWoman’s ollege

Natalia A. Sidorovskaia,University ofLouisiana at Lafayette

JamesSiegrist,U Berkeley,Director PhysicsDivision LBNL

George Smoot, University of aliforniaBerkeley

Mark Sprague,East arolina University

Michael Strauss,University of Oklahoma

LaszloTakac,University ofMaryland Baltimore o. FranklinD.Trumpy,Des MoinesArea ommunity ollege

RayTurner, lemsonUniversity

SomTyagi,Drexel University

JohnVasut,Baylor University

Robert Webb,TexasA&M

Robert Weidman,MichiganTechnologicalUniversity

EdwardA. Whittaker, StevensInstitute ofTechnology

JohnWolbeck,Orange ounty ommunity ollege

Stanley George Wojcicki,StanfordUniversity

EdwardWright, U LA

ToddYoung,WayneState ollege

WilliamYounger, ollegeofthe Albemarle HsiaoLing Zhou, Georgia State University

Iowespecial thankstoProf. BobDavisformuchvaluableinput,andespeciallyfor working outalltheProblems and producingtheSolutionsManual forallProblems, as well as forprovidingtheanswerstooddnumberedProblemsat theendofthis book. Manythanksalso toJ.ErikHendricksonwhocollaboratedwithBobDavisonthe solutions, andtotheteamtheymanaged(Profs. AnandBatra,MeadeBrooks,David urrott,BlaineNorum,Michael Ottinger,LarryRowan, RayTurner, JohnVasut, William Younger).Iamgrateful toProfs. JohnEssick, BruceBarnett,Robert oakley, BimanDas,MichaelDennin,KathyDimiduk,JohnDiNardo,ScottDudley, DavidHogg, indySchwarz, RayTurner,andSomTyagi, whoinspiredmanyof theExamples,Questions,Problems, andsignificant clarifications. rucialforrootingouterrors,as well asprovidingexcellentsuggestions, were Profs. KathyDimiduk,Ray Turner, andLorraineAllen.Ahugethankyoutothem andtoProf. GiuseppeMolesini forhis suggestions andhis exceptionalphotographs foroptics.

For hapters 43and44onParticlePhysicsand osmologyand Astrophysics, I wasfortunateto receive generous input fromsome of thetopexperts inthefield, to whomIoweadebt of gratitude:George Smoot,Paul Richards, Alex Filippenko, JamesSiegrist,and WilliamHolzapfel (U Berkeley), LymanPage (Princeton and WMAP), EdwardWright(U LAandWMAP), and MichaelStrauss(University ofOklahoma).

I especiallywishto thank Profs.HowardShugart, hair FrancesHeilman, and manyothers at theUniversity of alifornia, Berkeley, PhysicsDepartment for helpfuldiscussions,andfor hospitality. Thanks alsoto Prof.TitoArecchi and others at the IstitutoNazionale diOttica, Florence,Italy.

Finally,I amgratefulto themany peopleat Prentice Hall withwhomI worked on thisproject, especiallyPaul orey, KarenKarlin, hristian Botting, John hristiana, and SeanHogan.

The finalresponsibilityfor allerrors lieswithme.Iwelcomecomments, corrections,and suggestions as soon as possibleto benefit students forthe next reprint.

email:Paul. orey@Pearson.com

Post:Paul orey

OneLake Street

Upper Saddle River, NJ 07458

AbouttheAuthor

Douglas .Giancoli obtained hisBAinphysics(summacumlaude) fromthe University of alifornia, Berkeley,hisMSinphysicsat theMassachusettsInstitute ofTechnology,andhisPhD inelementary particle physicsat theUniversityof ali fornia, Berkeley.He spent 2yearsasapost-doctoral fellowat U Berkeley’sVirus labdevelopingskillsinmolecular biologyand biophysics.Hismentors include Nobel winnersEmilioSegreand Donald Glaser.

He hastaughtawiderange of undergraduatecourses,traditional aswellas innovative ones,and continues toupdatehis texbooksmeticulously,seeking waysto betterprovide an understanding of physicsfor students.

Doug’sfavorite spare-time activityistheoutdoors, especiallyclimbingpeaks (hereonadolomite summit, Italy). Hesaysclimbing peaks islikelearning physics: it takes effort andtherewards are great.

OnlineSupplements(p rti l list)

M steringPhysics™(www.m steringphysics.com) is sophistic tedonlinetutoring ndhomeworksystemdevel opedspeci llyforcoursesusingc lculusb sedphysics. Origin llydevelopedbyD vidPritch rd ndcoll bor tors t MIT, M steringPhysics providesstudents with individu lized online tutoringbyrespondingtotheirwrong nswers ndproviding hints for solving multistep problems when theyget stuck. It gives them immedi te nduptod te ssessment oftheirprogress, nd showswheretheyneedtopr cticemore.M steringPhysics provides instructors with f st nd effective w y to ssign tried nd-testedonlinehomework ssignments th t comprise r nge of problemtypes.Thepowerfulpost ssignmentdi gnostics llow instructors to ssessthe progressoftheir cl ss s whole s well s individu lstudents, ndquicklyidentify re s ofdifficulty.

WebAssign(www.web ssign.com) CAPA ndLONCAPA(www.lonc p .org)

Student Supplements (p rti llist)

StudentStudyGuide&SelectedSolutionsM nu l(VolumeI: 013-2273241, VolumesU&III:013-227325X)by Fr nk Wolfs StudentPocketComp nion(0132273268)byBim nD s

Tutori lsin IntroductoryPhysics(0-130970697) byLilli nC. McDermott, PeterS.Sch ffer, ndthePhysics

Educ tionGroup t theUniversityofW shington Physlet®Physics(0131019694) byWolfg ngChristi n ndM rioBelloni

R nking T skExercises in Physics, Student Edition (0-13-144851-X) by Thom s L. OKum , D vid P.M loney, ndCurtis J.Hieggelke

E&MTIPERs:Electricity&M gnetismT sks Inspiredby Physics Educ tionRese rch(0-131854992)byCurtisJ.Hieggelke, D vidP.M loney, StephenE. K nim, ndThom sL. OKum

M them ticsforPhysicswithC lculus(0-131913360) byBim nD s

ToStudents

HOWTOSTUDY

1.Readthe hapter. Learnnewvocabularyandnotation. Trytorespondto questionsandexercises astheyoccur.

2. Attendallclassmeetings. Listen. Take notes, especially aboutaspects youdo notrememberseeing inthebook. Askquestions(everyoneelse wants to, but maybeyouwillhavethecourage).You willget moreoutof classif youread the hapterfirst.

3. Readthe hapteragain, paying attentiontodetails.Follow derivationsand workedout Examples. Absorbtheirlogic.Answer Exercises andasmanyof theendof hapterQuestions asyoucan.

4. Solve 10to20endof hapterProblems (ormore), especially thoseassigned. IndoingProblemsyoufind outwhatyou learnedandwhat you didn’t.Discuss themwith otherstudents. Problemsolvingisoneofthegreatlearning tools. Don’tjustlookfora formulaitwon’tcutit.

NOTESONTHEFORMATANDPROBLEM SOLVING

1.Sections markedwith a star(*)areconsidered option l. They can beomitted withoutinterruptingthemainflowoftopics. No latermaterialdepends on themexceptpossibly laterstarredSections. They maybefuntoread, though.

2. The customary conventions areused: symbols for quantities(such as m for mass) areitalicized, whereasunits(such asm formeter)arenotitalicized. Symbolsforvectorsareshown in boldface with a small arrowabove: F.

3. Few equationsarevalid in all situations. Wherepractical, the limit tions of importantequationsarestatedin squarebracketsnexttotheequation. The equationsthatrepresentthegreatlawsofphysics aredisplayed with a tan background, asarea fewotherindispensableequations.

4. Attheend of each hapter isa set of Problems whichare ranked asLevelI,II, or III, according to estimateddifficulty.Level I Problems areeasiest, Level IIare standardProblems, and Level IIIare“challenge problems.”These ranked Problems are arrangedbySection, butProblems fora givenSectionmay depend on earlier material too. Therefollowsa group ofGeneral Problems, whichare not arrangedbySection norrankedastodifficulty.Problems thatrelatetooptional Sectionsarestarred(*).Most hapters have 1or2 omputer/Numerical Problems at theend, requiring a computer orgraphing calculator. Answers to odd-numbered Problems are givenattheendofthebook.

5. Being able tosolve Problems isa crucial partoflearning physics, andprovides a powerful means for understandingtheconceptsandprinciples. Thisbook containsmanyaidstoproblemsolving: (a) workedout Ex mples andtheir solutions in thetext,whichshouldbestudied asan integral partofthetext; (b)someof theworked-outExamples are Estim tionEx mples, whichshow howroughorapproximateresultscan beobtainedeven if thegiven dataare sparse (see Section 16);(c)special ProblemSolvingStr tegies placed throughout thetext tosuggest a step-by-stepapproachtoproblemsolving for a particulartopicbutrememberthatthebasicsremainthesame; most ofthese“Strategies”arefollowed by an Examplethatissolved by explicitlyfollowingthesuggested steps; (d) special problem-solvingSections; (e) “ProblemSolving”marginal notes whichrefertohintswithin thetextfor solvingProblems; (f) Exercises withinthetextthatyoushouldwork outimme diately, andthencheck your responseagainst theanswergivenatthebottomof thelast pageofthat hapter; (g)theProblems themselvesat theendofeach hapter(point 4above).

6.Conceptu l Ex mples posea questionwhich hopefullystartsyoutothinkand come upwith a response.Give yourselfa littletimetocome upwith yourown responsebeforereadingtheResponsegiven.

7.M th review,plussome additional topics,arefound inAppendices. Useful data, conversion factors, and math formulas arefound inside the front and back covers.

Vectors

A gener l vector

result nt vector (sum) is slightly thicker components of nyvector red shed

Displ cement (D,?)

Velocity (v)

Acceler tion ( )

Force(F)

Forceon second or third object ins me figure

Momentum (pormv)

Angul r momentum (L)

Angul r velocity (to)

Torque(f)

Electricfield(E)

M gneticfield(B)

Electricity nd m gnetism

Electric field lines

Equipotenti llines

Electric circuit symbols

Wire, with switch S S

Resistor vwv

M gneticfieldlines C p citor 1 T

Electric ch rge(+) +)or•+

Inductor /nnnp

Electric ch rge() Qor • B ttery l T

Ground x

Optics

Light r ys

Other

Energylevel

Object ( tom, etc.)

Me surementlines h1.0mH

ImageoftheEarthfromaNASAsatellite.Thesky appearsblackfromoutinspacebecause therearesofewmoleculesto reflectlight(Whythesky appearsbluetouson Earthhastodowith scatteringoflightby moleculesofthe atmosphere,as

•*4 Chapter35.) Notethe stormoff thecoast ofMexico.

Introduction, Measurement,Estimating

CHAPTER-OPENING QUESTIONGuess now!

Suppose youwantedtoactually measuretheradius oftheEarth,at least roughly, ratherthantaking otherpeople’sword forwhat itis.Whichresponsebelow describes thebestapproach?

( ) Give up;itisimpossibleusing ordinarymeans.

(b) Useanextremelylong measuringtape.

(c) Itisonly possible by flying highenough to see theactual curvature ofthe Earth.

(d) Usea standardmeasuringtape, a step ladder,anda large smoothlake.

(e) Usea laseranda mirroron theMoonorona satellite.

\Westart eac C apter wit aQuestion, like t eone above. Tryto answerit rig t away.Dontworry aboutgetting t erig t answernowt eideaisto getyourpreconceivednotions outont etable.Ift ey are misconceptions, weexpect t em tobe cleared up as youreadt eC apter. Youwill usuallygetanot er c anceatt eQuestion later int eC apter w ent eappropriatematerial asbeen covered. T ese C apter-OpeningQuestions willalso elp youto see t epowerand usefulness ofp ysics. ]

CONTENTS

11The N tureof Science

12Models,Theories, ndL ws

13Me surement nd Uncert inty; Signific nt Figures

14Units, St nd rds, nd theSI System

15ConvertingUnits

16OrderofM gnitude: R pidEstim ting

:17Dimensions ndDimension l An lysis

(b)

FIGURE11( )ThisRom n queductw sbuilt2000ye rs go ndstillst nds,(b)TheH rtford CivicCentercoll psedin1978, just twoye rs fteritw sbuilt.

Physicsisthemost basicofthesciences.Itdealswith thebehavior and structure of matter. The fieldof physicsis usuallydivided into classicalp ysics whichincludesmotion,fluids,heat, sound, light,electricityand magnetism; and modem p ysics whichincludesthetopicsof relativity,atomicstructure, condensedmatter, nuclearphysics,elementaryparticles,and cosmologyand astrophysics. Wewillcoverall these topicsinthisbook, beginningwithmotion (ormechanics, asit is often called)and endingwiththemost recentresults in ourstudy of thecosmos. Anunderstandingof physics iscrucial foranyonemaking acareerin science or technology. Engineers, forexample, must know how to calculate the forces within astructureto design it sothatit remains standing(Fig.1la).Indeed, in hapter12 wewillsee a workedoutExampleofhowasimple physicscalculationoreven intuitionbasedonunderstandingthephysics offorceswouldhave saved hundredsoflives(Fig.1lb).Wewillsee many examples inthisbookofhow physics isuseful in manyfields,andin everyday life.

1—1The N tureofScience

The principal aimofall sciences, including physics, isgenerallyconsidered to be thesearchfor orderinourobservations oftheworld aroundus.Many people thinkthatscience isa mechanical process ofcollecting factsanddevising theories. But it isnotsosimple.Scienceisacreative activitythatinmany respects resem blesothercreative activitiesof thehumanmind.

Oneimportant aspectofscience is observ tion ofevents, whichincludes the designandcarrying outofexperiments. Butobservation and experiment require imagination, for scientists canneverinclude everything inadescriptionofwhat theyobserve. Hence, scientists must makejudgmentsaboutwhat isrelevant in theirobservationsandexperiments. onsider, for example, how twogreat minds, Aristotle(384-322 b .c.) and Galileo (1564-1642), interpretedmotionalongahorizontal surface.Aristotle notedthatobjects givenan initial pushalong theground(oron a tabletop)always slowdown andstop. onsequently, Aristotleargued thatthenaturalstateofan object istobeat rest. Galileo, inhisreexaminationofhorizontalmotion inthe 1600s,imaginedthatif frictioncouldbeeliminated, an object given aninitial pushalong ahorizontalsurfacewouldcontinuetomove indefinitelywithout stopping. Heconcluded thatforan object to beinmotionwasjustasnatural asfor ittobeat rest. Byinventing anewapproach,Galileo founded ourmodernviewof motion( hapters2,3,and4),and hedid sowith a leapof theimagination. Galileo madethisleapconceptually,without actually eliminating friction.

Observation, withcarefulexperimentation and measurement, isone sideofthe scientificprocess.Theothersideistheinvention orcreation oftheoriestoexplain and ordertheobservations. Theories are never derived directlyfrom observations. Observations may help inspire atheory, and theories are accepted or rejectedbased on theresultsof observation and experiment.

The great theories of science maybecompared,ascreative achievements, with greatworks ofartorliterature. Buthow does science differ from theseother creative activities?Oneimportant difference isthatsciencerequires testing of its ideas ortheoriesto see if theirpredictionsareborneoutby experiment.

Althoughthetesting oftheories distinguishes sciencefrom othercreative fields,itshouldnotbeassumed thatatheoryis“proved”by testing. Firstofall,no measuring instrument isperfect, soexact confirmation isnotpossible. Further more, it isnot possible totesta theoryinevery singlepossible circumstance. Hence atheorycannot be absolutely verified.Indeed, thehistory ofsciencetellsusthat long-held theories can bereplacedby newones.

1-2Models,Theories, ndL ws

Whenscientists aretrying tounderstandaparticularset of phenomena, theyoften makeuse of a model. Amodel, in thescientist’ssense,isakindofanalogy or mentalimage ofthephenomenaintermsof something we arefamiliar with. One

exampleisthewavemodel oflight. We cannotsee waves oflight aswe canwater waves. Butitisvaluabletothinkof light asmadeupofwaves becauseexperiments indicatethatlight behavesin manyrespectsaswaterwaves do.

The purposeof a model istogiveusanapproximatemental orvisual picture something toholdontowhenwecannot see what actually ishappening.Models oftengiveus a deeperunderstanding:theanalogy toa known system (forinstance, water wavesin theabove example)cansuggest newexperimentstoperformandcan provideideas aboutwhat otherrelatedphenomenamight occur.

Youmaywonder what thedifferenceisbetweenatheoryanda model.Usually a model isrelativelysimple andprovidesastructuralsimilarity tothephenomena beingstudied. A theory isbroader, moredetailed, andcan givequantitativelytestable predictions,oftenwith greatprecision.

Itisimportant,however, nottoconfusea modeloratheorywiththereal system orthephenomenathemselves.

Scientistsgive thetitle l w tocertainconcise butgeneralstatementsabout how naturebehaves(thatenergy isconserved, forexample). Sometimesthestate menttakestheformofarelationshiporequationbetweenquantities(suchas Newton’ssecondlaw, Fma ).

Tobecalled a law, astatementmust befoundexperimentallyvalid overa wide rangeof observedphenomena.Forlessgeneralstatements,theterm principle is oftenused(such asArchimedes’principle).

Scientific lawsaredifferentfrompolitical lawsin thatthelatterare prescriptive :theytellus howwe oughttobehave. Scientific lawsare descriptive : theydonotsay hownature s ould behave, butratheraremeanttodescribehow nature does behave. Aswiththeories, laws cannotbetestedintheinfinitevariety ofcases possible. Sowe cannotbesurethatany law isabsolutelytrue.We usethe term“law”whenitsvalidityhas beentestedoverawide rangeofcases, andwhen anylimitations andtherangeofvalidityareclearlyunderstood.

Scientists normallydotheirresearchasif theacceptedlawsandtheorieswere true. Buttheyareobliged tokeepanopenmindin case newinformationshould alterthevalidity ofany given lawortheory.

1-3Me surement ndUncert

inty; Signific ntFigures

Inthequesttounderstandtheworldaroundus, scientistsseektofind relationships among physicalquantitiesthatcanbemeasured.

Uncert inty

Reliable measurements areanimportant partof physics.But no measurementis absolutelyprecise. There isanuncertainty associated witheverymeasurement. Among the most important sourcesofuncertainty, other thanblunders,arethelimited accuracy of every measuring instrumentandtheinabilitytoreadaninstrument beyond some fractionofthesmallestdivisionshown. For example,ifyou were touse a centimeter ruler tomeasurethewidth of a board(Fig.12), theresult could beclaimed tobe precise toabout 0.1cm(1mm), thesmallestdivisionontheruler, although half of this value might beavalidclaimaswell.The reasonisthat it isdifficult for theobserverto estimate (or interpolate)betweenthesmallest divisions.Furthermore, theruleritself may nothave beenmanufactured to anaccuracy very much better thanthis. Whengiving theresultof ameasurement, it isimportanttostatethe estim ted uncert inty in themeasurement. Forexample,thewidthof a boardmight be writtenas8.8±0.1cm. The ±0.1cm(“plus orminus 0.1cm”)representsthe estimateduncertaintyin themeasurement,so thattheactualwidthmost likely lies between8.7and8.9 cm.The percent uncert inty istheratioof theuncertainty tothemeasuredvalue, multipliedby100.Forexample, if themeasurementis8.8 andtheuncertaintyabout0.1cm, thepercentuncertaintyis

1%, wheremeans“isapproximatelyequalto.’

FIGURE12 Measuringthe width ofaboardwith acentimeter ruler. Theuncertaintyisabout±1 mm.

(a) (b)

FIGURE13 Thesetwocalculators showthewrongnumber ofsignificant figures.In(a),2.0was dividedby3.0. The correctfinalresultwould be0.67. In (b),2.5 was multiplied by 3.2.The correctresultis 8.0.

pPR BLEMS LVING

Significantfigurerule:

Numberofsignificantfiguresinfinal results ouldbesameast eleast significant input value

A AUTION

Calculators errwit significantfigures

IPR BLEIVIS LVING

Reportonlyt epropernumber of significantfiguresint efinalresult. Keepextradigitsduring t ecalculation

FIGURE14 Example1-1. A protractorusedtomeasureanangle.

Often the uncertainty ina measured value isnot specifiedexplicitly.In suchcases, the uncertainty isgenerally assumed tobeone or afew units inthe last digit specified. For example, if a length isgivenas8.8cm,theuncertainty isassumed to beabout 0.1cmor0.2cm.Itisimportant inthiscasethatyou donotwrite 8.80cm,forthis impliesan uncertainty on theorderof 0.01 cm;it assumesthatthelength isprobably between8.79cmand 8.81 cm,when actually you believe it isbetween 8.7and 8.9cm.

Signific ntFigures

The numberofreliablyknown digitsin anumberiscalled thenumberof signific ntfigures. Thus therearefoursignificant figures in thenumber23.21cm andtwo inthenumber0.062cm(thezeros inthelatteraremerelyplaceholders thatshow wherethedecimal pointgoes). Thenumberofsignificant figures may notalwaysbeclear. Take, forexample, thenumber80.Arethereoneortwo significantfigures? Weneedwords here:Ifwesayit is roug ly 80kmbetweentwo cities, thereisonlyonesignificant figure(the8)sincethezero ismerelya place holder. Ifthereisnosuggestionthatthe80isa roughapproximation, thenwe can often assume (as wewillinthis book)thatitis80km within an accuracy ofabout 1or2km, andthenthe80has two significant figures. Ifitisprecisely 80km, to within+0.1km, thenwe write80.0km(threesignificant figures).

When making measurements,orwhen doing calculations, you shouldavoidthe temptationtokeepmoredigitsin thefinal answer thanisjustified. For example, to calculate theareaof a rectangle 11.3 cmby 6.8cm, theresult ofmultiplicationwould be76.84cm2.Butthisanswer isclearlynotaccurateto0.01cm2,since(usingthe outerlimitsof theassumed uncertaintyfor eachmeasurement)theresult couldbe between11.2cm X 6.7cm75.04cm2and 11.4cm X 6.9cm78.66cm2.Atbest, wecanquote theanswer as77cm2, whichimplies an uncertainty ofabout 1or 2 cm2. The other two digits(in the number76.84 cm2)must bedropped because they are not significant.As a roughgeneral rule(i.e.,intheabsence ofa detailedconsideration of uncertainties), we can say that t efinalresultofa multiplication or division s ould aveonlyasmanydigits ast e numberwit t e least numberofsignificant figures used int ecalculation. Inourexample, 6.8cmhas theleastnumberofsignificant figures, namelytwo.Thus theresult76.84cm2needstoberoundedoff to77 cm2.

EXERCISEA Thearea ofarectangle4.5cm by 3.25cm is correctly given by (a) 14.625cm2; (b) 14.63cm2;(c)14.6cm2;(d)15cm2.

Whenadding orsubtractingnumbers,thefinal resultisno moreprecisethan theleast precise numberused. For example, theresultofsubtracting0.57from3.6 is3.0(andnot3.03).

Keep in mind whenyou use a calculatorthatallthedigitsit producesmaynot besignificant. Whenyoudivide 2.0by3.0,theproperanswer is0.67,andnotsome such thingas0.666666666.Digits shouldnotbequotedin a result, unless theyare trulysignificant figures. However, toobtainthemostaccurateresult,youshould normally keep one ormoreextrasignificant figures t roug outacalculation, and roundoffonlyint efinalresult. (With a calculator, you can keepallitsdigitsin intermediateresults.) Notealso thatcalculatorssometimes givetoofewsignificant figures. Forexample, whenyou multiply2.5 X 3.2,a calculatormaygivethe answer assimply 8.But theanswer isaccurate totwosignificant figures,sotheproper answeris8.0.See Fig.13.

C NCEPTUALEXAMPLE11|Significant figures.

Usinga protractor(Fig. 14), you measure an angle tobe 30°. (a) Howmany significant figures should you quotein thismeasurement?(b)Use a calculator tofind the cosine ofthe angleyou measured. RESP NSE (a) Ifyou lookata protractor,you willseethattheprecisionwith which youcan measureanangle isaboutonedegree(certainlynot0.1°). Soyou can quotetwo significant figures, namely, 30°(not30.0°). (b )If youentercos30° inyourcalculator,you willget a numberlike 0.866025403.However, theangle you enteredisknown onlytotwo significant figures, soitscosine iscorrectly given by 0.87;youmustroundyouranswertotwo significant figures.

|EXERCISEB Do0.00324and0.00056havethesamenumberof significantfigures?

Be careful nottoconfusesignificant figures with thenumberof decimalplaces.

EXERCISEC Foreachofthefollowingnumbers,statethenumberofsignificantfigures andthenumberof decimal places: {a) 1.23;(b) 0.123;(c)0.0123.

Scientific_Not tion

Wecommonly writenumbers in “powersoften,”or“scientific”notationfor instance36,900as3.69 X 104,or0.0021as2.1 X 103.Oneadvantageofscientific notationisthatitallowsthenumberofsignificant figures tobeclearly expressed. Forexample, it isnotclear whether36,900hasthree, four, orfive significant figures. With powersoftennotationtheambiguity can beavoided: ifthenumberis known tothreesignificant figures, we write3.69 X 104,butif itisknowntofour, we write3.690 X 104.

IEXERCISED Writeeachofthefollowinginscientificnotationandstatethenumberof |significant figuresforeach: (a) 0.0258,(b)42,300,(c)344.50.

PercentUncert intyversus Signific ntFigures

The significant figures rule isonlyapproximate, and in some cases may underestimate theaccuracy (oruncertainty) of the answer.Supposefor example we divide 97by 92: 97 1.05«1.1. 92

Both97and92havetwosignificant figures, sotherulesays togive theanswer as1.1.Yet thenumbers97and92bothimplyan uncertaintyof+1if noother uncertaintyisstated.Now92+ 1and97+1bothimplyanuncertaintyof about1%(1/92«0.011%).Butthefinal resulttotwosignificantfigures is1.1,withanimplieduncertaintyof+0.1,whichisanuncertaintyof 0.1/1.1 «0.110%.Inthiscaseitisbettertogive theansweras1.05(which is threesignificant figures).Why? Because1.05impliesanuncertaintyof+0.01 which is0.01/1.05 «0.011%,justliketheuncertaintyintheoriginal numbers92and97.

SUGGESTION: Usethesignificant figures rule, butconsiderthe%uncer taintytoo, andaddan extradigitif it gives a morerealisticestimateofuncertainty.

Approxim tions

Muchofphysics involves approximations,oftenbecausewedonothavethe means tosolve a problemprecisely. For example, wemay choosetoignoreair resistanceorfrictionindoinga Problemeventhoughtheyarepresentinthereal world,andthenourcalculationisonly an approximation.IndoingProblems,we shouldbeawareofwhat approximationswearemaking,andbeawarethatthe precisionofouranswer maynotbenearlyasgood asthenumberofsignificant figures given in theresult.

Accur cyversus Precision

There isa technical difference between “precision” and “accuracy.” Predsion in a strict sense refersto therepeatability ofthemeasurementusinga giveninstrument. For example, if you measurethewidthof a boardmany times, getting results like8.81cm, 8.85cm,8.78cm,8.82cm(interpolating betweenthe0.1 cmmarks asbest aspossible eachtime), you couldsaythemeasurementsgivea precision a bit betterthan0.1 cm. Accur cy refers tohowclosea measurement istothetruevalue.For example, if the rulershowninFig.12wasmanufacturedwith a 2%error,the accuracy ofits measurementoftheboard’swidth(about8.8cm)would beabout2%of8.8cmor about +0.2 cm.Estimated uncertainty ismeanttotakebothaccuracyand precision into account.

1—4Units, St nd rds, nd the SISystem

TABLE 1-1 SomeTypical

(orDist nce)

Neutronorproton (di meter)

Atom (di meter)

Virus[seeFig. l5 ]

Sheetofp per (thickness)

Fingerwidth

Footb llfieldlength

Heightof Mt.Everest [seeFig.l5b]

E rthdi meter

E rthtoSun

E rthtone restst r

E rthtone restg l xy

E rthtof rthest

g l xyvisible

( pproxim te)

FIGURE15Somelengths:

( )viruses( bout107 mlong) tt cking cell;(b)Mt. Everests heightisontheorderof104 m (8850 m, tobeprecise).

The measurementof any quantityismaderelativetoa particularstandardor unit, andthis unitmustbespecified along with thenumerical valueofthequantity. For example, wecan measurelengthin Britishunitssuch asinches, feet, ormiles,orin themetricsystem in centimeters, meters,orkilometers. Tospecifythatthelength ofa particularobjectis18.6ismeaningless. The unit must begiven; for clearly, 18.6metersisvery different from18.6inches or18.6millimeters.

Forany unitweuse,such asthemeterfor distanceorthesecond for time, we needtodefinea st nd rd which defines exactly how longonemeteroronesecond is.Itisimportantthatstandardsbechosen thatarereadilyreproduciblesothat anyoneneedingtomakea very accuratemeasurementcan refertothestandardin thelaboratory.

Length

The first trulyinternationalstandardwas the meter (abbreviatedm) establishedas thestandardof length by theFrenchAcademyofSciencesin the1790s.Thestan dardmeterwasoriginally chosentobeoneten-millionthofthedistancefromthe Earth’sequatortoeitherpole,fandaplatinumrodtorepresentthislengthwas made. (Onemeteris, veryroughly, thedistancefromthetipofyournosetothetip ofyour finger, with armandhandstretchedouttotheside.) In1889, themeterwas definedmorepreciselyasthedistancebetweentwofinelyengravedmarksona particularbarofplatinumiridiumalloy.In1960,toprovide greaterprecision and reproducibility, themeter wasredefinedas1,650,763.73wavelengths of a particular orangelight emittedbythegaskrypton-86.In1983themeterwasagain redefined, this timein termsof thespeedof light (whosebestmeasuredvalue intermsof the olderdefinitionofthemeterwas299,792,458m/s,withan uncertaintyoflm/s). The newdefinition reads: “Themeteristhelengthofpathtraveledby light in vacuumduring a timeinterval of1/299,792,458ofa second.”*

Britishunitsoflength(inch,foot,mile) arenowdefinedin termsofthe meter. The inch(in.) isdefinedasprecisely2.54centimeters(cm; 1cm0.01m). Otherconversionfactorsaregiven in theTableontheinside ofthefrontcover of thisbook.Table 11presentssometypical lengths, fromverysmall tovery large,roundedoff tothenearestpoweroften. See also Fig.15.[Notethatthe abbreviationforinches (in.) istheonlyonewitha period,todistinguishitfrom theword“in”.]

Time

The standard unit of time isthe second (s).Formany years, thesecond wasdefined as 1/86,400ofa mean solar day(24h/day X 60min/h X 60s/min86,400s/day). Thestandardsecond isnow defined morepreciselyintermsofthefrequency of radiation emittedby cesiumatomswhen theypassbetween twoparticular states. [Specifically,onesecondisdefined asthetime requiredfor 9,192,631,770periods of thisradiation.] Thereare,by definition, 60sin oneminute (min) and60minutes in onehour(h). Table12presents a range ofmeasuredtime intervals, roundedoffto thenearestpower of ten.

M ss

The standardunitof m ss isthe kilogr m (kg). Thestandardmass isa particular platinumiridiumcylinder, keptat theInternationalBureauof Weightsand MeasuresnearParis,France,whose mass isdefinedasexactly 1kg.Arangeof masses ispresentedinTable13.[Forpracticalpurposes, 1kgweighs about 2.2poundson Earth.]

tModern me surements ofthe E rth’scircumference reve l th t the intended length isoffby bout one-fiftieth of1%.Notb d!

*Thenewdefinition ofthe meter h sthe effectofgiving the speedoflightthe ex ct v lue of 299,792,458m/s.

(a)

TABLE 12SomeTypical TimeIntervals

TimeInterv l Seconds( pproxim te)

Lifetimeofveryunst blesub tomicp rticle

Lifetimeofr dio ctiveelements

Lifetimeofmuon

Timebetweenhum nhe rtbe ts Oned y Oneye r

TABLE 13SomeMasses

Whendealingwithatoms andmolecules, weusuallyusethe unified tomic m ssunit (u). Intermsofthekilogram, lu1.6605 X 1027kg.

Thedefinitions of otherstandardunitsforotherquantitieswillbegiven aswe encountertheminlater hapters. (Precise values of this andothernumbersare giveninsidethefront cover.)

UnitPrefixes

Inthemetric system, thelarger andsmaller units aredefined in multiples of 10from thestandardunit, and thismakes calculation particularly easy.Thus1kilometer (km) is1000m, 1centimeterisifem, 1millimeter(mm) isor ^cm,andsoon. Theprefixes “centi-,”“kilo-,”andothersare listed inTable14and can beapplied notonly tounitsoflengthbuttounitsofvolume, mass,orany othermetricunit. Forexample, a centiliter(cL) is^liter(L)>and a kilogram (kg) is1000grams (g).

Systems ofUnits

Whendealingwith thelawsandequationsofphysics it isveryimportanttouse a consistentset of units.Severalsystems of unitshave beenin useovertheyears. Today themostimportantisthe Systeme Intern tion l (French forInternational System), whichisabbreviatedSI.InSIunits, thestandardoflengthisthemeter, thestandardfortimeisthesecond, andthestandardformass isthekilogram. This system usedtobecalled theMKS(meterkilogramsecond) system.

Asecondmetricsystem isthe cgssystem, in whichthecentimeter,gram, and second arethestandardunitsof length, mass,andtime, asabbreviatedinthetitle. The Britishengineeringsystem hasasitsstandardsthefoot forlength, thepound for force, andthesecond for time.

Weuse SI unitsalmost exclusivelyinthis book.

B se versusDerivedQu ntities

Physicalquantities can bedividedinto twocategories: basequantities and derived quantities. Thecorresponding units for these quantitiesare called baseunits and derived units. A b sequ ntity must bedefined interms of a standard. Scientists, inthe interest of simplicity,want thesmallest number of base quantities possibleconsistent witha fulldescription of thephysicalworld. Thisnumber turns outto beseven,and those used in theSIare given inTable1-5. All other quantities can be defined in terms ofthese sevenbase quantities/and hence arereferredto as derivedqu ntities. An example of a derived quantity is speed, which is defined as distance dividedbythe time it takes to travel thatdistance.ATableinsidethefront cover listsmany derived quantities and their units interms of base units.To define anyquantity,whetherbase or derived, wecan specifya rule or procedure, and thisiscalledan oper tion l definition.

trTheonly exceptions refor ngle(r di ns—see Ch pter8) ndsolid ngle (ster di n). Nogener l greement h s beenre ched stowhether these reb se orderived qu ntities.

TABLE 14Metric (SI)Prefixes

PrefixAbbrevi

V 1(T6 n no n KT9 pico P 1(T12 femto f 1(T15 tto KT18

zepto z 1(T21 yocto y KT24 fju, is theGreek lettermu.

TABLE 15

SIBaseQuantitiesandUnits

Qu ntity

Lengthmeterm

Time seconds

M ss kilogr m kg

Electric current mpere A

Temper turekelvinK

Amount of subst ncemolemol

Luminous intensityc ndel cd

0PHYSICSAPPLIED

T eworld’stallestpeaks

FIGURE 16Theworlds second highestpe k,K2,whosesummitis consideredthemostdifficultof the 8000ers.K2isseenherefrom thenorth(Chin ).

TABLE16

The8000mPeaks

Pe k Height(m)

Mt.Everest 8850

K2 8611

K ngchenjung 8586

Lhotse 8516

M k lu 8462

ChoOyu 8201

Dh ul giri 8167

M n slu 8156

N ng P rb t 8125

Ann purn 8091

G sherbrumI 8068

Bro dPe k 8047

G sherbrumII 8035

Shish P ngm 8013

1—5ConvertingUnits

Anyquantitywemeasure,such as alength,aspeed,oranelectriccurrent,consists ofanumber and aunit. Oftenwe aregivenaquantityinonesetofunits, butwe wantitexpressedinanothersetofunits. Forexample, supposewe measurethata tableis21.5incheswide, andwewanttoexpressthisincentimeters.Wemustusea conversion f ctor, which inthiscaseis(bydefinition)exactly 1in. 2.54 cm or, writtenanotherway, 12.54cm/in.

Since multiplyingbyonedoesnotchangeanything, thewidthofourtable, incm, is 21.5 inches(21.5 X ^2.54^^54.6 cm.

Notehowtheunits(inches in this case) cancelled out. ATable containingmanyunit conversionsis foundinside thefront cover ofthis book.Let’sconsider some Examples.

EXAMPLE12The8000mpeaks.

Thefourteentallestpeaksintheworld (Fig. 16andTable16)arereferredtoas “eightthousanders,”meaningtheir summitsareover8000mabovesealevel. Whatistheelevation,infeet,ofan elevationof8000m?

APPR ACH We needsimply toconvertmeterstofeet,andwecanstartwiththe conversionfactor1in. 2.54 cm, whichisexact.Thatis,1in. 2.5400 cm to anynumberofsignificant figures, becauseitis defined tobe.

S LUTI N Onefootis12in., so we canwrite

cm

1 ft (12is.)(2.54J30.48 cm0.3048m,

whichisexact. Notehowtheunitscancel (coloredslashes). We canrewritethis equationtofindthenumberoffeetin1meter:

lm aUs 3'28084ft

We multiplythisequationby8000.0(tohavefivesignificantfigures):

8000.0m(8000.0l .)^3.28084;^26,247ft.

Anelevationof8000mis26,247ftabovesealevel.

N TE We couldhavedonetheconversionall inoneline: annum 26OT«.

Thekeyistomultiplyconversionfactors,eachequaltoone(1.0000), andto makesuretheunitscancel.

EXERCISEEThere reonly14eightthous ndmeterpe ksintheworld(seeEx mple12), ndtheirn mes ndelev tions regiveninT ble16. They re llintheHim l y moun t inr ngeinIndi ,P kist n,Tibet, ndChin .Determinetheelev tionoftheworlds threehighestpe ksinfeet.

EXAMPLE 13 Apartmentarea. You haveseen a niceapartmentwhose floorareais880squarefeet(ft2).Whatisits areain squaremeters?

APPR ACH Weusethesame conversionfactor, 1in. 2.54 cm,butthis time wehavetouse ittwice.

S LUTI N Because lin. 2.54cm 0.0254m, then lft2(12in.)2(0.0254m/in.)2 0.0929m2.So880ft2(880ft2)(0.0929m2/ft2)«82m2.

N TE Asa ruleofthumb,anareagiven inft2isroughly10times thenumberof squaremeters(moreprecisely, about10.8 X).

EXAMPLE14 Speeds. Wherethepostedspeed limit is55miles perhour (mi/hormph), what isthis speed (a) inmeterspersecond (m/s)and(b )in kilometersperhour(km/h)?

APPR ACH Weagainusetheconversionfactor1in.2.54cm, andwe recall thatthereare5280ft in a mile and12inchesin a foot; also,onehourcontains (60min/h) X (60s/min)3600 s/h.

S LUTI N (a) Wecan write1mile as 1mi(5280ir)( 2.54 jGirr1m 'TRv./ \100jGfTf 1609m. We also knowthat1hourcontains3600s,so 'mi. 55 h 55 ir 1609 1JT m mL J V3600 s 25“, s

wherewe roundedofftotwo significant figures. (b) Now weuse 1mi 1609m 1.609 km; then

55 h 55 mi. 1.609 km 'mi km 88 .

N TE Eachconversionfactor isequal toone. You can lookupmost conversion factorsinthe Table inside thefrontcover.

EXERCISEFWould drivertr veling t15 m/sin 35mi/hzonebeexceedingthespeed limit?

Whenchanging units, youcanavoid makingan errorintheuse ofconversion factorsby checking thatunitscancel outproperly. For example, inourconversion of1 mi to1609m in Example14 (a), if wehadincorrectlyusedthefactor (n^) insteadof(ujoSn),thecentimeterunitswould nothave cancelledout; we would not have endedupwith meters.

1—6OrderofM gnitude:R pidEstim ting

Wearesometimesinterestedonly in anapproximatevaluefora quantity. This mightbebecausean accuratecalculationwouldtakemoretimethanitisworth orwouldrequireadditionaldatathatarenotavailable. Inothercases,we may wanttomakea roughestimatein ordertocheckanaccuratecalculationmade ona calculator,tomakesurethatnoblundersweremadewhenthenumbers wereentered. ^

jPR BLEMS LVING Conversionfactors1

\PR BLEMS LVING Unitconversioniswrongifunitsdo notcancel

Aroughestimateismadeby roundingoff all numberstoonesignificant figure \\ PR BLEMS LVING andits powerof10,andafterthecalculationismade, again only onesignificant Howtomakearoug estimate figure iskept.Such anestimateiscalledan order-of-m gnitudeestim te andcan beaccuratewithin a factorof10,andoftenbetter.Infact, thephrase“orderof magnitude”issometimes usedtorefersimplytothepowerof 10.

10 m r500 in (b)

FIGURE 17Ex mple15.( )How muchw terisinthisl ke?(Photoisof oneoftheR eL kesintheSierr Nev d ofC liforni .)(b)Modelof thel ke s cylinder.[Wecouldgoone stepfurther ndestim tethem ssor weightof thisl ke.Wewillseel ter th tw terh s densityof1000 kg/m3, sothisl keh s m ssof bout (I03kg/m3)(l07m3) «1010 kg,whichis bout10billionkgor10millionmetric tons.(Ametrictonis1000kg, bout 2200 lbs,slightlyl rgerth n British ton, 2000lbs.)]

© PHYSICSAPPLIED EXAMPLE15

Estimatingt evolume(ormass)of alake; seealsoFig.17

PR BLEMS LVING

Use symmetryw enpossible

ESTIMATEIVolumeofalake.

Estimatehowmuchwater thereis inaparticularlake, Fig. l7a,whichisroughlycircular, about1km across, andyouguessithasanaveragedepthofabout10m.

APPR ACH Nolakeisa perfectcircle, norcanlakesbeexpectedtohavea perfectlyflatbottom.We areonlyestimatinghere.To estimatethevolume,we canusea simplemodelofthelakeas acylinder: wemultiplytheaveragedepth ofthelaketimesitsroughlycircularsurfacearea,asifthelakewereacylinder (Fig.l7b).

S LUTI N Thevolume V ofacylinderistheproductofits height timesthe areaof its base: V irr2, where r istheradiusof thecircularbase.fTheradius r is \ km500m, so thevolumeisapproximately

V irr2 M(10 m) X (3) X (5 X 102m)2m8 X 106m3«107m3, where tt wasroundedoffto3.So thevolumeisontheorderof107m3,ten millioncubicmeters.Becauseofall theestimatesthatwentintothiscalculation, theorderofmagnitudeestimate(l07m3)isprobablybettertoquotethanthe 8X 106m3figure.

N TE To expressourresultinU.S.gallons,weseeintheTableontheinside frontcoverthat1liter10-3m3« \ gallon.Hence,thelakecontains (8 X 106m3)(lgallon/4 X 103m3) « 2 X 109gallons ofwater.

EXAMPLE16ESTIMATEIThicknessofa ofa pageofthisbook. page. Estimatethethickness

APPR ACH At first youmight thinkthata special measuringdevice, a micrometer (Fig. 18),isneededtomeasurethethicknessofonepagesinceanordinary rulerclearlywon’tdo. Butwecanuseatrickor, toputitinphysics terms, make useofa symmetry, wecanmakethereasonableassumptionthatall thepagesof thisbookareequalinthickness.

S LUTI N We canusearulertomeasurehundredsofpagesatonce. Ifyou measurethethicknessofthefirst500pagesofthisbook(page1topage500), youmightgetsomethinglike1.5 cm. Notethat500numberedpages, fFormul s like this forvolume, re , etc., refoundinside theb ckcoverofthisbook.

countedfrontandback, is250separatesheetsofpaper. Soonepagemusthave a thickness ofabout

1.5 cm 6X 103cm 6X 10“2mm, 250pages orless thana tenthofa millimeter(0.1 mm).

EXAMPLE17ESTIMATE-!Height bytriangulation. Estimatetheheight ofthebuildingshown inFig.19,by “triangulation,”withthehelpofa bus-stop poleanda friend.

APPR ACH Bystandingyour friend next tothepole, you estimate theheightof thepoletobe3m.Younext step awayfromthepole until thetopof thepoleisin line withthetopofthebuilding,Fig.l9a. You are 5ft6in.tall, soyoureyesare about1.5m abovetheground. Your friend istaller, andwhen she stretches out her arms, onehandtouches you,andtheothertouchesthepole, soyouestimate that distance as2m (Fig.l9a).Youthenpace offthedistance from thepoletothe baseof the building with big, 1-mlongsteps,and you get a total of 16steps or16m.

S LUTI N Nowyou draw,toscale, thediagramshown in Fig.l9busingthese measurements. You can measure, right on thediagram, thelast side ofthe triangletobeabout x 13 m. Alternatively, youcan usesimilar triangles to obtaintheheight x :

1.5 m 2m18m so 13 4m.

Finally youaddin youreye heightof1.5m abovethegroundtoget yourfinal result: thebuilding isabout15mtall.

EXAMPLE18 ESTIMATEIEstimatingtheradiusofEarth. Believeit or not,youcan estimatetheradius oftheEarthwithout havingtogointospace (see thephotographonpage1).Ifyouhave everbeenontheshoreofa large lake, youmayhavenoticedthatyoucannot see thebeaches, piers, orrocksat water levelacross thelakeontheoppositeshore. The lakeseems tobulgeoutbetween youandtheoppositeshorea good clue thattheEarthisround.Supposeyou climb a stepladderanddiscover thatwhenyoureyes are10ft (3.0m) abovethe water, youcan justsee therocks at waterlevel ontheoppositeshore. From a map, youestimatethedistancetotheoppositeshoreas d 6.1km. Use Fig.110with 3.0m toestimatetheradius R of theEarth.

APPR ACH Weusesimple geometry, including thetheoremofPythagoras, c2a2+b2, where c isthelengthofthehypotenuseofanyright triangle, and a and b arethelengthsoftheothertwo sides.

S LUTI N Fortheright triangleof Fig.110,thetwo sides aretheradius ofthe Earth R andthedistance d 6.1km6100m. Thehypotenuseisapproximatelythelength R+ , where 3.0m.By thePythagoreantheorem,

R2+d2 « (R+ )2 « R2+2 R+ 2.

We solve algebraically for R ,aftercancelling R2 onbothsides: d2 2 (6100m)2(3.0m)2 2 6.0m 6.2 X 106m 6200km.

N TE Precisemeasurementsgive6380km. But lookat yourachievement! Witha fewsimple roughmeasurementsandsimple geometry, youmadea goodestimate of the Earth’s radius.You didnot needto goout inspace,nor didyou need a verylong measuring tape. Nowyou know theanswer to the hapter-Opening Question on p. 1.

FIGURE18Ex mple16.Micrometer used for me suringsm ll thicknesses.

FIGURE19Ex mple17. Di gr ms rere llyuseful!

18m

FIGURE110Ex mple18,but nottosc le.Youc nseesm llrocks tw terlevelontheoppositeshore of l ke6.1kmwideifyoust ndon stepl dder.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.