Buy ebook Introduction to electric circuits, 9th edition cheap price

Page 1


Introduction to Electric Circuits, 9th Edition

Visit to download the full and correct content document: https://ebookmass.com/product/introduction-to-electric-circuits-9th-edition/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Electric Circuits 7th Edition Mahmood Nahvi

https://ebookmass.com/product/electric-circuits-7th-editionmahmood-nahvi/

Electric Circuits 1st Edition James S. Kang

https://ebookmass.com/product/electric-circuits-1st-editionjames-s-kang/

Electric Circuits, 12e 12th Edition James Nilsson

https://ebookmass.com/product/electric-circuits-12e-12th-editionjames-nilsson/

Fundamentals of Electric Circuits 6th Edition Charles Alexander

https://ebookmass.com/product/fundamentals-of-electriccircuits-6th-edition-charles-alexander/

eTextbook 978-0078028229

Fundamentals of Electric Circuits 6th Edition

https://ebookmass.com/product/etextbook-978-0078028229fundamentals-of-electric-circuits-6th-edition/

Fundamentals of electric circuits Sixth Edition

Alexander Charles K

https://ebookmass.com/product/fundamentals-of-electric-circuitssixth-edition-alexander-charles-k/

Schaum’s Outline of Electric Circuits 7th Edition

Mahmood Nahvi

https://ebookmass.com/product/schaums-outline-of-electriccircuits-7th-edition-mahmood-nahvi/

Fundamentals of Electric Circuits (International Student Edition) Charles K. Alexander

https://ebookmass.com/product/fundamentals-of-electric-circuitsinternational-student-edition-charles-k-alexander/

Introduction to Clinical Pharmacology 9th Edition

https://ebookmass.com/product/introduction-to-clinicalpharmacology-9th-edition/

andMATLABareusedthroughoutthetexttosolvevariouscircuitanalysisanddesignproblems.For example,PSpiceisusedinChapter5to findaTheveninequivalentcircuitandinChapter15torepresent circuitinputsandoutputsasFourierseries.MATLABisfrequentlyusedtoobtainplotsofcircuitinputs andoutputsthathelpustoseewhatourequationsaretellingus.MALABalsohelpsuswithsomelong andtediousarithmetic.Forexample,inChapter10,MATLABhelpsusdothecomplexarithmeticthat wemustdoinordertoanalyzeaccircuits,andinChapter14,MATLABhelpswiththepartialfraction requiredto fi ndinverseLaplacetransforms.

Ofcourse,there’smoretousingPSpiceandMATLABthansimplyrunningtheprograms.We payparticularattentiontointerpretingtheoutputofthesecomputerprogramsandcheckingittomake surethatitiscorrect.Frequently,thisisdoneinthesectioncalled “HowCanWeCheck...?” thatis includedineverychapter.Forexample,Section8.9showshowtointerpretandcheckaPSpice “TransientResponse,” andSection13.7showshowtointerpretandcheckafrequencyresponse producedusingMATLABorPSpice.

DesignExamples,aProblem-SolvingMethod,and

“HowCanWeCheck...?”

Sections

Eachchapterconcludeswithadesignexamplethatusesthemethodsofthatchaptertosolveadesign problem.Aformal five-stepproblem-solvingmethodisintroducedinChapter1andthenusedineach ofthedesignexamples.Animportantstepintheproblem-solvingmethodrequiresyoutocheck yourresultstoverifythattheyarecorrect.Eachchapterincludesasectionentitled “HowCanWe Check...? ” thatillustrateshowthekindofresultsobtainedinthatchaptercanbecheckedtoensure correctness.

KeyEquationsandFormulas

Youwill fi ndthatkeyequations,formulas,andimportantnoteshavebeencalledoutinashadedboxto helpyoupinpointcriticalinformation.

SummarizingTablesandFigures

Theproceduresandmethodsdevelopedinthistexthavebeensummarizedincertainkeytablesand fi gures.Studentswill fi ndthesetobeanimportantproblem-solvingresource.

Table1.5-1.Thepassiveconvention.

Figure2.7-1andTable2.7-1.Dependentsources.

Table3.10-1.Seriesandparallelsources.

Table3.10-1.Seriesandparallelelements.Voltageandcurrentdivision.

Figure4.2-3.Nodevoltagesversuselementcurrentsandvoltages.

Figure4.5-4.Meshcurrentsversuselementcurrentsandvoltages.

Figures5.4-3and5.4-4.Théveninequivalentcircuits.

Figure6.3-1.Theidealopamp.

Figure6.5-1.Acatalogofpopularopampcircuits.

Table7.8-1.Capacitorsandinductors.

Table7.13-2.Seriesandparallelcapacitorsandinductors.

Table8.11-1.First-ordercircuits.

Tables9.13-1,2,and3.Second-ordercircuits.

Table10.5-1.VoltageandcurrentdivisionforACcircuits.

Table10.16-1.ACcircuitsinthefrequencydomain(phasorsandimpedances).

Table11.5-1.PowerformulasforACcircuits.

Tables11.13-1and11.13-2.Coupledinductorsandidealtransformers.

Table13.4-1.Resonantcircuits.

Tables14.2-1and14.2-2.Laplacetransformtables.

Table14.7-1.s-domainmodelsofcircuitelements.

Table15.4-1.Fourierseriesofselectedperiodicwaveforms.

IntroductiontoSignalProcessing

Signalprocessingisanimportantapplicationofelectriccircuits.Thisbookintroducessignalprocessing intwoways.First,twosections(Sections6.6and7.9)describemethodstodesignelectriccircuitsthat implementalgebraicanddifferentialequations.Second,numerousexamplesandproblemsthroughout thisbookillustratesignalprocessing.Theinputandoutputsignalsofanelectriccircuitareexplicitly identi fiedineachoftheseexamplesandproblems.Theseexamplesandproblemsinvestigatethe relationshipbetweentheinputandoutputsignalsthatisimposedbythecircuit.

InteractiveExamplesandExercises

Numerousexamplesthroughoutthisbookarelabeledasinteractiveexamples.Thislabelindicatesthat computerizedversionsofthatexampleareavailableatthetextbook’scompanionsite,www.wiley.com/ svoboda.Figure2illustratestherelationshipbetweenthetextbookexampleandthecomputerized exampleavailableontheWebsite.Figure2a showsanexamplefromChapter3.Theproblempresented bytheinteractiveexampleshowninFigure2b issimilartothetextbookexamplebutdifferentinseveral ways:

Thevaluesofthecircuitparametershavebeenrandomized. Theindependentanddependentsourcesmaybereversed. Thereferencedirectionofthemeasuredvoltagemaybereversed.

Adifferentquestionisasked.Here,thestudentisaskedtoworkthetextbookproblembackward, usingthemeasuredvoltagetodeterminethevalueofacircuitparameter.

Theinteractiveexampleposesaproblemandthenacceptsandcheckstheuser’sanswer.Studentsare providedwithimmediatefeedbackregardingthecorrectnessoftheirwork.Theinteractiveexample choosesparametervaluessomewhatrandomly,providingaseeminglyendlesssupplyofproblems.This pairingofasolutiontoaparticularproblemwithanendlesssupplyofsimilarproblemsisaneffective aidforlearningaboutelectriccircuits.

TheinteractiveexerciseshowninFigure2c considersasimilar,butdifferent,circuit.Likethe interactiveexample,theinteractiveexerciseposesaproblemandthenacceptsandcheckstheuser’s answer.Studentlearningisfurthersupportedbyextensivehelpintheformofworkedexample problems,availablefromwithintheinteractiveexercise,usingtheWorkedExamplebutton.

VariationsofthisproblemareobtainedusingtheNewProblembutton.Wecanpeekatthe answer,usingtheShowAnswerbutton.Theinteractiveexamplesandexercisesprovidehundredsof additionalpracticeproblemswithcountlessvariations,allwithanswersthatarecheckedimmediately bythecomputer.

SupplementsandWebSiteMaterial

ThealmostubiquitoususeofcomputersandtheWebhaveprovidedanexcitingopportunitytorethink supplementarymaterial.Thesupplementsavailablehavebeengreatlyenhanced.

AdditionalstudentandinstructorresourcescanbefoundontheJohnWiley&Sonstextbook companionsiteatwww.wiley.com/college/svoboda.

measures a voltage in volts. What is the value of the resistance R in Ω?

ammeter measures a current in amps. What is the value of the current measured by the ammeter?

FIGURE2 (a)ThecircuitconsideredExample3.2-5.(b)Acorrespondinginteractiveexample.(c)Acorresponding interactiveexercise.

Student

InteractiveExamples

Theinteractiveexamplesandexercisesarepowerfulsupportresources forstudents.Theywerecreatedastoolstoassiststudentsinmasteringskillsandbuilding theircon fidence.TheexamplesselectedfromthetextandincludedontheWebgivestudents optionsfornavigatingthroughtheproblem.Theycanimmediatelyrequesttoseethesolutionor selectamoregradualapproachtohelp.Thentheycantrytheirhandatasimilarproblembysimply electingtochangethevaluesintheproblem.Bythetimestudentsattemptthehomework,theyhave builtthecon fidenceandskillstocompletetheirassignmentssuccessfully.It’savirtualhomework helper.

PSpiceforLinearCircuits ,availableforpurchase. WileyPLUS option.

Instructor

Solutionsmanual. PowerPointslides. WileyPLUS option.

WileyPLUS

PspiceforLinearCircuits isastudentsupplementavailableforpurchase.The PSpiceforLinear Circuits manualdescribesincarefuldetailhowtoincorporatethisvaluabletoolinsolvingproblems. Thismanualemphasizestheneedtoverifythecorrectnessofcomputeroutput.Noexampleis finished untilthesimulationresultshavebeencheckedtoensurethattheyarecorrect.

AcknowledgmentsandCommitmenttoAccuracy

Wearegratefultomanypeoplewhoseeffortshavegoneintothemakingofthistextbook.Weare especiallygratefultoourExecutiveEditorDanielSayre,ExecutiveMarketingManagerChrisRueland MarketingAssistantMarissaCarrollfortheirsupportandenthusiasm.WearegratefultoTimLindner andKevinHolmofWileyandBruceHobartofLaserwordsMainefortheireffortsinproducingthis textbook.WewishtothankSeniorProductDesignerJennyWelter,ContentEditorWendyAshenberg, andEditorialAssistantJessKnechtfortheirsigni ficantcontributionstothisproject.

Weareparticularlygratefultotheteamofreviewerswhocheckedtheproblemsandsolutionsto ensuretheiraccuracy:

AccuracyCheckers

KhalidAl-Olimat,OhioNorthern University

LisaAnneberg,Lawrence TechnologicalUniversity

HoraceGordon,UniversityofSouth Florida

LisimachosKondi,SUNY,Buffalo MichaelPolis,OaklandUniversity SannasiRamanan,RochesterInstitute ofTechnology

WilliamRobbins,UniversityofMinnesota JamesRowland,UniversityofKansas MikeShen,DukeUniversity ThyagarajanSrinivasan,Wilkes University

AaronStill,U.S.NavalAcademy HowardWeinert,JohnsHopkinsUniversity Xiao-BangXu,ClemsonUniversity JiannShiunYuan,Universityof CentralFlorida

Reviewers

RehabAbdel-Kader,GeorgiaSouthern University

SaidAhmed-Zaid,BoiseState University

FarzanAminian,TrinityUniversity

ConstantinApostoaia,Purdue UniversityCalumet

JonathonBagby,FloridaAtlanticUniversity

CarlottaBerry,TennesseeStateUniversity

KironBordoloi,UniversityofLouisville

MauroCaputi,HofstraUniversity

EdwardCollins,ClemsonUniversity

GlenDudevoir,U.S.MilitaryAcademy

MalikElbuluk,UniversityofAkron PrasadEnjeti,TexasA&MUniversity

AliEydgahi,UniversityofMaryland EasternShore

CarlosFigueroa,CabrilloCollege

WalidHubbi,NewJerseyInstituteofTechnology

BrianHuggins,BradleyUniversity

ChrisIanello,UniversityofCentralFlorida

SimoneJarzabek,ITTTechnicalInstitute

JamesKawamoto,MissionCollege

RasoolKenarangui,University ofTexasArlington

JumokeLadeji-Osias,MorganStateUniversity

MarkLau,UniversidaddelTurabo

SeyedMousavinezhad,Western MichiganUniversity

PhilipMunro,YoungstownStateUniversity

AhmadNa fisi,CaliforniaPolytechnicState University

ArnostNeugroschel,UniversityofFlorida TokunboOgunfunmi,SantaClaraUniversity

GaryPerks,CaliforniaPolytechnicState University,SanLuisObispo

OwePetersen,MilwaukeeSchoolofEngineering

RonPieper,UniversityofTexas,Tyler TeodoroRobles,MilwaukeeSchoolof Engineering

PeddaSannuti,RutgersUniversity

MarceloSimoes,ColoradoSchoolofMines

RalphTanner,WesternMichiganUniversity

TristanTayag,TexasChristianUniversity

Jean-ClaudeThomassian,Central MichiganUniversity

JohnVentura,ChristianBrothersUniversity AnnettevonJouanne, OregonStateUniversity

RaviWarrier,KetteringUniversity

GeraldWoel fl,MilwaukeeSchoolof Engineering

HewlonZimmer,U.S.Merchant MarineAcademy

CHAPTER4

MethodsofAnalysisofResistiveCircuits......................................................................................................114

4.1Introduction.........................................................................................................................114

4.2NodeVoltageAnalysisofCircuitswithCurrentSources....................................................115

4.3NodeVoltageAnalysisofCircuitswithCurrentandVoltageSources...............................121

4.4NodeVoltageAnalysiswithDependentSources................................................................126

4.5MeshCurrentAnalysiswithIndependentVoltageSources.................................................128

4.6MeshCurrentAnalysiswithCurrentandVoltageSources.................................................133

4.7MeshCurrentAnalysiswithDependentSources.................................................................137

4.8TheNodeVoltageMethodandMeshCurrentMethodCompared......................................139

4.9CircuitAnalysisUsingMATLAB.......................................................................................142

4.10UsingPSpicetoDetermineNodeVoltagesandMeshCurrents..........................................144

4.11HowCanWeCheck...?.................................................................................................146

4.12DesignExample PotentiometerAngleDisplay................................................................149

4.13Summary.............................................................................................................................152

CHAPTER5

5.4Thevenin’sTheorem............................................................................................................180

5.5Norton’sEquivalentCircuit.................................................................................................187

5.6MaximumPowerTransfer...................................................................................................191

5.7UsingMATLABtoDeterminetheTheveninEquivalentCircuit........................................194

5.8UsingPSpicetoDeterminetheTheveninEquivalentCircuit..............................................197

5.9HowCanWeCheck...?.................................................................................................200

6.4NodalAnalysisofCircuitsContainingIdealOperationalAmplifiers..................................223

6.5DesignUsingOperationalAmplifiers..................................................................................228

6.6OperationalAmplifi erCircuitsandLinearAlgebraicEquations.........................................233

6.7CharacteristicsofPracticalOperationalAmpli fiers.............................................................238

6.8AnalysisofOpAmpCircuitsUsingMATLAB..................................................................245

6.9UsingPSpicetoAnalyzeOpAmpCircuits.........................................................................247

6.10HowCanWeCheck...?.................................................................................................248

6.11DesignExample TransducerInterfaceCircuit..................................................................250

7.1Introduction.........................................................................................................................268

7.2Capacitors............................................................................................................................269

7.3EnergyStorageinaCapacitor.............................................................................................275

7.4SeriesandParallelCapacitors..............................................................................................278

7.5Inductors..............................................................................................................................280

7.6EnergyStorageinanInductor.............................................................................................285

7.7SeriesandParallelInductors................................................................................................287

7.8InitialConditionsofSwitchedCircuits................................................................................288

7.9OperationalAmpli fierCircuitsandLinearDifferentialEquations......................................292

7.10UsingMATLABtoPlotCapacitororInductorVoltageandCurrent..................................298

7.11HowCanWeCheck...?.................................................................................................300

7.12DesignExample

7.13Summary.............................................................................................................................304

8.5StabilityofFirst-OrderCircuits...........................................................................................340

8.6TheUnitStepSource...........................................................................................................342

8.7TheResponseofaFirst-OrderCircuittoaNonconstantSource.........................................346

8.8DifferentialOperators..........................................................................................................351

8.9UsingPSpicetoAnalyzeFirst-OrderCircuits.....................................................................352

9.1Introduction.........................................................................................................................378

9.2DifferentialEquationforCircuitswithTwoEnergyStorageElements...............................379

9.3SolutionoftheSecond-OrderDifferentialEquation

9.4NaturalResponseoftheUnforcedParallel

9.5NaturalResponseoftheCriticallyDampedUnforcedParallel

9.6NaturalResponseofanUnderdampedUnforcedParallel

9.7ForcedResponseofan

9.8CompleteResponseofan

11.11HowCanWeCheck...?.................................................................................................546

CHAPTER17

Two-PortandThree-PortNetworks.................................................................................................................840

17.1Introduction.........................................................................................................................840

17.2T-to-P TransformationandTwo-PortThree-TerminalNetworks.......................................841

17.3EquationsofTwo-PortNetworks........................................................................................843

17.4 Z and Y ParametersforaCircuitwithDependentSources...................................................846

17.5HybridandTransmissionParameters..................................................................................848

17.6RelationshipsBetweenTwo-PortParameters......................................................................850

17.7InterconnectionofTwo-PortNetworks...............................................................................852

17.8HowCanWeCheck...?.................................................................................................855

17.9DesignExample TransistorAmplifi er..............................................................................857

17.10Summary.............................................................................................................................859

APPENDIXA

APPENDIXB

APPENDIXC

CHAPTER1 ElectricCircuit Variables

INTHISCHAPTER

1.1 Introduction

1.2 ElectricCircuits andCurrent

1.3 Systemsof Units

1.4 Voltage

Powerand Energy

CircuitAnalysis andDesign

HowCanWe Check...?

1.1 Introduction

Summary Problems DesignProblems

Acircuitconsistsofelectricalelementsconnectedtogether.Engineersuseelectriccircuitstosolve problemsthatareimportanttomodernsociety.Inparticular:

1. Electriccircuitsareusedinthegeneration,transmission,andconsumptionofelectricpowerand energy.

2. Electriccircuitsareusedintheencoding,decoding,storage,retrieval,transmission,andprocessing ofinformation.

Inthischapter,wewilldothefollowing:

Representthecurrentandvoltageofanelec triccircuitelement,payingparticular attentiontothereferencedirectionofthecurrentandtothereferencedirectionorpolarityof thevoltage.

Calculatethepowerandenergysuppliedorreceivedbyacircuitelement.

Usethepassiveconventiontodeterminewhethertheproductofthecurrentand voltageofacircuitelementisthepowersuppliedbythatelementorthepowerreceivedby theelement.

Usescientificnotationtorepresentelectricalquantitieswithawiderangeofmagnitudes.

1.2 ElectricCircuitsandCurrent

Theoutstandingcharacteristicsofelectric itywhencomparedwithotherpowersourcesareits mobilityand fl exibility.Electricalenerg ycanbemovedtoanypointalongacoupleofwiresand, dependingontheuser ’ srequirements,convertedtolight,heat,ormotion.

An electriccircuit orelectricnetworkisaninterconnectionofelectricalelementslinked togetherinaclosedpathsothatanelectriccurrentmay flowcontinuously.

2 1.ElectricCircuitVariables

Considerasimplecircuitconsistingoftwowell-knownelectricalelements,abatteryanda resistor,asshowninFigure1.2-1.Eachelementisrepresentedbythetwo-terminalelement showninFigure1.2-2.Elementsaresometimescalleddevices,andterminalsaresometimescalled nodes.

FIGURE1.2-1 Asimplecircuit.

FIGURE1.2-2 Ageneraltwo-terminalelectricalelement withterminalsaandb.

Chargemay flowinanelectriccircuit. Currentisthetimerateofchangeofchargepastagiven point.Chargeistheintrinsicpropertyofmatterresponsibleforelectricphenomena.Thequantityof charge q canbeexpressedintermsofthechargeononeelectron,whichis 1.602 10 19 coulombs. Thus, 1coulombisthechargeon6.24 1018 electrons.Thecurrentthroughaspeci fiedareais definedbytheelectricchargepassingthroughtheareaperunitoftime.Thus, q isdefi nedasthecharge expressedincoulombs(C).

Charge isthequantityofelectricityresponsibleforelectricphenomena.

Thenwecanexpresscurrentas

Theunitofcurrentistheampere(A);anampereis1coulombpersecond.

Current isthetimerateof flowofelectricchargepastagivenpoint.

Notethatthroughoutthischapterweusealowercaseletter,suchas q,todenoteavariablethatisa functionoftime, q(t).Weuseanuppercaseletter,suchas Q,torepresentaconstant.

The flowofcurrentisconventionallyrepresentedasa flowofpositivecharges.Thisconvention wasinitiatedbyBenjaminFranklin,the firstgreatAmericanelectricalscientist.Ofcourse,we nowknowthatcharge flowinmetalconductorsresultsfromelectronswithanegativecharge. Nevertheless,wewillconceiveofcurrentasthe flowofpositivecharge,accordingtoaccepted convention.

b a

i1 i2

FIGURE1.2-3 Current inacircuitelement.

Figure1.2-3showsthenotationthatweusetodescribeacurrent.Therearetwopartsto thisnotation:avalue(perhapsrepresentedbyavariablename)andanassigneddirection.Asa matterofvocabulary,wesaythatacurrentexists in or through anelement.Figure1.2-3shows thattherearetwowaystoassignthedirectionofthecurrentthroughanelement.Thecurrent i1 istherateof flowofelectricchargefromterminalatoterminalb.Ontheotherhand,the current i2 isthe flowofelectricchargefromterminalbtoterminala.Thecurrents i1 and i2 are

0 i I t FIGURE1.2-4 Adirectcurrentofmagnitude I

similarbutdifferent.Theyarethesamesizebuthavedifferentdirections.Therefore, i2 isthenegative of i1 and

i1 ¼ i2

Wealwaysassociateanarrowwithacurrenttodenoteitsdirection.Acompletedescriptionofcurrent requiresbothavalue(whichcanbepositiveornegative)andadirection(indicatedbyanarrow).

Ifthecurrent flowingthroughanelementisconstant,werepresentitbytheconstant I,asshownin Figure1.2-4.Aconstantcurrentiscalleda directcurrent (dc).

A directcurrent (dc)isacurrentofconstantmagnitude.

Atime-varyingcurrent i(t)cantakemanyforms,suchasaramp,asinusoid,oranexponential,as showninFigure1.2-5.Thesinusoidalcurrentiscalledan alternatingcurrent (ac).

FIGURE1.2-5 (a)Arampwithaslope M.(b)Asinusoid.(c)Anexponential. I isaconstant.Thecurrent i iszerofor t < 0.

Ifthecharge q isknown,thecurrent i isreadilyfoundusingEq.1.2-1.Alternatively,ifthecurrent i isknown,thecharge q isreadilycalculated.NotethatfromEq.1.2-1,weobtain

where q(0)isthechargeat t ¼ 0.

E XAMPLE 1.2-1 CurrentfromCharge

Findthecurrentinanelementwhenthechargeenteringtheelementis q ¼ 12t C

where t isthetimeinseconds.

Try it yourself in WileyPLUS 4 1.ElectricCircuitVariables

Solution

Recallthattheunitofchargeiscoulombs,C.Thenthecurrent,fromEq.1.2-1,is i ¼ dq dt ¼ 12A

wheretheunitofcurrentisamperes,A. E XAMPLE 1.2-2 ChargefromCurrent

Findthechargethathasenteredtheterminalofanelementfrom t ¼ 0sto t ¼ 3swhenthecurrententeringthe elementisasshowninFigure1.2-6. 1 0123 –1 2 3 4 i (A) t (s)

FIGURE1.2-6 CurrentwaveformforExample1.2-2.

Solution

FromFigure1.2-6,wecandescribe i(t)as

UsingEq.1.2-2,wehave

Alternatively,wenotethatintegrationof i(t)from t ¼ 0to t ¼ 3ssimplyrequiresthecalculationoftheareaunder thecurveshowninFigure1.2-6.Then,wehave

EXERCISE1.2-1

Findthechargethathasenteredanelementbytime t when i ¼ 8t 2 4 t A, t 0.Assume q( t) ¼ 0for t < 0.

Answer: qtðÞ¼ 8 3 t 3 2t 2 C

EXERCISE1.2-2

Thetotalchargethathasenteredacircuitelementis q(t) ¼ 4sin3t Cwhen t 0,and q(t) ¼ 0when t < 0.Determinethecurrentinthiscircuitelementfor t > 0.

Answer: itðÞ¼ d dt 4sin3t ¼ 12cos3t A

1.3 SystemsofUnits

Inrepresentingacircuitanditselements,wemustdefineaconsistentsystemofunitsforthequantities occurringinthecircuit.Atthe1960meetingoftheGeneralConferenceofWeightsandMeasures,the representativesmodernizedthemetricsystemandcreatedtheSystemeInternationald’Unites, commonlycalledSIunits.

SI is SystemeInternationald’Unites ortheInternationalSystemofUnits.

Thefundamental,orbase,unitsofSIareshowninTable1.3-1.Symbolsforunitsthatrepresentproper (persons’)namesarecapitalized;theothersarenot.Periods arenotusedafterthesymbols,andthesymbolsdo nottakeonpluralforms.Thederivedunitsforother physicalquantitiesareobtainedbycombiningthe fundamentalunits.Table1.3-2showsthemorecommonderivedunitsalongwiththeirformulasintermsof thefundamentalunitsorprecedingderivedunits.Symbolsareshownfortheunitsthathavethem.

Table1.3-1 SIBaseUnits

Length meter m

Mass kilogram kg

Time second s

Electriccurrent ampere A

Thermodynamictemperature kelvin K

Amountofsubstance mole mol

Luminousintensity candela cd

Table1.3-2 DerivedUnitsinSI

QUANTITY

Acceleration linearmeterpersecondpersecond m/s2

linear meterpersecond

hertz

newton

pascal

Density kilogrampercubicmeter

joule

coulomb

Table1.3-3 SIPrefixes

Thebasicunitssuchaslengthinmeters(m),timeinseconds(s),andcurrentinamperes(A)can beusedtoobtainthederivedunits.Then,forexample,wehavetheunitforcharge(C)derivedfromthe productofcurrentandtime(A s).Thefundamentalunitforenergyisthejoule(J),whichisforcetimes distanceorN m.

ThegreatadvantageoftheSIsystemisthatitincorporatesadecimalsystemforrelatinglarger orsmallerquantitiestothebasicunit.Thepowersof10arerepresentedbystandardprefixesgivenin Table1.3-3.Anexampleofthecommonuseofaprefixisthecentimeter(cm),whichis0.01meter.

Thedecimalmultipliermustalwaysaccompanytheappropriateunitsandisneverwrittenbyitself. Thus,wemaywrite2500Was2.5kW.Similarly,wewrite0.012Aas12mA.

E XAMPLE 1.3-1 SIUnits

Amassof150gramsexperiencesaforceof100newtons.Findtheenergyorworkexpendedifthemassmoves 10centimeters.Also, findthepowerifthemasscompletesitsmovein1millisecond.

Solution

Theenergyisfoundas

Notethatweusedthedistanceinunitsofmeters.Thepowerisfoundfrom

EXERCISE1.3-1 Whichofthethreecurrents,

islargest?

Answer: i3 islargest.

Voltage

Thebasicvariablesinanelectricalcircuitarecurrentandvoltage.Thesevariables describethe fl owofchargethroughtheelementsofacircuitandtheenergyrequiredto causechargeto flow.Figure1.4-1showsthenotationweusetodescribeavoltage. Therearetwopartstothisnotation:avalue(perhapsrepresentedbyavariablename) andanassigneddirection.Thevalueofavoltagemaybepositiveornegative.The directionofavoltageisgivenbyitspolarities(þ, ).Asamatterofvocabulary,wesay thatavoltageexists across anelement.Figure1.4-1showsthattherearetwowaysto labelthevoltageacrossanelement.Thevoltage vba isproportionaltotheworkrequiredtomovea positivechargefromterminalatoterminalb.Ontheotherhand,thevoltage vab isproportionaltothe workrequiredtomoveapositivechargefromterminalbtoterminala.Wesometimesread vba as “the voltageatterminalbwithrespecttoterminala.” Similarly, vab canbereadas “thevoltageatterminala withrespecttoterminalb.” Alternatively,wesometimessaythat vba isthevoltagedropfromterminala toterminalb.Thevoltages vab and vba aresimilarbutdifferent.Theyhavethesamemagnitudebut differentpolarities.Thismeansthat vab ¼ vba

FIGURE1.4-1 Voltage acrossacircuitelement.

Whenconsidering vba,terminalbiscalledthe “þ terminal ” andterminalaiscalledthe “ terminal.” On theotherhand,whentalkingabout vab,terminalaiscalledthe “þ terminal ” andterminalbiscalledthe “ terminal.”

The voltage acrossanelementisthework(energy)requiredtomoveaunitpositivecharge fromthe terminaltothe þ terminal.Theunitofvoltageisthevolt,V.

Theequationforthevoltageacrosstheelementis v ¼ dw dq

1:4-1Þ

where v isvoltage, w isenergy(orwork),and q ischarge.Achargeof1coulombdeliversanenergyof 1jouleasitmovesthroughavoltageof1volt.

1.5 PowerandEnergy

Thepowerandenergydeliveredtoanelementareofgreatimportance.Forexample,theusefuloutput ofanelectriclightbulbcanbeexpressedintermsofpower.Weknowthata300-wattbulbdeliversmore lightthana100-wattbulb.

Power isthetimerateofsupplyingorreceivingpower.

Thus,wehavetheequation p ¼ dw dt

FIGURE1.5-1 (a)Theelement voltageandcurrent adhere tothe passiveconvention.(b)The elementvoltageandcurrent do notadhere tothepassive convention.

where p ispowerinwatts, w isenergyinjoules,and t istimeinseconds.Thepower associatedwiththecurrentthroughanelementis

FromEq.1.5-2,weseethatthepowerissimplytheproductofthevoltageacross anelementtimesthecurrentthroughtheelement.Thepowerhasunitsofwatts. Twocircuitvariablesareassignedto eachelementofacircuit:avoltageanda current.Figure1.5-1showsthattherearet wodifferentwaystoarrangethedirection ofthecurrentandthepolarityofthevoltage.InFigure1.5-1a,thecurrentisdirected fromthe þ towardthe ofthevoltagepolarity.Incontrast,inFigure1.5-1 b ,the currentisdirectedfromthe towardthe þ ofthevoltagepolarity.

First,considerFigure1.5-1a.Whenthecurrententersthecircuitelementatthe þ terminalofthevoltageandexitsatthe terminal,thevoltageandcurrentaresaidto “adheretothepassiveconvention.” Inthepassiveconvention,thevoltagepushesa positivechargeinthedirectionindicatedbythecurrent.Accordingly,thepower calculatedbymultiplyingtheelementvoltagebytheelementcurrent p ¼ vi

isthepower received bytheelement.(Thispowerissometimescalled “thepowerabsorbedbythe element” or “thepowerdissipatedbytheelement.”)Thepowerreceivedbyanelementcanbeeither positiveornegative.Thiswilldependonthevaluesoftheelementvoltageandcurrent.

Next,considerFigure1.5-1b.Herethepassiveconventionhasnotbeenused.Instead,thecurrent entersthecircuitelementatthe terminalofthevoltageandexitsatthe þ terminal.Inthiscase,the voltagepushesapositivechargeinthedirectionoppositetothedirectionindicatedbythecurrent. Accordingly,whentheelementvoltageandcurrentdonotadheretothepassiveconvention,thepower calculatedbymultiplyingtheelementvoltagebytheelementcurrentisthepower supplied bythe element.Thepowersuppliedbyanelementcanbeeitherpositiveornegative,dependingonthevalues oftheelementvoltageandcurrent.

Thepowerreceivedbyanelementandthepowersuppliedbythatsameelementarerelatedby

powerreceived ¼ powersupplied TherulesforthepassiveconventionaresummarizedinTable1.5-1.Whentheelementvoltage andcurrentadheretothepassiveconvention,theenergyreceivedbyanelementcanbedetermined

Becausethereferencedirectionsof v and i adheretothepassive convention,thepower p ¼ vi

isthepowerreceivedbythe element.

Becausethereferencedirectionsof v and i donotadheretothe passiveconvention,thepower p ¼ vi

isthepowersuppliedbythe element.

Table1.5-1 PowerReceivedorSuppliedbyanElement

fromEq.1.5-1byrewritingitas

Onintegrating,wehave

Iftheelementonlyreceivespowerfor t t0 andwelet t0 ¼ 0,thenwehave

E XAMPLE 1.5-1 ElectricalPowerandEnergy

FIGURE1.5-2 Theelement consideredinExample1.5-1.

LetusconsidertheelementshowninFigure1.5-2when v ¼ 8Vand i ¼ 25mA.Findthepowerreceivedbythe elementandtheenergyreceivedduringa10-msinterval.

Solution

InFigure1.5-2thecurrent i andvoltage v adheretothepassiveconvention.Consequentlythepower

:2W ¼ 200mW

isthepower received bythecircuitelement.Next,theenergyreceivedbytheelementis

XAMPLE 1.5-2 ElectricalPowerandthePassiveConvention

FIGURE1.5-3 Theelement consideredinExample1.5-2.

ConsidertheelementshowninFigure1.5-3.Thecurrent i andvoltage vab adheretothepassiveconvention,so i vab ¼ 2 4 ðÞ¼ 8W isthepower received bythiselement.Thecurrent i andvoltage vba donotadheretothepassiveconvention,so i vba ¼ 2 4 ðÞ¼ 8W

isthepower supplied bythiselement.Asexpected powerreceived ¼ powersupplied

Try it yourself in WileyPLUS

E XAMPLE 1.5-3 Power,Energy,andthePassiveConvention

ConsiderthecircuitshowninFigure1.5-4with v(

) ¼

e 8

Afor t 0.Both v(t)and i(t)are zerofor t < 0.Findthepowersuppliedbythiselementandtheenergysuppliedbytheelementoverthe fi rst100ms ofoperation.

v (t ) + i (t )

ab FIGURE1.5-4 TheelementconsideredinExample1.5-3.

Solution

Thepower

isthepower supplied bytheelementbecause v(t)and i(t)donotadheretothepassiveconvention.Thiselementis supplyingpowertothecharge fl owingthroughit.

Theenergysuppliedduringthe first100ms ¼ 0.1secondsis

E XAMPLE 1.5-4 EnergyinaThunderbolt

Theaveragecurrentinatypicallightningthunderboltis2 104 A,anditstypicaldurationis0.1s(Williams, 1988).Thevoltagebetweenthecloudsandthegroundis5 108 V.Determinethetotalchargetransmittedtothe earthandtheenergyreleased.

Solution

Thetotalchargeis

Thetotalenergyreleasedis

EXERCISE1.5-1 FigureE1.5-1showsfourcircuitelementsidenti fi edbytheletters A , B , C , and D

(a) Whichofthedevicessupply12W?

(b) Whichofthedevicesabsorb12W?

(c) Whatisthevalueofthepowerreceivedbydevice B?

(d) Whatisthevalueofthepowerdeliveredbydevice B?

(e) Whatisthevalueofthepowerdeliveredbydevice D?

Answers: (a) B and C, (b) A and D, (c) 12W, (d) 12W, (e) 12W

1.6 CircuitAnalysisandDesign

Theanalysisanddesignofelectriccircuitsaretheprimaryactivitiesdescribedinthisbookandarekey skillsforanelectricalengineer.The analysis ofacircuitisconcernedwiththemethodicalstudyofa givencircuitdesignedtoobtainthemagnitudeanddirectionofoneormorecircuitvariables,suchasa currentorvoltage.

Theanalysisprocessbeginswithastatementoftheproblemandusually includesagivencircuitmodel. Thegoalistodeterminethemagnitudeanddirectionofoneormorecircuitvariables,andthe finaltaskisto verifythattheproposedsolutionisindeedcorrect.Usually,theengineer firstidentifieswhatisknownandthe principlesthatwillbeusedtodeterminetheunknownvariable.

Theproblem-solvingmethodthatwillbeusedthroughoutthisbookisshowninFigure1.6-1. Generally,theproblemstatementisgiven.Theanalysisprocessthenmovessequentiallythrough the fivestepsshowninFigure1.6-1.First,wedescribethesituationandtheassumptions.Wealso recordorreviewthecircuitmodelthatisprovided.Second,westatethegoalsandrequirements,andwe

State the problem.

Describe the situation and the assumptions.

State the goals and requirements.

Generate a plan to obtain a solution of the problem.

Act on the plan.

Verify that the proposed

is indeed correct.

Correct Incorrect

Communicate the solution.

12 1.ElectricCircuitVariables

normallyrecordtherequiredcircuitvariabletobedetermined.Thethirdstepistocreateaplanthatwill helpobtainthesolutionoftheproblem.Typically,werecordtheprinciplesandtechniquesthatpertain tothisproblem.Thefourthstepistoactontheplanandcarryoutthestepsdescribedintheplan.The finalstepistoverifythattheproposedsolutionisindeedcorrect.Ifitiscorrect,wecommunicatethis solutionbyrecordingitinwritingorbypresentingitverbally.Iftheveri ficationstepindicatesthatthe proposedsolutionisincorrectorinadequate,thenwereturntotheplansteps,reformulateanimproved plan,andrepeatsteps4and5.

Toillustratethisanalyticalmethod,wewillconsideranexample.InExample1.6-1,weusethe stepsdescribedintheproblem-solvingmethodofFigure1.6-1. E XAMPLE 1.6-1 TheFormalProblem-SolvingMethod

Anexperimenterinalabassumesthatanelementisabsorbingpowerandusesavoltmeterandammetertomeasure thevoltageandcurrentasshowninFigure1.6-2.Themeasurementsindicatethatthevoltageis v ¼þ12Vandthe currentis i ¼ 2A.Determinewhethertheexperimenter’sassumptioniscorrect.

DescribetheSituationandtheAssumptions: Strictlyspeaking,theelement is absorbingpower.Thevalue ofthepowerabsorbedbytheelementmaybepositiveorzeroornegative.Whenwesaythatsomeone “assumesthat anelementisabsorbingpower,” wemeanthatsomeoneassumesthatthepowerabsorbedbytheelementispositive. Themetersareideal.Thesemetershavebeenconnectedtotheelementinsuchawayastomeasurethe voltagelabeled v andthecurrentlabeled i .Thevaluesofthevoltageandcurrentaregivenbythemeterreadings.

StatetheGoals: Calculatethepowerabsorbedbytheelementtodeterminewhetherthevalueofthepower absorbedispositive.

GenerateaPlan: Verifythattheelementvoltageandcurrentadheretothepassiveconvention.Ifso,the powerabsorbedbythedeviceis p ¼ vi.Ifnot,thepowerabsorbedbythedeviceis p ¼ vi

ActonthePlan: ReferringtoTable1.5-1,weseethattheelementvoltageandcurrentdoadheretothe passiveconvention.Therefore,powerabsorbedbytheelementis

p ¼ vi ¼ 12 2 ðÞ¼ 24W

Thevalueofthepowerabsorbedisnotpositive.

VerifytheProposedSolution: Let’sreversetheammeterprobesasshowninFigure1.6-3.Nowthe ammetermeasuresthecurrent i1 ratherthanthecurrent i,so i1 ¼ 2Aand v ¼ 12V.Because i1 and v donotadhereto thepassiveconvention, p ¼ i1 v ¼ 24Wisthepowersuppliedbytheelement.Supplying24Wisequivalentto absorbing 24W,thusverifyingtheproposedsolution.

FIGURE1.6-2 Anelementwithavoltmeterandammeter.

FIGURE1.6-3 ThecircuitfromFigure1.6-2withtheammeter probesreversed.

Design isapurposefulactivityinwhichadesignervisualizesadesiredoutcome.Itistheprocess oforiginatingcircuitsandpredictinghowthesecircuitswillful fillobjectives.Engineeringdesignisthe processofproducingasetofdescriptionsofacircuitthatsatisfyasetofperformancerequirementsand constraints.

Thedesignprocessmayincorporatethreephases:analysis,synthesis,andevaluation.The fi rst taskistodiagnose,define,andprepare thatis,tounderstandtheproblemandproduceanexplicit statementofgoals;thesecondtaskinvolves findingplausiblesolutions;thethirdconcernsjudgingthe validityofsolutionsrelativetothegoalsandselectingamongalternatives.Acycleisimpliedinwhich thesolutionisrevisedandimprovedbyreexaminingtheanalysis.Thesethreephasesarepartofa frameworkforplanning,organizing,andevolvingdesignprojects.

Design istheprocessofcreatingacircuittosatisfyasetofgoals.

Theproblem-solvingprocessshowninFigure1.6-1isusedinDesignExamplesincludedineach chapter.

1.7 HowCanWeCheck...?

Engineersarefrequentlycalledupontocheckthatasolutiontoaproblemisindeedcorrect.For example,proposedsolutionstodesignproblemsmustbecheckedtoconfirmthatallofthespeci ficationshavebeensatis fied.Inaddition,computeroutputmustbereviewedtoguardagainstdata-entry errors,andclaimsmadebyvendorsmustbeexaminedcritically.

Engineeringstudentsarealsoaskedtocheckthecorrectnessoftheirwork.Forexample, occasionallyjustalittletimeremainsattheendofanexam.Itisusefultobeablequicklytoidentify thosesolutionsthatneedmorework.

Thistextincludessomeexamplesthatillustratetechniquesusefulforcheckingthesolutionsof theparticularproblemsdiscussedinthatchapter.Attheendofeachchapter,someproblemsare presentedthatprovideanopportunitytopracticethesetechniques.

E XAMPLE 1.7-1

HowCanWeCheckPowerandthePassiveConvention?

Alaboratoryreportstatesthatthemeasuredvaluesof v and i forthecircuitelement showninFigure1.7-1are 5Vand2A,respectively.Thereportalsostatesthatthe powerabsorbedbytheelementis10W. Howcanwecheck thereportedvalueofthe powerabsorbedbythiselement?

Solution

FIGURE1.7-1 Acircuit elementwithmeasured voltageandcurrent.

Doesthecircuitelementabsorb 10Wor þ10W?ThevoltageandcurrentshowninFigure1.7-1donotadhereto thepassivesignconvention.ReferringtoTable1.5-1,weseethattheproductofthisvoltageandcurrentisthe powersuppliedbytheelementratherthanthepowerabsorbedbytheelement. Thenthepowersuppliedbytheelementis

p ¼ vi ¼ 5 ðÞ 2 ðÞ¼ 10W

Thepowerabsorbedandthepowersuppliedbyanelementhavethesamemagnitudebuttheoppositesign.Thus, wehaveveri fiedthatthecircuitelementisindeedabsorbing10W.

1.8D ESIGN E XAMPLE JetValveController

Asmall,experimentalspacerocketusesatwoelementcircuit,asshowninFigure1.8-1,to controlajetvalvefrompointofliftoffat t ¼ 0 untilexpirationoftherocketafteroneminute. Theenergythatmustbesuppliedbyelement1 fortheone-minuteperiodis40mJ.Element1isa batterytobeselected.

Itisknownthat i(t) ¼ De t/60 mAfor t 0, andthevoltageacrossthesecondelementis v2(t) ¼ Be t/60 Vfor t 0.Themaximummagnitude ofthecurrent, D,islimitedto1mA.Determine therequiredconstants D and B anddescribethe requiredbattery.

DescribetheSituationandtheAssumptions

1. Thecurrententerstheplusterminalofthesecondelement.

2. Thecurrentleavestheplusterminalofthe fi rstelement.

FIGURE1.8-1 Thecircuittocontrol ajetvalveforaspacerocket.

3. Thewiresareperfectandhavenoeffectonthecircuit(theydonotabsorbenergy).

4. Themodelofthecircuit,asshowninFigure1.8-1,assumesthatthevoltageacrossthetwoelementsis equal;thatis, v1 ¼ v2.

5. Thebatteryvoltage v1 is v1 ¼ Be t/60 Vwhere B istheinitialvoltageofthebatterythatwill dischargeexponentiallyasitsuppliesenergytothevalve.

6. Thecircuitoperatesfrom t ¼ 0to t ¼ 60s.

7. Thecurrentislimited,so D 1mA.

StatetheGoal

Determinetheenergysuppliedbythe firstelementfortheone-minuteperiodandthenselecttheconstants D and B Describethebatteryselected.

GenerateaPlan

First, find v1(t)and i(t)andthenobtainthepower, p1(t),suppliedbythe firstelement.Next,using p1(t), findthe energysuppliedforthe fi rst60s.

GOAL

Theenergy w1 forthe first60s w1 ¼ Z

ActonthePlan

p1(t) v1 and i knownexceptfor constants D and B

First,weneed p1(t),sowe fi rstcalculate p1 t ðÞ¼ iv1 ¼ De t /60 10 3 A Be t /60 V ¼ DBe t /30 10 3 W ¼ DBe t /30 mW

Problems 15

Second,weneedto find w1 forthe first60sas

Becausewerequire w1 40mJ,

Next,selectthelimitingvalue, D ¼ 1,toget

Thus,weselecta2-Vbatterysothatthemagnitudeofthecurrentislessthan1mA.

VerifytheProposedSolution

Wemustverifythatatleast40mJissuppliedusingthe2-Vbattery.Because i ¼ e t/60 mAand v2

2e t/60 V,the energysuppliedbythebatteryis

Thus,wehaveveri fiedthesolution,andwecommunicateitbyrecordingtherequirementfora2-Vbattery.

1.9 SUMMARY

Chargeistheintrinsicpropertyofmatterresponsiblefor electricphenomena.Thecurrentinacircuitelementisthe rateofmovementofchargethroughtheelement.Thevoltage acrossanelementindicatestheenergyavailabletocause chargetomovethroughtheelement.

Giventhecurrent, i,andvoltage, v,ofacircuitelement,the power, p,andenergy, w,aregivenby

Table1.5-1summarizestheuseofthepassiveconvention whencalculatingthepowersuppliedorreceivedbyacircuit element.

TheSIunits(Table1.3-1)areusedbytoday’sengineersand scientists.Usingdecimalprefixes(Table1.3-3),wemay simplyexpresselectricalquantitieswithawiderangeof magnitudes.

PROBLEMS

ProblemavailableinWileyPLUSatinstructor’sdiscretion.

Section1.2ElectricCircuitsandCurrent

P1.2-1

Thetotalchargethathasenteredacircuitelement is q(t) ¼ 1.25(1 e 5t)when t 0and q(t) ¼ 0when t < 0. Determinethecurrentinthiscircuitelementfor t 0.

Answer: itðÞ¼ 6 25e 5t A

P1.2-2

Thecurrentinacircuitelementis i(t) ¼ 4(1 e 5t)

Awhen t 0and i(t) ¼ 0when t < 0.Determinethetotal chargethathasenteredacircuitelementfor t 0.

Hint: q 0 ðÞ¼

Answer: qtðÞ¼ 4t þ 0 8e 5t 0 8Cfor t 0

P1.2-3 Thecurrentinacircuitelementis i(t) ¼ 4sin5t A when t 0and i(t) ¼ 0when t < 0.Determinethetotalcharge thathasenteredacircuitelementfor t 0.

Hint: q 0 ðÞ¼ Z 0 1 i t ðÞ d t ¼ Z 0 1 0 d t ¼ 0

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.