PDF Abstract algebra and famous impossibilities: squaring the circle, doubling the cube, trisecting

Page 1


Abstract Algebra and Famous Impossibilities: Squaring the Circle, Doubling the Cube, Trisecting an Angle, and Solving Quintic Equations 2nd Edition Sidney A. Morris

Visit to download the full and correct content document: https://ebookmass.com/product/abstract-algebra-and-famous-impossibilities-squaring -the-circle-doubling-the-cube-trisecting-an-angle-and-solving-quintic-equations-2nd-e dition-sidney-a-morris/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Elementary abstract algebra: examples and applications

Hill

https://ebookmass.com/product/elementary-abstract-algebraexamples-and-applications-hill/

Contemporary Abstract Algebra 9th Edition Joseph A.

Gallian

https://ebookmass.com/product/contemporary-abstract-algebra-9thedition-joseph-a-gallian/

A First Course in Abstract Algebra, 7th Edition

Fraleigh

https://ebookmass.com/product/a-first-course-in-abstractalgebra-7th-edition-fraleigh/

Linear Algebra and Partial Differential Equations T

Veerarajan

https://ebookmass.com/product/linear-algebra-and-partialdifferential-equations-t-veerarajan/

The Greeks: History, Culture, and Society 2nd internat. Edition Ian Morris

https://ebookmass.com/product/the-greeks-history-culture-andsociety-2nd-internat-edition-ian-morris/

How to Think about Abstract Algebra 1st Edition Lara Alcock

https://ebookmass.com/product/how-to-think-about-abstractalgebra-1st-edition-lara-alcock/

Power Electronic System Design: Linking Differential Equations, Linear Algebra, and Implicit Functions Keng C. Wu

https://ebookmass.com/product/power-electronic-system-designlinking-differential-equations-linear-algebra-and-implicitfunctions-keng-c-wu/

Twitch For Dummies, 2nd Edition Tee Morris

https://ebookmass.com/product/twitch-for-dummies-2nd-edition-teemorris/

A Brain for Innovation: The Neuroscience of Imagination and Abstract Thinking Min W. Jung

https://ebookmass.com/product/a-brain-for-innovation-theneuroscience-of-imagination-and-abstract-thinking-min-w-jung/

Undergraduate Texts in Mathematics

Readings in Mathematics

Sidney A. Morris

Arthur Jones

Kenneth R. Pearson

Abstract Algebra and Famous Impossibilities

Squaring the Circle, Doubling the Cube, Trisecting an Angle, and Solving Quintic Equations

Second Edition

UndergraduateTextsinMathematics

UndergraduateTextsinMathematics

ReadingsinMathematics

SeriesEditors

PamelaGorkin

BucknellUniversity,Lewisburg,PA,USA

JessicaSidman

MountHolyokeCollege,SouthHadley,MA,USA

AdvisoryBoard

ColinAdams, WilliamsCollege,Williamstown,MA,USA

JayadevS.Athreya, UniversityofWashington,Seattle,WA,USA

NathanKaplan, UniversityofCalifornia,Irvine,CA,USA

LisetteG.dePillis, HarveyMuddCollege,Claremont,CA,USA

JillPipher, BrownUniversity,Providence,RI,USA

JeremyTyson, UniversityofIllinoisatUrbana-Champaign,Urbana,IL,USA

UndergraduateTextsinMathematics aregenerallyaimedatthird-and fourth-yearundergraduatemathematicsstudentsatNorthAmericanuniversities. Thesetextsstrivetoprovidestudentsandteacherswithnewperspectivesandnovel approaches.Thebooksincludemotivationthatguidesthereadertoanappreciation ofinterrelationsamongdifferentaspectsofthesubject.Theyfeatureexamplesthat illustratekeyconceptsaswellasexercisesthatstrengthenunderstanding.

SidneyA.Morris ArthurJones

AbstractAlgebraandFamous Impossibilities

SquaringtheCircle,DoublingtheCube, TrisectinganAngle,andSolvingQuintic Equations

SecondEdition

With28Illustrations

SidneyA.Morris

DepartmentofMathematical andPhysicalSciences

LaTrobeUniversity

Bundoora,VIC,Australia

SchoolofEngineering

ITandPhysicalSciences

FederationUniversityAustralia

Ballarat,VIC,Australia

KennethR.Pearson(Deceased) VIC,Australia

ArthurJones(Deceased) VIC,Australia

ISSN0172-6056ISSN2197-5604(electronic)

UndergraduateTextsinMathematics

ISSN2945-5839ISSN2945-5847(electronic)

ReadingsinMathematics

ISBN978-3-031-05697-0ISBN978-3-031-05698-7(eBook) https://doi.org/10.1007/978-3-031-05698-7

MathematicsSubjectClassification:12-01,12F05,12E05,01A55

The firsteditionofthistextbookwaspublishedintheseriesUniversitext.

1st edition: © Springer-VerlagNewYork,Inc.1991

2nd edition: © TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringer NatureSwitzerlandAG2022

Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authorsortheeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.

ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

PrefacetotheSecondEdition

Itisthirtyyearssincethe firsteditionofthisbookappeared.Adistinguishing featureofthe firsteditionandthiseditionisthatthestudyofabstractalgebrais motivatedbydemonstratingthatitisexactlywhatwasneededtosolveseveral famousproblemswhichhadremainedunsolvedforover2,000years.

Inthe firsteditionweshowedhowthethreegeometricproblemsknownas DoublingtheCube,TrisectinganAngle,andSquaringtheCirclewere finally solved.Inthisedition,afamousfourthancientproblem,namelySolving PolynomialEquations,isaddedtothislist.

Inthelastchapterofthe firsteditionwetouchedbrieflyonhowtheonethousand yearoldcalculusproblemofIntegrationinClosedFormwhichdatesbackto NewtonandLeibniz,thefoundersofcalculus,wassolvedusingabstractalgebra.In thiseditiontheexplanationissignificantlyexpandedbyintroducingthekeyconceptofdifferential field.

That p andearetranscendentalnumberswasprovedinthe firstedition.Inthis editionexcitingadvancesintranscendentalnumbertheorywhichhaveoccurredin the130yearssinceLindemannprovedthat p istranscendentalareincluded.Ithank TabokaPrinceChalebgwaforadviceonthesectiononTranscendentalNumber Theory.

Asstudentswereverycomplimentaryaboutthegentlestyleofpresentationin the firstedition,everyattempthasbeenmadetomaintainthatinthisedition. Anotherfeatureofthiseditionistheinclusionofmuchmorehistoricalinformation. Thebibliographyhasalsobeengreatlyexpanded.

InseveralplacesinthebookthereareProofsbyContradiction.Tohighlight whenthistypeofproofisbeingusedtheword “suppose” isreservedforthe beginningofaproofbycontradiction.Inotherproofstheword “assume” appears ratherthan “suppose”

The firsteditiongrewoutofasecond-yearsubjectwhichArthurJones,Ken Pearson,andIhadtaughtformanyyearsatLaTrobeUniversityinMelbourne, Australia.Thissecondeditionisaimedatsimilarstudents.Butitshouldalsobe mentionedthattheknowledgeinthisbookwouldbebeneficialtofuture(and

current)highschoolteachers.Thelevelofthematerialalsomeansthatitis accessibletotalentedhighschoolstudents.

Theauthorsofthe firsteditionwereArthurJones,KenPearson,andme.Arthur andKendiedin2006and2015,respectively.Whilewritingthissecondedition,I missedthemgreatly eachhadagreatpassionforteachingandformathematics.

InpreparingthiseditionIwasassistedbytheadvicefromtheEditorsofthis Series.IamalsogratefultoSpringerwhosestaffprovidedaLaTeXversionofthe firsteditionasastartingpointforthesecondedition.Iamextremelygratefultothe SpringerMathematicsEditor,DrLorettaBartolini,whodisplayedmuchprofessionalismandpatience.

Lastbutnotleast,IthankmywifeElizabethforhercontinuedsupportoverfour decadesofmarriage.

Bundoora/Ballarat,AustraliaSidneyA.Morris March2022

PrefacetotheFirstEdition

Thefamousproblemsofsquaringthecircle,doublingthecube,andtrisectingan anglecapturedtheimaginationofbothprofessionalandamateurmathematiciansfor overtwothousandyears.Despitetheenormouseffortandingeniousattemptsby thesemenandwomen,theproblemswouldnotyieldtopurelygeometrical methods.Itwasonlythedevelopmentofabstractalgebrainthenineteenthcentury whichenabledmathematicianstoarriveatthesurprisingconclusionthatthese constructionsarenotpossible.

Inthisbookwedevelopenoughabstractalgebratoprovethattheseconstructionsareimpossible.Ourapproachintroducesalltherelevantconceptsabout fields inawaywhichismoreconcretethanusualandwhichavoidstheuseofquotient structures(andevenoftheEuclideanalgorithmfor findingthegreatestcommon divisoroftwopolynomials).Havingthegeometricalquestionsasaspecifi cgoal providesmotivationfortheintroductionofthealgebraicconceptsandwehave foundthatstudentsrespondveryfavourably.

Wehaveusedthistexttoteachsecond-yearstudentsatLaTrobeUniversityover aperiodofmanyyears,eachtimerefiningthematerialinthelightofstudent performance.

Thetextispitchedatalevelsuitableforstudentswhohavealreadytakena courseinlinearalgebra,includingtheideasofavectorspaceovera fi eld,linear independence,basisanddimension.Thetreatment,insuchacourse,of fi eldsand vectorspacesasalgebraicobjectsshouldprovideanadequatebackgroundforthe studyofthisbook.HencethebookissuitableforJunior/SeniorcoursesinNorth Americaandsecond-yearcoursesinAustralia.

Chapters1to6,whichdevelopthelinkbetweengeometryandalgebra,arethe coreofthisbook.Thesechapterscontainacompletesolutiontothethreefamous problems,exceptforprovingthat p isatranscendentalnumber(whichisneededto completetheproofoftheimpossibilityofsquaringthecircle).InChapter7 (Chapter 10 inthesecondedition)wegiveaself-containedproofthat p istranscendental.Chapter8(Chapter 11 inthesecondedition)containsmaterialabout fieldswhichiscloselyrelatedtothetopicsinChapters2–4,althoughitisnot requiredintheproofoftheimpossibilityofthethreeconstructions.Theshort

concludingChapter9(Chapter 12 inthesecondedition)describessomeotherareas ofmathematicsinwhichalgebraicmachinerycanbeusedtoproveimpossibilities.

WeexpectthatanycoursebasedonthisbookwillincludeallofChapters1–6and (ideally)atleastpassingreferencetoChapter9(Chapter 12 inthesecondedition). Wehaveoftentaughtsuchacoursewhichwecoverinaterm(abouttwentyhours). We finditessentialforthecoursetobepacedinawaythatallowstimeforstudents todoasubstantialnumberofproblemsforthemselves.Differentsemesterlength(or longer)coursesincludingtopicsfromChapters7and8(Chapters 11 and 12 inthe secondedition)arepossible.Thethreenaturalpartsoftheseare

(1)Sections7.1and7.2(Sections 10.1 and 10.2 inthesecondedition)(transcendenceofe),

(2)Sections7.3to7.6(10.3 to 10.6.14 inthesecondedition)(transcendenceof p), (3)Chapter8(Chapter 11 inthesecondedition).

Theseareindependentexcept,ofcourse,that(2)dependson(1).Possibleextensionstothebasiccoursearetoincludeone,twoorallofthese.Whilemost treatmentsofthetranscendenceof p requirefamiliaritywiththetheoryoffunctions ofacomplexvariableandcomplexintegrals,oursinChapter7(Chapter10inthe secondedition)isaccessibletostudentswhohavecompletedtheusualintroductory realcalculuscourse(fi rst-yearinAustraliaandFreshman/SophomoreinNorth America).HoweverinstructorsshouldnotethattheargumentsinSections7.3to7.6 (Sections 10.3 to 10.6.14 inthesecondedition)aremoredifficultanddemanding thanthoseintherestofthebook.

Problemsaregivenattheendofeachsection(ratherthancollectedattheend ofthechapter).Someofthesearecomputationalandothersrequirestudentstogive simpleproofs.

Eachchaptercontainsadditionalreadingsuitableforstudentsandinstructors. Wehopethatthetextitselfwillencouragestudentstodofurtherreadingonsome ofthetopicscovered.

Asinmanybooks,exercisesmarkedwithanasterisk areagoodbitharderthan theothers.Webelieveitisimportanttoidentifyclearlytheendofeachproofand weusethesymbol forthispurpose.

Wehavefoundthatstudentsoftenlackthemathematicalmaturityrequiredto writeorunderstandsimpleproofs.Ithelpsifstudentswritedownwheretheproofis heading,whattheyhavetoproveandhowtheymightbeabletoproveit.Because thisisnotpartoftheformalproof,weindicatethisexplorationbyseparatingitfrom theproofproperbyusingaboxwhichlookslike

Assumeweareaskedtoprovethatsomeresultistrueforeverypositive integer n.Wemight firstlookatsomespecialcasessuchas n ¼ 1, n ¼ 2, n ¼ 3.Wemayseethattheresultistrueinthesethreecases.Ofcoursethis doesnotmeanitistrueforallpositiveintegers n.Whilewhatwehavewritten maynotformpartofaformalproof,itmayneverthelessgiveusahinttohow toproceedtoprovethegeneralresult.

Experiencehasshownthatithelpsstudentstousethismaterialifimportant theoremsaregivenspeci ficnameswhichsuggesttheircontent.Wehaveenclosed thesenamesinsquarebracketsbeforethestatementofthetheorem.Weencourage studentstousethesenameswhenjustifyingtheirsolutionstoexercises.Theyoften finditconvenienttoabbreviatethenamestojusttherelevantinitials.(Forexample, thename “SmallDegreeIrreducibilityTheorem” canbeabbreviatedtoS.D.I.T.)

WeareespeciallygratefultoourcolleagueGaryDavis,whopointedtheway towardsamoreconcretetreatmentof fieldextensions(usingresidueringsrather thanquotientrings)andthusmadethecourseaccessibletoawiderclassofstudents.WearegratefultoErnieBowen,JeffBrooks,GrantCairns,MikeCanfell, BrianDavey,AlistairGray,PaulHalmos,PeterHodge,AlwynHoradam,Deborah King,MargaretMcIntyre,BernhardH.Neumann,KristenPearson,Suzanne Pearson,AlfvanderPoorten,BraileySims,EdSmithandPeterStacey,whohave givenushelpfulfeedback,madesuggestionsandassistedwiththeproofreading.

WethankDorothyBerridge,ErnieBowen,HelenCook,MargaretMcDonald andJudyStoreyforskilfulTeXingofthetextanddiagrams,andNormanGaywood forassistingwiththeindex.

April1991ArthurJones

SidneyA.Morris KennethR.Pearson

Introduction

0.1FourFamousProblems

Inthisbookwediscussfouroftheoldestproblemsinmathematics.Eachofthemis over2,000yearsold.Thefourproblemsareknownas:

[I]doublingthecube(orduplicatingthecube,ortheDelianproblem); [II]trisectinganarbitraryangle; [III]squaringthecircle(orquadratureofthecircle); [IV]solvingpolynomialequations.

ProblemIistoconstructacubehavingtwicethevolumeofagivencube. ProblemIIistodescribehoweveryanglecanbetrisected.ProblemIIIisthatof constructingasquarewhoseareaisequaltothatofagivencircle.Ineachofthese cases,theconstructionsaretobecarriedoutusingonlyarulerandcompass.

ReferencetoProblemIoccursinthefollowingancientdocumentsupposedly writtenbyEratosthenestoKingPtolemyIIIabouttheyear240B.C.E.:

ToKingPtolemy,Eratosthenessendsgreetings.Itissaidthatoneoftheancient tragicpoetsrepresentedMinosaspreparingatombandasdeclaring,whenhe learntitwasahundredfeeteachway: “Smallindeedisthetombthouhastchosen foraroyalburial.Letitbedouble[involume].Andthoushaltnotmissthatfair formifthouquicklydoublesteachsideofthetomb”.Buthewaswrong.Forwhen thesidesaredoubled,thesurface[area]becomesfourtimesasgreat,andthe volumeeighttimes.Itbecameasubjectofinquiryamongstgeometersinwhat manneronemightdoublethegivenvolumewithoutchangingtheshape.Andthis problemwascalledtheduplicationofthecube,forgivenacubetheysoughtto doubleit

TheoriginsofProblemIIareobscure.TheGreekswereconcernedwiththe problemofconstructingregularpolygons,anditislikelythatthetrisectionproblem aroseinthiscontext.Thisissobecausetheconstructionofaregularpolygonwith ninesidesnecessitatesthetrisectionofanangle.

ThehistoryofProblemIIIislinkedtothatofcalculatingtheareaofacircle. InformationaboutthisiscontainedintheRhindPapyrus,perhapsthebestknown ancientmathematicalmanuscript,whichwasbroughtbytheScottisharchaeologist AlexanderHenryRhind(1833–1863)totheBritishMuseuminthenineteenthcentury.ThemanuscriptwascopiedbytheEgyptianscribeAhmesabout1650B.C.E. fromanevenolderwork.Itstatesthattheareaofacircleisequaltothatofasquare whosesideisthediameterdiminishedbyoneninth;thatis, A ¼ 8 9 2 d 2 .Comparing thiswiththeformula

ThePapyruscontainsnoexplanationofhowthisformulawasobtained.Fifteen hundredyearslaterArchimedes,aGreekmathematicianfromSyracuse,Italy, showedthat

Throughouttheagestheseproblemsweretackledbymostofthebestmathematicians.Forsomereason,amateurmathematicianswerealsofascinatedbythem. InthetimeoftheGreeksaspecialwordwasusedtodescribepeoplewhotriedto solveProblemIII sesqacxmifeim (tetragonidzein)whichmeans tooccupyoneself withthequadrature

In1775theParisAcademyfounditnecessarytoprotectitsofficialsfrom wastingtheirtimeandenergyexaminingpurportedsolutionsoftheseproblemsby amateurmathematicians.Itpassedaresolution(Histoiredel’Académieroyale, année1775,p.61)thatnomoresolutionsweretobeexaminedoftheproblemsof doublingthecube,trisectinganarbitraryangle,andsquaringthecircleandthatthe sameresolutionshouldapplytomachinesforexhibitingperpetualmotion.(See (Hudson,1953,p.3).)

Theproblemswere finallysolvedinthenineteenthcentury.In1837,theFrench mathematicianPierreWantzel(1814–1848)settledProblemsIandII.In1882,the GermanmathematicianFerdinandvonLindemann(1852–1939)disposedof ProblemIII.

0.2StraightedgeandCompassConstructions

Constructionproblemsare,andhavealwaysbeen,afavouritetopicingeometry. Usingonlyarulerandcompass,agreatvarietyofconstructionsispossible.Some oftheseconstructionsaredescribedindetailinSection 5.1:

alinesegmentcanbebisected;anyanglecanbebisected;alinecanbedrawnfromagiven pointperpendiculartoagivenline;etc.

Inalloftheseproblems therulerisusedmerelyasastraightedge,aninstrument fordrawingastraightlinebutnotformeasuringormarkingoffdistances.Sucha rulerwillbereferredtoasa straightedge.

ProblemIisthatofconstructingwithcompassandstraightedgeacubehaving twicethevolumeofagivencube.Ifthesideofthegivencubehaslength1unit, thenthevolumeofthegivencubeis13 ¼ 1.Sothevolumeofthelargercube shouldbe2,anditssidesshouldthushavelength 2 3 p . Hencetheproblemis reducedtothatofconstructing,fromasegmentoflength1,asegmentoflength 2 3 p .

ProblemIIistoproduceaconstructionfortrisectinganygivenangle.Whileitis easytogiveexamplesofparticularangleswhichcanbetrisected,theproblemisto giveaconstructionwhichwillworkfor every angle.

ProblemIIIisthatofconstructingwithcompassandstraightedgeasquareof areaequaltothatofagivencircle.Iftheradiusofthecircleistakenasoneunit,the areaofthecircleis p,andthereforetheareaoftheconstructedsquareshouldbe p; thatis,thesideofthesquareshouldbe pp . Sotheproblemisreducedtothatof constructing,fromasegmentoflength1,asegmentoflength pp .

0.3ImpossibilityoftheGeometricConstructions

Whydidittakesomanycenturiesfortheseproblemstobesolved?Thereasonsare (i)therequiredconstructionsare impossible,and(ii)afullunderstandingofthese problemscomesnotfromgeometrybutfromabstractalgebra(asubjectnotborn untilthenineteenthcentury).Ourpurposeistointroducethisalgebraandshowhow itisusedtoprovetheimpossibilityoftheseconstructions.

Arealnumber c issaidtobe constructible if,startingfromalinesegmentof length1,wecanconstructalinesegmentoflength jcj ina fi nitenumberofsteps usingstraightedgeandcompass.

Weshallprove,inChapters 5 and 6,that arealnumberisconstructibleifand onlyifitcanbeobtainedfromthenumber1bysuccessiveapplicationsofthe operationsofaddition,subtraction,multiplication,division,andtakingsquare roots.Thus,forexample,thenumber

isconstructible.

Now 2 3 p doesnotappeartohavethisform.Appearancescanbedeceiving, however.Howcanwebesure?Theanswerturnsouttobethatif 2 3 p didhavethis form,thenacertainvectorspacewouldhavethewrongdimension!Thissettles ProblemI.

AsforProblemII,notethatitissufficienttogivejustoneexampleofanangle whichcannotbetrisected.Onesuchexampleistheangleof60 .Itcanbeshown thatthisanglecanbetrisectedonlyifcos20 isaconstructiblenumber.But,aswe shallseeinChapter 6,thenumbercos20 isasolutionofthecubicequation

8x 3 6x 1 ¼ 0

whichdoesnotfactoriseovertherationalnumbers.Henceitseemslikelythat cube roots,ratherthansquareroots,willbeinvolvedinitssolution,sowewouldnot expectcos20 tobeconstructible.Onceagainthiscanbemadeintoarigorousproof byconsideringthepossibledimensionsofacertainvectorspace.

AsweshallshowinChapter 6,thesolutionofProblemIIIalsohingesonthe dimensionofavectorspace.Indeed,theimpossibilityofsquaringthecirclefollows fromthefactthatacertainvectorspace(adifferentonefromthosementionedabove inconnectionwithProblemsIandII)isnot finite-dimensional.Thisinturnis becausethenumber p is “transcendental”,whichweshallproveinChapter 10

0.4SolvingPolynomialEquations

ProblemIVisthatofsolvingpolynomialequationsofdegree2,3,4,and,in particular,5andabove.ThousandsofyearsagotheBabylonians,Chinese, Egyptians,andGreeksknewhowto fi nd some solutionsof some quadraticequations.CubicequationshadalsobeenexaminedbytheBabylonians,Chinese, Egyptians,Greeks,andIndiansand some solutionsof particular cubicequations wereknowntothem.However,itwasnotuntiltheyear628thatanexplicit,butnot completelygeneral,solutionof ax2 þ bx ¼ c,wasproducedbytheIndianmathematicianBrahmagupta(590–668).Thecompletesolutionofquadraticequations waspublishedin1594bytheFlemishmathematicianSimonStevin(1548–1620). InthesixteenthcenturytheItalianmathematicianScipionedelFerro(1465–1526) discoveredhowtosolveawideclassofcubicequations.About1540theItalian mathematicianLodovicoFerrari(1522–1565)discoveredhowtosolvequartic equations.ThecombinedworkoftheItalianmathematicianPaoloRuffini(1765–1822)in1798andtheNorwegianmathematicianNielsHenrikAbel(1802–1829)in 1826provedthattherearepolynomialequationsofdegree5andabovewhichare impossibletosolve(intermsofradicals).ThesearediscussedinChapters 7–9

AdditionalReadingfortheIntroduction

Moreinformationaboutthebackgroundtothethreegeometricproblemscanbe foundinvariousbooksonthehistoryofmathematicsincludingBell(1937,1945); Kline(1972);Struik(1967);Sanford(1958).

Referencesdealingspeci ficallywithGreekmathematicsincludeGow(1968), Heath(1921)andLasserre(1964).AdetailedhistoryofProblemIIIisgivenin Hobson(1953).

TheoriginalsolutionstoProblemsIandIIbyWantzelareinWantzel(1837)and theoriginalsolutiontoProblemIIIbyLindemannisinLindemann(1882).

ThebookStewart(2004)hasaHistoricalIntroductiondealingwithProblemIV.

7ZerosofPolynomialsofDegrees2,3,and4

8QuinticEquationsI:SymmetricPolynomials

8.1BriefHistoryoftheQuinticEquation:1683–1826

8.3PrimitiveandSymmetricPolynomials

9QuinticEquationsII:TheAbel–Ruffi niTheorem

9.1AlgebraicallySolublePolynomials

9.2TheNumberofRealNumberZerosofanIrreducible

..........................................

9.3Kronecker ’sTheoremandtheAbel–Ruffi

ListofFigures

Fig.3.1Towerof fields

Fig.5.1Drawingacircle(a)

Fig.5.2Drawingacircle(b)

Fig.5.3Bisectingalinesegment

Fig.5.4Transferringalength

Fig.5.5Bisectinganangle

Fig.5.6Constructinganangleof60

Fig.5.7Constructinganangleof90

Fig.5.8Copyinganangle

Fig.5.9Constructingalineparalleltoagivenline

Fig.5.10Constructingalinethroughapointperpendicular toaline

Fig.5.11Constructingalinesegmentoflengthequal toagivenlinesegment ................................

Fig.5.12Constructinganangleequaltoagivenangle

Fig.5.13Constructingacirclewithacollapsingcompass

Fig.5.14Constructingalinesegmentwitharustycompass

Fig.5.15Constructingaproduct

Fig.5.16Constructingaquotient

Fig.5.17Constructingsquareroots

Fig.5.18Constructinganangleof36

Fig.5.19Drawingalinethroughtwogivenpointstointersect otherlinesandcircles

Fig.5.20Constructingacirclewithgivencentreandradius

Fig.5.21Constructingacirclewithgivencentreandradiusequal tothedistancebetweenanoldpointandanewpoint

Fig.5.22Doublingthecube

Fig.5.23Squaringthecircle

Fig.6.1Intersectionoftwocircles

Fig.9.1 f ðX Þ¼ X 5 10X 5

Fig.11.1Themap / 2 3 p

Chapter1 AlgebraicPreliminaries

Thischapterpresentsthebackgroundalgebraonwhichtherestofthisbookdepends. Muchofthismaterialshouldbefamiliartoyou.

TheRationalRootsTest,however,willprobablybenewtoyou.Itprovidesa niceillustrationofhowpolynomialscanbeusedtostudycertainpropertiesofreal numbers;forexample,weuseittoshowthatthenumbers 5 √2, √2 + √3,and sin20◦ areirrational.Theapplicationofpolynomialstothestudyofnumberswillbean importantthemethroughoutthebook.

1.1Fields,RingsandVectorSpaces

Inthissectionwesummarizethemainideasandterminologyoffields,rings,and vectorspaceswhichweshallusethroughoutthisbook.Ifyouarenotalreadyfamiliar withsomeofthismaterial,wereferyoutothe AppendixtoChapter1 formoredetails.

Fields

Afamiliarexampleofa field istheset Q ofallrationalnumbers.Forthisset,the usualoperationsofarithmetic

addition,subtraction,multiplication,anddivision(exceptby0) canbeperformedwithoutrestriction.Thesameistrueoftheset R ofallrealnumbers, whichisanotherexampleofafield.Likewisetheset C ofallcomplexnumbers,with theaboveoperations,isafield.

Aformaldefinitionofafieldisgiveninthe AppendixtoChapter1.Strictly speaking,afieldconsistsofaset F togetherwiththeoperationstobeperformedon F.

©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2022 S.A.Morrisetal., AbstractAlgebraandFamousImpossibilities,UndergraduateTexts inMathematics, https://doi.org/10.1007/978-3-031-05698-7_1

Whenthereisnoambiguityastowhichoperationsareintended,wesimplyreferto theset F asthefield.

If F isafieldand E ⊆ F itmayhappenthat E alsobecomesafieldwhenweapply theoperationson F toitselements.Ifthishappenswesaythat E isa subfield of F and,reciprocally,that F isan extensionfield of E.Thissituationisoftendenotedby F/E andreadas“F over E”.Asparticularcases, Q isasubfieldofboth C and R while R and C arebothextensionfieldsof Q.Wewritethisas C/Q and R/Q

Animportantrelationshipbetween Q and C isexpressedinthefollowingproposition.

1.1.1Proposition. Thefield Q ofallrationalnumbersisthesmallestsubfieldof C, thefieldofallcomplexnumbers.

Proof. Wearetoshowthatif F isasubfieldof C then Q ⊆ F.Sowelet F beany subfieldof C

Toprovethat Q ⊆ F weshallshowthat

if x ∈ Q then x ∈ F

Let x ∈ Q;thatis, x = r s , where r, s areintegersand s = 0

Ouraimistoprovethat x ∈ F.

Todothisweusethefieldpropertiesof F.Inparticular,every fieldisclosedunderaddition,subtraction,multiplication,and division.

As F isafield,thenumber1mustbein F

Thereforeeachpositiveintegerisin F,as F isclosedunderaddition.

Soeachnegativeintegerisin F,as F isclosedundersubtraction.

Also 0 ∈ F,as F isafield.

Hencetheintegers r and s arein F

Since F isclosedunderdivision(and s = 0),thequotient r /s ∈ F

So x ∈ F ,asrequired.

Thereare,infact,lotsofinterestingfieldswhichliebetween Q and C andwe shalldevotemuchtimetostudyingthem.

Ofcoursenotallfieldsaresubfieldsof C.Toseethis,considerthefollowing.For eachpositiveinteger n put

Zn ={0, 1, 2,..., n 1}.

Wedefineadditionofelements a and b in Zn by

a ⊕n b = a + b (mod n );

thatis,add a and b intheusualwayandthensubtractmultiplesof n untiltheanswer liesintheset Zn .Wedefinemultiplicationsimilarly: a ⊗n b = a × b (mod n ).

Forexample,

3 ⊕6 4 = 1 (subtract6from7),

2 ⊕6 1 = 3,

3 ⊗6 4 = 0 (subtract12from12),

9 ⊗10 7 = 3

Itcanbeshownthatif n isaprimenumberthen Zn isafield.Itisobviousthat inthiscase Zn isnotasubfieldof C.Forexample,if n = 2, 1 ⊕2 1 = 0 in Z2 ,but 1 + 1 = 2 in C;sotheoperationofadditioninthefield Z2 isdifferentfromthatin thefield C.Unlikeourpreviousexamples Q, R and C,thefield Zn isa finitefield ; thatis,ithasonlyafinitenumberofelements.

Rings

Theconceptofaringislessrestrictivethanthatofafieldinthatwenolongerrequire thepossibilityofdivisionbutonlyof

addition,subtraction,andmultiplication

Thustheset Z ofalltheintegersisanexampleofaringwhichisnotafield, whereastheset N ofallnaturalnumbersisnotaring.

Weevenallowtheconceptofmultiplicationitselftobeliberalized.Wedonot requireittobecommutative;thatis, ab maybeunequalto ba .Wealsopermitzero divisors,sothatitispossibletohave

ab = 0 butneitheranorbiszero

Observethatif M isthesetofall 2 × 2 matriceswithentriesfrom R,then M isaringwiththeringoperationsbeingmatrixadditionandmatrixmultiplication. However, M isnotafieldsinceif

A = 12 34 and B = 56 78

then AB = 1922 4350 = BA = 2334 3146

Notealsothatthisring M haszerodivisors;forexample,if

C = 10 00 and D = 00 45 then CD = 00 00 .

Aformaldefinitionofaringisgiveninthe AppendixtoChapter1.

VectorSpaces

Recallfromlinearalgebrathata vectorspace consistsofaset V togetherwithafield F.Theelementsof V arecalled vectors andtheelementsof F arecalled scalars Anytwovectorscanbeaddedtogiveavectorandavectorcanbemultipliedbya scalartogiveavector.Aformaldefinitionofavectorspaceisgiveninthe Appendix toChapter1

Whenthereisnodangerofambiguityitiscustomarytoomitreferencetoboth thescalarsandtheoperationsandtoregard V itselfasthevectorspace.Inourstudy, however,thefieldofscalarswillbeconstantlychangingandtoomitreferencetoit wouldalmostcertainlyleadtoambiguity.Henceweshallincludethefield F inour descriptionandreferto“thevectorspaceVover F”.

Twoothernotionswhichyouneedtorecallarethoseofspanningandlinear independence.

If v1 ,v2 ,...,vn arevectorsinthevectorspace V overthefield F,thenwesay thattheset {v1 ,v2 ,...,vn } ofthesevectors spans V over F providingthatevery vector v ∈ V canbewrittenasalinearcombinationof v1 ,v2 ,...,vn ;thatis, v = λ1 v1 + λ2 v2 + ... + λn vn

forsome λ1 , λ2 ,..., λn in F

Avectorspaceissaidtobe finite-dimensional ifthereisafinitesetofvectors {v1 ,v2 ,...,vn } whichspansit.

Theset {v1 ,v2 ,...,vn } ofvectorsissaidtobe linearlyindependentover F ifthe zerovector, 0,canbewrittenasalinearcombinationof v1 ,v2 ,...,vn inonlyone way,namelywithallthecoefficientsequaltozero;thatis,

Theset {v1 ,v2 ,...,vn } issaidtobea basis for V over F ifitislinearlyindependent over F andspans V over F.

Whileafinite-dimensionalvectorspacecanhaveaninfinitenumberofdistinct bases,thenumberofvectorsineachofthebasesisthesameandiscalledthe dimension ofthevectorspace.Recallalsothat,inavectorspaceofdimension n ,anyset withmorethan n vectorsmustbelinearlydependent.(Forexample,anysetoffour vectorsinathree-dimensionalspaceislinearlydependent.)

1.1Fields,RingsandVectorSpaces5

PairsofFields

Thewayinwhichvectorspacesenterourstudyisaspairsoffields,oneofwhichis asubfieldoftheother.

Themostintuitiveexample,inthisregard,isthevectorspace C over R inwhich wetake C forthevectorsand R forthescalars.Thisvectorspacearisesfromthe pairoffields C and R,inwhich R isasubfieldof C.Wemaythinkoftheelements of C aspointsintheplaneandthenthevectorspaceoperationscorrespondexactly totheusualvectoradditionandscalarmultiplicationintheplane.

Moregenerally,if E and F arefieldswith E asubfieldof F,wemaytake F forthe vectorsand E forthescalarstogetthe vectorspace F over E.(Notethatthesmaller fieldisthescalarsandthelargeroneisthevectors.)

1.1.2Definition. Ifthevectorspace F over E isfinite-dimensionalitsdimensionis denotedby [F : E] andcalledthe degreeof F over E

Forexample,itisreadilyseenthat [C : R]= 2 and [R : R]= 1.

Exercises 1.1

1.(a)Whichofthefollowingaremeaningful?

(i)thevectorspace C over R;

(ii)thevectorspace R over R;

(iii)thevectorspace R over C;

(iv)thevectorspace C over Q;

(v)thevectorspace C over C;

(vi)thevectorspace Q over Q;

(vii)thevectorspace Q over R;

(viii)thevectorspace Q over C

(b)Whichoftheabovevectorspaceshasdimension2?Writedownabasisin eachsuchcase.

2.Howmaysubfieldsof Q arethere?(Justifyyouranswer.)

3. (a)Is {(1 + i √2),(√2 + 2i )} alinearlyindependentsubsetofthevectorspace C over R?

(b)Is {(1 + i √2),(√2 + 2i )} alinearlyindependentsubsetofthevectorspace C over Q?

4. (a)Let M2 (R) bethesetofall 2 × 2 matriceswithentriesfrom R.Whatarethe naturalvectorspaceadditionandscalarmultiplicationwhichmake M2 (R) avectorspaceover R?

(b)Findabasisfor M2 (R).

(c)Let M2 (C) bethesetofall 2 × 2 matriceswithentriesfrom C.Showthatit isavectorspaceover R andfindabasisforit.Isitalsoavectorspaceover C?

5.Let F ={a + b √2; a , b ∈ Q}

(a)Provethat F isavectorspaceover Q andwritedownabasisforit.

(b)∗ Provethat F isafield.

(c)Findthevalueof [F : Q]

6.Aring R issaidtobean integraldomain ifitsmultiplicationiscommutative,if thereisanelement1suchthat 1 x = x 1 = x forall x ∈ R ,andifthereareno zerodivisors.

(a)Is Z4 anintegraldomain?

(b)∗ Forwhat n ∈ N is Zn anintegraldomain?

7.Let E beasubfieldofafinitefield F suchthat [F : E]= n ,forsome n ∈ N.If E has m elements,forsome m ∈ N,howmanyelementsdoes F have?(Justify youranswer.)

8. (a)If A , B ,and C arefinitefieldswith A asubfieldof B and B asubfieldof C , provethat [C : A ]=[C : B ].[ B : A ]. [Hint.UsetheresultofExercise7.]

(b)Iffurthermore [C : A ] isaprimenumber,deducethat B = C or B = A .

1.2Polynomials

Thesimplestandmostnaivewayofdescribingapolynomialistosaythatitisan “expression”oftheform

Thecoefficients a0 , a1 ,..., an areassumedtobelongtosomering R .Theabove expressionisthencalleda polynomialoverthering R . Asyetwehavesaidnothingaboutthesymbol x appearingintheaboveexpression.Thereare,infact,twodistinctwaysofinterpretingthissymbol.Oneofthese waysleadstotheconceptofa polynomialform,theothertothatofa polynomial function.

PolynomialForms

Toarriveattheconceptofapolynomialform,wesayaslittleaspossibleaboutthe symbol“ x ”.Weregard x anditsvariouspowersassimplyperformingtherôleof “markers”toindicatethepositionofthevariouscoefficientsintheexpression. Thus,forexample,weknowthatthetwopolynomials

1 + 2 x + 3 x 2 and2 x + 3 x 2 + 1

1.2Polynomials7

areequalbecauseineachexpressionthecoefficientsofthesamepowersof x are equal.

Again,whenweaddtwopolynomials,asinthefollowingcalculation,

wemayregardthepowersof x assimplytellinguswhichcoefficientstoaddtogether. Theyplayasimilar,althoughmorecomplicated,rôlewhenwemultiplytwopolynomials.

Although x isregardedasobeyingthesamealgebraicrulesastheelementsofthe ring R ,wedonotthinkofitasassumingvaluesfrom R .Forthisreasonitiscalled an indeterminate.

Foremphasis,weshalluseuppercaselettersforindeterminatesinthisbookand write“ X ”insteadof“ x ”soourpolynomial(1)becomes

andwecallita polynomialform (overthering R ,intheindeterminate X ).

Whatreallymattersinapolynomialformarethecoefficients.Accordinglywe saythat twopolynomialformsareequalifandonlyiftheyhavethesamecoefficients. 1.2.1Definitions. Ifintheabovepolynomialformthelastcoefficient an = 0,then wesaythatthepolynomialhas degree n .

Ifallthecoefficientsarezero,wesaythatthepolynomialisthe zeropolynomial andleaveitsdegreeundefined.

Whenwedonotwishtostatethecoefficientsexplicitlyweshallusesymbolslike f ( X ), g ( X ), h ( X ) todenotepolynomialsin X .Thedegreeofanonzeropolynomial f ( X ) isdenotedby deg f ( X ).

Ifintheabovepolynomialform an = 0,wecall an the leadingcoefficient. Thecollectionofallpolynomialsoverthering R intheindeterminate X willbe denotedby R [ X ]

(notethesquarebrackets,asdistinctfromroundones).Sincepolynomialformscan beadded,subtractedandmultiplied(andtheseoperationsobeytheusualalgebraic laws)thissetofpolynomialsisitselfaring.

Inparticular,ifthering R happenstobeafield F,weobtainthepolynomialring F[ X ].Thisringwillnotbeafield,however,since X ∈ F[ X ] but X hasnoreciprocal in F[ X ] because X f ( X ) = 1, forall f ( X ) ∈ F[ X ]

PolynomialFunctions

Backintheoriginalexpression(1),analternativewaytoregardthesymbol“ x ”isas avariablestandingforatypicalelementofthering R .Thustheexpression(1)may beusedtoassigntoeachelement x ∈ R anotherelementin R .Inthiswaywegeta function f : R → R withvaluesassignedbytheformula

Suchafunction f iscalleda polynomialfunction onthering R

Thusifweregardpolynomialsasfunctions,emphasisshiftsfromthecoefficients tothevaluesofthefunction.Inparticular, equalityoftwopolynomialfunctions f : R → R and g : R → R meansthat

f ( x ) = g ( x ), forall x ∈ R , whichisjustthestandarddefinitionofequalityforfunctions.

Clearlyeachpolynomialform f ( X ) determinesauniquepolynomialfunction f : R → R (becausewecanreadoffthecoefficientsfrom f ( X ) andusethemto generatethevaluesof f viatheformula(2)).Istheconversetrue? Doeseachpolynomialfunction f : R → R determineauniquepolynomialform? Theansweris: notnecessarily! Thefollowingexampleshowswhy.

1.2.2Example. Let f ( X ) and g ( X ) bethepolynomialformsoverthering Z4 given by

f ( X ) = 2 X and g ( X ) = 2 X 2 .

Thesetwopolynomialformsaredifferent,yettheydeterminethesamepolynomial function.

Proof. Thesepolynomialformsdeterminetwofunctions f : Z4 → Z4 and g : Z4 → Z4 ,withvaluesgivenby

f ( x ) = 2 x and g ( x ) = 2 x 2 .

Hencecalculationin Z4 showsthat

f (0) = 0 = g (0)

f (1) = 2 = g (1)

f (2) = 0 = g (2)

f (3) = 2 = g (3).

So f ( x ) = g ( x ),forall x ∈ Z4 .Thusthefunctions f and g areequal. Thisissomethingofanembarrassment!Wehaveproducedanexampleofaring R andtwopolynomialforms f ( X ), g ( X ) ∈ R [ X ] suchthat

f ( X ) = g ( X ) andyet f = g .

Fortunately,however,theonlyringswhicharerelevanttoourgeometricalconstructionproblemsarethosewhicharesubfieldsofthecomplexnumberfield, C.Forsuch ringsitcanbeshown(see Exercises1.2#6)thattheabovephenomenoncannotoccur andwegetaone-to-onecorrespondence

f ( X ) ↔ f

betweenpolynomialforms f ( X ) ∈ R [ X ] andpolynomialfunctions f : R → R

Theresultofallthisisthatwhilethereisafineconceptualdistinctionbetween polynomialformsandpolynomialfunctions,wecanignorethedistinctioninthe remainderofthisbookwithoutrunningintopracticaldifficulties. Thus

f ( X ) andf

willbemoreorlessthesamewhile f ( x ) willbequitedifferent,beingthevalueof f at x .

Exercises 1.2

1.Giveanexampleofanelementofthepolynomialring R[ X ] whichisnota memberof Q[ X ].

2.Ineachofthefollowingcases,giveapairofnonzeropolynomials f ( X ), g ( X ) ∈ Q[ X ] whichsatisfiesthecondition:

(i) deg( f ( X ) + g ( X ))< deg f ( X ) + deg g ( X );

(ii) deg( f ( X ) + g ( X )) = deg f ( X ) + deg g ( X ); (iii) deg( f ( X ) + g ( X )) isundefined.

3.(a)Let F beafield.Verifythatif f ( X ) and g ( X ) arenonzeropolynomialsin F[ X ] then f ( X ) g ( X ) = 0 and

deg f ( X ) g ( X ) = deg f ( X ) + deg g ( X ).

(b)Deducethatthering F[ X ] isanintegraldomain. (See Exercises1.1#6 forthedefinitionofintegraldomain.)

(c)Is Z6 [ X ] anintegraldomain?(Justifyyouranswer.)

4.Let f ( X ) denotethepolynomialformoverthering Z6 givenby f ( X ) = X 3 . Findapolynomialform g ( X ),with f ( X ) = g ( X ),suchthat f ( X ) and g ( X ) determinethesamepolynomialfunction.

5.∗ Let R beanyfinitering.Provethatthereexistunequalpolynomialforms f ( X ) and g ( X ) over R suchthat f ( X ) and g ( X ) determinethesamepolynomial function.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.