Engineering Practice with Oilfield and Drilling Applications 1st
Scott D. Sudhoff
Visit to download the full and correct content document: https://ebookmass.com/product/engineering-practice-with-oilfield-and-drilling-applicati ons-1st-edition-scott-d-sudhoff/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

GMAT Prep 2023 For Dummies with Online Practice 1st Edition Scott A. Hatch & Scott A. Hatch
https://ebookmass.com/product/gmat-prep-2023-for-dummies-withonline-practice-1st-edition-scott-a-hatch-scott-a-hatch/



Deepwater drilling : well planning, design, engineering, operations, and technology application
Peter Aird
https://ebookmass.com/product/deepwater-drilling-well-planningdesign-engineering-operations-and-technology-application-peteraird/
Engineering
Design and Graphics with SolidWorks 2023
Jim D. Bethune
https://ebookmass.com/product/engineering-design-and-graphicswith-solidworks-2023-jim-d-bethune/
Variational
Calculus with Engineering Applications
Constantin Udriste
https://ebookmass.com/product/variational-calculus-withengineering-applications-constantin-udriste/

Engineering Graphics with AutoCAD® 2023 James D. Bethune
https://ebookmass.com/product/engineering-graphics-withautocad-2023-james-d-bethune/

Veterinary Microbiology Fourth Edition D. Scott Mcvey
https://ebookmass.com/product/veterinary-microbiology-fourthedition-d-scott-mcvey/

Plastic Surgery - Principles and Practice 1st Edition
Rostam D. Farhadieh
https://ebookmass.com/product/plastic-surgery-principles-andpractice-1st-edition-rostam-d-farhadieh/

Foundation Engineering: Geotechnical Principles and Practical Applications 1st Edition Handy
https://ebookmass.com/product/foundation-engineeringgeotechnical-principles-and-practical-applications-1st-editionhandy/

Foundation Engineering: Geotechnical Principles and Practical Applications 1st Edition Richard Handy
https://ebookmass.com/product/foundation-engineeringgeotechnical-principles-and-practical-applications-1st-editionrichard-handy/

EngineeringPracticewithOilfieldand
DrillingApplications
FabricationofMetallicPressureVessels
OwenGreulich,MaanH.Jawad
Wiley-ASMEPressSeries
EngineeringPracticewithOilfieldandDrillingApplications
DonaldW.Dareing
Flow-InducedVibrationHandbookforNuclearandProcessEquipment
MichelJ.Pettigrew,ColetteE.Taylor,NigelJ.Fisher
VibrationsofLinearPiezostructures
AndrewJ.Kurdila,PabloA.Tarazaga
BearingDynamicCoefficientsinRotordynamics:ComputationMethodsandPracticalApplications LukaszBrenkacz
AdvancedMultifunctionalLightweightAerostructures:Design,Development,andImplementation KamranBehdinan,RasoolMoradi-Dastjerdi VibrationAssistedMachining:Theory,ModellingandApplications Li-RongZheng,Dr.WanqunChen,DehongHuo
Two-PhaseHeatTransfer MirzaMohammedShah
ComputerVisionforStructuralDynamicsandHealthMonitoring DongmingFeng,MariaQFeng
TheoryofSolid-PropellantNonsteadyCombustion VasilyB.Novozhilov,BorisV.Novozhilov
IntroductiontoPlasticsEngineering VijayK.Stokes
FundamentalsofHeatEngines:ReciprocatingandGasTurbineInternalCombustionEngines JamilGhojel
OffshoreCompliantPlatforms:Analysis,Design,andExperimentalStudies SrinivasanChandrasekaran,R.Nagavinothini
ComputerAidedDesignandManufacturing ZhumingBi,XiaoqinWang PumpsandCompressors MarcBorremans
CorrosionandMaterialsinHydrocarbonProduction:ACompendiumofOperationalandEngineeringAspects BijanKermaniandDonHarrop
DesignandAnalysisofCentrifugalCompressors
ReneVandenBraembussche
CaseStudiesinFluidMechanicswithSensitivitiestoGoverningVariables M.KemalAtesmen
TheMonteCarloRay-TraceMethodinRadiationHeatTransferandAppliedOptics J.RobertMahan
DynamicsofParticlesandRigidBodies:ASelf-LearningApproach MohammedF.Daqaq
PrimeronEngineeringStandards,ExpandedTextbookEdition MaanH.JawadandOwenR.Greulich
EngineeringOptimization:Applications,MethodsandAnalysis R.RussellRhinehart
CompactHeatExchangers:Analysis,DesignandOptimizationusingFEMandCFDApproach C.RanganayakuluandKankanhalliN.Seetharamu
RobustAdaptiveControlforFractional-OrderSystemswithDisturbanceandSaturation MouChen,ShuyiShao,andPengShi RobotManipulatorRedundancyResolution YunongZhangandLongJin
StressinASMEPressureVessels,Boilers,andNuclearComponents MaanH.Jawad
CombinedCooling,Heating,andPowerSystems:Modeling,Optimization,andOperation YangShi,MingxiLiu,andFangFang
ApplicationsofMathematicalHeatTransferandFluidFlowModelsinEngineeringandMedicine AbramS.Dorfman
BioprocessingPipingandEquipmentDesign:ACompanionGuidefortheASMEBPEStandard WilliamM.(Bill)Huitt
NonlinearRegressionModelingforEngineeringApplications:Modeling,ModelValidation,andEnablingDesignofExperiments R.RussellRhinehart
GeothermalHeatPumpandHeatEngineSystems:TheoryandPractice AndrewD.Chiasson
FundamentalsofMechanicalVibrations Liang-WuCai
IntroductiontoDynamicsandControlinMechanicalEngineeringSystems ChoW.S.To
DonaldW.Dareing UniversityofTennessee
ThisWorkisaco-publicationbetweenASMEPress andJohnWiley&Sons,Inc.
©2022ASME
ThisWorkisaco-publicationbetweenASMEPressandJohnWiley&Sons,Inc.
Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted, inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptas permittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableat http://www.wiley.com/go/permissions.
TherightofDonaldW.Dareingtobeidentifiedastheauthorsofthisworkhasbeenassertedinaccordancewithlaw.
RegisteredOffice
JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA
EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA
Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com.
Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsin standardprintversionsofthisbookmaynotbeavailableinotherformats.
LimitofLiability/DisclaimerofWarranty
Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsor warrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimall warranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose. Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsorpromotionalstatementsfor thiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasacitationand/orpotential sourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsetheinformationorservicesthe organization,website,orproductmayprovideorrecommendationsitmaymake.Thisworkissoldwiththe understandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readers shouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwas writtenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.
LibraryofCongressCataloging-in-PublicationDataappliedfor:
ISBN:9781119799498
CoverDesign:Wiley
CoverImage:©PuneetVikramSingh,NatureandConceptphotographer/GettyImages
Setin9.5/12.5ptSTIXTwoTextbyStraive,Pondicherry,India 10987654321
ToKristin: Mywonderfulcompanion,whoseenergy,integrity,support,andreliabilitygobeyondmeasure.
ConcurrentEngineering 14
FeasibilityofConcept 14
EvaluatingDesignAlternatives 14
EvaluationMetrics 15
ScoringAlternativeConcepts 15
StartingtheDesign 16
DesignforSimplicity 16
IdentifySubsystems 17
DevelopmentofOilandGasReservoirs 17
DesignofOffshoreDrillingandProductionSystems 18
ConnectionofSubsystems 19
TorsionLoadingonMultiboltPatterns 19
Make-UpForceonBolts 21
PreloadinDrillPipeToolJoints 24
ShoulderSeparation 26
PossibleYieldinginthePin 26
Make-UpTorque 28
BoltedBrackets 29
WeldedConnections 30
TorsionLoadinginWeldedConnections 30
AttachmentsofOffshoreCranes 32
QualityAssurance 33
EngineeringEducation 34
MissionStatement 34
AcademicDesignSpecifications 34
DesignoftheAcademicProgram 35
OutcomesAssessment 35
Saturn – ApolloProject 35
Notes 36
References 36
2ConfiguringtheDesign 37
ForceandStressAnalysis 37
BeamAnalysis 39
ShearandBendingMomentDiagrams 40
BendingStresses 45
BeamDeflectionandBoundaryConditions 47
ShearStressinBeams 48
NeutralAxis 50
CompositeCrossSections 52
MaterialSelection 54
MechanicalPropertiesofSteel 54
UseofStress–StrainRelationshipinaSimpleTruss 57
StaticallyIndeterminateMember 59
ModesofFailure 62
MaterialYielding 62
StressConcentration 62
Wear 63
Fatigue 63
StressCorrosionCracking 69
BrittleFracture 69
FluidFlowThroughPipe 70
ContinuityofFluidFlow 70
Bernoulli’sEnergyEquation(FirstLaw) 71
ReynoldsNumber 71
FrictionHeadforLaminarFlow 72
TurbulentFlowThroughPipe 72
SeniorCapstoneDesignProject 74
PumpSelection 74
RequiredNozzleVelocity 74
NozzlePressure 74
PumpFlowRateRequirement 75
VibrationConsiderations 77
NaturalFrequencyofSDOFSystems 80
LocationofCenterofGravity 84
MomentofInertiawithRespecttoPointA 84
SpringsinSeries,Parallel 85
DeflectionofCoiledSprings 86
FreeVibrationwithDamping 86
QuantifyingDamping 87
CriticalDampinginVibratingBarSystem 88
ForcedVibrationofSDOFSystemswithDamping 89
NonlinearDamping 93
VibrationControl 93
OtherVibrationConsiderations 94
Transmissibility 94
VibrationIsolation 95
CommonalityofResponses 96
ApplicationofVibrationAbsorbersinDrillCollars 96
NaturalFrequencieswithVibrationAbsorbers 97
ResponsestoNonperiodicForces 100
DynamicLoadFactor 102
Packaging 103
VibrationsCausedbyRotorImbalance 105
ResponsetoanImbalancedRotatingMass 105
SynchronousWhirlofanImbalancedRotatingDisk 106
BalancingaSingleDisk 109
SynchronousWhirlofRotatingPipe 109
StabilityofRotatingPipeunderAxialLoad 110
BalancingRotatingMassesinTwoPlanes 112
RefiningtheDesign 113
Manufacturing 113
ManufacturingDrawings 114
Dimensioning 114
Tolerances 115
ThreeTypesofFits 116
SurfaceFinishes 117
NanosurfaceUndulations 118
MachiningTools 119
Lathes 119
DrillPress 119
MillingMachines 120
MachiningCenters 120
TurningCenters 120
References 121
PartIIPowerGeneration,Transmission,Consumption 123
3PowerGeneration 125
WaterWheels 125
FluidMechanicsofWaterWheels 125
SteamEngines 127
SteamLocomotives 128
PowerUnitsinIsolatedLocations 130
RegionalPowerStations 131
PhysicalPropertiesofSteam 131
EnergyExtractionfromSteam 132
FirstLawofThermodynamics – Enthalpy 132
Entropy – SecondLaw 132
ThermodynamicsofHeatEngines 133
SteamTurbines 135
ElectricMotors 136
InternalCombustionEngines 137
FourStrokeEngine 137
TwoStrokeEngines 138
DieselEngines 139
GasTurbineEngines 139
Impulse/Momentum 141
EnergyConsiderations 142
EngineConfigurations 142
RocketEngines 144
RocketdyneF-1Engine 144
AtlasBoosterEngine 144
GasDynamicsWithinRocketEngines 145
RocketDynamics 146
EnergyConsumptioninUS 147
SolarEnergy 148
HydrogenasaFuel 149
HydroelectricPower 149
WindTurbines 149
GeothermalEnergy 149
AtomicEnergy 150
Biofuels 150
Notes 150
References 150
4PowerTransmission 151
GearTrainTransmission 153
WaterWheelTransmission 153
FundamentalGearToothLaw 154
InvoluteGearFeatures 154
GearToothSize – SpurGears 156
SimpleGearTrain 158
Kinematics 158
WormGearTrain 159
PlanetaryGearTrains 160
CompoundGearTrains 161
PulleyDrives 162
RopeandFrictionPulleys 162
BeltedConnectionsBetweenPulleyDrives 164
FundamentalsofShaftDesign 166
ShearStress 167
StressAnalysisofShafts 170
TwistinginShaftsHavingMultipleGears 171
KeywayDesign 172
MechanicalLinkages 173
RelativeMotionBetweenTwoPoints 173
AbsoluteMotionWithinaRotatingReferenceFrame 175
ScotchYoke 177
SliderCrankMechanism 178
VelocityAnalysis 179
AccelerationAnalysis 180
Four-BarLinkage 181
VelocityAnalysis 183
AccelerationAnalysis 183
ThreeBarLinkage 184
VelocityEquation 185
AccelerationEquation 185
VelocityAnalysis 186
AccelerationAnalysis 187
GenevaMechanism 188
FlatGearToothandMatingProfile 189
CamDrives 191
CamDrives – LinearFollower 191
VelocityAnalysis 191
AccelerationPolygon 193
CamwithLinearFollower,RollerContact 194
VelocityAnalysis – RotatingReferenceFrame 195
AccelerationAnalysis – RotatingReferenceFrame 195
VelocityAnalysis – RitterhausModel 196
AccelerationAnalysis – RitterhausModel 196
CamwithPivotedFollower 196
PowerScrew 198
HydraulicTransmissionofPower 199
KinematicsoftheMoineauPump/Motor 202
MechanicsofPositiveDisplacementMotors 203
References 208
5Friction,Bearings,andLubrication 209
RollingContactBearings 209
RatedLoadofRollingContactBearings 210
EffectofVibrationsontheLifeofRollingContactBearings 213
EffectofEnvironmentonRollingContactBearingLife 216
EffectofVibrationandEnvironmentonBearingLife 217
HydrostaticThrustBearings 220
FlowBetweenParallelPlates 220
FluidMechanicsofHydrostaticBearings 222
OptimizingHydrostaticThrustBearings 224
PumpingRequirements 224
FrictionLossesDuetoRotation 225
TotalEnergyConsumed 226
CoefficientofFriction 227
SqueezeFilmBearings 228
PressureDistributionUnderaFlatDisc 228
ComparisonofPressureProfiles 230
SpringConstantofHydrostaticFilms 231
DampingCoefficientofSqueezeFilms 231
OtherShapesofSqueezeFilms 233
SqueezeFilmwithRecess 233
SqueezeFilmUnderaWasher 234
SphericalSqueezeFilm 235
NonsymmetricalBoundaries 236
ApplicationtoWristPins 237
ThickFilmSliderBearings 240
SliderBearingswithFixedShoe 240
Load-CarryingCapacity 243
FrictioninSliderBearings 243
CoefficientofFriction 244
CenterofPressure 244
SliderBearingwithPivotedShoe 245
FrictionalResistance 246
CoefficientofFriction 246
ExponentialSlider-BearingProfiles 247
PressureDistributionforExponentialProfile 247
PressureComparisonwithStraightTaperProfile 248
Load-CarryingCapacity 249
PressureDistributionforOpenEntry 249
ExponentialSliderBearingwithSideLeakage 250
HydrodynamicLubricatedJournalBearings 254
PressureDistributionAroundanIdealizedJournalBearing 254
Load-CarryingCapacity 257
MinimumFilmThicknessinJournalBearings 258
FrictioninanIdealizedJournalBearing 259
Petroff’sLaw 259
Sommerfeld’sSolution 260
StribeckDiagramandBoundaryLubrication 261
RegionsofFriction 261
ComparisonofJournalBearingPerformancewithRollerBearings 263
JournalBearing 263
RollerContactBearing(SeeFootnote1) 263
BallBearing(SeeFootnote1) 264
Note 264
References 264
6EnergyConsumption 267
SubsystemsofDrillingRigs 267
DrawWorksinDrillingRigs 269
BlockandTackleHoistingMechanism 270
SpringConstantofDrawWorksCables 270
BandBrakesUsedtoControlRateofDecent 270
RotaryDriveandDrillstringSubsystem 272
KellyandRotaryTableDrive 272
FrictioninDirectionalWells 272
TopDrive 273
DrillstringDesignandOperation 275
Buoyancy 276
HookLoad 277
DefinitionofNeutralPoint 277
BasicDrillstring:DrillPipeandDrillCollars 279
PhysicalPropertiesofDrillPipe 279
SelectingDrillPipeSizeandGrade 281
SelectPipeGradeforaGivenPipeSize 281
DetermineMaximumDepthforGivenPipeSizeandGrade 282
RollerConeRockBits 283
PolycrystallineDiamondCompact(PDC)DrillBits 283
NaturalDiamondDrillBits 284
HydraulicsofRotaryDrilling 285
OptimizedHydraulicHorsepower 285
FieldApplication 288
ControllingFormationFluids 290
HydrostaticDrillingMudPressure 290
AnnularBlowoutPreventer 290
HydraulicRams 292
CasingDesign 293
CollapsePressureLoading(ProductionCasing) 295
BurstPressureLoading(ProductionCasing) 295
APICollapsePressureGuidelines 297
PlasticYieldingandCollapsewithTension 297
SummaryofPressureLoading(ProductionCasing) 298
EffectofTensiononCasingCollapse 298
TensionForcesinCasing 300
Designof95 8 in.ProductionCasing 302
DesignWithoutFactorsofSafety 302
DirectionalDrilling 306
DownholeDrillingMotors 306
RotarySteerableTools 307
StabilizedBottom-HoleAssemblies 308
PowerUnitsattheRigSite 310
References 310
PartIIIAnalyticalToolsofDesign 313
7DynamicsofParticlesandRigidBodies 315
Statics – BodiesinEquilibrium 315
ForceSystems 316
FreebodyDiagrams 318
ForceAnalysisofTrusses 318
MethodofJoints 319
MethodofSections 319
KinematicsofParticles 320
LinearMotion 320
RectangularCoordinates 321
PolarCoordinates 322
VelocityVector 325
AccelerationVector 325
CurvilinearCoordinates 325
NavigatinginGeospace 328
TrackingProgressAlongaWellPath 328
MinimumCurvatureMethod 329
DoglegSeverity 331
ProjectingAhead 332
KinematicsofRigidBodies 333
RigidBodyTranslationandRotation 333
GeneralPlaneMotion 334
DynamicsofParticles 335
UnitsofMeasure 335
ApplicationofNewton’sSecondLaw 336
StaticAnalysis 336
DynamicAnalysis 337
WorkandKineticEnergy 337
PotentialEnergy 339
DrillBitNozzleSelection 341
Impulse–Momentum 342
Impulse–MomentumAppliedtoaSystemofParticles 343
MechanicsofHydraulicTurbines 345
PerformanceRelationships 349
MaximumOutputofDrillingTurbines 350
DynamicsofRigidBodies 351
RigidBodiesinPlaneMotion 352
TranslationofRigidBodies 354
RotationAboutaFixedPoint 354
CenterofGravityofConnectingRod 355
MassMomentofInertiaofConnectingRod 356
GeneralMotionofRigidBodies 356
DynamicForcesBetweenRotorandStator 359
InterconnectingBodies 361
GearTrainStart-UpTorque 361
KineticEnergyofRigidBodies 363
TheCatapult 364
Impulse–MomentumofRigidBodies 364
LinearImpulseandMomentum 365
AngularImpulseandMomentum 365
AngularImpulseCausedbyStabilizersandPDCDrillBits 368
AccountingforTorsionalFlexibilityinDrillCollars 369
InterconnectingBodies 370
ConservationofAngularMomentum 371
References 374
8MechanicsofMaterials 375
StressTransformation 376
TheoryofStress 377
NormalandShearStressTransformations 377
MaximumNormalandMaximumShearStresses 378
Mohr’sStressCircle 381
TheoryofStrain 383
StrainTransformation 384
Mohr’sStrainCircle 386
PrincipalAxesofStressandStrain 386
GeneralizedHooke’sLaw 388
TheoryofPlainStress 388
OrientationofPrincipalStressandStrain 389
TheoryofPlainStrain 391
PressureVesselStrainMeasurements 391
AnalyticalPredictionsofStressandStrain 391
StrainintheSphericalCap 393
ConversionofStrainMeasurementstoPrincipalStrainsandStresses 393
BeamDeflections 396
CantileverBeamwithConcentratedForce 397
CantileveredBeamwithUniformLoad 398
SimplySupportedBeamwithDistributedLoad 399
StaticallyIndeterminateBeams 400
MultispannedBeamColumns 402
LargeAngleBendinginTermsofPolarCoordinates 403
BendingStressesinDrillPipeBetweenToolJoints 405
ApplicationtoPipeBendinginCurvedWellBores 408
MultispannedBeaminTermsorPolarCoordinates 410
PullingOutoftheWellBore 410
ColumnsandCompressionMembers 411
ColumnBucklingUnderUniformCompression 411
ColumnsofVariableCrossSection 415
TubularBucklingDuetoInternalPressure 416 EffectiveTensioninPipe 417
BucklingofDrillCollars 418
CombinedEffectsofAxialForceandInternal/ExternalPressure 420
BucklingofDrillPipe 420
BendingEquationforMarineRisers 424
UniqueFeaturesoftheDifferentialEquationofBending 424
EffectiveTension 426
BucklingofMarineRisers 426
TaperedFlexJoints 429
EquationofBending 430
ParabolicApproximationtoMomentofInertia 430
SolutiontoDifferentialEquation 432
ApplicationtoMarineRisers 435
TorsionalBucklingofLongVerticalPipe 435
BoundaryConditions 436
BothTopandBottomEndsPinned 438
SimplySupportedatBothEndswithnoEndThrust 440
ForceAppliedtoLowerEnd 441
EffectofDrillingFluidonTorsionalBuckling 442
LowerBoundaryConditionFixed 442
OperationalSignificance 442
PressureVessels 443
StressesinThickWallCylinders 443
StressesinThin-WallCylinders 444
StressesAlongaHelicalSeam 444
InterferenceFitBetweenCylinders 445
Thin-WallCylinders 445
SurfaceDeflectionsofThick-WallCylinders 447
ThickWallCylinderEnclosedbyThinWallCylinder 448
ThickWallCylinderEnclosedbyThickWallCylinder 448
ElasticBucklingofThinWallPipe 449
Bresse’sFormulation 450
ApplicationtoLongCylinders 451
ThinShellsofRevolution 452
CurvedBeams 455
LocationofNeutralAxis 455
StressDistributioninCrossSection 456
ShearCenters 460
UnsymmetricalBending 464
PrincipalAxisofInertia 464
NeutralAxisofBending 468
BendingStresses 470
BeamsonElasticFoundations 471
FormulatingtheProblem 472
MathematicalSolution 473
SolutiontoConcentratedForce 474
RadialDeflectionofThinWallCylindersDuetoRingLoading 475
FormulationofSpringConstant 476
EquationofBendingforCylindricalArcStrip 477
ReachofBendingMoment 480
BendingStressinWallofaMultiBandedCylinder 480
CriteriaofFailure 482
CombinedStresses 482
InternalPressure 483
AppliedTorque 483
BendingMoment 483
FailureofDuctileMaterials 484
VisualizationofStressataPoint 485
PressureRequiredtoYieldaCylindricalVessel 486
FailureofBrittleMaterials 487
ModeofFailureinThirdQuadrant 489
References 489
9ModalAnalysisofMechanicalVibrations 491
ComplexVariableApproach 491
ComplexTransferFunction 493
InterpretationofExperimentalData 493
NaturalFrequency 494
DampingFactor 494
SpringConstant 495
Mass 495
DampingCoefficient 495
TwoDegreesofFreedom 495
NaturalFrequenciesandModesofVibration 495
SDOFConvertedto2-DOF 497
SingleDegreeofFreedom 497
TwoDegreesofFreedom 498
Other2-DOFSystems 499
UndampedForcedVibrations(2DOF) 500
UndampedDynamicVibrationAbsorber 502
BaseandAbsorberPinnedTogether 503
Multi-DOFSystems – EigenvaluesandModeShapes 507
FlexibilityMatrix – StiffnessMatrix 508
DirectDeterminationoftheStiffnessMatrix 511
DirectDeterminationoftheMassMatrix 512
AmplitudeandCharacteristicEquations 512
ParametersNotChosenatDiscreteMasses 514
LateralStiffnessofaVerticalCable 515
BuildingtheDampingMatrix 516
ModalAnalysisofDiscreteSystems 516
OrthogonalPropertiesofNaturalModes 517
ProportionalDamping 518
TransformingModalSolutiontoLocalCoordinates 519
FreeVibrationofMultipleDOFSystems 520
FreeVibrationof2DOFSystems 521
SuddenlyStoppingDrillPipewiththeSlips 522
CriticalDampingofVibrationModes 524
ForcedVibrationbyHarmonicExcitation 526
ComplexVariableApproach 526
HarmonicExcitationof3DOFSystems 527
ModalSolutionofaDamped2-DOFSystem 529
GeneralComplexVariableSolution 530
ExperimentalModalAnalysis 532
ModalResponsetoNonperiodicForces 535
NaturalFrequenciesofDrillstrings 536
References 538
10FluidMechanics 541
LaminarFlow 541
ViscousPumps 541
ForcetoMoveRunner 543
CapillaryTubes 544
FlowThroughNoncircularConduits 545
EllipticalConduit 545
RectangularConduit 546
UnsteadyFlowThroughPipe 547
HydraulicsofNon-NewtonianFluids 551
HydraulicsofDrillingFluids 551
PressureLossInsideDrillPipe 551
PressureLossinAnnulus 552
OilWellDrillingPumps 552
DrillingHydraulics 554
PowerDemandsofDownholeMotors 556
PerformanceofPositiveDisplacementMotors(PDM) 557
ApplicationofDrillingTurbines 560
HydraulicDemandsofDrillingMotors – Turbines 561
FluidFlowAroundVibratingMicroCantilevers 562
MathematicalModel 563
FluidPressureFormulation 564
FluidVelocityFormulation 565
References 566
11EnergyMethods 569
PrincipleofMinimumPotentialEnergy 569
StableandUnstableEquilibrium 569
StabilityofFloatingObjects 570
StabilityofaVerticalRod 572
Rayleigh’sMethod 573
MultipleDegreesofFreedom 574
StructureHavingTwoDegreesofFreedom 574
AnalysisofBeamDeflectionbyFourierSeries 576
ConcentratedLoad 577
DistributedLoad 577
AxiallyLoadedBeam(Column) 578
PrincipleofComplementaryEnergy 579
EngineeringApplication 580
Castigliano’sTheorem 582
ChemicallyInducedDeflections 588
MicrocantileverSensors 588
SimulationModel 588
MolecularandElasticPotentialEnergies 591
References 592
Index 593
Engineersaretrainedtounderstandthefundamentalprinciplesofmechanicsandmathematics. Thesetoolsprovideabackgroundofknowledgeformakingprofessionaldecisions.Thetoolsof engineeringscienceapplyacrossmostengineeringdisciplines.Thekeytotheirapplicationisvisualizingareasonablemathematicalmodelfortheproblemathand.Freebodydiagramsarehelpfulin thisregard.Mathematicalsolutionsfollow,leadingtoreasonableengineeringresults.Typically, thereisonlyoneanswer,soeachproblemisclosed-ended.
Ontheotherhand,designandproblem-solvingareopen-ended.Therearemanypossiblesolutionsandalternativesmustbecreated.Whileeachengineeringdesignisdifferent,theapproachis thesame.Anobjectiveofthisbookistoexplaintheengineeringdesignprocessandshowhowto applybasicengineeringtools.
Thebookcontainsthreeparts.
PartIEngineeringDesignandProblem-Solving
PartIIPowerGeneration,Transmission,Consumption
PartIIIAnalyticalToolsofDesign
PartIgivesasystematicprocessfordevelopinganengineeringdesign.Theapplicationofengineeringtoolsisillustratedduringtheconceptualandpreliminaryactivitiesofdesign.Conceptevaluationandselectionareexplained.Visualizingatotaldeviceoranysystemintermsofits subsystemsishelpfulincreatingadesign.Keyconsiderationsinfinalizingadesignareimplementingfeedbackfromtestresultsorotherevaluationsources,finalizingadesignandpresentationof finalmanufacturingdrawings.
Everymachinehas(i)aprimemoverorpowersource,(ii)mechanismstotransmitenergyand (iii)energyconsumedbyformingthefinalproduct,plusfriction.PartIIcoversPowerGeneration, Transmission,andConsumption.
PartIIIcontainsusefultoolsofengineeringmechanics.Eachselectedtopicgoesbeyondthetraditionaltoolsofdesign.Mathematicalmodelingandmethodsofsolutionareofhistoricalsignificance.Eachtopicissupplementedwithkeyreferencesforadditionalbackgroundinformation. Physicalresponsesofengineeringsystemsarepredictablethroughscienceandmathematics.This onethingmakesitpossibletodesignmodernstructuresandmachinerytoahighdegreeofreliability.ThefirstscientificallybasedengineeredbridgeistheEadsBridgewhichspanstheMississippi RiveratSt.Louis.ItwasdesignedandconstructedbyJamesEads.Constructionbeganin1867.It wasdedicatedin1874andisstillinusetoday.
Mygoalinwritingthisbookwastodocumenttheessenceofengineeringpractice.Themanuscriptisacondensationoflecturenotesdevelopedoveryearsofteachingacrossthemechanical engineeringcurriculumandindustrialpracticeinthepetroleumindustry.Itiswrittenforundergraduateandgraduatestudentsandasareferenceforpracticingengineers.
DonaldW.Dareing ProfessorEmeritus,MechanicalEngineering UniversityofTennessee,Knoxville LifeFellowMember,ASME
Knoxville,TN,USA
April2021
Nomenclature
a acceleration
BF buoyancyfactor
c distancetooutsidebeamsurface,dampingcoefficient
ccr criticaldampingcoefficient
E modulusofelasticity
Em energyperpound
F appliedforce,axialinternalforceatdrillpipe-collar interfaceabovehydrostatic
FS safetyfactor
f frictionforce,vibrationfrequency
FB axialforceinpipe(lowerend)
Fcr criticalbucklingforce
fn naturalfrequency,cps
G modulusofrigidity,angularmomentum
h lubricationfilmthickness,enthalpy
hf frictionhead
H linearmomentum,elevation
I areamomentofinertia
Imimpulse
J angularmomentofinertiaofacrosssection, angularmassmomentofinertia
k, K local(modal)mechanicalspringconstant
K0 stressintensityfactor
L length
m, M local(modal)mass,bendingmoment
N force
NR Reynoldsnumber
p pressure
P unitforce(forceperarea),power,diametralpitch ofgears
Q momentofareaaboveshearsurface,heat, compressiveforce
Qeff = Q +(piAi poAo) plussignmeanscompression
q rollerbearingexponent
r radialposition,frequencyratio(ω/ωn)
Nomenclature
S sectionmodulusofacrosssectionalarea,Sommerfeld number,entropy
t, T time,torque,periodofoscillation
T eff = F B + wx + L x A0 γ 0 Ai γ i marineriser(x measuredupfrombottom)
T eff = F B + wx + L x wm drillpipe(x measuredupfrombottom)
TR transmissibility
U, V principalaxisofinertiaofacrosssection, V alsoindicatedshearforce
V velocity,alsototalpotentialenergy
w, W distributedloadonabeam,weightofadiscretebody
x, y, z referenceframe
X, Y, Z referenceframe
[X] modalmatrix
x(t) localresponse
Z viscosity(cp)
GreekSymbols
δ displacement,logdecrement
μ viscosity,coefficientoffriction
ω rotationalspeed,circularfrequency
ωn naturalcircularfrequency
θ angularposition
σ normalstress
τ shearstress
ɛ normalstrain
γ shearstrain
ζ dampingfactor
ν Poisson’sratio
η(t)modalresponse
σ a allowabledesignstress
σ yld yieldstrength
ζ = x L
β = F B + LA0 γ 0 LAi γ i L2 EI
α = w A0 γ 0 + Ai γ i L3 EI
Θ = TL EI
EngineeringDesignandProblemSolving
Engineeringdesignisalogicalsequenceofactivitiesthatsolvesaproblemorachievesaspecified objective.Everydesignprojecthasabeginningandanend.Theycanbeseveralyearslong,suchas puttingamanonthemoonandreturningsafelytoearth,oritcanbeshort,suchasdesigningand fabricatingawaterpump.Successfulengineeringdesignsrequireaclearobjective – wellthought outandexecuted.Planningiscritical.Thedesignprocessmayalsobeappliedtomanagementor anyproblemsituation.
Inconductingdesign,itisimportanttounderstandthedifferencebetween “open-endproblems” and “closed-endedproblems.” Engineeringtoolsofdesignareusuallyclosedendedandbasedon fundamentallawsofengineeringscience.Theanswerisunique.Useofengineeringtoolsusually followscertainsteps:
1)Developamathematicalmodelforthephysicalelementunderconsideration.
2)Developafreebodydiagramoftheelementalongwithforcesandmomentconsideringtheconstraintsplacedontheelement.
3)Solvethemathematicalequationsleadingtoapredictionofperformance,usuallyexpressedin termsofstress,deflection,vibration,etc.
4)Judgetheansweragainstexperience,orderofmagnitude(believable),anduniformityof dimensions.
Ontheotherhand,open-endedproblemshavemanypossiblesolutions.Eachmustbegenerated andevaluatedbeforeadesigncanstart.Solvingopen-endedproblemsrequiresimaginationand creativity.PartIgivesaprocessforsolvingopen-endedproblems,includingstepsinprojectwork. Italsounderscoresimportantdesignprinciplesthatmaybeconsideredinmovingthroughanengineeringproject.
DesignandProblemSolvingGuidelines
Engineeringdesigninvolvesmanagementofpeople,resources,money,andtime.Successdepends onplanning,resource,andtimemanagement.Timeisusuallythedriver.
Whendiscussingtheimportanceofteamingwithonecompany,theresponsewas, “teamingisn’t important – itiseverything.” Theverysuccessofacompanydependsuponpeopleskillsandthe abilitytoworkwithothersasateammember.PeteCarroll,whileheadfootballcoachatthe UniversityofSouthernCalifornia,says, “Winningplayersdon’talwayswin.It’sthewinningplays thatwin.”
Planningisamatterofthinkingthroughtheactivitiesandtasksthatwillbenecessarytoachieve thestatedgoal.Thisissomewhatexperiencedependent.Forlargeprojects,itmaybeusefulto dividetasksintomajoractivities,suchasdesign,fabrication,installation,andcommission,which areusuallyconductedintandem.Inotherprojects,whereseveralactivitiesareconductedsimultaneously,majorgroupingsmaybeneeded.Anexamplewouldbeamilitaryoperationinvolving variousbranches.
GeneralDwightEisenhower,alongwithhisstaff,spentmonthsdevelopingaplanfortheinvasionofEurope.Histeamofofficersgeneratedandevaluatedvariousplansofattack.Eisenhower oncesaid “… theplanitselfisnotasimportantastheactofplanning. ” Thinkingthroughtheplanis thekey.
Plansneedtobeflexible.Asnewinformationisgatheredalongtheway,theplanmayneedtobe modified.Agoodmanageranticipatesproblemsanddealswiththemearlytoavoidcrises.Acrisisis asituationwhereacriticalproblemneedstobesolved,butthereislittletimetosolveit.AGantt chartcanbeusefulinthisregard.
DesignMethodology
Basicstepsfordevelopingaproductidea(orservice)intoaprofitableventurearegivenin Figure1.1.Thefirstfewboxesindicatetheimportanceofapreliminarymarketanalysisandinput fromcustomerstodeterminemarketreactiontoanewproduct.Also,apreliminarymarketanalysis helpsdefineandrefinetheattributesoftheproduct.Initialfeedbackfromcustomersisusefulin decidingwhethertoproceedwithfurtherdevelopment.
Designspecificationsarebasedonspecificneedsandexpectedperformance.Designspecificationsrepresenttheinitial engineeringbaseline forgeneratingdesignalternatives.Inmostcases, designspecificationarelegalstatementsofwhatisexpected.Theymustbeestablishedaccurately andinconcertwithusersofthefutureproduct.
Operation requirements
Design specifications Synthesis Analysis
Evaluate concepts
Preliminary design
Build prototype Test prototype
Fabrication drawings Manufacture
Designalternativesaretypicallygeneratedbyateamofprofessionalswithspecialskills,suchas marketing,design,andmanufacturing.Thisactivityissometimescalledconcurrentengineering wheretheteamconsiderseveryaspectoftheproductfromtechnicalfeasibilitytoproductlifecycle tomanufacturingandmarketingstrategy.Feedbackfrompotentialcustomersisimportant.The teamalsoevaluateseachdesignalternativeandselectsthebestconcepttoadvance.Depending onthecomplexityoftheconcept,technicalfeasibilitystudies,requiringadvancedcomputational techniques,mayberequiredduringtherefinementsofdesignalternatives.
Sincedesignisopenended,therearemanypossiblesolutionsordesignalternativesthatsatisfya givensetofspecifications.Onceviabledesignshavebeengenerated,theyneedtoberankedso choicecanbemade.Choosingapreferredconceptisbasedontrade-offsamongevaluationmetrics identifiedforagivenproduct;anevaluationmethodwillbedescribedlater.
Apreliminarydesignrepresentsanupdateoftheengineeringbaseline.Thepreliminarydesign refinesthepreferredalternative.Itadvancestheengineeringbaselineforthefinaldesignandfabricationphases.
Developingafinaldesignmayrequiretheuseofcomputer-aided-design(CAD),numericalanalysis,andotheranalyticaltoolstorefinedimensions.Prototypetestingmayalsobedesirable.Computersimulationsmayalleviatethehighcostofprototypetesting.
Theproductconfigurationisagainevaluatedinthemarketplaceforcustomerfeedbackand approval.Thisisaccomplishedthroughmarketsurveysormarketfocusgroupsdependingon thenatureoftheproduct.
ThenextstepistointerfaceCADcodeswithmanufacturing(CAM).Thisrequiresconverting designcodesintomachinetoolcodes.Dependingontheproductandthemarket,theabilityto reconfigurethemachiningandhandlingprocessinatimelymannermaybeimportantfor “just intime” delivery.
MarketAnalysis
Thepurposeofamarketanalysisistoidentifywhatpotentialcustomerswantinanewproduct,establishthesizeofthemarket,anddeterminewhatpricethemarketiswillingtopayfortheproduct. Amarketanalysiswillproduceasetofproductattributes,whichmoreclearlydefinethemainfeatures oftheplannedproduct.Usingcustomerinputandcompetitorproductfeatures,importantfeaturesfor thenewproductcanbeidentifiedandrankedastotheirimportance.Thisinformationidentifiescustomerpreferencesandcompetitivedifferentiationduringtheconceptualstageofproductdevelopment. Newproductscanbeeitherresearchdriven,ormarketdriven.Research-drivenproductsstem fromideasthatspawnfrombasicorfundamentalresearch.Inthiscase,anewtechniqueordevice maybetheobjectiveoraby-productofthestudy.Thetechniqueordevicethenbecomesasolution lookingforaproblem,sotospeak.Themarket-drivenproductisdevelopedinresponsetoadefinite marketneed.Insomecases,amarketmaybedevelopedforanewidea.
Beforeinvestingmuchtimeandmoney,itisbesttoconductapatentsearchtomakesurethe productdoesnotinfringeonactivepatents.Thisexercisewillalsogiveusefulinformationon thestate-of-the-artofproductsasappliedtoagivenmarket.Itmayshowthepatentprotection periodonaproducthasexpired,offeringtheopportunitytoenterthemarketwithacompetitor’s product – withimprovements.
Inrecentyears,marketshavebecomemoredemandingonproductdelivery.Customerneeds maychangeoverashortperiod.Companiesthatcanretoolfor “justintimemanufacturing” in responsetothisdemandhaveanadvantage.Onetoolcompany,thatmakesdiamonddrillbits foroilandgaswelldrilling,builtitsbusinessonmakingdiamonddrillbitsovernight;eachdiamond washandset.Eachdiamondbitwasandstillistailoredtosuitasetofdesignspecificationsstipulatedbyanoilcompany.Themainreasonforaquickresponsecapability(or “justintimemanufacturing”)ismoderatedemandforhighcostofdiamonddrillbits.Itisnotgoodbusinessto stockpilehigh-costproductsforalimitedmarketapplication.Warehousedproductsmaybecome outdated.Itiscostlyandrisky.
OperationalRequirements
Operationalrequirementsorproductattributesdescribetheexpectedfunctionalperformanceofa newproduct.Productdescriptionmaycomeoutofabusinessplanforanewproductconcept,a governmentneedforanewweapon,oranoilcompany ’sneedtodevelopanoilfieldinagiven geographiclocation.
ProductDevelopment
Topmanagementmaydefinetheoperationalrequirementsforaproduct,basedonamarketanalysis.Companyengineersthendevelopasetofdesignspecificationsbeforeproceeding.Product designmaybeconductedwithinacompanyorcontractedoutside.
GovernmentProcurementProcedure
Thefederalgovernmenthasverystrictguidelinesforprocuringproductsandservices[1].GovernmentprocurementisnormallythroughtheGeneralServiceAdministration(GSA).Theneedfora productmaycometotheGSAfromanygovernmentagency,whichinturncoordinatestheFederal ProductDescription(FPD).AnFPDdescribestheoperationalrequirementsandrequiredfunctions. Forexample,assumethattheJointChiefofStaffdecidesthatthemilitaryneedsanewtypeof aircraft.TheywouldmaketheirrequesttotheGSAanddescribetheaircraftintermsofexpected operationalrequirement,suchas:
• Range
• Speed
• Landingcapabilities
• Weaponweight
• Weatherconsiderations.
TheGSAwouldexpandtherequestingagency’sdescriptionofoperationalrequirements.
Effectivemarketresearchandanalysismustbeconductedtoassurethatuserneedissatisfied.Duringthemarketresearchandanalysisphase,thepreparingactivityshouldadvise potentialagencyusersthataFPDisbeingdeveloped.Askpotentialuserstoprovideastatementoftheirneedsinessentialfunctionalorperformancetermstothemaximumpractical extent.
Inadditiontoacleardescriptionofoperationalrequirements,FPDswillalsodevelopacomprehensivelistofdesignspecificationsforanewproduct.Thetenderdocumentwouldbereviewedat variouslevelswithGSAbeforeitisreleasedtocontractbidders.
PetroleumIndustryProcedure
Aneconomicanalysisisconductedoneachnewoilreservoirtodetermineitsprofitabilityandthe bestwaytodevelopit.Followingthis,operationalrequirementsaresetbeforeproceeding.Operationalrequirementsmayincludesuchfactorsas
• Oceanwaterdepth
• Sizeofreservoir
• Oil,gas,watercontentofreservoir
• Reservoirpressure
• Productionrate(barrelsperday).
Designspecificationswoulddocumentdetailedengineeringconstraintsonthedesign,suchas environmentalconditions,oceanfloormudlineload-bearingcapabilities,materialspecifications, expectedloads,100-yearstormconditions,etc.
Considerabletimeisspentingatheringthisinformationtoestablishoperationalrequirements anddesignspecifications.Companyengineersbuildasetofdesignspecificationstoforma “tender document” forcontractorbidpreparation.
Therearetwocontractapproaches:turnkeyandcostplus.Turnkeysimplymeansthatthecontractorwilldeliveraproductatafixedprice.Thecontractorisresponsibleforeverydetail,including identifyingandsatisfyingallcodesandstandardsrelevanttothedesign.Sincethepriceisfixed,oil companieswouldbeconcernedaboutdeliverydates.Missingtheplanneddeliverydatecould greatlyincreasefuturemonetaryreturnsandprofit.
Acostplusisbasedonanagreedhourlyrate.Theequipmentandsuppliesareadditionalcoststo thebuyer.Usuallythereisapercentagetackedontothesecosts.Companyrepresentativesare directlyinvolvedinday-to-daydecisions.
DesignSpecifications
Designspecificationsareanitemizedsetofconstraintsplacedonadesign.Theyidentifyproduct performanceexpectations:whattheproductissupposedtodoandhowtheproductshouldperform. Theyarecontractualandrepresenttheinitial “engineeringbaseline” fromwhichallconceptsare generated.Theyareanimportantpartofacontractbetweencustomeranddesigner.Usually,the customersigns-offonasetofspecificationsoncetheyhavebeendocumented.Anychanges,forany reason,afterthedevelopmentworkstarts,willcausedelays,andincreasecosts.Thecostofmaking changesisusuallywrittenintoacontract.
Onceoperationalrequirementshavebeenset,designspecificationsaredocumented.Theymay beexpandedbyoutsidecontractorsinconjunctionwithcompanyengineers.Thecontractusually putstheburdenofcompletenessonthecontractor,suchasallrelevantCodesandStandardsarethe responsibilityofthedesigncontractor.
SpecificationTopics
Designspecificationsareusuallysubdividedintokeytopics.Topicsnormallyconsideredarediscussedbelow.
PerformanceRequirements
Performancerequirementsidentifyspecifics, suchasloads,motions,flowrates,operating pressures,andtemperaturelimits,tonameafew .Inaddition,thetechnicalspecifications mayincludephysicalandchemicalpropertiesofmaterialstobeused.Materialproperties mayincludesuchitemsasyieldstrengthandhard ness.Weldprocedures(includingpreheating) andwelderqualificationrequirements,special heattreatmentandannealingmaybespecified.
Environmentalandclimateconditionsmayaffectdesign.Examplesarewind,oceanographic conditions,suchaswaveheight,wind-drivencurrentvelocities,andtidalcurrents.
Performancerequirementsdefinethephysicalconstraintsinthedesign.Dependinguponthesize oftheproject,thespecificationdocumentcanbeassmallasafewpagesorseveralvolumes.
Sustainability
Sustainabilitymeansbeinggoodstewardsoftheresourcesonplanetearth.A1987UNreport definessustainabledevelopmentas: “Meetingtheneedsofthepresentwithoutcompromising theabilityoffuturegenerationstomeettheirownneeds.” Thisspecificationisrelevant,ethical,