Download ebooks file Plastics process analysis, instrumentation, and control johannes karl fink all

Page 1


Plastics

Karl Fink

Visit to download the full and correct content document: https://ebookmass.com/product/plastics-process-analysis-instrumentation-and-control -johannes-karl-fink/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Fundamentals of Industrial Instrumentation and Process Control, Second Edition William C Dunn

https://ebookmass.com/product/fundamentals-of-industrialinstrumentation-and-process-control-second-edition-william-cdunn/

Process Control Instrumentation Technology 8th Edition

Curtis D. Johnson

https://ebookmass.com/product/process-control-instrumentationtechnology-8th-edition-curtis-d-johnson/

Instrumentation And Control Systems Reddy

https://ebookmass.com/product/instrumentation-and-controlsystems-reddy/

Instrumentation and Control Systems William Bolton

https://ebookmass.com/product/instrumentation-and-controlsystems-william-bolton/

Instrumentation, Measurement and Analysis 4th Edition

Chaudhary Nakra

https://ebookmass.com/product/instrumentation-measurement-andanalysis-4th-edition-chaudhary-nakra/

Industrial Automated Systems: Instrumentation and Motion Control 1st Edition – Ebook PDF Version

https://ebookmass.com/product/industrial-automated-systemsinstrumentation-and-motion-control-1st-edition-ebook-pdf-version/

Process

Control 4th Edition Sohrab Rohani (Ed.)

https://ebookmass.com/product/process-control-4th-edition-sohrabrohani-ed/

Advanced Chemical Process Control 1st Edition Morten Hovd

https://ebookmass.com/product/advanced-chemical-processcontrol-1st-edition-morten-hovd/

Process

Control: Modeling,

Design,

and

Simulation

2nd Edition B. Wayne Bequette

https://ebookmass.com/product/process-control-modeling-designand-simulation-2nd-edition-b-wayne-bequette/

100CummingsCenter,Suite541J

Beverly,MA01915-6106

PublishersatScrivener

MartinScrivener(martin@scrivenerpublishing.com)

PhillipCarmical(pcarmical@scrivenerpublishing.com)

JohannesKarlFink

MontanuniversitätLeoben,Austria

Scrivener

Copyright © 2021byScrivenerPublishingLLC.Allrightsreserved.

Co-publishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey,and ScrivenerPublishingLLC,Salem,Massachusetts. PublishedsimultaneouslyinCanada

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct, withouteitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfeetotheCopyright ClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923,(978) 750-8400,fax(978)750-4470,oronthewebatwww.copyright.com. RequeststothePublisherforpermissionshouldbeaddressedtothe PermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet, Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat http://www.wiley.com/go/permission.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthor haveusedtheirbesteffortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessof thecontentsofthisbookandspecificallydisclaimanyimpliedwarranties ofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymay becreatedorextendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynotbesuitablefor yoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthepublishernorauthorshallbeliableforany lossofprofit oranyothercommercialdamages,includingbutnotlimitedtospecial, incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnical support,pleasecontactourCustomerCareDepartmentwithintheUnited Statesat(800)762-2974,outsidetheUnitedStatesat(317) 572-3993orfax (317)572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Some contentthatappearsinprintmaynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsite atwww.wiley.com.

FormoreinformationaboutScrivenerproductspleasevisit www.scrivenerpublishing.com.

CoverdesignbyRussellRichardson

Preface

Thisbookfocusesonplasticsprocessanalysis,instrumentation,and control.Here,thesubjectofprocessanalysis,instrumentationand controlformodernmanufacturingintheplasticsindustryaredetailed.

Processanalysisisthestartingpointsinceplasticsprocessingis differentfromprocessingofmetals,ceramics,andothermaterials. Plasticsmaterialsshowuniquebehaviorintermsofheattransfer, fluidflow,viscoelasticbehavior,andadependenceoftheprevious time,temperatureandshearhistorywhichdetermineshowthematerialrespondsduringprocessinganditsenduse.Manyofthe manufacturingprocessesarecontinuousorcyclicalinnature.The systemsareflowsystemsinwhichtheprocessvariables,suchas time,temperature,position,meltandhydraulicpressure, mustbe controlledtoachieveasatisfactoryproductwhichistypicallyspecifiedbycriticaldimensionsandphysicalpropertieswhichvarywith theprocessingconditions.Instrumentationhastobeselectedsothat itsurvivestheharshmanufacturingenvironmentofhighpressures, temperaturesandshearrates,andyetithastohaveafastresponse tomeasuretheprocessdynamics.Manytimesthemeasurements havetobeinanon-contactmodesoasnottodisturbthemeltor thefinishedproduct.Plasticsresinsarereactivesystems. Theresins willdegradeiftheprocessconditionsarenotcontrolled.Analysis oftheprocessallowsonetostrategizehowtominimizedegradation andoptimizeend-useproperties.

Themaingoalofthebookistocoverthefieldofautomaticprocess controlandinstrumentationforplasticsprocessingandalsothenew topicsofstatisticalprocesscontrolandprocessmonitoring,which arerequiredtodocumentgoodmanufacturingpractices.

Thetextfocusesontheliteratureofthepastdecade.Beyond education,thisbookwillservetheneedsofindustryengineersand

specialistswhohaveonlyapassingknowledgeoftheplasticsand compositesindustriesbutneedtoknowmore.

HowtoUseThisBook

Utmostcarehasbeentakentopresentreliabledata.Becauseofthe vastvarietyofmaterialpresentedhere,however,thetextcannotbe completeinallaspects,anditisrecommendedthatthereaderstudy theoriginalliteratureformorecompleteinformation.

ThereadershouldbeawarethatmostlyUSpatentshavebeen citedwhereavailable,butnotthecorrespondingequivalentpatents inothercountries.Forthisreason,theauthorcannotassumeresponsibilityforthecompleteness,validityorconsequencesofthe useofthematerialpresentedherein.Everyattempthasbeen made toidentifytrademarks;however,thereweresomethattheauthor wasunabletolocate.

Index

Therearethreeindices:anindexofacronyms,anindexofchemicals,andageneralindex.Intheindexofchemicals,compounds thatoccurextensively,e.g.,“acetone,”arenotincludedatevery occurrence,butratherwhentheyappearinanimportantcontext.

Acknowledgements

Iamindebtedtoouruniversitylibrarians,Dr.ChristianHasenhüttl, MargitKeshmiri,FriedrichScheer,ChristianSlamenik,Renate Tschabuschnig,andElisabethGroßforsupportinliteratureacquisition.Ialsowanttoexpressmygratitudetoallthescientistswho havecarefullypublishedtheirresultsconcerningthetopicsdealt withherein.Thisbookcouldnothavebeenotherwisecompiled.

Last,butnotleast,Iwanttothankthepublisher,MartinScrivener, forhisabidinginterestandhelpinthepreparationofthetext.Inaddition,mythanksgotoJeanMarkovic,whomadethefinalcopyedit withutmostcare.

JohannesFink

Leoben,10thNovember2020

1.1SubjectsoftheBook....................1 1.2SpecialIssues.......................2 1.3InjectionMolding.....................3

1.3.1CostEstimationinInjectionMolding.....3

1.3.2CostPredictionModels.............4

1.4MiniatureMoldingProcesses..............6

1.5ComputerDeterminationofWeldLinesinInjection Molding..........................6

1.6ExtrusionBlowMolding.................8

1.6.1RapidThermalCyclingMolding........8

1.6.2RapidHeatCycleMolding...........8

1.6.3InjectionMolding:Heating...........16

1.7MicrocellularInjectionMolding.............22 1.8MoldCooling.......................23

1.9MicrocellularFoamProcessingSystem.........27

1.9.1Gas-AssistedInjectionMolding.........27

1.9.2Water-AssistedInjectionMolding.......32

1.10MoldingMachineforGranules.............32

1.15.1MarinePollution.................43

1.15.3Recycling.....................45

References............................57

2ProcessAnalysis 65

2.1ConceptsandStrategies.................66

2.1.1Chemometrics...................67

2.1.2SafetyRisks....................68

2.1.3FeedbackProcedures...............68

2.2LinearSystems......................68

2.2.1SimpleFirst-OrderSystems...........68

2.2.2FractionalOrderSystems............69

2.2.3NonlinearSystemsandLinearization.....69

2.2.4CharacteristicsofSystems............75

2.2.5ControllersandControllerSettings.......84

2.3Twin-ScrewExtrusion..................91 References............................92

3ExamplesofProcessAnalysis99

3.1GreenhouseGasBalance.................99

3.1.1Poly(ethylenefurandicarboxylate).......99

3.1.2PolyesterBinder.................100

3.2InjectionMoldingTechnology..............101

3.2.1ModuleforCADModelingofthePart.....103

3.2.2ModuleforNumericalSimulationofInjection MoldingProcess.................104

3.2.3ModuleforCalculationofParameters ofInjectionMoldingandMoldDesign CalculationandSelection............105

3.2.4ModuleforMoldModeling...........106

3.2.5ExamplesofTesting...............107

3.2.6MoldingAirCooling...............108

3.2.7CavityPressure..................109

3.2.8PlasticsExtruderDynamics...........110

3.2.9HistoryofMathematicalModeling.......110

3.2.10CurrentPhysicalComponentsConcept....112

3.2.11ProcessStages...................112

3.2.12DataEnvelopmentAnalysis...........116

3.2.13TaguchiMethod..................118

3.2.14TaitModel.....................119

3.2.15Phan-Thien-TannerModel............121

3.2.16ProductQualityPrognosis............121

3.2.17ProductionPredictiveControl.........122

3.2.18ParameterOptimizationforEnergySaving..123

3.2.19MultilayerControlSystem............124

3.2.20SmoothedParticleHydrodynamicsMethod.125

3.2.21Temperature-DependentAdaptiveControl..126

3.2.22Micro-InjectionMolding.............128

3.2.23ImmisciblePolymerBlends...........131

3.2.24ResinInjectionMolding.............133

3.2.25FoamInjectionMolding.............137

3.2.26Self-OptimizingInjectionMoldingProcess..138

3.2.27MachineSetup..................140

3.3ShrinkageinInjectionMolding.............146

3.3.1FactorsthatAffecttheShrinkage........146

3.3.2EffectofaCoolingSystem............147

3.3.3InfluenceofMoldingConditionsonthe ShrinkageandRoundness............148

3.3.4ShearViscosity..................148

3.3.5 In-Situ ShrinkageSensor.............149

3.3.6SemicrystallinePolymer.............151

3.3.7ThermoplasticElastomers............151

3.3.8ReprocessingofABS...............153

3.3.9SequentialSimplexAlgorithmwithAutomotive VentiductGrid..................155

3.3.10Taguchi,ANOVA,CAE,andNeuralNetwork Methods......................156

3.4RecyclingbyExtrusion..................166

3.4.1MultipleIn-LineExtruders...........166

3.4.2MixedPost-ConsumerPlasticWaste......167

3.4.3Poly(methylmethacrylate)...........168

3.4.4Poly(ethyleneterephthalate)..........169

3.4.5Poly(lacticacid)..................169

3.4.6ExpandedPoly(styrene).............169

3.5BatchWashingofRecycledFilms............171

3.5.1RecyclingofPoly(styrene)Waste........171

3.5.2TextileFinishing.................172

3.5.3RemovingScrapfromContainers.......173

3.5.4AdsorptionIsothermsandDesorptionRates.175

3.6Self-PurgingMicrowavePyrolysis...........176

3.7PurgingandPlasticizationinInjectionMolding....177

3.7.1AutomaticPurging................177

3.8HotRunnerSystems...................179

3.8.1HotRunnerMoldwithRunnerPipe......180

3.8.2HotRunnerSysteminPlasticsMoldingTools183

3.8.3ManufacturingandAssemblingofHot RunnerSystems..................184

3.9BlownFilmExtrusionandThicknessControl.....185

3.10ResidenceTimeDistributionforBiomassPyrolysis..186

3.11ReactiveExtrusion....................187 References............................187

4ProcessInstrumentation201

4.1In-MoldMeasurement..................201 4.2Temperature........................202

4.2.1SoftActuator...................202

4.2.2Thermocouples..................202

4.2.3ResistanceTemperatureDetectors.......206

4.2.4ThinFilmMiniatureTemperatureSensors..214

4.2.5NeuralNetworks.................214

4.3PositionTransducers...................215

4.3.1RotaryPositionTransducer...........215

4.3.2LinearVariableDifferentialTransformers...216

4.3.3OpticalEncoders.................218

4.3.4ThicknessGauges.................218

4.4CompositionofMatter..................222

4.4.1IRInterferometerforMultilayerFilm.....222

4.4.2X-RayDiffraction.................225

4.4.3IonMobility-MassSpectrometry........226

4.4.4TestforIceAdhesionStrength.........226

4.4.5PiezoelectricCoaxialFilamentSensors.....228

4.4.6InstrumentationforImpactTesting.......228

4.4.7TreatmentofTitaniumSurfaces.........229

4.4.8SpatialDifferentiationofSub-Micrometer Domains......................230

4.5MedicalIssues.......................231

4.5.1EndoscopicPlasticSurgicalProcedures....231

4.5.2MedicalCatheters................231

4.5.3MultichannelPlasticJoint............237

4.5.4TransluminalEndoscopicSurgery.......238

4.5.5Wire-ActuatedUniversal-JointWrists.....238

4.5.6MusculoskeletalDisorders...........239 References............................240

5ActuatorsandFinalControlElements245

5.1ServoValves........................245

5.1.1NozzleAssemblyforaServoValve......245

5.2ServoMotors........................248

5.2.1HydraulicSystem.................248

5.2.2FunctionallyGradedMaterials.........248

5.3SolenoidValves......................251

5.3.1DesignVerificationMethodology........251

5.3.2SmallSolenoidValve...............252

5.3.3High-SpeedSolenoidValve...........252

5.3.4NumericalSimulation..............252

5.4Heaters...........................253

5.4.1ConductionHeaters...............253

5.4.2RadiantHeaters..................255

5.4.3HeaterControls..................255

5.5DriveMotorsandMotorSpeedControlforExtrusion256

5.5.1Single-DriveMotor................256

5.5.2LinearInductionMotor.............256

5.5.3MotorPowerConsumptioninSingle-Screw Extrusion.....................257

5.5.4DualMotorMulti-Head3DPrinter.......258 References............................258

6AnalysisofMeltProcessingSystems261

6.1ProcessParameterDeterminationofPlasticInjection Molding..........................261

6.1.1Case-BasedReasoningMethod.........261

6.1.2Knowledge-BasedReasoningMethod.....264

6.1.3Rule-BasedReasoningMethod.........265

6.1.4FuzzyReasoningMethod............266

6.2ProcessParameterDeterminationofPlasticInjection MoldingofLCDs.....................267

6.3ProcessingHistory....................267

6.3.1FlowDefects....................267

6.3.2Biocomposites...................269

6.3.33DPrinting....................271

6.3.4SemiconductingPolymerBlends........272

6.3.5VanGurp-PalmenPlot..............272

6.3.6NanocrystalComposites.............273

6.3.7Melt-Mastication.................274

6.3.8CrystalNucleationinNanocomposites....275

6.4ShearHistory.......................276

6.5ExtrusionProductControl................278

6.5.1BranchedStructures...............278

6.5.2BigAreaAdditiveManufacturing.......279

6.5.3Single-ScrewExtrusionControl.........280

6.5.4BlownFilm....................284

6.5.5ChillRollCastFilm................285

6.5.6Sheet........................292

6.5.7Profiles.......................294

6.5.8PipeandTubing.................297

6.5.9AutomaticScreenChangers...........303

6.6ExtrusionBlowMoldingParisonControl.......306

6.7InjectionMolding.....................310

6.7.1RamVelocityControl...............310

6.7.2PressureControl.................313

6.7.3Gas-AssistedControl...............319

6.7.4SystemDiagnostics................322

6.7.5StatisticalProcessandQualityControl.....328

6.8Thermoforming......................329

6.8.1TwinSheetThermoforming...........329

6.8.2RotaryThermoforming.............330

6.8.3ProcessModelforThermoforming.......331

6.9Rotomolding........................332

6.9.1PolymerCompositionsforRotomolding...334

6.10Compounders.......................348

6.10.1HistoryofCompounding............348

6.10.2TypesofCompounders.............348

6.10.3SpecialApplications...............350 References............................352

7.2.1DryingTemperatures...............364

7.2.2MoistureContent.................366

7.2.3ResinDryers....................366 7.2.4PelletDryers....................369

1 GeneralAspects

1.1SubjectsoftheBook

Thisbookintroducesthesubjectofprocessanalysis,instrumentationandcontrolformodernmanufacturingintheplasticsindustry. Processanalysisisthestartingpointsinceplasticsprocessingis differentfromprocessingofmetals,ceramics,andothermaterials. Plasticsmaterialsshowanuniquebehaviorintermsofheattransfer, fluidflow,viscoelasticbehavior,andadependenceontheprevious time,temperatureandshearhistorywhichdetermineshowthematerialrespondsduringprocessinganditsenduse.

Manyofthemanufacturingprocessesarecontinuousorcyclicalin nature.Thesystemsareflowsystemsinwhichtheprocessvariables, suchastime,temperature,position,meltandhydraulicpressure, mustbecontrolledtoachieveasatisfactoryproduct,which istypicallyspecifiedbycriticaldimensionsandphysicalpropertieswhich varywiththeprocessingconditions.Instrumentationhastobeselectedsothatitsurvivestheharshmanufacturingenvironmentof highpressures,temperaturesandshearratesandyetithastohave afastresponsetomeasuretheprocessdynamics.Manytimesthe measurementshavetobeinanon-contactmodesoasnottodisturb themeltorthefinishedproduct.Plasticsresinsarereactivesystems. Theresinswilldegradeiftheprocessconditionsarenotcontrolled. Analysisoftheprocessallowsonetostrategizehowtominimize degradationandoptimizeenduseproperties.

Linearsystemsinwhichthereexistsaone-to-onerelationship betweentheinputvariableandtheoutputresponsearetheeasiest

2Plastics Process Analysis,Instrumentation, and Control

toanalyzeandcontrol.Plasticsontheotherhandshowanonlinear dependenceonpart/productcoolingwhichvarieswiththesquare ofthepartthickness,laminarflowwhichvarieswiththecubeof thewallthicknessandmechanicalstrength/stiffnesswhichvaries withthecubeofwallthickness.Also,wallthicknessinfluencesthe crystallization,shrinkage,morphologyandcriticaldimensionsof theproduct.

Inordertomakecorrectionstotheprocess,actuators,also known asfinalcontrolelements,mustintroduceenergytothesystem.This hardwareisintheformofservovalves,solenoidvalves,servo motors,heaters,andblowers.Thesizing,responsetime,ruggedness andlinearitymustbeconsidered.Alltheabovehardwarehastobe assembledintoasystemandprogrammedwithasuitablealgorithm tocarryoutautomaticcontrol.Thecontrolconfigurationand the algorithmaredictatedbythesystemitself.Commoncontrol modes arefeedbacksetpointcontrolwhichiscommoninextrusion, servo controlwhichiscommonininjectionmoldingandblowmolding cyclicalprocesses,andcombinationsandvariationsthereof.

1.2SpecialIssues

Asimplified,practical,andinnovativeapproachtounderstandthe designandmanufactureofplasticproductsintheWorldofPlastics hasbeenpresented(1).

Theinformationdefinesandfocusesonpast,current,andfuture technicaltrends.Thishandbookreviewsmorethan20,000different subjects.

Variousplasticmaterialsandtheirbehaviorpatternswere reviewed.Examplesareprovidedofdifferentplasticproductsand criticalfactorsrelatingtothemthatrangefrommeetingperformance requirementsindifferentenvironmentstoreducingcostsandtargetingforzerodefects(1).

1.3InjectionMolding

1.3.1CostEstimationinInjectionMolding

Costandperformanceestimationarefrequentlyusedattheearly stagesofproductdevelopmenttodeterminethefeasibility anddrive criticaldesigndecisions.Earlycostestimationhasbeenhampered bytheunavailabilityanduncertaintyofinformation.

Here,costestimateswerederivedfromacomplexitymetricas definedbythenumberofdimensionsthatuniquelydefinethepart geometry(2).

Thecostdriversofmanufacturinganinjectionmoldedplastic part Cpart areexpressedinEq.1.1.

Thematerialcostcontribution, Cmat,isverysignificant,typically 50%to80%ofthetotalpartcost.Toolingandprocessingcostsare alsosignificantcostdrivers.Theprocessingcost, Cproc,isdependent onthehourlyratechargedfortheusageoftheinjectionmolding machineaswellastheprocessingyield, yproc,whichistheratioof goodpartstothetotalnumberofpartsproduced.Thetoolingcost, Ctool,isamortizedovertheestimatedproductionquantity N forthe lifeofthetool.

Eq.1.2isanexpressionfortheassembledproductcost.

The m partsthatconstitutetheproductincludebothinjection moldedandstandardpurchasedparts.Thecostoftheassembly is theproductoftheassemblyshophourlyrate, Rassy,andthetotaltime requiredtoassemblethe m partsconstitutingtheproduct.Thus,the assemblycostdecreasesaspart-count m decreases.Theoverhead costperproduct COH includesboththeshopandtheadministrative overheads.

Dimensionalityandothercriticaldesignvariablescanbeautomaticallyassessedwithinmoderncomputer-aideddesignsystems throughouttheproductdevelopmentprocesstoprovidecontinual feedbackregardingtooling,process,andmaterialcosts(2).

4Plastics Process Analysis,Instrumentation, and Control

Thecomplexity-basedmodelsweredevelopedandtestedwith empiricaldataforthirtyinjectionmoldedpartsfromdifferentsuppliersandwasfoundtohaveahighlysignificantcorrelation with moldcostsandtoolingleadtimes.Modelsforestimatingmaterial andprocessingcostsandyieldattheearlystagesofdesignarealso developed.Thedevelopedmethodsenablereal-timeevaluationof theeffectsofaproductdesignonitstoolingcost,toolingleadtime, processingcosts,andyieldattheearlystagesofdesign(2).

1.3.2CostPredictionModels

Withtherecentevolutionofadditivemanufacturing,accuratecost predictionmodelsareofincreasingimportancetoassistdecisionmakingduringproductdevelopmenttasks(3).Estimatingthecost isachallengingtaskinthatitrequiresavastamountofmanufacturingknowledgeinwhichmanyaspects,fromdesigntoproduction, needtobesynchronized.Asaresult,variousadditivemanufacturingcostmodelshavebeendeveloped.

Thestateoftheartinproductcostestimationcoveringvarious techniquesanddevelopedmethodologieshasbeenreviewed(4). Theoverallworkcanbecategorizedintoqualitativeandquantitativetechniques.Thequalitativetechniquesarefurthersubdivided intointuitiveandanalogicaltechniques,andthequantitativeones intoparametricandanalyticaltechniques.Also,theimportanceof costestimationintheearlyphasesofthedesigncycleisdiscussed inthereview(4).Thecostclassificationtechniquesaresummarized inTable1.1.

Also,morerecently,anoverviewwaspresentedofthecosting modelsbeingdevelopedandutilizedassociatedwiththeadditive manufacturingproductdevelopmentphases(3).Here,itwas observedthatthecontextsandviewsdescribedduringthedevelopmentofthemodelswereoftentargetedatspecificapplicationsas wellastechnologiesandwereclassifiedinmanyways.Accordingly, differentaspectsofthecostestimationclassificationtechniquewere detailedanddefinitionsofsomeofthekeyterminologieswerereported.

Since2006,atotaloftenreviewworksrelatedtocostinginadditivemanufacturingwerereportedinwhicheachdifferedsignif-

Table1.1 Costclassificationtechniques(3).

ClassificationtechniquesDefinition

Method-basedQualitative: Intuitive Basedontheexperienceofthe estimator

Qualitative: Analogy Basedonhistoricaldata.Acomparisonisoftenmadebetween oldpartsandnewpartsduring estimation

Quantitative: Parametric Basedonstatisticalregression expressionwherevariablesare referredtoascostdrivers

Quantitative: Analytical Basedonproductdecompositionintounits,operations,or activitiesthatrelatetohowto manufacturetheproduct

Task-basedDesign-orientedBasedondesign-relatedactivities Process-orientedBasedontheprocessofcommissioningtheproductdevelopmentactivitiescoveringproduction-relatedandpost-processing costs

Level-basedProcess-levelBasedontheproductioncost, whichinvolvesentireproduct developmentphases(preprocessing,productionand post-processing)

System-levelBasedonproductlifecyclethat coverssupplychain,operation managementandsystem-level services

6Plastics Process Analysis,Instrumentation, and Control icantlyintermsoftheirscope.TheseworksarecollectedinTable 1.2.

1.4MiniatureMoldingProcesses

Inachapterofamonograph,particularprocessingstrategiesand techniquesforinjectionmoldingofprecisionparts,thinwallparts, microstructuredparts,andmicropartshavebeendescribed (5).

Theimportanceofincorporatingsizeeffectsintothefillingsimulationofmicrocavitieshasbeendemonstrated.Thestandard injectionmoldingsimulationandspecialsimulationneedsforminiature moldingprocesseshavebeendiscussed(5).

1.5ComputerDeterminationofWeldLinesin InjectionMolding

Aweldlineisoneofthemostcommonlyseendefectsinaninjection moldingprocess.Itisthelinewheretwopolymermeltfronts weld together,orameltfrontsplitsandcomesbackandweldstogether duringthefillingstage(6).

Aweldlinegreatlyaffectstheappearanceandmechanicalpropertiesoffinalinjectionmoldedparts(7).

ThesurfaceoftheweldlinemaycontainsmallV-notchcracks, andthesecrack-likefeaturesareoftenvisibletothenaked eyeand thereforetheyareconsideredaestheticallyunacceptable inmany applications,especiallywhenusinghigh-glosspolymers. Moreimportantly,thepolymersattheweldlinedonotbondperfectly,and thiscancauseaweakareainamoldedpartwhichcancausebreakagewhenthepartisunderstress(8).

So,aweldlineisaestheticallyunpleasantandaffectsthemechanicalstrengthofinjectionmoldedparts(9).Variousstudies havebeen performedrelatedtotheoptimizationofweldlines.

Aweldlinecomputerdeterminationmethodbasedonfilling simulationwithsurfacemodelhasbeenproposed,fromwhich the positionsandlengthsoftheweldlinescanbepredicted.

Accordingtothecharacteristicsofthesurfacemodel,allweld linescanbeclassifiedintotwodifferenttypes.Initialweldingnode

Table1.2 Recentreviewarticlesandtheirtargetedscope(3).

YearScopeReference

2006Generichierarchicalcostestimationclassification (4)

2009Web-basedsystemforrapidprototypingand traditionalmanufacturing.Brieflyhighlighted thecostmodelsutilization (10)

2014Categorizedadditivemanufacturingcostsby theirprocessesandmaterials,whichwere subdividedintoill-structuredcosts,well-structuredcostsandproductenhancementsand quality (11)

2016In-depthdiscussionofcostmethodologyused inproductdevelopmentprocess.Noclassificationtechniqueproposed. (12)

2016Coveredindustrialsectorrelatedtothematerialsandmanagement.Brieflyreviewed additivemanufacturingcostingmodels (13)

2016Providedupdatedestimateofthevaluerelated tothesupplychain (14)

2016Describedcostmodelsasasubsetofdesignfor additivemanufacturing (15)

2017Focusedondefensesupportservicesandcategorizedthecostmodelsintointuitive,analogicalandanalyticalapproaches (16)

2017Focusedonoperationmanagementwherethe strengthsandweaknessesofthemodelswere discussed.Includedageneralreviewofadditivemanufacturing (17)

2019Providedabroaderreviewonadditivemanufacturingtechnologies,additivemanufacturing costmodels,sparepartdigitalizationand environmentaleffectsfortheaviationindustry (18)

8Plastics Process Analysis,Instrumentation, and Control

searchingandrevisionalgorithmsforthetwodifferenttypesof weldlinesweredeveloped.Startingfrominitialweldingnodes, weldlinesarethenextendedbyapre-extensionalgorithmandan extensionalgorithm.

Intheweldlineextensionalgorithm,135°issetasawelding anglethresholdforformingweldlines.Finally,theeffectsofcavity thickness,processparameters,andmeshdensitieshavebeeninvestigated.Moreover,moldflowsimulationresultsandrealparts inproductionhavebeenconductedtoverifytheproposeddeterminationmethod,whichdemonstratethattheproposedmethodis correctandeffectiveinactualproduction(9).

1.6ExtrusionBlowMolding

1.6.1RapidThermalCyclingMolding

Blowmoldedpartsmadefromengineeringresinsusuallypossess apoorsurfacequality,andthuscannotsatisfytherequirementof high-glossappearanceinsomeapplications.Forthisreason,arapid thermalcyclingextrusionblowmolding(RTCEBM)technology was developed.Theprocessprinciplewaspresentedanditsprocess procedureoptimizationwasalsoanalyzed(19).

Withtheaimofobtainingauniformtemperaturedistributionon boththemoldcavityandthecoresurfaces,atwo-stepoptimization methodbasedonasequentialquadraticprogrammingalgorithm wasproposedfordesigningtheheatingsysteminaRTCEBMmold. Itseffectivenesswasdemonstratedbyoptimizingtheelectric-heatingsystemfortheRTCEBMmoldofanautomotivespoiler.

Afteroptimization,themaximumcoresurfacetemperaturedifferenceisreducedby77%fromtheinitialvalueof22.06°Ctothe optimalvalueof5.05°C.Themoldingprocesscoordinationcould alsobeensured.So,aneffectivemethodhasbeenassessedtooptimizetheheatingsystemforthesemoldswithcavityandcoresides tobeheatedsimultaneously(19).

1.6.2RapidHeatCycleMolding

Rapidheatcyclemolding(RHCM)isanadvancedinjectionmoldingtechnologyforproducingspraying-freeplasticproductswith

excellentappearance(20).Rapidmoldheatingandcoolingisthe keytechniqueofRHCM.

Despitebeingwidelyusedinpractice,theregularrapidmold heatingandcoolingmethodsstillhavesomeobviousdefects.Thus, anewrapidmoldheatingandcoolingmethodhasbeendeveloped, characterizedbyelectricheatingandannularcooling.

Here,thetemperatureandpressureresponsesintheheating and coolingperiodswereexperimentallyinvestigated(20).The results ofthestudyshowedthatthetoolsurfacetemperatureincreases almostlinearlywiththeheatingtimeafterashortresponse time. Thelargertheheatingpowerorthesmallerthedistancefromheater totoolsurface,thefastertheheatingrate.

Theintroductionofairbubblesintotheworkingfluidcanremarkablyreducethepressuregrowthofworkingfluidwithoutaffecting theheatingrate.Intheinvestigatedrangeofflowrate,thecooling ratefirstincreasessignificantlywiththeflowrate,andthenreaches aplateau,whiletherunningpressureofworkingfluidincreases linearlywiththeflowrateinthewholerange.

Theoptimumflowrateisaround6.0 lmin 1,correspondingtoa Reynoldsnumberof6700(20).TheReynoldsnumberhelpstopredictflowpatternsindifferentfluidflowsituations.AtlowReynolds numbers,flowstendtobedominatedbylaminar(sheet-like)flow, whileathighReynoldsnumbersflowstendtobeturbulent(21).

Theheattransfercoefficientinthecoolingperiodincreases sharplyattheinitialstage,andthenreducesgradually,andfinally reachesaplateau.ThelargertheReynoldsnumber,thehigher the heattransfercoefficient.Inparticular,theheattransfercoefficient andtheReynoldsnumbershowalinearrelationshiponthedouble logarithmicscale.Finally,amathematicalmodelwasdevelopedfor predictingandcontrollingthetemperaturefluctuationrangeoftool surface(20).

1.6.2.1ReductionofWeldLines

RapidHeatCycleMolding. TheRHCMtechniquecangreatly improveweldlineswithoutprolongingthemoldingcycle.The effectsofcavitysurfacetemperatureinRHCMonthemechanical strengthofthespecimenwithandwithoutweldlinewereinvestigated(22,23).

10Plastics Process Analysis,Instrumentation, and Control

Sixkindsoftypicalplastics,includingpoly(styrene)(PS), poly(propylene)(PP),acrylonitrile-butadiene-styrene (ABS), ABS/poly(methylmethacrylate)(PMMA),ABS/PMMA/nano-CaCO3 andglassfiber-reinforcedPP,areusedinexperiments.Thespecimenswithandwithoutaweldlineareproducedwiththedifferent Tcs onthedevelopedelectric-heatingRHCMsystem.Tensiletests andnotchedIzodimpacttestsareconductedtocharacterize the mechanicalstrengthofthespecimensmoldedwithdifferentcavity surfacetemperatures.Simulations,differentialscanningcalorimetry(DSC),scanningelectronmicroscopy(SEM)andopticalmicroscopeareimplementedtoexplaintheimpactmechanismof Tcs on themechanicalproperties.

Thermalcyclingexperimentsareimplementedtoinvestigate cavitysurfacetemperatureresponseswithdifferentheatingandcoolingtimes.Accordingtotheexperimentalresults,amathematical modelwasdevelopedbyregressionanalysistopredictthehighest temperatureandthelowesttemperatureofthecavitysurfaceduring thermalcyclingoftheelectricheatingRHCMmold(23).

Thesimulatedcavitysurfacetemperatureresponseshoweda goodagreementwiththeexperimentalresults.Basedonsimulations,theinfluenceofthepowerdensityofthecartridgeheaters andthetemperatureofthecoolingwateronthethermalresponse ofthecavitysurfacecouldbeobtained.AhighcavitysurfacetemperatureduringthefillingstageinRHCMcansignificantlyimprove thesurfaceappearancebygreatlyimprovingthesurfaceglossand completelyeliminatingtheweldlineandjettingmark(23).

Weldless-TypeInjectionMoldApparatus.

Ageneralforming processofapolymerresinhasproblemssuchasanaesthetically poorappearanceduetoaweldlineformedbythemoltenresinin themoldandalowdegreeofsurfacegloss.

Tosolvetheseproblems,amoldheatingmethodcanbeused,in whichthemoldtemperatureissettobehigherthanthemelting pointofaformedpolymerresin.

However,ifthepolymerresinisformedbysettingthetemperatureofamoldtobehigherthanthemeltingpointofpolymerresin, aweldlineisnotformedwhileenhancingaestheticappearance, suchasgloss.Butahightemperatureofthemoldextendsthecool-

ingtime,andtheoverallformingcyclemaybeprolonged,thereby loweringthemanufacturingefficiency.

Inparticular,sincethepolymerresinisnotseparatedfrom the moldafterbeingcooledtolowerthanthemeltingpointthereof, deformationduetoshrinkagemaybecomemoreseverethanina conventionalmolding.

Toovercometheseproblems,aweldless-typeinjectionmold apparatushasbeendeveloped(24).Thisapparatusincludesanupper mold,alowermoldengagedtotheuppermoldtoformacavityfor injectionmoldingofproducts,aheatingunitformedononesideof thecavityofatleastoneoftheloweranduppermoldstoheata resin injectedintothecavity,afirstcoolingunitformedinatleastoneof theloweranduppermoldstopreventtheinjectionmoldfrombeing overheated,andasecondcoolingunitinstalledbetweenthe heating unittocoolanareasurroundingthecavityandaninjectionmolded product.

Aschematicdiagramofaweldless-typeinjectionmoldapparatus isshowninFigure1.1.

Thelowermold30includesaheatingunit40,afirstcoolingunit 50,andasecondcoolingunit60.

Thefirstcoolingunitmayincludeapluralityofverticalcooling flowsformedtoextendfromabottomsurfaceofthemoldtothe cavity,theverticalcoolingflowsmaybeconnectedtoeachother throughconnectionflows,andaninletandoutletmaybeformed onalateralsurfaceofthelowermoldtosupplyandejectcoolant.

Theheatingunit40isinstalledatasideadjacenttothecavity12 andheatsanareasurroundingthecavity12andaresininjectedinto thecavity12.Thefirstcoolingunit50isinstalledattheupperor lowermold20or30topreventtheupperorlowermold20or30 frombeingoverheatedduetorepeatedinjectionmoldingprocesses, andincludesaheat-blockingunitforpreventingheatfrombeing transferredtotheoutsideoftheupperorlowermold20or30. The secondcoolingunit60isinstalledbetweentheheatingunit 40and thefirstcoolingunit50andcoolsanareasurroundingthecavity12 andaninjectionmoldedproduct.

Thefirstcirculatingconduit43mayincludeafirstcontrolvalve 46installedtocontrolsteamtobesuppliedtothefirstfluidflows 41.Thesecondfluidflows51arespacedapredetermineddistance apartfromthebottomsurfaceofthelowermold30towardthe

Figure1.1 Weldless-typeinjectionmoldapparatus(24).

cavity12.Thesecondfluidflows51areconnectedtoeachother bycommunicationholes52.Inaddition,thesecondfluidflows 51aresealedbyablockingplate53engagedwiththelowermold 30.Theblockingplate53mayhavepartitioningplates54inserted intothesecondfluidflows51toelongateafluidflowtrackofthe secondfluidflows51.Here,eachofthepartitioningplates54may beshorterthaneachofthesecondfluidflows51.

Thefirstcoolingunit50includesafirstrefrigerantsupplyunit55 forcontinuouslysupplyingcoolanttothesecondfluidflows51. The firstrefrigerantsupplyunit55includesafirstrefrigerant tank57in whichrefrigerant56suchascoolantorcoolingoilisstored,afirst pump58connectingtherefrigeranttank57andthefirstfluidflow 51,andathirdcirculatingconduit59.Thefirstrefrigeranttank57is connectedtoamakeupwatertank57aforrefillingtherefrigerant56. Inaddition,arefrigerantcoolingsystemforcoolingtherefrigerant maybeinstalledinthefirstrefrigeranttank57.

Thethirdfluidflows61andthebranchconduit71maybeconnectedtoeachotherbythefirstcirculatingconduit43ofthe boiler 42andapurgeconduit73,sothattherefrigerantofthirdfluid flows 61maybeexhaustedwhenheatingiscarriedoutbytheheating unit 40.Thesecondcontrolvalve72maybeathree-wayvalveinstalled ataconnectionpartofthepurgeconduit73andthebranchconduit 71tosupplysteamorcoolant.

Imagesoftheuppermoldandthelowermoldduringinjection moldingwereobtainedusingaforward-lookinginfraredcamera. Thiscanillustratetheheatedstatesduringinjectionmolding,as showninFigure1.2.

AsevidentfromthephotographsinFigure1.2,heataccumulated aroundthecavity,whileheatdidnotaccumulateintheupper and lowermolds.Thatistosay,sinceheatisnottransferredtoalowerportionofthecavity,theheatcapacityfortheoverallinjection moldingprocessisnotsohigh.

Sinceheataccumulationispreventedinsuchamanner,acoolingandheatingtimeforinjectionmolding,specificallythe cooling time,canbereduced,therebyshorteningtheoverallcycletimerequiredforinjectionmoldingofaproduct,ultimatelyenhancingthe manufacturingefficiency(24).

Figure1.2 Heatedstatesduringinjectionmolding(24).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Download ebooks file Plastics process analysis, instrumentation, and control johannes karl fink all by Education Libraries - Issuu