Immediate download Total chemical synthesis of proteins 1st edition ashraf brik ebooks 2024

Page 1


Total Chemical Synthesis of Proteins

1st Edition Ashraf Brik

Visit to download the full and correct content document: https://ebookmass.com/product/total-chemical-synthesis-of-proteins-1st-edition-ashraf -brik/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Total synthesis of bioactive natural products

https://ebookmass.com/product/total-synthesis-of-bioactivenatural-products-brahmachari/

Recent Applications of Selected Name Reactions in the Total Synthesis of Alkaloids Majid M. Heravi

https://ebookmass.com/product/recent-applications-of-selectedname-reactions-in-the-total-synthesis-of-alkaloids-majid-mheravi/

Validamycin and its Derivatives. Discovery, Chemical Synthesis, and Biological Activity 1st Edition Edition

Chen

https://ebookmass.com/product/validamycin-and-its-derivativesdiscovery-chemical-synthesis-and-biological-activity-1st-editionedition-xiaolong-chen/

Introduction to Chemical Processes: Principles, Analysis, Synthesis 2nd Edition Regina Murphy

https://ebookmass.com/product/introduction-to-chemical-processesprinciples-analysis-synthesis-2nd-edition-regina-murphy/

Proteins Galanakis

https://ebookmass.com/product/proteins-galanakis/

Green Sustainable Process for Chemical and Environmental Engineering and Science: Sonochemical Organic Synthesis 1st Edition Dr. Inamuddin (Editor)

https://ebookmass.com/product/green-sustainable-process-forchemical-and-environmental-engineering-and-science-sonochemicalorganic-synthesis-1st-edition-dr-inamuddin-editor/

Money: Understandings and Misunderstandings 1st ed. 2020 Edition Mohammad Ashraf

https://ebookmass.com/product/money-understandings-andmisunderstandings-1st-ed-2020-edition-mohammad-ashraf/

Five Total Strangers 1st Edition Natalie D. Richards

https://ebookmass.com/product/five-total-strangers-1st-editionnatalie-d-richards/

Five

Total Strangers Natalie D. Richards

https://ebookmass.com/product/five-total-strangers-natalie-drichards/

TotalChemicalSynthesisofProteins

TotalChemicalSynthesisofProteins

Editors

AshrafBrik

Technion-IsraelInst.ofTechnology

SchulichFacultyofChemistry TechnionCity 32000Haifa

Israel

PhilipDawson DepartmentofChemistry

TheScrippsResearchInstitute 10550N.TorreyPinesRoad UnitedStates

LeiLiu

TsinghuaUniversity DepartmentofChemistry HetianBuilding 100084Beijing China

AllbookspublishedbyWiley-VCHarecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformationcontained inthesebooks,includingthisbook,tobefreeof errors.Readersareadvisedtokeepinmindthat statements,data,illustrations,proceduraldetailsor otheritemsmayinadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData: Acataloguerecordforthisbookisavailablefromthe BritishLibrary.

BibliographicinformationpublishedbytheDeutsche Nationalbibliothek

TheDeutscheNationalbibliothekliststhis publicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableonthe Internetat<http://dnb.d-nb.de>.

©2021WILEY-VCHGmbH,Boschstr.12,69469 Weinheim,Germany

Allrightsreserved(includingthoseoftranslation intootherlanguages).Nopartofthisbookmaybe reproducedinanyform–byphotoprinting, microfilm,oranyothermeans–nortransmittedor translatedintoamachinelanguagewithoutwritten permissionfromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenottobeconsidered unprotectedbylaw.

PrintISBN: 978-3-527-34660-8

ePDFISBN: 978-3-527-82357-4

ePubISBN: 978-3-527-82358-1

oBookISBN: 978-3-527-82356-7

Typesetting SPiGlobal,Chennai,India

Printedonacid-freepaper 10987654321

Contents

Preface xvii

1CharacterizationofProteinMoleculesPreparedbyTotal ChemicalSynthesis 1

StephenB.H.Kent

1.1Introduction 1

1.2ChemicalProteinSynthesis 2

1.3CommentsonCharacterizationofSyntheticProteinMolecules 8

1.3.1Homogeneity 8

1.3.2AminoAcidSequence 9

1.3.3ChemicalAnalogues 10

1.3.4LimitationsofSPPS 10

1.3.5FoldingasaPurificationStep 10

1.4Summary 12 References 12

2AutomatedFastFlowPeptideSynthesis 17

MarkD.Simon,AlexanderJ.Mijalis,KyleA.Totaro,DanielDunkelmann, AlexanderA.Vinogradov,ChiZhang,YutaMaki,JustinM.Wolfe,Jessica Wilson,AndreiLoas,andBradleyL.Pentelute

2.1Introduction 17

2.2Results 19

2.2.1Summary 19

2.2.1.1MechanicalPrinciples 20

2.2.1.2ChemicalPrinciples 20

2.2.1.3UserInterfacePrinciples 20

2.2.1.4DataAnalysisMethod 20

2.2.1.5Outcome 21

2.2.2First-generationAutomatedFastFlowPeptideSynthesis 21

2.2.2.1KeyFindings 21

2.2.2.2DesignofFirst-generationAFPS 21

2.2.2.3CharacterizationofFirst-generationAFPS 23

2.2.3Second-generationAutomatedFastFlowPeptideSynthesis 24

2.2.3.1KeyFindings 24

2.2.3.2DesignofSecond-generationAFPS 24

2.2.3.3CharacterizationandUseofSecond-generationAFPS 26

2.2.4Third-generationAutomatedFastFlowPeptideSynthesis 32

2.2.4.1KeyFindings 32

2.2.4.2DesignofThird-generationAFPS 34

2.2.4.3CharacterizationofThird-generationAFPS 39

2.2.4.4ReagentStabilityStudy 43

2.2.5Fourth-generationAutomatedFastFlowPeptideSynthesis 45

2.2.5.1KeyFindings 45

2.2.5.2EffectofSolventonFastFlowSynthesis 45

2.2.5.3DesignandCharacterizationofFourth-generationAFPS 45

2.3Conclusions 49 Acknowledgments 53 References 53

3 N,S -and N,Se-AcylTransferDevicesinProteinSynthesis 59 VincentDiemer,JenniferBouchenna,FlorentKerdraon,VangelisAgouridas, andOlegMelnyk

3.1Introduction 59

3.2 N,S- and N,Se-AcylTransferDevices:GeneralPresentation,Reactivity andStatisticalOverviewofTheirUtilization 61

3.2.1GeneralPresentationof N,S-and N,Se-AcylTransferDevices 61

3.2.2RelativeReactivityof N,S-and N,Se-AcylTransferDevices 63

3.2.3AStatisticalOverviewoftheSyntheticUseof N,S-and N,Se-Acyl TransferDevicesforProteinTotalChemicalSynthesis 64

3.3PreparationofSEA/SeEAoff andSEAlidePeptides 68

3.3.1PreparationofSEAandSeEAPeptides 68

3.3.2PreparationofSEAlidePeptides 70

3.4Redox-controlledAssemblyofBiotinylatedNK1Domainofthe HepatocyteGrowthFactor(HGF)UsingSEAandSeEAChemistries 71

3.5TheTotalChemicalSynthesisofGM2-APUsingSEAlide-based Chemistry 75

3.6Conclusion 79 References 80

4ChemicalSynthesisofProteinsThroughNativeChemical LigationofPeptideHydrazides 87 ChaoZuo,XiaodanTan,XianglongTan,andLeiLiu

4.1Introduction 87

4.2DevelopmentofPeptideHydrazide-basedNativeChemicalLigation 88

4.2.1ConversionofPeptideHydrazidetoPeptideAzide 88

4.2.2AcylAzide-basedSolid-phasePeptideSynthesis 88

4.2.3AcylAzide-basedSolution-phasePeptideSynthesis 89

4.2.4TheTransesterificationofAcylAzide 90

4.2.5DevelopmentofPeptideHydrazide-basedNativeChemicalLigation 90

4.3OptimizationofPeptideHydrazide-basedNativeChemicalLigation 91

4.3.1PreparationofPeptideHydrazides 91

4.3.1.12-Cl-Trt-ClResin 91

4.3.1.2PeptideHydrazidesfromExpressedProteins 92

4.3.1.3Sortase-mediatedHydrazideGeneration 93

4.3.2ActivationMethodsofPeptideHydrazide 94

4.3.2.1KnorrPyrazoleSynthesis 94

4.3.2.2ActivationinTFA 94

4.3.3LigationSitesofPeptideHydrazide 95

4.3.4MultipleFragmentLigationBasedonPeptideHydrazide 96

4.3.4.1N-to-CSequentialLigation 96

4.3.4.2ConvergentLigation 96

4.3.4.3One-potLigation 96

4.4ApplicationofPeptideHydrazide-basedNativeChemicalLigation 99

4.4.1PeptideDrugsandDiagnosticTools 99

4.4.1.1PeptideHydrazidesforCyclicPeptideSynthesis 99

4.4.1.2Screeningfor D PeptideInhibitorsTargetingPD-L1 99

4.4.1.3ChemicalSynthesisofDCAFforTargetedAntibodyBlocking 101

4.4.1.4PeptideToxins 101

4.4.2SynthesisandApplicationofTwo-photonActivatableChemokine CCL5 102

4.4.3ProteinswithPosttranslationalModification 103

4.4.3.1TheSynthesisofGlycosylation-modifiedFull-lengthIL-6 103

4.4.3.2TheChemicalSynthesisofEPO 105

4.4.3.3ChemicalSynthesisofHomogeneousPhosphorylatedp62 105

4.4.3.4ChemicalSynthesisofK19,K48Bi-acetylatedAtg3Protein 105

4.4.4UbiquitinChains 108

4.4.4.1SynthesisofK27-linkedUbiquitinChains 108

4.4.4.2SynthesisofAtypicalUbiquitinChainsbyUsinganIsopeptide-linkedUb Isomer 109

4.4.4.3SynthesisofAtypicalUbiquitinChainsUsinganIsopeptide-linkedUb Isomer 109

4.4.5ModifiedNucleosomes 110

4.4.5.1SynthesisofDNA-barcodedModifiedNucleosomeLibrary 110

4.4.5.2SynthesisofModifiedHistoneAnalogswithaCysteine Aminoethylation-assistedChemicalUbiquitinationStrategy 111

4.4.5.3SynthesisofUbiquitylatedHistonesforExaminationofthe DeubiquitinationSpecificityofUSP51 111

4.4.6MembraneProteins 112

4.4.7Mirror-imageBiologicalSystems 112

4.5SummaryandOutlook 113 References 114

5ExpandingNativeChemicalLigationMethodologywith SyntheticAminoAcidDerivatives 119

EmmaE.Watson,LaraR.Malins,andRichardJ.Payne

5.1NativeChemicalLigation 120

5.2DesulfurizationChemistries 120

5.3AsparticAcid(Asp,D) 122

5.4GlutamicAcid(Glu,E) 124

5.5Phenylalanine(Phe,F) 125

5.6Isoleucine(Ile,I) 127

5.7Lysine(Lys,K) 130

5.8Leucine(Leu,L) 133

5.9Asparagine(Asn,N) 135

5.10Proline(Pro,P) 138

5.11Glutamine(Gln,Q) 139

5.12Arginine(Arg,R) 139

5.13Threonine(Thr,T) 140

5.14Valine(Val,V) 142

5.15Tryptophan(Trp,W) 144

5.16ApplicationofSelenocysteine(Sec)toLigationChemistry 146

5.17AsparticAcid(Asp,D) 147

5.18GlutamicAcid(Glu,E) 148

5.19Phenylalanine(Phe,F) 149

5.20Leucine(Leu,L) 151

5.21Proline(Pro,P) 151

5.22Serine(Ser,S) 153 References 155

6PeptideLigationsatStericallyDemandingSites 161 YingluWangandSuweiDong

6.1Introduction 161

6.2LigationsUsingThioesters 162

6.2.1ExogenousAdditive-promotedLigations 162

6.2.2LigationsUsingReactiveThioesters 167

6.2.3InternalActivationStrategyinPeptideLigations 169

6.3LigationsUsingOxo-esters 170

6.4PeptideLigationsBasedonSelenoesters 170

6.5Microfluidics-promotedNCL 175

6.6RepresentativeApplicationsinProteinSynthesis 178

6.7SummaryandOutlook 181 References 181

7ControllingSegmentSolubilityinLargeProtein Synthesis 185 RileyJ.Giesler,JamesM.Fulcher,MichaelT.Jacobsen,andMichaelS.Kay

7.1SolventManipulation 185

7.2IsoacylStrategy 187

7.3SemipermanentSolubilizingTags 191

7.3.1N-orC-TerminalSolubilizing“Tails” 192

7.3.2ReversibleBackboneModificationsasSolubilizingTags 194

7.3.3BuildingBlockSolubilizingTags 195

7.3.4ExtendableSide-chain-basedSolubilizingTags 195 References 198

8TowardHPLC-freeTotalChemicalSynthesisofProteins 211 PhucUngandOliverSeitz

8.1Introduction 211

8.1.1CaptureandReleasePurification 212

8.1.2Solid-phaseChemicalLigations(SPCL) 212

8.2SynthesisofPeptideSegmentsforNativeChemicalLigation 213

8.2.1HPLC-freePreparationofN-terminalPeptideSegmentsforNCL 213

8.2.2HPLC-freePreparationofC-terminalPeptideSegmentsforNCL 217

8.3SynthesisofProteinsUsingtheHis6 Tag 220

8.3.1ReversibleHis6 -basedCaptureTags 220

8.3.2His6 -basedImmobilizationfor C-to-N AssemblyofCrambin 221

8.3.3His6 -basedImmobilizationforAssemblyofProteinsonMicrotiter Plates 222

8.3.4His6 andHydrazideTagsforSequential N -to-C Captureand Release 225

8.4SynthesisofProteinsviaOximeFormation 227

8.4.1ReversibleOxime-basedCaptureTags 227

8.4.2Oxime-basedImmobilizationfor N -to-C Solid-phaseChemical Ligations 227

8.4.3Oxime-basedImmobilizationfor C-to-N Solid-phaseChemical Ligations 233

8.4.4Oxime-based C-to-N Solid-phaseChemicalLigations 237

8.5SynthesisofProteinsviaHydrazoneFormation 238

8.5.1ReversibleHydrazone-basedCaptureTags 238

8.5.2Hydrazone-basedImmobilizationforAssemblyofProteinsonMicrotiter Plates 239

8.6SynthesisofProteinsUsingClickChemistry 242

8.6.1Click-basedImmobilizationfor N -to-C Solid-phasePeptideLigations UsingaProtectedAlkyne 242

8.6.2Click-basedImmobilizationfor N -to-C Solid-phasePeptideLigations UsingaSeaGroup 243

8.7SynthesisofProteinsUsingtheKAHALigation 244

8.7.1TheKAHALigation 244

8.7.2HPLC-freeSynthesisofProteinsUsingtheKAHALigation 245

8.8SynthesisofProteinsUsingPhotocleavableTags 246

8.8.1SynthesisofProteinsUsingaPhotocleavableBiotin-basedPurification Tag 246

x Contents

8.8.2SynthesisofProteinsUsingaPhotocleavableHis6 -basedPurification Tag 247

8.9Conclusion 249 References 251

9Solid-phaseChemicalLigation 259

SkanderA.Abboud,AgnèsF.Delmas,andVincentAucagne

9.1Introduction 259

9.1.1ThePromisesofSolidPhaseChemicalLigation(SPCL) 259

9.1.2ChemicalLigationReactionsUsedforSPCL 260

9.1.3KeyRequirementsforaSPCLStrategy 261

9.2SPCLinthe C-to-N Direction 262

9.2.1TemporaryMaskingGroupstoEnableIterativeLigations 262

9.2.2Linkersfor C-to-N SPCL 264

9.2.2.1UseofSameLinkerandSolidSupportforSPPSandSPCL 265

9.2.2.2Re-immobilizationoftheC-TerminalSegment 266

9.3SPCLinthe N -to-C Direction 268

9.3.1TemporaryMaskingGroupstoEnableIterativeLigations 268

9.3.2Linkersfor N -to-C SPCL 270

9.3.3CaseStudy 272

9.3.4SPCLwithConcomitantPurifications 274

9.4Post-LigationSolid-SupportedTransformations 274

9.4.1ChemicalTransformations 274

9.4.2BiochemicalTransformations 275

9.5SolidSupport 275

9.6ConclusionandPerspectives 278

Acknowledgment 278

9.AAppendix 278 References 280

10Ser/ThrLigationforProteinChemicalSynthesis 285 CarinaHeyPuiCheungandXuechenLi

10.1Serine/ThreonineLigation 287

10.2EpimerizationIssue 289

10.3OtherArylAldehydeEsters 289

10.4PreparationofPeptideSalicylaldehydeEsters 289

10.5ScopeandLimitations 294

10.6StrategiesofSer/ThrLigationforProteinChemicalSynthesis 294

10.7 C-to-N Ser/ThrLigation 294

10.8 N -to-C Ser/ThrLigation 296

10.9One-potSer/ThrLigationandNCL 296

10.10Bioconjugation 296

10.11SolubilityIssues 298

10.12ExtensionofSer/ThrLigation 298

10.13Conclusion 302 References 303

11ProteinSemisynthesis 307

NamChuandPhilipA.Cole

11.1Background 307

11.2ExpressedProteinLigation(EPL) 308

11.2.1MethodDevelopment 308

11.2.2ApplicationsofEPLforStudyingProteinPosttranslational Modifications 309

11.2.3Site-specificProteinLabelingwith N -HydroxysuccinimideEsters 311

11.3CysteineModifications 311

11.3.1DehydroalanineGenerationandApplicationsinSemisynthesis 312

11.3.2CysteineAlkylation-relatedMethodstoIntroduceLysMimics 313

11.4Enzyme-catalyzedProtein/PeptideLigations 314

11.4.1Sortase 314

11.4.2Butelase-1 316

11.4.3Subtiligase 317

11.4.4Trypsiligase 318

11.5Enzyme-catalyzedExpressedProteinLigation 318

11.6SummaryandOutlook 319

Acknowledgments 320 References 320

12Bio-orthogonalImineChemistryinChemicalProtein Synthesis 327

StijnM.Agten,IngridDijkgraaf,StanH.E.vanderBeelen,andTilmanM. Hackeng

12.1Introduction 327

12.2CarbonylFunctionalization 328

12.3Aminooxy,Hydrazine,andHydrazideFunctionalization 335

12.4OximeLigation 337

12.5HydrazoneLigation 342

12.6Pictet–SpenglerReaction 344

12.7CatalysisofOximeandHydrazoneLigations 346 References 348

13DecipheringProteinFoldingUsingChemicalProtein Synthesis 357 VladimirTorbeev

13.1Introduction 357

13.2ModificationofProteinBackboneAmides 358

13.3Insertionof β-turnMimetics 361

13.4InversionofChiralCentersinProteinBackboneandSideChains 362

13.5Modulating cis–trans ProlineIsomerization 366

13.6SteeringOxidativeProteinFolding 368

13.7CovalentTetheringtoFacilitateFoldingofDesignedProteins 371

13.8DiscoveryofPreviouslyUnknownProteinFolds 373

13.9Site-specificLabelingwithFluorophores 373

13.10FoldamersandFoldamer–PeptideHybrids 375

13.11ConclusionsandOutlook 377 Acknowledgement 378 References 378

14ChemicalSynthesisofUbiquitinatedProteinsforBiochemical Studies 383 GandhesiriSatish,GangaB.Vamisetti,andAshrafBrik

14.1TheUbiquitinSystem 383

14.2Non-enzymaticUbiquitination:ChallengesandOpportunities 386

14.2.1ChemicalSynthesisofUbBuildingBlocks 387

14.2.2IsopeptideLigation 387

14.2.3TotalChemicalSynthesisofTetra-UbChains 390

14.3SynthesisandSemisynthesisofUbiquitinatedProteins 393

14.3.1MonoubiquitinatedProteins 393

14.3.2Tetra-ubiquitinatedProteins 395

14.3.3ModificationofExpressedProteinswithTetra-Ub 400

14.4SynthesisofUniqueUbConjugatestoStudyandTargetDUBs 401

14.5Activity-basedProbes 403

14.6Perspective 405

ListofAbbreviations 406 References 407

15GlycoproteinSynthesis 411

ChaitraChandrashekar,KentoIritani,TatsuyaMoriguchi,andYasuhiro Kajihara

15.1Introduction 411

15.2TotalChemicalSynthesisofGlycoproteins 411

15.3SemisynthesisofGlycoproteins 413

15.4ChemoenzymaticSynthesis 413

15.5 α-Synuclein 414

15.6HirudinP6 415

15.7SaposinD 416

15.8Interleukin2 417

15.9Interleukin25 417

15.10Mucin1 419

15.11Crambin 421

15.12TauProtein 422

15.13ChemicalDomainofFractalkine 423

15.14CCL1 424

15.15Interleukin6 424

15.16Interleukin8 425

15.17Erythropoietin 426

15.18Trastuzumab 430

15.19AntifreezeGlycoprotein 432

15.20Conclusion 434

References 434

16ChemicalSynthesisofMembraneProteins 437

AlancaSchmidandChristianF.W.Becker

16.1Introduction 437

16.2SolidPhaseSynthesisofTMPeptides 438

16.3PurificationandHandlingStrategiesofTMPeptides 442

16.4SolubilityTags 443

16.4.1TerminalTags 443

16.4.2SideChainTags 445

16.5RemovableSolubilizingBackboneTags 445

16.6ChemicalSynthesisofMembraneProteins 449

16.6.1ProteinsWith1TMDomain 449

16.6.2Proteinswith2TMDomains 450

16.6.3Proteinswith3andMoreTMDomains 454

16.7Outlook 456

References 457

17ChemicalSynthesisofSelenoproteins 463

RebeccaN.Dardashti,ReemGhadir,HibaGhareeb,OritWeil-Ktorza,and NormanMetanis

17.1WhatareSelenoproteins? 463

17.2ExpressionofSelenoproteins 466

17.3SecasaReactiveHandle 469

17.4SynthesisandSemisynthesisofNaturalSelenoproteins 473

17.5SeleniumasaToolforProteinFolding 475

17.6Conclusions 478

References 478

18HistoneSynthesis 489

ChampakChatterjee

18.1TheHistonesandTheirChemicalModifications 489

18.1.1HistoneProteins 489

18.1.2HistonePosttranslationalModifications 490

18.2ChemicalLigationforHistoneSynthesis 492

18.2.1NativeChemicalLigation 492

18.2.2ExpandingtheScopeofNativeChemicalLigationWithInteins 494

18.3HistoneOctamerandNucleosomeCoreParticleAssembly 494

18.4StudyingtheHistoneCodeWithSyntheticHistones 496

18.4.1SynthesisofHistonesModifiedbySmallerFunctionalGroups 497

18.4.1.1HistonePhosphorylation 497

18.4.1.2HistoneAcetylation 499

18.4.1.3HistoneMethylation 502

18.4.2SynthesisofSumoylatedHistones 505

18.5Conclusions 506

Acknowledgments 506

References 506

19ApplicationofChemicalSynthesistoEngineerProtein BackboneConnectivity 515

ChinoC.CabaltejaandW.SethHorne

19.1Introduction 515

19.2BackboneEngineeringtoFacilitateSynthesis 516

19.3BackboneEngineeringtoExploretheConsequencesofChirality 517

19.4BackboneEngineeringtoUnderstandandControlFolding 520

19.5BackboneEngineeringtoCreateProteinMimetics 522

19.6Conclusions 525

References 526

20BeyondPhosphateEsters:SynthesisofUnusually PhosphorylatedPeptidesandProteinsforProteomic Research 533

AnettHauser,ChristianE.Stieger,andChristianP.R.Hackenberger

20.1Introduction 533

20.2GeneralMethodsfortheIncorporationofHydroxy-phosphorylated AminoAcidsintoPeptidesandProteins 534

20.3IncorporationofOtherPhosphorylatedNucleophilicAminoAcidsinto PeptidesandProteins 537

20.3.1 Phosphoarginine(pArg) 537

20.3.2Phosphohistidine(pHis) 538

20.3.3Phospholysine(pLys) 539

20.3.4Phosphocysteine(pCys) 539

20.3.5PyrophosphorylationofSerineandThreonine(ppSer,ppThr) 541

20.4DevelopmentofPhospho-analoguesasMimicsforEndogenous Phospho-AminoAcids 541

20.4.1AnaloguesofPhosphoserine,Phosphothreonine,and Phosphotyrosine 541

20.4.2StableAnaloguesofPhosphoaspartateandPhosphoglutamate 543

20.4.3StableAnaloguesofPhosphoarginine 544

20.4.4StableAnaloguesofPhosphohistidine 545

20.4.5StableAnaloguesofPyrophosphorylatedSerine 547

20.5Conclusion 547

References 547

21CyclicPeptidesviaLigationMethods 553

TristanJ.TylerandDavidJ.Craik

21.1Introduction 553

21.2CyclicPeptideSynthesis 554

21.3Orbitides 557

21.4Paws-derivedPeptides(PDPs) 559

21.5CyclicConotoxins 561

21.6 θ-Defensins 563

21.7Cyclotides 563

21.8Outlook 568

Acknowledgements 568

Funding 568

References 569

Index 579

Preface

Chemicalproteinsynthesisenablesthegenerationofproteinsofanyarchitecture andfacilitatesthesite-selectiveintroductionofunnaturalaminoacids,biophysical probes,posttranslationalmodifications,andotherfunctionalities.Thepreparation oftheseproteinanaloguesenablesimportantbiochemicalandbiophysicalstudies andcontributestothefundamentalunderstandingofproteins.Inthisbook,we presentasalientcollectionofarticlesthatcoverthemodernmethodsandapplicationsofthefield,alongwithdescriptionsofvariouscasestudiesinwhichchemical proteinsynthesisisleveragedtoshedlightonfundamentalquestionsinprotein science.

InChapter1,StephenKent,thepioneerandleadingfigureinmodernchemicalproteinsynthesis,introducestheessentialroleofchemicalproteinsynthesis indevelopingafundamentalunderstandingoftheprinciplesthatgiverisetothe structuresandbiologicalfunctionsofproteinmolecules.Strongemphasiswasgiven toanalyticalcontrolanddocumentationofthesyntheticprocessinordertomeet standards,similartothoseusedtocharacterizesmallorganicmolecules.Characterizationofasyntheticproteinmoleculeshouldrigorouslycharacterizethemolecular homogeneity,correctcovalentstructure,anddefinedfoldedstructure.

Newexcitingadvancesinsyntheticmethodologyhavegreatlyreshapedthe landscapeofchemicalproteinsynthesisoverthepast10years.InChapter2, BradleyL.Penteluteetal.describethenewtechnologyofautomatedflow-based solid-phasepeptidesynthesizer(AFPS)thatcanincorporateeachaminoacid residueinaslittleas40seconds.Thistechnologyoffersatemplateforaccelerating synthesesoflongpolypeptidesequencesusinganautomatedflowinstrument. Thisapproachmayopenthechemicalbiologyfieldtoroutinemanufactureof custom-made,fullysyntheticproteins.InChapter3,VangelisAgouridas,Oleg Melnyk,andcoworkersdescribethedevelopmentof N,S(Se)-acylshiftsystemsfor linkingpeptidesegmentstogetherthroughthemostwidelyusedmethodofchemicalproteinsynthesis,namely,nativechemicalligation.Thisstrategyisespecially usefulforsystemsthatrequirelatentthioesters.Manybiologicallyactiveproteins havebeensuccessfullysynthesizedwiththeSEA(bis(2-sulfanylethyl)amido)and SEAlide(N -sulfanylethylanilide)chemistries.InChapter4,LeiLiuetal.describe thedevelopmentandoptimizationofhydrazide-basednativechemicalligation, aswellastheoptimizationofthepreparation,activation,andligationofpeptide

hydrazides.Thehydrazide-basedmethodexhibitsseveraladvantagesincludingeasy preparation,highstability,goodhandlingproperties,andcontrollableactivation.It hasbeensuccessfullyusedinthesynthesisofpeptidepharmaceutics,posttranslationallymodifiedproteins,photo-activatableproteintools,membraneproteins,and mirror-imageproteins.

Tofurtherexpandthescopeandutilityofnativechemicalligation,RichardJ. Payneetal.describeinChapter5theeffortsmadetodevelopvariousthiolatedamino acids,which,withthehelpofmild,radical-mediateddesulfurizationconditions, canenableligationat16ofthe20proteinogenicaminoacids.Theyalsodescribe theirseminalstudiesonselenocysteine(Sec),whichhaveenabledrapidchemical proteinsynthesisthroughthediselenide–selenoesterligation(DSL)andnovelstrategiessuchas“selenolligationauxiliary.”InChapter6,SuweiDongetal.describe therecentdevelopmentonnewstrategiesthataimtofacilitatepeptideligationsat stericallydemandingsites.Theseligationreactionsareusuallychallenging,asthe strongactivatingconditionsmayresultincompetitivehydrolysis.Furthermore,in Chapter7,MichaelS.Kayetal.describetherecentstudiesonhowtocontrolsegment solubilityinlargeproteinsynthesis.Variousstrategiesthatutilizesolventchoice, isoacyldipeptides,andsemipermanentsolubilizingtagsaresurveyedandanalyzed indepth.Thischapterprovidesveryusefulguidesforresearcherstoovercomethe often-encounteredsolubilityproblemsinchemicalproteinsynthesis.

Withtheadventoffastpeptidesynthesisandligation,otherlimitingfactorshave receivedattentionsforchemicalproteinsynthesis.InChapter8,OliverSeitzetal. describethecurrentstateoftheartinthedevelopmentofmethodsthatallowminimizingthenumberofhigh-performanceliquidchromatograpohy(HPLC)purificationsteps.ThesemethodstypicallyrelyonrapidandHPLC-freeassemblyofproteinsusingcaptureandreleasepurificationhandles,openingopportunitiesforthe chemicalsynthesisofproteinarraysunderparallelconditions.InChapter9,Vincent Aucagneetal.describesolid-phasepeptidechemicalligation(SPCL),whichentails aligation-basedassemblyonasolidsupporttoavoidthelaboriousintermediate chromatographicpurifications.Thedevelopmentofnewpolymers,newlinkers,new ligationsreactionswithimprovedkinetics,andnewmasking/unmaskingstrategies hasbroadenedthescopeofSPCLtomoreambitioustargets.Onadifferentfront,to expandtheflexibilityofpeptidecondensation,ligationstrategiesotherthannative chemicalligationneedtobedeveloped.InChapter10,XuechenLietal.describe theapproachofserine/threonineligation(STL)betweenpeptideC-terminalsalicylaldehydeestersandN-terminalSer/Thrresidues.Thisapproachtakesadvantageof thehighabundanceofSer/Thrresiduesintheproteinsequenceandhaspavedthe wayforbroadapplicationsinproteinssynthesisandrelatedconstructs.

Moderntotalchemicalsynthesisofproteinscannowreachapproximately 200–400aminoacids.Toamplifytheabilitytomakeproteinscontainingunnatural aminoacidsandposttranslationalmodifications,animportantstrategyisprotein semisynthesiswhereabiologicallyproducedproteinorproteinfragmentisselectivelymodifiedthroughcovalentchemicalreactions.InChapter11,PhilipA.Cole etal.describethedevelopmentofmethodsforproteinsemisynthesisincluding expressedproteinligation,cysteinemodificationreactions,andenzyme-catalyzed

Preface xix protein/peptideligations.Thesemethodshavebeensuccessfullyemployedto augmentourunderstandingonproteinposttranslationalmodification.Asaunique exampleofproteinsemisynthesismethods,inChapter12,TilmanM.Hackengetal. describebio-orthogonaliminechemistryforproteinmodification.Detailswere providedforhowtoincorporatecarbonylor α-nucleophilesmoietiesintoproteins, andhowtocarryoutdifferentiminechemistriessuchasoximeandhydrazone ligation.

Nextaretheapplicationsofchemicalproteinsynthesistosolvevariousbiochemical,biophysical,andbiomedicalproblems.InChapter13,VladimirTorbeev describeshowtousechemicalproteinsynthesistodecipherthemechanismof proteinfolding.Manyinterestingmethodshavebeendevelopedincludingmodificationofproteinbackboneamides,insertionof β-turnmimetics,inversionof chiralcentersinproteinbackboneandsidechains,modulatingcis–transproline isomerization,covalenttetheringtofacilitatefoldingofdesignedproteins,and foldamersandfoldamer–peptidehybrids.Thesemethodsfacilitatebiophysical studiesonintrinsicallydisorderedproteins(IDPs)thatperformimportantfunctions suchasgenetranscriptionandchromatinremodeling.Theyarealsohelpfulto studiesonimproperproteinfoldingrelatedtomanydiseasessuchasAlzheimer’s andParkinson’sdisorders.

Oneofthemostexcitingapplicationsofchemicalproteinsynthesisisthedevelopmentofchemicaltoolstostudythebiologicalfunctionsandmechanismsofproteins bearingposttranslationalmodifications.InChapter14,AshrafBriketal.described theircontributionsindevelopinginnovativemethodstoconstructavarietyofubiquitinconjugatesofhighpurity,insufficientquantitytofacilitatedetailedbiophysical andbiochemicalanalysis.Asa“gamechanger”toovercometheinheritlimitations oftheenzymaticapproaches,chemicalproteinsynthesishasenabledreadilyconstructionofversatileubiquitinconjugatestostudyandtargetubiquitin-processing enzymes.InChapter15YasuhiroKajiharaetal.describethecutting-edgeexamples ofglycoproteinsynthesisemployingvarioussyntheticmethodologiesandligation strategies.Thecombinationofbothchemicalandenzymaticmethodologiesgives insightintohowglycansfunctionintheirbiologicalenvironmentandmayeventuallyleadtohomogeneousglycoproteinpharmaceuticals.

Inadditiontoproteinposttranslationalmodification,chemicalproteinsynthesisalsoplaysimportantrolesinthebiochemicalstudiesonsomeuniqueprotein families.InChapter16,ChristianBeckeretal.delineatethechemicalsynthesisof membraneproteins,auniqueproteinfamilycomprisingabout30%oftheproteins encodedbythehumangenome.Accesstomembraneproteinsbychemicalsynthesishashelpedtodecipherimportantaspectsofmembraneproteinfunctionsdue totheuniqueopportunitiesthatchemicalsynthesisprovidesintermsofmanipulationsofthebackboneandsidechainsofproteins.InChapter17,NormanMetanis etal.describechemicalsynthesisofselenoproteins,whichcontaintherarecoded aminoacidselenocysteine.Studiesonsyntheticselenoproteinsfacilitateelucidation oftheroleofseleniuminbothnaturalandunnaturalprocesses,providingincreasing insightsintothispreviouslymysteriousmicronutrient’sroleinhumanhealthand disease.Furthermore,inChapter18,ChampakChatterjeedescribethechemical

xx Preface synthesisofhistonesbearingvariousmodifications.Dueinlargeparttotheadditionofsemisyntheticandfullysyntheticsite-specificallymodifiedhistonestothe repertoireoftoolsavailabletoinvestigatethehistonecodehypothesis,ourunderstandingofthemanymechanisticrolesforhistoneshasrapidlyexpandedinthe past10years.

Inthelastchapters,W.SethHorneetal.describeinChapter19howtoapply chemicalsynthesistoengineerproteinbackboneconnectivity.Studiesinthisarea enableexplorationofthestructuralandfunctionalconsequencesofproteinbackbonealterationandopenthedoortonewbio-inspiredentitieswithmyriadpotential applications.InChapter20,ChristianHackenbergeretal.describehowtosynthesizeunusuallyphosphorylatedpeptidesandproteinsforproteomicresearch.Details areprovidedonmimicsofendogenousphosphateestersaswellasrare,naturally occurringphosphorylationsoffunctionalaminoacidssuchascysteine,lysine,histidine,andarginine.Finally,inChapter21,DavidJ.Craiketal.describehowto synthesizecyclicpeptidesvialigationmethods.Targetmoleculesincludeorbitides, paws-derivedpeptides,cyclicconotoxins, θ-defensin,andcyclotides.Thesecyclic peptideshavebeenatopicofconsiderableinterestinrecentyearsduetotheirunique structuralandpharmacologicalfeaturesthatmakethemexcellentstartingpointsin drugdesign.

Webelievethatthe21chaptersexemplifiesthemultidisciplinarynatureof researchinthefieldofchemicalproteinsynthesisinthetwenty-firstcentury.The readersofthebookwillbeexposedtothestate-of-the-artchemistrythatthefield hasbeendevelopingthroughthelastfewdecadesandtheremainingchallenges remainedtobetackled.Thebookwillalsobeveryusefulsourceforstudents andscientistsaswelltolearnaboutthevarioussyntheticaspectsofthepeptide fragmentssynthesis,peptideligationbasedondifferentstrategies.

CharacterizationofProteinMoleculesPreparedbyTotal ChemicalSynthesis

DepartmentofChemistry,TheUniversityofChicago,Chicago,IL60637,USA

“Nevertheless,thechemicalenigmaofLifewillnotbesolveduntilorganicchemistryhasmasteredanother,evenmoredifficultsubject,theproteins,inthesame wayasithasmasteredthecarbohydrates.”

Source:EmilFischer(NobelLecture1902)

1.1Introduction

Proteinsarethe“naturalprodicts”ofthetwenty-firstcentury.Proteinmoleculesare ubiquitousinthebiologicalworld,withnumerousdiversefunctionsthatrangefrom actingasstructuralmaterialssuchasthekeratins,tointegralmembraneproteins thatserveasionchannelsorasactivemoleculartransportersincells,toproteins thatactashormonalmessengersinhigheranimalspecies,andtoproteinsthatregulategeneexpression[1].Themostimportantfunctionofproteinmoleculesisas enzymes,thepotentandspecificcatalystsofthechemicalreactionsofbiological metabolism,withoutwhichlifewouldbeimpossible[2].ThankstomodernDNA sequencingmethodsappliedtogenome[3]andmetagenome[4]sequencing,vast numbersofproteinsarebeingdiscoveredatthenucleicacidlevelasopenreading framesthatcodeforaprotein’spolypeptidechain.

Thecentraldogmaofproteinscienceisthattheaminoacidsequenceofthe polypeptidechainencodesthefoldedstructureoftheproteinmoleculeinitsnatural environment,andthatitisthefoldedstructureoftheproteinmoleculethatgives risetoitsbiologicalfunction(s)[5].Proteinsrangeinmassfromlessthan5kDato morethan100kDa.Themediansizeofglobularproteinmoleculesis ∼35–45kDa, comprisingapolypeptidechainof ∼300–400aminoacidresidues.Proteinsare typicallymadeupoftwoormoredomains,autonomousunitsoffolding,eachof ∼120–160aminoacidresidues[6].

Proteinmoleculesarenotsimplyreallybigpeptides.Initsnativeenvironment, eachglobularproteinmoleculehasadefinedfoldedstructurethatgivesrisetothe TotalChemicalSynthesisofProteins, FirstEdition.EditedbyAshrafBrik,PhilipDawson,andLeiLiu. ©2021WILEY-VCHGmbH.Published2021byWILEY-VCHGmbH.

1CharacterizationofProteinMoleculesPreparedbyTotalChemicalSynthesis functionalpropertiesofthatprotein,includingbiochemicalandbiologicalactivities. Syntheticproteinsareorganicmoleculesofhighmolecularmass,comprisedoflinearpolypeptidechains(typicallyof50–300ormoreaminoacidresidues)thatfold toformcomplex,dynamicstructures.Thelargesizeofproteinstogetherwiththe intricacyoftheircovalentandfoldedstructurescreatesspecialchallengesinthe characterizationofthesesyntheticmolecules.Forthisreason,itisimportantfor researcherstorigorouslycharacterizeproteinmoleculespreparedbytotalchemicalsynthesistomeetstandardssimilartothoseusedinsyntheticorganicchemistry. Analyticalmethodsandcriteriafortherigorouscharacterizationofsyntheticproteinshaverecentlybeenenunciated[7].

1.2ChemicalProteinSynthesis

“Thechemicalligationapproach....breakstheconceptualshacklesimposed bythepeptidebond,freesusfromthelinearparadigmofthegeneticcode,and openstheworldofproteinstotheentirerepertoireofchemistry.”

StephenKent(23rdEuropeanPeptideSymposium1994)

Chemistry,enabledbytotalsynthesis,hasanessentialroletoplayindevelopinga fundamentalunderstandingoftheprinciplesthatgiverisetothestructuresandbiologicalfunctionsofproteinmolecules.Thankstomodernchemicalligationmethods [8–10],thetotalsynthesisofproteinmoleculesintheresearchlaboratoryisboth practicalandincreasinglyrobust.

Characterizationofaproteinpreparedbytotalchemicalsynthesisshouldbegin withthesyntheticprocessitself.Analyticalcontrolofthebond-formingsteps,purificationandanalysisofeachsyntheticintermediate,andfoldingofthefull-length syntheticpolypeptidechaintoformadefinedtertiarystructureareintegraltoverifyingthestructureofthefinalsyntheticproteinproduct.Thestepsinvolvedina typicaltotalchemicalsynthesisofaproteinmoleculearelistedbelow.Keyaspects pertinentto characterization ofthesyntheticproteinarein bold:

● Establishaverifiedaminoacidsequenceofthepolypeptidechainofthe targetproteinmolecule.

⚬ UseadatabasesuchasUniProt(www.uniprot.org);includeposttranslational processingwherethatisknowntogivethematureproteinmolecule.

⚬ Resolvingdatabase/literatureambiguitiesinthereportedaminoacidsequence ofaproteincanbeproblematic.Itiseasytomakeamistakeandtoendupmakinganincorrecttargetsequence.

● Designa(convergent)synthesisoftheprotein’spolypeptidechain,starting frompeptidesegmentscontainingfewerthan40–50aminoacidresidues (Scheme1.1).

● Stepwisesolid-phasesynthesis(SPPS)ofpeptidesegmentsequippedwithsuitable functionalitiesforchemicalligation.

● Bocchemistry[11]orFmocchemistrySPPS[12],with documentationofthe aminoacidsequenceactuallymade.

Polystyrene resin Bio-beads S-X1

1

2

1

2

1

2

3

3

4

4

Scheme1.1 Convergentchemicalsynthesisofaproteinmoleculefromfoursynthetic peptidesegmentspreparedbystepwiseSPPS.Key:NCL,nativechemicalligation;KCL, kineticallycontrolledligation;Thz-Cys,conversionofN-terminalthiazolidine-CO–toCys–. Source:AdaptedfromDureketal.[11].

⚬ Purificationbypreparativehigh-performanceliquidchromatography(HPLC), whichshouldbeperformedunder displacementmode [13].

⚬ Combinedfractionsshouldbecheckedbyahighresolutiontechniquebased ona separationprincipledistinctfromthatusedinthepurification, suchascapillaryisoelectricfocusing(CIEF)[14].BecauseHPLCisusedfor thepurificationofthesyntheticpeptidesegment,itisNOTsufficienttouse analyticalHPLCorLCMSrunundersimilarchromatographicconditionsto verifyitshomogeneity.

⚬ Directinfusionelectrosprayionizationmassspectrometry(ESI-MS)forcheckingpurifiedpeptidesegmentsforimpuritiesthathavedifferentmasses.

Peptide
Peptide
Peptide
Peptide

1CharacterizationofProteinMoleculesPreparedbyTotalChemicalSynthesis

⚬ Confirmationofthecovalentstructureofeachsyntheticpeptidesegment.

● Precisemassmeasurement

–fromanalyticalLCMS,themassspectrometricdata must becollectedacross the entireUVabsorbingpeakcorrespondingtothepurifiedpeptide. –acorrectmassisanecessarybutnotsufficientanalyticalcriterion.

● Aminoacidsequence

–byMALDI-TOFMS‘laddersequencing’[15]ofterminatedbyproductsthatare invariablypresentatlow-levelsincrudesyntheticpeptidesmadebySPPS.

–byMS-MSofthepurifiedpeptide.Thisprocessisrenderedmorestraightforwardbecausethetargetsequenceofthepeptidesegmentisknown.

● Convergentcovalentcondensationofthepeptidesegments

⚬ Chemicalconversionofcrypticfunctionalgroupstothereactiveformsuitable forchemicalligation(e.g.Thz–peptidetoCys–peptide;[16]peptide–CONHNH2 topeptide–thioester[17]).

⚬ Nativechemicalligation(NCL);[18]pH7.0;aqueous6MGu.HCLasa near-universalsolvent;ambienttemperature;arylthiolcatalyst[19].

● Analyticalcontrolofsyntheticsteps

⚬ “Hands-on”real-timeanalyticalLCMSduringligationreactionsisanessential toolforfollowingthecourseofeachbond-formingstep.

● Purificationandcharacterizationofeachintermediateproduct

⚬ Usingthesameprotocolsasthoseusedforthesyntheticpeptidesegments.

● Purificationtohomogeneityandrigorouscharacterizationofthe full-lengthsyntheticpolypeptidechain.

⚬ PurificationbypreparativeHPLC,whichshouldbeperformedunder displacementmode [13].

⚬ Combinedfractionsshouldbecheckedbyahigh-resolutiontechniquebasedon a separationprincipledistinctfromthatusedinthepurification, suchas CIEF[14].BecauseHPLChasbeenusedforthepurificationofthesynthetic polypeptide,itisNOTsufficienttouseanalyticalHPLCorLCMSrununder similarconditionstoverifyitshomogeneity.

⚬ DirectinfusionESI-MSisalsoagoodtechniqueforcheckingthefull-lengthsyntheticpolypeptidechainforimpuritiesthathavedifferentmasses.

● Foldingthesyntheticpolypeptidechaintoformthefunctionalproteinmolecule

⚬ Fordisulfide-containingproteins,standardthiolredoxcoupleconditions areusedalongwithmoderateamountsofsolubility-enhancingagents (“denaturants”)tokeepmisfoldedpolypeptidechainsinsolutionsothatthey tooareeventuallyabletofoldcorrectly[20].

⚬ Forproteinsthatdonotcontaindisulfidebonds,itisfrequentlysufficientto simplydilutethepolypeptidechainintonativebufferortoslowlydialyzefrom 6MGu.HClintonativebufferconditions.

● Analyticalcontrolofproteinfolding

⚬ Inthecaseofdisulfide-containingproteins,thefoldedproteinmoleculewill usuallyelute earlier thantheunfoldedpolypeptidechainonanalyticalreverse phaseHPLC,becausehydrophobicsidechainsarelessexposedinthefolded, disulfidecross-linkedproteinmolecule[21].

⚬ Forproteinsthatdonotcontaindisulfidebonds,othertechniquessuchas CD-ORD1 ormultidimensionalnuclearmagneticresonance(NMR)mustbe usedtomonitortheprogressoffolding.

● Purificationofthefoldedsyntheticproteintogiveasingledefinedmolecularspecies.

⚬ Byoneormoreofthetechniquesofreverse-phaseHPLC,ionexchangechromatography,sizeexclusionchromatography.

● Homogeneityofthepurifiedsyntheticproteinmustbeverifiedbya high-resolutiontechniquebasedonaseparationprinciple distinct from thatusedforpurification.

⚬ CIEF[14]isthepreferredtechniqueforrigorouslyestablishingthehomogeneityofthepurifiedsyntheticproteinmolecule.

● Precisemeasurementofthemassofthesyntheticproteinmoleculeby directinfusion ESI-MS(directinfusionESI-MS).

⚬ Directinfusion ESI-MSprovidesdatarepresenting all themolecularspecies presentinthefinalsyntheticproduct.Itthusprovidesbothapreciseexperimentalmeasurementofthemassofthesyntheticproteinandatthesametime canrevealthepresenceofanyotherproductsthathaveamassdistinctfrom thatofthetargetproteinmolecule.Allmeasuredmassdatamustincludean experimentaluncertainty(Figure1.1).

⚬ HPLCwithon-lineESMScanbeused.However,impurityproteinspecies presentinthesyntheticproductmaynotbeelutedfromthereversephase support.MassspectrometricdatafromLCMS must beacquiredoverthe entireUV-absorbingpeak correspondingtothepurifiedsyntheticprotein product.

⚬ **ItisNOTacceptabletoreportamassdeterminedatasingletimepointof theHPLCchromatogram,whileignoringmolecularspecieswithdifferent massesthatarepresentatothertimepointsunderthesameUVabsorbing peak.**

⚬ Whereverpossible,the monoisotopicmass ofasyntheticproteinshouldbe reported(togetherwithexperimentaluncertainty),alongwiththecalculated monoisiopicmass.Anexampleisshownbelow(Figure1.2).

● Verificationofthecysteinepairingfordisulfidecontainingproteins.

⚬ ProteolyticdigestionfollowedbyLCMSpeptidemapping[24].

⚬ CysteinepairingcanalsobeverifiedbyhighresolutionX-raycrystallography (seebelow).

● Conformationalhomogeneityofthesyntheticproteinmolecule.

⚬ MultidimensionalNMR“fingerprinting”canbeusedtoestablishthatthe syntheticproteinhasasinglefoldedstructure[11,25].Notes:(i)thereare examplesofnaturalproteinmoleculesthatformmorethanonedefinedfolded

1Whilealow-resolutiontechniquesuchasCD-ORDisusefulformonitoringtheprogressof folding,itmustbesupplementedwithhigh-resolutioncharacterizationofthefoldedstructureof thesyntheticproteinbytechniquessuchasNMRandX-raycrystallography.

1CharacterizationofProteinMoleculesPreparedbyTotalChemicalSynthesis

Figure1.1 DirectinfusionESI-MSdatafor[Lys24,38,83 ]erythropoietinaglyconepreparedby totalchemicalsynthesis.Impuritiesofmasslessthanthetargetproteinmoleculeare essentiallyabsent,asshownbythelackofpeaksonthelow m/z sideofeachchargestate. Thepeaksonthehigh m/z sideofeachchargestateareNaandCaionadducts.Source: AdaptedfromLiuetal.[22].

Figure1.2 AnalyticalHPLCandMScharacterizationofasyntheticprotein.Withmodern massspectrometricinstrumentation,themonoisotopicmasscanbeexperimentally determinedandcomparedwiththetheoreticalmass.Source:AdaptedfromDureketal.[23].

Figure1.3 X-raydiffractionstructureofcrystallinehumanlysozymepreparedbytotal chemicalsynthesis.(a)Cartoonrepresentationofthesecondarystructureofthefolded humanlysozymesyntheticproteinmolecule;(b)2Fo F c electrondensitymap,showingthe qualityofthedataacquiredataresolutionof1.04Å.Source:Dureketal.[11].©2007 NationalAcademyofSciences.

structure[26];(ii)intrinsicallydisorderedproteinsonlyfold,ifatall,inthe presenceoftheirtargetmolecules[27].

● Determinationoftheatomicstructureofthefoldedproteinmolecule.

⚬ X-raycrystallography,includingracemicproteincrystallography,[28]canbe usedtodeterminethestructureofthefolded,homogeneoussyntheticprotein molecule[29,30].

⚬ X-raystructuraldatawillalsoconfirmtheconnectivityofanydisulfidesthatare present,andatsufficientlyhighresolutioncanrevealthepresenceofaberrant chemicalmodificationsofthesyntheticprotein(Figure1.3).

⚬ Notethatbecausefractionalcrystallizationfromproteinmixturesiscommon,determinationofthecrystalstructureofasyntheticproteinbyX-ray diffractiondoesnotinitselfestablishthatallofthesyntheticproteinmolecules havethatstructureandareundamaged.Homogeneityofthesynthetic proteinmoleculemustbeestablished before determinationofthecrystal structure.

⚬ Forsmallproteins,thefoldedstructurecanbedeterminedusingnaturalabundanceproteinNMRtechniques[31].

● Biological/biochemicalassays.

⚬ Quantitativeassays,especiallymeasurementsofthecatalyticactivityofasyntheticenzymemolecule,canbeveryinformativebutareinadequateasproofof homogeneityorcorrectstructureofthesyntheticprotein.

ThetotalsynthesisofthechemokineCCL2(MCP-1)byGrygieletal.[32]isa near-perfectexampleofaproperlydocumentedtotalchemicalsynthesisofaprotein molecule,illustratingessentiallyallofthesyntheticstepsdescribedabovetogether withmeticulousandcompletecharacterizationofthesyntheticproteinasasingle molecularspeciesofdefinedstructure(Figure1.4).

Selectedfurtherexamplesofwell-characterizedsyntheticproteinscanbefound inRefs[24,33–42].

8 1CharacterizationofProteinMoleculesPreparedbyTotalChemicalSynthesis

Figure1.4 AnalyticalcharacterizationoftheproteinCCL2(MCP-1)preparedbytotal chemicalsynthesis.[32]PurityofthesyntheticproteinwasverifiedbyreversephaseHPLC andbycapillaryelectrophoresis,twohighresolutionanalyticalmethodsbasedondifferent separationprinciples(hydrophobicity;charge).Themonoisotopicmasswasmeasuredby LC-ESIQq/TOFmassspectrometry.Inadditiontothedatashownhere,thedisulfidebonds areverifiedbyenzymaticdigestionandLC-(MS-MS)oftheresultingpeptidefragments,and thecrystalstructureofthesyntheticproteinisdeterminedataresolutionof1.9Å.Source: FromGrygieletal.[32].

1.3CommentsonCharacterizationofSyntheticProtein Molecules

“Inthefieldofproteinsynthesisitismyconfidenthopethattomorrow’sdeeds willcatchupwithtoday’stitles,andthatweshalltrulybeabletoobtainenzymaticallyactiveproteinsassyntheticsubstances:asmaterialscomposedofasingle molecularspecies.”

JosefRudinger(3rdAmericanPeptideSymposium1972)

1.3.1Homogeneity

Thesinglemostimportantaspectofthecharacterizationofasyntheticproteinis rigorousverificationofitshomogeneity,i.e.thatthesyntheticproductisasingle

1.3CommentsonCharacterizationofSyntheticProteinMolecules 9 molecularspecies.Inverifyingthehomogeneityofasyntheticproteinitisessential touseanalyticaltechniquesbasedonseparationprinciplesthataredistinctfrom thepurificationmethod(s)usedinthesynthesisoftheproteinmolecule.PreparativeHPLCisalmostinvariablyusedasthefinalpurificationstepandcloselyrelated by-productsfromthesynthesismaybeco-purifiedwiththedesiredproteinproduct. Forthatreason,analyticalHPLCisnotasufficientproofofmolecularhomogeneity ofasyntheticproteinproduct. Directinfusion ESI-MSisagoodtechniqueforcheckingforthepresenceofproteinimpuritiesthathavemassesthatdifferfromthemass ofthetargetproteinmolecule.However,impuritiesthathavethesamemassasthe targetproteinwillnotbedetected.

Characterizationofasyntheticproteinmustalsoruleoutthepresenceofinadvertentmodificationsofthecovalentstructurethatmayhavebeenintroducedin thecourseofchemicalsynthesis.Forexample,chemicalmanipulationsofpeptide chainscanleadtotheformationofisopeptidebonds(i.e.beta-amidelinks)atasparticacidresidues,formationofsuccinimidesatAsnresidues,deamidationsofAsn and/orGlnsidechains, N -to-O acylshiftsatGly-Sersequences,andanyofavariety ofotherpossibleby-products.TheseabnormalmodificationsofthecovalentstructureareoftennotresolvedbyanalyticalHPLCandfrequentlyresultinsmall(1Da) orzerodifferencesintheobservedmassofthesyntheticproteinmolecule,andthus canbedifficultorimpossibletodetectbymassspectrometryalone.

Astate-of-the-arttechniquefordetectionofbyproductsandfortherigorous verificationofthemolecularhomogeneityofasyntheticproteinisCIEF.CIEF isacharge-based,ultrahigh-resolutionanalyticalmethodthatcanrevealthe presenceofimpuritiesthatdonotdirectlyinvolveaunitchargechange,evensubtle differencesasbenignasthereplacementofanunchargedaminoacidresiduein theprotein’spolypeptidechainbyanotherunchargedresidue.Forthatreason, CIEFistobepreferredfordocumentingtheabsenceofunexpectedby-products andfortheverificationofthemolecularhomogeneityofsyntheticpeptides andproteins.Recentdescriptionsofstate-of-the-artCIEFcanbefoundhere [43,44].

Thetimehascomeforcapillaryisoelectricfocusingdatatobemandatoryverificationofhomogeneityinthefinalcharacterizationofasyntheticprotein.

1.3.2AminoAcidSequence

Theaminoacidsequenceofaproteindetermineseveryaspectofitsmolecular structure.Ironically,theaspectofthestructureofachemicallysynthesizedprotein moleculethatismostoftenNOTexperimentallyverifiedistheaminoacidsequence ofaprotein‘spolypeptidechain.Becausethetargetaminoacidsequenceofthe syntheticprotein’spolypeptidechainisknown,itisstraightforwardtoverifythe aminoacidsequenceofasyntheticpolypeptidechainbyenzymaticdigestionand HPLC-(MS-MS)analysisofthepeptidefragments[33].

1CharacterizationofProteinMoleculesPreparedbyTotalChemicalSynthesis

Theall-to-frequentfailuretoverifytheaminoacidsequenceofasyntheticproteinproductshouldberectified

1.3.3ChemicalAnalogues

Animportantobjectiveoftotalproteinsynthesisistomake uniquelychemical analogues ofthenaturalproteinmolecule,includingnon-codedaminoacids [45],stableanaloguesofpost-translationalmodifications[46],fixedelementsof secondarystructure[47],chemicalengineeringofthepolypeptidechainbackbone [48],site-specificlabelingwithisotopes[49]orfluorophores[50],glycoproteins [51,52]andglycoproteinmimetics[53],noveltopologiessuchascircular[54] orconcatenatedpolypeptidechains[55],proteindiastereomers[56–58],and mirror-imageproteinmolecules[59].Thus,inadditiontocharacterizingfeaturesof proteinmolecularstructurefoundinnaturalproteins,characterizationofsynthetic proteinsmustinclude verificationofthenovelfeaturesintroducedbychemical synthesis

1.3.4LimitationsofSPPS

Stepwisesynthesisofpolypeptidechainshasitslimitations.Becauseofthestatistical accumulationofresin-boundby-products,eventhemosthighlyoptimizedstepwise SPPSmethodsshould never beusedforthepreparationofpeptidesegmentslonger than ∼50aminoacidresidues.Dependingonaminoacidcompositionandthe sequenceofthetargetpeptide,thepracticallimitforpreparinghomogeneous syntheticpeptidesfreeofcloselyrelatedcontaminantpeptideco-products(e.g.deletions,terminations,deamidations,isopeptidebonds, N -to-O acylshifts,covalent modifications)canbeasshortas40orevenfeweraminoacidresidues[60].Effective purificationandcarefulcharacterizationofeachsyntheticpeptidesegmentusedin totalproteinsynthesisisessential.

1.3.5FoldingasaPurificationStep

Therealityisthatnomatterhowmeticulouslytheyhavebeenpurified,30–50amino acidresiduepeptidesegmentspreparedbystepwiseSPPSwillalmostalwayscontain somelevelofcloselyrelatedpeptideimpurities.Evensmallamountsofimpurities presentinthepeptidesegmentsusedinproteinsynthesiswillcarryoverineach bond-formingstepandfrequentlywillbefoundinthefull-lengthsyntheticpolypeptidechainafterpurification.Fortunately,particularlyfordisulfide-constrainedglobularproteins,thefoldingstepcanbeaneffectivefurtherpurificationinwhichclosely relatedpolypeptidechainsthatdonotfoldcorrectlyaresubsequentlyremovedduringpurificationofthefoldedsyntheticprotein.ExamplesofLCMSdatabeforeand directinfusionESI-MSdataafterfoldingareshowninFigure1.5.

HPLC on line ESI-MS

Linear 102 aa polypeptide chain

11932.8±0.4 Da

Direct infusion ESI-MS

Folded 204 aa protein molecule

Covalent dimer 23 849.0±1.5 Da calc. mass: 23 849.1Da (av. isotopes)

05101520

Figure1.5 Thefoldingstepcansignificantlyreducetheamountsofresidualimpurities presentinsyntheticpolypeptidechains.Twoexamplesareshownhere.(a)VEGFA:(upper left)MSdatafromLCMSofpurifiedlinearVEGFApolypeptidechain–ESI-MSdatawere acquiredacrosstheentireUVabsorbingpeakintheLCchromatogram;(lowerright)Direct infusionESI-MSofpurifiedfoldedcovalenthomodimerVEGFAsyntheticproteinmolecule. Notethereducedamountsofimpuritiesonthelow m/z sideofeachchargestateinthe foldedproteindata.Source:AdaptedfromMandalandKent[21].(b)[Lys24,38,83 ]EPO:[upper left]MSdatafromLCMSofpurifiedlinear[Lys24,38,83 ]EPOpolypeptidechain–ESI-MSdata wereacquiredacrosstheentireUVabsorbingpeakshownintheLCchromatogramtothe left;(lowerright)DirectinfusionESI-MSofpurifiedfolded[Lys24,38,83 ]EPOsyntheticprotein molecule.Notetheessentialabsenceofimpuritiesonthelow m/z sideofeachchargestate inthefoldedproteindata.Smallpeakstotherightofeachchargestatearesodiumand calciumionadducts.MSdatarepresentationshavebeendigitallyscaledtogivethesame verticaltotalioncountandhorizontal m/z scales.Adaptedfrom[22].

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Immediate download Total chemical synthesis of proteins 1st edition ashraf brik ebooks 2024 by Education Libraries - Issuu