Biopolymers for biomedical and biotechnological applications bernd h. a. rehm download pdf

Page 1


Rehm

Visit to download the full and correct content document: https://ebookmass.com/product/biopolymers-for-biomedical-and-biotechnological-appl ications-bernd-h-a-rehm/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Algal Biotechnology: Integrated Algal Engineering for Bioenergy, Bioremediation, and Biomedical Applications

Ashfaq Ahmad

https://ebookmass.com/product/algal-biotechnology-integratedalgal-engineering-for-bioenergy-bioremediation-and-biomedicalapplications-ashfaq-ahmad/

Titanium Alloys for Biomedical Development and Applications: Design, Microstructure, Properties, and Application Zhentao Yu

https://ebookmass.com/product/titanium-alloys-for-biomedicaldevelopment-and-applications-design-microstructure-propertiesand-application-zhentao-yu/

Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications 1st Edition Eun Ji Chung (Editor)

https://ebookmass.com/product/nanoparticles-for-biomedicalapplications-fundamental-concepts-biological-interactions-andclinical-applications-1st-edition-eun-ji-chung-editor/

Silicon Carbide Biotechnology, Second Edition: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications Stephen Saddow Ph.D

https://ebookmass.com/product/silicon-carbide-biotechnologysecond-edition-a-biocompatible-semiconductor-for-advancedbiomedical-devices-and-applications-stephen-saddow-ph-d/

Biological Macromolecules: Bioactivity and Biomedical Applications Amit Kumar Nayak

https://ebookmass.com/product/biological-macromoleculesbioactivity-and-biomedical-applications-amit-kumar-nayak/

Graphene Quantum Dots: Biomedical and Environmental Sustainability Applications Mohammad Oves

https://ebookmass.com/product/graphene-quantum-dots-biomedicaland-environmental-sustainability-applications-mohammad-oves/

Advanced Sensor Technology: Biomedical, Environmental, and Construction Applications Ahmed Barhoum

https://ebookmass.com/product/advanced-sensor-technologybiomedical-environmental-and-construction-applications-ahmedbarhoum/

Seaweed polysaccharides : isolation, biological and biomedical applications 1st Edition Anil

https://ebookmass.com/product/seaweed-polysaccharides-isolationbiological-and-biomedical-applications-1st-edition-anil/

Natural polysaccharides in drug delivery and biomedical applications Hasnain

https://ebookmass.com/product/natural-polysaccharides-in-drugdelivery-and-biomedical-applications-hasnain/

BiopolymersforBiomedicalandBiotechnologicalApplications

BiopolymersforBiomedicaland BiotechnologicalApplications

Editedby

BerndH.A.Rehm

Editors

Dr.BerndH.A.Rehm

CentreforCellFactoriesand Biopolymers

GriffithInstituteforDrugDiscovery MenziesHealthInstituteQueensland GriffithUniversity DonYoungRoad,Nathan,QLD4111 Australia

Dr.M.FataMoradali DepartmentofOralImmunologyand InfectiousDiseases UniversityofLouisville UnitedStates

Allbookspublishedby Wiley-VCH arecarefullyproduced.Nevertheless, authors,editors,andpublisherdonot warranttheinformationcontainedin thesebooks,includingthisbook,to befreeoferrors.Readersareadvised tokeepinmindthatstatements,data, illustrations,proceduraldetailsorother itemsmayinadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-Publication Data

Acataloguerecordforthisbookis availablefromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek

TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat <http://dnb.d-nb.de>.

©2021WILEY-VCHGmbH,Boschstr. 12,69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).No partofthisbookmaybereproducedin anyform–byphotoprinting, microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc.used inthisbook,evenwhennotspecifically markedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34530-4

ePDFISBN: 978-3-527-81828-0

ePubISBN: 978-3-527-81830-3

oBookISBN: 978-3-527-81831-0

CoverDesign Adam-Design,Weinheim, Germany

Typesetting SPiGlobal,Chennai,India PrintingandBinding

Printedonacid-freepaper 10987654321

Contents

1AdvancesinBiocompatibility:APrerequisiteforBiomedical ApplicationofBiopolymers 1 MatthewR.Jorgensen,HelinRäägel,andThorS.Rollins

1.1Introduction 1

1.2BiocompatibilityEvaluationofBiopolymericMaterialsandDevices 2

1.3UsingaRisk-BasedApproachtoBiocompatibility 4

1.3.1ChemistryofBiopolymersandRisk 6

1.3.2ChemistryScreeningofBiopolymers 7

1.4SpecificBiologicalEndpointEvaluations 11

1.4.1Cytotoxicity 11

1.4.2SystemicToxicity(Acute,Subacute,Subchronic,andChronic) 12

1.4.3Implantation 14

1.5Conclusion 15 References 16

2AdvancedMicrobialPolysaccharides 19 FilomenaFreitas,CristianaA.V.Torres,DianaAraújo,InêsFarinha, JoãoR.Pereira,PatríciaConcórdio-Reis,andMariaA.M.Reis

2.1Introduction 19

2.2FunctionalPropertiesandApplicationsofMicrobial Polysaccharides 20

2.3CommerciallyRelevantMicrobialPolysaccharides:EstablishedUses andNovel/ProspectiveApplications 22

2.3.1Pullulan 22

2.3.2Scleroglucan 23

2.3.3XanthanGum 23

2.3.4Dextrans 24

2.3.5Curdlan 24

2.3.6GellanGum 24

2.3.7Levan 25

2.3.8HyaluronicAcid 25

2.4HydrogelsBasedonMicrobialPolysaccharides 25

2.5BionanocompositesBasedonMicrobialPolysaccharides 29

2.6BioactivePolysaccharidesfromMicroalgae:AnEmergingArea 32

2.6.1Polysaccharide-ProducingMicroalgae 33

2.6.2BiologicalActivityandPotentialApplications 33

2.6.2.1AntiviralActivity 36

2.6.2.2Immunomodulatory,Anti-inflammatory,andAnticancer Activities 36

2.6.2.3AnticoagulantandAntithromboticActivity 38

2.6.2.4AntioxidantActivity 38

2.6.2.5OtherBiologicalProperties 39

2.6.3CommercializationProspects 39

2.7ApplicationsofChitinousPolymers 40

2.7.1Chitin,Chitosan,andChitinousPolysaccharides 40

2.7.2PropertiesofChitinousPolysaccharides 41

2.7.3ApplicationsofChitinousPolysaccharides 41

2.7.3.1BiomedicalApplications 42

2.7.3.2PharmaceuticalApplications 43

2.7.3.3FoodApplications 43

2.7.3.4OtherApplications 43

2.8MicrobialPolysaccharides:AWorldofOpportunities 44 Acknowledgments 45 References 45

3MicrobialCellFactoriesforBiomanufacturingof Polysaccharides 63

M.FataMoradaliandBerndH.A.Rehm

3.1Introduction 63

3.2ProminentMicrobialPolysaccharidesandTheirPropertiesand Applications 63

3.2.1XanthanandAcetan 64

3.2.2SuccinoglycanandGalactoglucan 64

3.2.3SphinganPolysaccharides 66

3.2.4Pullulan 66

3.2.5CelluloseandCurdlan 67

3.2.6Alginates 67

3.2.7HyaluronicAcidorHyaluronate 68

3.2.8Dextrans 68

3.2.9LevanandInulin 69

3.3BiosynthesisPathwaysofBacterialPolysaccharides 69

3.3.1GeneticBackgroundRequiredforBiosynthesisofPolysaccharidesin Bacteria 70

3.3.2ProductionofActivePrecursor,Polymerization,andPolysaccharide Modifications 71

3.3.3RegulatoryPathwaysandPosttranslationalModifications 72

3.4StrategiesforEngineeringCellFactories 76

3.4.1EnhancementofProductivityupontheEnergeticStateoftheCelland Metabolites 77

3.4.2GeneticandMetabolicEngineeringofCellFactories 78

3.4.3StrategiesforOptimizingPhysicochemicalPropertiesof Polysaccharides 79

3.4.4RecombinantProductionofPolysaccharidesandTailor-Made Products 83

3.5ConclusionandFuturePerspective 86 Acknowledgments 87 References 87

4ExploitationofExopolysaccharidesfromLacticAcid Bacteria 103

TsudaHarutoshi

4.1Introduction 103

4.1.1LacticAcidBacteria 103

4.1.2Exopolysaccharides 103

4.1.3ImportanceofPSProducedbyLAB 105

4.2Homo-PS 105

4.2.1Biosynthesis 105

4.2.2CompositionandStructure 106

4.2.3InstabilityofHomo-PSProduction 106

4.3Hetero-PS 111

4.3.1Biosynthesis 111

4.3.2MonosaccharidesCompositionofHetero-PS 111

4.3.3YieldofHetero-PS 112

4.3.4InstabilityofHetero-PSProduction 116

4.4PrebioticActivity 117

4.4.1CommercialPrebioticOligosaccharides 117

4.4.2PrebioticPolysaccharides 118

4.4.3PrebioticsinJapaneseFOSHU 119

4.4.4PrebioticsProducedbyLAB 119

4.5Conclusion 120 References 120

5Nanocellulose:ANewBiopolymerforBiomedical Application 129

HippolyteDurand,MeganSmyth,andJulienBras

5.1TrendsofBiobasedPolymersinBiomedicalApplication 129

5.1.1IntroductiontoBiomedicalEngineering 130

5.1.2OverviewofBiobasedMaterialsforBiomedicalApplications 132

5.1.2.1Biomaterials:ADefinition 132

5.1.2.2BiobasedPolymers 135

5.1.2.3CelluloseasaBiomaterial 138

5.2Nanocellulose:Production,Characterization,Application,and CommercialAspects 142

5.2.1IsolationandCharacterizationofNanocelluloseMaterials 143

5.2.1.1CelluloseNanocrystals 144

5.2.1.2CelluloseNanofibrils 145

5.2.1.3BacterialNanocellulose(BNC) 149

5.2.2CharacterizationofCellulosicNanomaterials(CNMs) 151

5.2.3IndustrializationofNanocellulose:FirstandUpcoming Applications 153

5.2.4HealthandToxicology:AConcernforCNMDevelopmentin BiomedicalField 154

5.2.5CelluloseNanofibrilsandMedicalApplications 164

5.3ConclusionsandPerspectives 170 References 170

6AdvancesinMucinBiopolymerResearch:Purification, Characterization,andApplications 181 MatthiasMarczynski,BenjaminWinkeljann,andOliverLieleg

6.1Introduction 181

6.2MucinSourcesandPurificationProcess 182

6.3Structure–FunctionRelationofMucins 185

6.4CharacterizingMucinsandMucin-BasedMaterials 187

6.5BiomedicalApplicationsofPurifiedMucins 190

6.5.1EyeDropsorContactLensCoatings 190

6.5.2MouthSprays 192

6.5.3ArtificialJointFluids 192

6.5.4CoatingsofMedicalDevices 193

6.5.5ComponentsofHydrogelsforDrugDelivery 194

6.5.6MolecularStandardsforLabTestswithClinicalMucusSamples 194

6.6Outlook:EngineeredMucinsandMucin-MimeticPolymers 194 Acknowledgments 195 References 195

7AdvancesintheSynthesisofFibrousProteinsandTheir Applications 209

GangWei,XiMa,YaruBai,CoucongGong,andYantuZhang

7.1Introduction 209

7.2Synthesis,Structure,andCharacterizationsofFibrousProtein Materials 210

7.2.1SynthesisMethods 210

7.2.2Structure 212

7.2.3Characterizations 213

7.3ApplicationsofFibrousProteinMaterials 213

7.3.1BoneTissueEngineering 213

7.3.2BiomedicalEngineering 215

7.3.3SensorsandBiosensors 216

7.3.4Nanodevices 217

7.3.5EnergyApplication 218

7.3.6EnvironmentalApplication 220

7.4Conclusions 223 Acknowledgments 224 References 224

8MicrobialPolyhydroxyalkanoates(PHAs):FromSynthetic BiologytoIndustrialization 231

YukiMiyahara,AyakaHiroe,ShunsukeSato,TakeharuTsuge, andSeiichiTaguchi

8.1Introduction 231

8.2SyntheticBiologyforProductionofKanekaPHBH 233

8.2.1IsolationofBacteriumProducing Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) 233

8.2.2MaterialPropertiesofPHBH 234

8.2.3IndustrialPHBHProductionProcess 235

8.2.4MolecularBreedingofPHBH-ProducingBacteria 236

8.2.5PreciseControlof3HHxFractionbyGeneticModificationof Ralstoniaeutropha238

8.2.6BusinessPlanforKanekaPHBHIndustrialization 239

8.3SyntheticBiologyforProductionofMedium-Chain-LengthPHAswith HomogeneousSide-ChainLengths(Homo-PHAs) 240

8.3.1CopolymersBasedonMedium-Chain-LengthPHAMonomeric Constituents 240

8.3.2PathwayEngineeringforHomo-PHAProduction 242

8.3.3ImprovedMicrobialProductionofHomo-PHAs 243

8.3.4MaterialPropertiesofHomo-PHAs 245

8.3.5IntegratedProductionProcessofHomo-PHAsfromRenewable Feedstock 246

8.4SyntheticBiologyforProductionofLactate-BasedPolymers 247

8.4.1CreationofLactate-PolymerizingEnzyme(LPE) 247

8.4.2BiosynthesisofLactate-BasedPolymers 249

8.4.3IntegratedProductionProcessofLactate-BasedPolymersfrom RenewableFeedstock 251

8.4.4BiosynthesizedLactate-BasedPolymerShowsSuperior Properties 253

8.5Outlook 254 References 255

9NaturalandSyntheticBiopolymersinDrugDeliveryandTissue Engineering 265

JohnD.Schneible,MichaelA.Daniele,andStefanoMenegatti

9.1Introduction 265

9.2SyntheticandNaturalSubstrates 267

9.3ApplicationsofNaturalandSyntheticPolypeptides 267

9.3.1DrugDeliveryVehicles 267

9.3.2TargetingAgents 273

9.3.3Cell-PermeatingPeptides 274

9.3.4PeptidesinTissueEngineeringandRegenerativeMedicine 276

9.4ApplicationsofPolysaccharides 280

9.4.1DrugDelivery 280

9.4.2TissueEngineeringandRegenerativeMedicine 284

9.5ConclusionsandFutureOutlook 290 References 290

x Contents

10BiopolymersinRegenerativeMedicine:Overview,Current Advances,andFutureTrends 357

MichaelR.BehrensandWarrenC.Ruder

10.1Introduction 357

10.2BiopolymerScaffoldAssembly 358

10.2.1HydrogelBiopolymerScaffolds 358

10.2.2ElectrospinningofBiopolymerScaffolds 360

10.2.3Three-DimensionalPrintingofBiopolymerScaffolds 362

10.3OrganSystemSpecificBiopolymerScaffolds 367

10.3.1BiopolymersforMusculoskeletalSystemRegeneration 368

10.3.1.1BiopolymersforBoneRegeneration 368

10.3.1.2BiopolymersforCartilageRegeneration 370

10.3.1.3BiopolymersforLigamentandTendonRegeneration 371

10.3.2BiopolymersforCardiovascularSystemRegeneration 372

10.3.2.1BiopolymersforVascularRegeneration 373

10.3.2.2BiopolymersforCardiacRegeneration 374

10.4SummaryandOutlook 376 References 377

Index 381

AdvancesinBiocompatibility:APrerequisiteforBiomedical ApplicationofBiopolymers

MatthewR.Jorgensen,HelinRäägel,andThorS.Rollins

NelsonLaboratories,LLC,6280SRedwoodRd,SaltLakeCity,UT84123,USA

1.1Introduction

Biocompatibilityisaconceptthat,inoneformoranother,hasexistedsincethe dawnofmedicine.AtthebaseofVesuviusinancientRomewasthehouseof asurgeon,hometoanimpressivecollectionofmedicalinstrumentsthatwere preservedbyashwhenthemountainexploded.Withoutadoubt,patronsofthe ancientsurgeonsubjectedthemselvestothesedeviceswiththeexpectationand trustthattheywouldbegettingbetter–notworse–duetothetreatmentthey received.Whilebiocompatibilityhasnotalwaysbeenexplicitlydefinedthrough history,thesafetyofatoolinadoctor’shandiscentraltothemissionofthedoctor. Followingtheindustrialrevolution,instrumentshavebecomemass-produced andmarketedaseffectivetoolsforthepracticeofmedicine,makingdoctorsrely onthediligenceofthemanufacturertoensurepatientsafety.Concurrently,our knowledgeoftoxicologyhasexpandedthroughexperience,andmedicaljournals havebecomewidelyavailabletoshareclinicalexperiences.Theseplatformshave beenandarecurrentlysuccessfullyusedtonotifydoctorsandalsothepublic aboutmedicalinstrumentsthoughttobesafe,butwhichactuallydidmoreharm thangood,anddiscussoptionsformitigatingtherisksassociatedwiththeuseof thesedevices.

Toprotectpatientsfrombeingharmedbymedicaldevices,whichforonereasonoranothermightbeunsafeduetonegligenceonthepartofthedevicemanufacturer,medicaldevicesafetyhasbecomeregulated.Theseregulationsrequire medicaldevicemanufacturersmakingadeviceorproducttodemonstratethat whattheyareproducingperformsappropriatelywhenusedasintended.Past experienceandmoderntoxicologyhaveidentifiedwhatsortsofhealthrisksare associatedwiththeuseofagivenmedicaldevice.Themostmodernandcomprehensiveoverviewofbiocompatibilityisthesuiteofdocumentsthatmakeupthe internationalstandardISO10993;thefirstdocumentintheseries, ISO10993-1, providesthehigh-levelframeworkforevaluationofbiocompatibilityasawhole, whiletheotherdocumentsintheseriesexplorespecifictopicsinmoredetail.

Themodernconceptanddefinitionofbiocompatibilityistheabilityofamedicaldevice(ormaterial)to“performwithanappropriatehostresponse”when BiopolymersforBiomedicalandBiotechnologicalApplications, FirstEdition. EditedbyBerndH.A.RehmandM.FataMoradali. ©2021WILEY-VCHGmbH.Published2021byWILEY-VCHGmbH.

1AdvancesinBiocompatibility:APrerequisiteforBiomedicalApplicationofBiopolymers usedasintended.Thismeansthatthedeviceormaterialshouldnotcausean unacceptablebiologicalriskwhenused,takingintoaccountthenatureofusein termsofcontactsiteandduration,aswellasthepotentialbenefitofusingthe device.ISO10993-1,AnnexA,listsseveralkeybiologicalrisksassociatedwith specifictypesanddurationsofpatientcontact.Asthecontactdurationgoesup, andthedevicesormaterialsbecomemoreinvasive,thetypesofpotentialrisks multiply.Forexample,adevicethatisusedonanintactskinisnotveryinvasive,andthereforetheassociatedrisksareminimal;theskinisanorganeffective atprotectingthebodyfromournaturalenvironmentthatisoftenrepletewith biologicalrisks.Incontrast,consideraneurologicalstent;thisinvasivedevice isinpermanentcontactwithbraintissues.Forsuchadevice,risksrangefrom immediatetoxicitytothrombosistomorechronicsystemictoxicitieslikecancer. Therefore,eventhemoremodernconceptofbiocompatibilityencompassesthe broaderideawellcapturedbytheoft-repeatedphraseinmedicine“First,dono harm,”whichcertainlyappliestothematerialsusedwiththeintentionofhealing.

1.2BiocompatibilityEvaluationofBiopolymeric MaterialsandDevices

Biopolymersrepresentaspecialsubsetofmaterialsusefulinmedicine,being derivedorproducedbylivingorganismsorsynthesizedfrombasicbiological buildingblocks.Comparedwithsyntheticpolymers,theadvantagesfromtheperspectiveofbiocompatibilityareclear:becausethesematerialsaremadebyliving systems,frombuildingblocksubiquitoustolife,itwouldseemlikethepotential foradversebiologicalreactionswouldbereduced.Forimplants,likebiocompositeboneanchorsusedbyArthrex® inhiparthroscopyprocedures(Figure1.1), ifthegoalistomimicthetissuebeingreplaced,usingamaterialmadefrom

Figure1.1 BioCompositeKnotless SutureTak® anchorusedinhip arthroscopyprocedures. Source: CourtesyofArthrex®.

1.2BiocompatibilityEvaluationofBiopolymericMaterialsandDevices 3

naturalbuildingblocksislogical.Thescopeandrangeofbiopolymershasbeen discussedindetailwithinthistextandelsewhereinliterature[1–3].Briefly,they includepolysaccharides(suchaschitin,hyaluronicacid,andcellulose),polyesters (suchaspolylacticacid[PLA]),proteins(suchassilk,collagen,andcasein),and otherslikelatexrubberandshellac.Asvariedasthepossiblebiopolymersare theirindividualchemicalproperties;therefore,broadgroupingofbiopolymers forbiocompatibilityisnotpossible.Rather,thesematerialsshouldbeconsideredwithoutspecialallowance,intermsoftheirintendeduseanddurabilityin thebody.

Thebiocompatibilityevaluationprocess,ingeneral,beginsbydetermining whatpotentialbiologicalriskstheuseofthematerialwouldpresent.Oncerisks aredetermined,aplantoevaluatethoserisksshouldbedeveloped.Often,the riskidentificationprocessbeginsbyansweringthefollowingquestions:

1. Whatistheintendeduseofthedevice(ormaterial)?

a.Whattissuesorfluidswillitcontactinthebody(eitherdirectlyorindirectly)?

b.Howlongisthecumulativeamountoftimeitmaycontactthebody?

c.Whowillbeexposedtothedevice(infants,pediatrics,adults)?

2. Whatisknownaboutthedevicematerialsandtheirfateinthebody?

a.Whatprocessing,packaging,andsterilizationarethematerialsexposed to?

b.Arethematerialsknowntodegradeovertime?

c.Whatpreviousclinicalexperienceistherewiththedevice(ormaterials)?

AnnexAinISO10993-1containsachartofbiologicalrisksforconsideration,stratifiedbycontactduration(limited ≤24hours,prolonged >24hoursto 30days,longterm >30days)andcontacttype.Theseriskscanprovideastarting pointforunderstandingtheriskspresentedbyadeviceforboththedevicemanufacturerandthosewhowouldintheendapprovethedeviceforuse.Toillustrate howAnnexAisused,twocommonlyusedbiopolymericdevicesareputthrough thethoughtprocessasexamples:

• Device1:Achitin-basedhemostaticagentforacutetreatmentduringmassive hemorrhageinanopenwound

• Device2:Apolycaprolactone(PCL)implantforinfants,designedtodegrade andresorboveraperiodoftwotothreeyears

HowthedescriptionofDevice1andDevice2translatesintoaclassification andsetofbiologicalrisksisshowninTable1.1.

TherisksidentifiedbyISO10993-1,AnnexA(outlinedforthetwodevicesin Table1.1),arenotnecessarilyall-inclusiveorexhaustive.Thespiritofthedocumentistoprovideastartingpointandbasisforabiologicalevaluation;ifother potentialbiologicalortoxicologicalrisksareknownthroughclinicalexperience, thosewouldalsoneedtobeaddressed.Forinstance,ifamedicalinstrumentis knownorhasbeenshowntochipduringasurgicalprocedure,leavingfragments ofthedevicepossiblypermanentlyinthepatient,thisshouldbeaddressedinthe biocompatibilityassessment.

1AdvancesinBiocompatibility:APrerequisiteforBiomedicalApplicationofBiopolymers

Table1.1 Exampleclassificationandassociatedrisksfortworepresentativedevices.

HemostaticImplant

ContacttissuesBleedingwoundMuscleandbone

ContactdurationExpectedtobelessthan 24h,butcouldextend beyond

Deviceresorbsover2–3yr

TargetpatientpopulationAdultsInfants

ClassificationperAnnexACategory:surfacemedical device

Contact:breachedor compromisedskin

Contactduration: prolonged

Biologicalriskstobe addressed(perISO 10993-1,AnnexA)

• Cytotoxicity

• Sensitization

• Irritation

• Material-mediated pyrogenicity

• Acutesystemictoxicity

• Subacutetoxicity

• Implantationeffects

Category:implantmedical device

Contact:tissue/bone

Contactduration: permanent

• Cytotoxicity

• Sensitization

• Irritation

• Material-mediated pyrogenicity

• Acutesystemictoxicity

• Subacutetoxicity

• Subchronictoxicity

• Chronictoxicity

• Implantationeffects

• Genotoxicity

• Carcinogenicity

• Degradation

ItshouldalsoberecognizedthattherisksidentifiedbyAnnexAarenothighlightedinthestandardasanexplicit“checklistfortesting.”Fortunately,thelatest ISO10993-1releasedin2018moreclearlydefinesthisstatementwithinthedocument.Basedontheupdatedverbiageinthestandard,eachofthebiologicalrisks (orendpoints)canbeevaluatedusingarisk-basedapproach,takingintoconsiderationchemicalandmaterialinformation,existingendpoint-specificdata,ora writtenrationalewhytestingorfurtherdataisnotneededtoaddressaparticularrisk.Inanycase,thebiocompatibilityofadeviceormaterialmustbespelled out,addressingdirectlyeachofthespecificriskidentified,mitigatingconcern throughtestingresultsorwrittenevaluationinabiologicalriskassessment.

1.3UsingaRisk-BasedApproachtoBiocompatibility

Afterthespecificbiologicalrisksforaparticularimplementationofadevice areidentified,thestrategyforhowthebiologicalsafetywillbeprovenmustbe decided.Inthepast,theexpectationwasthatbecausedevicesaretypicallymade bycompetitorsinuniqueenvironments,andwithproprietaryprocessing,categoricallycallingamaterial“biocompatible”wasnotpossible,andtestingshould beexecutedanewforeachdevicecomingtomarket.Thelistofbiologicalrisks

1.3UsingaRisk-BasedApproachtoBiocompatibility 5 wasprettymuchashoppinglist,moreorlessblindlyorderedandexecuted.Since thattime,therehasbeenadramaticshifttowardamorethoughtfulscientific approachtotheevaluationofbiocompatibility.

Theshiftfromcheck-listingteststoarisk-basedapproachhasbeenmotivated byseveralfactors:

• Considerationofanimalwelfare,withachargetoreduceanimaltestingas muchaspossible

• Abroaderandbetterconsolidatedbodyofdataonmaterialsandtoxicology

• Betteranalyticalchemistrytoolstoevaluatemanufacturingresiduals,material leachables,anddegradationproducts

Knowingthatthekeyistoprotectpatientsafetybyprovingbiocompatibility ofadevicetotheskepticalreviewerwhileatthesametimeavoidingasmuch unnecessarytestingaspossibleistheheartofevaluatingbiocompatibilityusing arisk-basedapproach.Thereisanarttoabiocompatibilityevaluation,balancingcommonsensemeasurestoensuresafetywithcurrentlyavailabledataon onehandandtheexpectationsofregulatorybodiesacrossthespectrumonthe other.Understandingtherolethematerialinformationhasandhowthisbroadly impactsthetestingstrategy(alongwiththecostandtimeburdenoftesting)is centraltothestrategy.

Inthebestcase,materialinformationandwrittenassessmentalonecanbesufficienttomitigateandaddressallofthebiologicalrisksassociatedwithadevice. Tobeconvincing,however,agreatdealofdetailisneeded.Often,thequestion ofbiocompatibilityisnotaboutthebulkmaterialitselfatall,butratheraboutthe processingofthatmaterialthattakesplacebothupstreamanddownstream.Considerapolycaprolactone(PCL)implant,manufacturedusing3Dprintingfrom apowderstartingmaterial.Tothemanufacturer,thenamePCLalongwithits assignedchemicalabstractsservice(CAS)numberdefinesthematerial.Butthere aremanywaystosynthesizePCL[4]thatmayinfluenceitssafetyprofileinterms ofimpuritiesthat(whilenotobviousfrombulkproperties)willaffecttoxicology. ConsiderthePCLpipelineupstreamfromthedevicemanufacturer:

1.Preparationofthemonomer(either ��-caprolactoneor6-hydroxycaproicacid) atrawchemicalsupplier:

a. ��-Caprolactoneand6-hydroxycaproicacidmaybeproducednaturally byoxidationofcyclohexanolbymicroorganismsandthenharvestedand purified(allstepsremovingorintroducingimpuritiestovaryingdegrees).

b. ��-Caprolactonecanalsobeproducedindustriallythroughareactionof cyclohexanonewithperaceticacid.

2.Themonomerispurified,packaged,sold,andshippedtothemakerofthe polymerwithoutknowledgethatthemonomerwillendupinamedical device:

a.Purityandperformancemetricsarebasedonbulkproperties(nottoxicologicalendpoints).

3.Themonomerispolymerizedbyanothermanufacturer:

a.Polymerizationoccursusingavarietyofdifferentpossibletechniques, usingdifferentactivatorsand/orcatalysts,severalofwhicharecomplex

1AdvancesinBiocompatibility:APrerequisiteforBiomedicalApplicationofBiopolymers organometalliccomplexesofquestionablesafety(see,forexample,those containedinRef.[4]).

4.Thepolymerispowderedandpurifiedbythemanufacturerusingaproprietary cryogenicprocess.

Most(orall)ofthedetailsoftheupstreamprocessareunknowntothemedical devicemanufacturer,yettheycanimpactdevicesafety.Itcouldmatter,froma toxicologicalperspective,ifthePCLinadeviceismanufacturedusinglithium diisopropylamideor tert -butoxypotassiumasacatalyst.Ifthedevicemanufacturerweretoasktheirpolymersupplierwhatcatalystorwhatmonomerisused andthemethodofmanufacture,theinformationislikelyconsideredintellectual property,andmedicaldevicemanufacturersaretypicallynotbigenoughcustomersofpolymermanufacturerstobeabletomakedemands.Therefore,inthese cases,itisuptothedevicemanufacturertoprovethebiocompatibilityoftheir materialsacknowledgingthatverylittleisknownabouttheimpurityprofileof theirdevice.

Knowingwhatyoudonotknowandhowthatgapinknowledgemightbeinterpretedbyaregulatororapatientreceivingthedeviceiskeyindevelopinga testingstrategyforbiocompatibility(Figure1.2).Regulatorshavebeenwitnessto allsortsofmischiefonthepartofmanufacturers,andpatientshavebeeninjured bydevicesmadefrommisunderstoodmaterials,elevatingfurthertheconcern foreachdevicethatisintheprocessofclearanceformarket.Forbiopolymer devices,itistypicallynotknownwhattracechemicalsmaybeinthematerial. Anothergapinknowledgeisoftenhowdifferentprocessingstepsinfluencethe degradationrateofresorbablebiopolymers.Toanswerthosequestions,weturn tochemistry.

1.3.1ChemistryofBiopolymersandRisk

Basedontheirphysicochemicalproperties,variousbiopolymerssofarusedin themedicalindustrycanlooselybeplacedintothreecategories:polysaccharides, proteins,andpolyesters.Someexamplesofcommonbiopolymersareshownin Table1.2. Intended use of device

Figure1.2 ThoughtprocessforusingISO10993-1forbiologicalevaluationofmedicaldevices.

Table1.2 Examplesofcommonbiopolymers.

ClassificationExamplebiopolymerNotesonproductionRisks

PolysaccharidesHyaluronicacid,HA (polymerof d-glucuronicacidand N -acetylglucosamine)

Primarilyproduced usingbacteria including Streptococcus [5–7]

Cellulose(polymerof d-glucose)

ProteinsSilk

Primarilyfibroin,a repeatingaminoacid sequenceof(Gly-SerGly-Ala-Gly-Ala)

Fromplantproducts, celluloseisdissolved fromotherplant materialsinanalkali process,followedby purification.Produced bacteriallyusing Acetobacterxylinum [8,9]

Primarilyfromthe mulberrysilkworm Bombyxmori [10]

PolyestersPolylacticacidPrimarilyring-opening polymerizationof lactide(cycliclactic aciddimer)[11]

Productionby pathogenicbacteria coproducesmyriad otherpotentiallytoxic biologicalproductsthat mustberemoved duringsubsequent purificationsteps

Industrialpurification stepscanintroduce impurities.Bacterial productioncoproduces myriadother potentiallytoxic biologicalproductsthat mustberemoved duringsubsequent purificationsteps

Industrial post-processingand purificationstepscan introduceimpurities

Crudelacticacid containsmany impurities(acids, alcohols,metals)

Whilethechemistryofbiopolymersandthesourceofthesematerials’buildingblocksareverydiverse,thereisacommonalityamongthemwhenitcomesto potentialpatientrisk:thereisalwaysconcernoversideproductsandmanufacturingresiduals.Whileitisacceptedthatbiopolymershaveaninherentadvantage frombeingsimilarchemicallytosubstancesnaturallyfoundinthebody,theyalso havethesamedisadvantagefacingallmedicaldevicematerialsfrombeingprocessed.Forthatreason,thechemicalevaluationstrategyusedformedicaldevices madefrombiopolymersisverysimilartowhatisusedfordevicesmadefromfully syntheticmaterials.Theheartofthestrategyisacknowledgingthatthemanufacturerofthedevicedoesnotknowwhattheydonotknow,andtheonlyway tosafeguardagainstunpleasantsurprisesistoscreenforeverythingthatmight reasonablybeinoronthedevice.

1.3.2ChemistryScreeningofBiopolymers

Itisimportanttostartthedesignofachemistrytestingstrategywiththeendgoal inmind.Inthecaseofchemistryforbiocompatibility,theendgoalistobeable toscreenforunexpectedcontaminantswithenoughsensitivityandwithenough

Sensitivity of analysis

Quality of identification

Breath of analysis needed

Chemical characterization: VOC, SVOC, NVOC, elemental impurities

Figure1.3 Importantaspectsforsettingupachemicalcharacterizationstudy.

accuracythattoxicologicalconclusionscanbemadebasedonthedataproduced (Figure1.3).Determiningthepropersensitivitycanbeamatterofdebatebut shouldbelowenoughsothatanychemicalsthatarepresent–butnotreported becausetheyarebelowthesensitivity–areknowntonotbetoxicologicallyconcerning.Inotherwords,athresholdoftoxicologicalconcern(TTC)isneeded.

TheTTCconceptwasdevelopedtodefineanacceptableintakeforany unstudied/understudiedchemicalthat,ifbelowtheTTC,wouldposeanegligibleriskofcarcinogenicity,systemictoxicity,andreproductivetoxicity.The conceptwasdevelopedforchemicalspresentinthehumandietandisaccepted bytheUSFoodandDrugAdministration(FDA),InternationalConference onHarmonization(ICH),andtheEuropeanMedicinesAgency(EMA)forthe evaluationofimpuritiesinpharmaceuticals.Ithasalsobeenusedforassessing contaminantsinconsumerproductsandenvironmentalcontaminants.The methodsuponwhichtheTTCisbasedaregenerallyconsideredveryconservativesincetheyinvolvedataforthemostsensitivespeciesandmostsensitive siteinduction(several“worst-case”assumptions).TheTTCconceptprovidesan estimateofsafeexposuresvaluesforanycompoundnotontheTTCexclusion list(i.e.metals,nitrosamines,andpolycyclicaromatichydrocarbons).Themost conservativeTTCvaluehasbeensetat1.5 μg/dandisassignedforgreaterthan 10yearstoalifetimeofexposure.ATTCof120 μg/dhasbeenproposedfor genotoxicexposureslimitedtoonemonthorless[12].ExceedingtheTTCisnot necessarilyassociatedwithanincreasedriskgiventheconservativeassumptions employedinthederivationoftheTTCvalue[13–17].Whenadequateevidence existsthataconstituentisnon-carcinogenic,anon-carcinogenicTTCvaluemay beusedtoaddresstheconstituent(e.g.Cramerclassification)[18,19].

TheTTCconceptformedicaldeviceswasformalizedinISO21726publishedin February2019.Thisbriefinternationalstandardoutlinestheappropriatestrategy forusingtheCramerclassandTTC.Whenadequatetoxicologicaldataisnot availableintheliterature,theCramerclassificationshouldbeusedfornon-cancer

Table1.3 RecommendedTTCvaluesfromISO21726.

Medicaldevice contactcategory Limited (<24h) Prolonged (24hto30d) Longterma) (>30d)

Durationofbody contact ≤1mo >1–12mo >1–10yr >10yrto lifetime

TTCforanyone compound(μg/d)

a)ConsideredpermanentaccordingtoISO10993-1.

b)Thisvalueincorporatesa10 5 cancerriskfora60kgadult.

effects;forcancer-basedeffects,theICHM7TTCvaluesshouldbeusedbased onthecontactdurationofthedevice.Cramerclassificationstratifiescompounds intothreegroups(I,II,andIII,withIIIbeingthehighestrisk);theacceptabledaily exposuresare1800 μg/dforclassI,540 μg/dforclassII,and90 μg/dforclassIII compounds.TheTTCvaluesfromISO21726forcarcinogenicendpointsdepend oncontactdurationandareshowninTable1.3.

Inadditiontothesensitivity,thebreadthoftheanalysisiscritical.ISO 10993-12,ISO10993-17,andISO10993-18provideguidanceonthesample preparationandscopeofanalysistogivetherequiredbreadth.Thedevice shouldbeextractedinmultiplesolventscoveringarangeofpolaritiestobe representativeoftherangeofmatricesthatarefoundinthebody.Extraction conditionsshouldbeselectedtoappropriatelyexaggeratetheamountof chemicalsfound.Forexample,extractionofthedeviceat50 ∘ Cfor72hours isprescribedbyISO10993-12andisthemostcommonlyusedextraction condition.Typicalextractionsolventsarepurifiedwater,isopropylalcohol,and hexane.Followingextraction,theextractsmustbeanalyzedforvolatileorganic compounds(VOCs),semi-volatileorganiccompounds(SVOCs),non-volatile organiccompounds(NVOCs),andmetalsusingasuiteoftechniquesthatare bothqualitativeandquantitative;thesearealmostalwayschromatographywith massspectroscopy(MS)fororganiccompoundsandinductivelycoupledplasma formetals.

VOCsaretypicallyanalyzedforonlyinaqueousextracts,assemipolarandnonpolarsolventsareoftenVOCsthemselves.Twomaintechniquesareavailable forVOCs:headspacegaschromatographywithmassspectroscopy(HS-GC/MS) andpurgeandtrapGC/MS.HS-GC/MSmeasuresthevolatilespresentinthe gasaboveawatersampleinaclosedvial;thevialmightbeslightlyheatedto encouragevolatilestoenterthegasphaseabovetheliquid.Thegasisdirected throughagaschromatograph,whichseparatesmoleculesinthegaseousmixture bypolarity.Differentmolecularpolaritiesareretainedintheinstrumentfordifferentamountsoftime;howlongamoleculeremainsintheinstrumentisreferred toastheretentiontime.Afterseparation,themoleculesareidentifiedusingmass spectroscopy.Briefly,massspectroscopyworksbyfragmentingmoleculesinto electricallychargedpiecesandthenmeasuringtheweightofthosepiecesvery precisely.Withknowledgeofboththeretentiontimeandmassfragmentation patterns,VOCscanalmostalwaysbepositivelyidentifiedbycomparisonwith

1AdvancesinBiocompatibility:APrerequisiteforBiomedicalApplicationofBiopolymers largepublicorcommercialdatabases.Purgeandtrapmeasurementsdifferfrom headspaceonlyinthewaycompoundsaresampled;firstvolatileorganicsare purgedfromthewaterbybubblinginertgasthroughtheliquidandtrappedinan adsorbenttube.VOCsarereleasedfromthetubeintotheGC/MSforanalysisas withHS-GC/MS.

SVOCmeasurementmethodsprovidethesinglebroadestsourceofinformationregardingthecontentofextractsandareamenabletobothaqueousandnonaqueousextractionmatrices.ThetermSVOCisilldefinedinthemedicaldevice communitybutgenerallyisconsideredtobethosecompoundsmostwellsuited foranalysisbydirectinjectionGC/MS.Thedistinctionofthisdefinitionisimportant,astherearemanymoleculesamenabletodirectinjectionGC/MSthatare consideredtobeNVOCsbyeveryotherdefinition.ThemethodsusedforSVOCs byGC/MSaremostlycharacterizedbythedetailsoftheirsamplepreparationand rigorofdataanalysis;instrumentaldetailsoftheGC/MSremainlargelyharmonized.Waterextractsarepreparedforanalysisbyfirstdoingasolventexchange toasolventcompatiblewithGC/MS.Typicallythisisaccomplishedbyrepeatedly shakingtheextractwithmethylenechlorideunderacidic,neutral,andbasicconditions.Themethylenechloridecanthenbeconcentratedanddirectlyinjected intotheinstrument.Organicsolventsdonotneedasolventexchangeandare typicallyconcentratedandthendirectlyinjected.

NVOCsnotamenableforanalysisbyGC/MSaremostclearlythosecompoundsthathavesuchahighmolecularweightorpolaritythattheyarenot capableofvaporizationwithoutdecomposition.Forthesecompounds,liquid chromatographywithmassspectroscopy(LC/MS)mustbeused.UnlikeGC/MS analyses,whichhavemoreorlessstandardizedinstrumentparameters,LC methodsarehighlyvariable.Becauseofthisvariability,largepublicdatabases areoflimitedutility,andeffectiveinterpretationofdatareliesmuchmoreon thelevelofexpertiseoftheanalystandinternalexperienceoftheanalyzing lab.LCtechniquescoupledwithadvancedmassspectroscopytoolsproviding high-resolutionaccuratemass(HRAM)suchasquantitativetimeofflight (qTOF)orOrbitrapcanbeasignificantadvantage,asthesemoresensitive methodscangreatlynarrowdownthenumberofpossiblecompoundsinthe identificationprocess.

Oneofthekeyvariablesinchemicalanalysisfortoxicologicalriskassessment andbiocompatibilityisthedegreeofcertaintyintheidentificationandquantificationofcompounds.Qualityofidentificationcanrangefromafullyautomated comparisontoapublicdatabase,withoutpeerreviewoftheresultstofullyconfidentidentification.Fullyautomatedidentificationcanleadtoscenarioswhere compoundswithverylowmatchscoresarereportedascompoundsforwhich theyarealmostcertainlynot.Ontheotherendoftheidentificationspectrumisa fullyvalidatedidentificationwherethecompoundinquestionhasbeeninjected usingastandardonthesameinstrumentandunderthesameconditionsand underexpertreview.Ofcourse,inpractice,resultscanbeamix.Itisnotpossibletoinjectstandardsforeverycompoundthatmightoccurfromabiomaterial. Withrespecttoquantification,resultscanvarybasedontheamountofevidence thatispresenttosupporttheaccuracyandprecisionofthepresentedresults.On oneendofthespectrum,resultscanbefullyvalidatedwithcalibrationcurves

1.4SpecificBiologicalEndpointEvaluations 11 andprecisionandaccuracymeasurements.Ontheotherend,resultsmaybeestimatesbasedonlyontheconcentrationofaninternalstandard.Becausepatient safetymayhingeontheresult,oftentoxicologistswantsomethingmorethana blindestimateofconcentrationofthecompoundisontheedgeofbeingconsideredsafe.

Chemistryresultsmustbeevaluatedandassessedthroughthelensoftoxicologytounderstandthepossiblesystemicrisksassociatedwiththefindingsandthe routeofexposureofthedeviceperISO10993-17.Thisassessmentshouldcomplementtheresultsoftraditionalbiocompatibilitytestsperformedonbiopolymericdevicematerials.

1.4SpecificBiologicalEndpointEvaluations

FormostbiologicalendpointsperISO10993-1,abiopolymerwouldbetested verysimilarlytoanyotherpolymer.Themainconcernwithabiopolymeristhe degradationprofileandtheimpactofthedegradationonthetestsystem.The testingsystemthatneedsthemostconsiderationfortheindividualdegradation profileofamaterialisincytotoxicity,systemictoxicity,implantation,andmaterial/chemicalcharacterization.

1.4.1Cytotoxicity

Ingeneral,cytotoxicitytestsareabroadrangeofassaysthatlookfortheimpact ofasubstanceonindividualcellsgrownunder invitro conditions.Thetestcanbe performedondifferentcelllinesandcanlookat(qualitatively)orassess(quantitatively)differentcellularendpoints.Thevariousinternationallyacceptedcytotoxicityassaysaresummarizedinpart5oftheISO10993series(i.e.ISO10993-5). AllthetestsusuallyrunusingtheL929mousefibroblastcellline.Althoughitis possibletouseothercelllinesfortesting,theL929celllineistheonethathas historicallybeenusedandisthereforerecommendedforcomparison.Additionally,despitetheavailabilityofmanydifferentversionsofcytotoxicitytests,the standardtestingforbiocompatibilityofmedicaldevicesconsistofeitherMEM elution,MTT/XTTassays,orneutralreduptakeassay.Eachassayhasdifferent cytotoxicityevaluationendpointsandsensitivity,socomparingresultsfromone assaytotheotherhasproventobedifficult.

Thecytotoxicitytestisaverysensitivetestandisthemostlikelytesttocause troublewithanymedicaldevice,butspecificallywithbiopolymers.Thistrouble comesfromthefactthatsomebiopolymerslackthemechanicalpropertiesand stabilityintheextractionfluidthatisusedtoprepareasampleforthecytotoxicitytest.Thislackofstabilitymaybecausedahighconcentrationofionsinthe extractionfluidthatcouldresultinacytotoxicresponseintheassay.Crosslinkingcanbeusedintheattempttoimprovetheresults,butthiscanalsocause potentialcytotoxicityasthesecrosslinkingagentsthemselvescanbecytotoxic (e.g.glutaraldehyde).

Therefore,thebestapproachforassessingcytotoxicityofbiopolymersisa risk-basedapproach.Asmentionedbefore,thecytotoxicitytestishistorically

1AdvancesinBiocompatibility:APrerequisiteforBiomedicalApplicationofBiopolymers themostsensitivetestavailableandisthusoftenusedasascreeningtest formaterials,processresiduals,andthefinaldeviceconfiguration.Inthe ANSI/AAMI/ISO10993-5Guidancesection10,itstates“Anycytotoxiceffect canbeofconcern.However,itisprimarilyanindicationofpotentialfor invivo toxicityandthedevicecannotnecessarilybedeterminedtobeunsuitablefor agivenclinicalapplicationbasedsolelyoncytotoxicitydata.”Whenelevated cytotoxicityresultsareseen,ariskassessmentshouldbeperformedtoidentify thesourceofobservedcytotoxicity.Thenon,theriskassessmentshouldevaluate thetoxicpotentialofthematerialorcompoundtodeterminetheclinicalimpact. Theinvestigationshouldincludeareviewoftheprocedurestodeterminethe effectivenessofthetestsystem,additionaltestingtoevaluateclinicalriskofthe results,andthenaclinicalriskassessmentofthetoxicityusingadditionalanimal testingalongwithchemicalanalysisandtoxicologicalassessmentofthedetected compounds.

Baseduponexaminationofthebiopolymer,itshistoryofuseinmedicalindustry,inherentsurfacepropertiesofthedevicematerial,surfaceareaincontact withtheuser,useandcontacttype,durationofcontact,andtherouteofexposure,thiscytotoxicityfailuremaynotbeclinicallyrelevant,andsubsequentlyit canbeconcludedthatadverseeffectsinpatientsareunlikelytodevelop.

1.4.2SystemicToxicity(Acute,Subacute,Subchronic,andChronic)

Systemictoxicityisapotentialadversegeneralizedresponseincludingorgan ororgansystemeffectsthatcanresultfromtheabsorption,distribution,and metabolismofleachatesfromthedeviceoritsmaterialstopartsofthebody thatarenotindirectcontactwiththedeviceormaterial.Thetypeoftest recommendedperISO10993isdependentonthedurationofexposuretothe patient:

• Acutetoxicityisdefinedasanadversesystemiceffectoccurringatanytime within72hoursaftersingle,multiple,orcontinuousexposuresofatestsample for24hours.

• Subacutetoxicityisdefinedasanadverseeffectoccurringaftermultipleor continuousexposurebetween24hoursand28days.Thetermsubacutemight besomewhatmisleadingsincegenerally“sub”isunderstoodasless,andsubacutewould,basedonthislogic,beconsideredaslessthanacute.Sincethis termisconfusing,itisbesttoconsidersubacutetoxicityasanyadverseeffects occurringwithinashort-termrepeatedexposureduringasystemictoxicity study.Thisisgenerallydonewithtimeintervalsbetween14and28daysfor intraperitonealinjectionstudies;intravenousstudiesaregenerallydefinedas treatmentdurationsorexposureofmorethan24hoursbutlessthan14days.

• Subchronictoxicityisanyadverseeffectoccurringaftertherepeatedorcontinuousadministrationofanextractofamaterialordevicefor(typically)90days inrodentsorinotherspeciesfordurationofexposurethatdoesnotexceed10% ofthelifespanofthetestanimal.Subchronicintravenousstudiesaregenerallydefinedastreatmentdurationsof14–28daysforrodentsandnon-rodents, respectively.

Table1.4 Standarddeviceextractionratiosusedfor biocompatibility(perISO10993-12).

Thickness(mm)Extractionratio

<0.56cm2 /ml

0.5–1.03cm2 /ml

>1.03cm2 /ml

>1.0(elastomericdevices)1.25cm2 /ml

Irregularsoliddevices0.2g/ml

Irregularporousdevices0.1g/ml

• Chronictoxicityisanyadverseeffectoccurringaftertherepeatedorcontinuousadministrationofatestsampleforamajorpartofthetestanimal’slife span;theseareusuallystudieswithdurationof6–12months.

Themainconsiderationpointforsystemictoxicityandbiopolymersisregardingthedose.Thestandardbiocompatibilitytestisperformedonthebasisof surfaceareaormasstovolume;theseratiosarespelledoutinTable1.4.

AsTable1.4pointsout,themoresurfaceareaormassadevicehas,the moreextractionvolumeisaddedtothedeviceduringsamplepreparation.This approachworkswellforsolid,stablematerialssuchasmetalsandhardplastics butcanbechallengingwithmaterialssuchasbiopolymers,especiallyiftheyare producedwithaporousmicroarchitectureorarebiodegradable.

Anothergiantgapintheapproachthatusessurfaceareaormassforcalculating theextractionvolumeisthatitdoesnottakeintoconsiderationtheactualdose thatasinglepatientwillbeexposedto.Typically,eachbiologicaltestrequiresa certainminimalvolumeoffluidtorun,andbecauseofthislimitationthesample amountneededforthetestingisdirectlyportionedtothelogisticsdemandedby thetestitselfandnotontheactualclinicaluseofthedevice.Forexample,letus sayduringasurgicalprocedure,apatientwillonlyreceiveonePLAscrewthat is0.5ginweight.Forthebiocompatibilityassessmentofthescrew,astandard subacutestudywasrun.Fortesting,upto112screwswereincludedinorderto conformtotherequiredsamplevolumesthatwererepeatedlydosedtothetest animals,resultinginanexposurethatisinactualitymultipletimestheclinical masstobodyweightdose.Thisleadstoavastoverestimationoftheexposure risksofthebiopolymer.

Abetterwaytodesignthedifferentsystemictoxicitystudiesofbiopolymersis basedondoseperbodyweightofthepatient.Thestandardweightsperpatient populationaredescribedinTable1.5.Inthiscase,onewoulddeterminethe appropriateworst-casetargetpopulationforthemedicaldeviceormaterialand determineadoseperkgofbodyweightbasedonthatcriterion.Subsequently,the testingwouldbedonewithasamplesizethatwouldexposethespecificanimal toasafety-factor-correcteddosethatrepresentstheappropriateclinicaldose.

Anexampleofatestdesignaccordingtotheclinicaldoseapproachwouldbeas follows:asurgicalprocedurewhereuptotwoscrewPLAscrews(eachweighing

1AdvancesinBiocompatibility:APrerequisiteforBiomedicalApplicationofBiopolymers

Table1.5 Standardbodyweightparameters.

Population

Standardbody weightused(kg)

Adultman70

Adultwoman58

Children10

Neonates(<1yr)3.5

Table1.6 Exampleofspecificpopulationdosesfor1gPLA screw.

Population

Adultman0.010.14

Adultwoman0.020.17

Children0.101.00

Neonates(<1yr)0.292.86

0.5g)willbeimplantedintoapatient,theworst-caseexposureperpatientwillbe 1gofPLA,andthespecificclinicalprescribeddosesareoutlinedinTable1.6.

Inaratsubchronicstudy,iftheworst-casetargetpopulationisadultwomen andthetestratweighs500g,thedosewouldbecalculatedasfollows:

Desiredratiowithsafetyfactor = 0.17gofscrewperbodyweight 0.17gofscrew kgbodyweight × 1kg 1000g × 500g 1Rat = 0.085gofScrew Rat

Thisapproachwouldensureanaccurateexposuredosetotheanimalandwould presentamoreclinicallyrelevantevaluationfortherisksofsystemictoxicityfor thedevice.

1.4.3Implantation

Themostdifficultandcomplextestdesignformanybiopolymersrevolvesaround implantationrisks.Itisimportantnottowalkintoanimplantstudywithhaste andwithoutcarefulplanning.Indeed,inthiscase,failingtoplancouldleadtoa failingtest.Itisimportantthatthestudyisplannedinsufficientdetailsuchthat allrelevantinformationcanbeextractedfromthestudy,astheimplanttestis usuallythelongesttestinthebiocompatibilitysuite,andtherefore,itisimperative tohavethedesignrightupfront.

Themainissuewithtestingabiopolymerinanimplanttestistheabsorption profile.Physicalcharacteristics(suchasform,absorptionrate,metabolismcharacteristics,density,andsurfacehardness)canallinfluencethetissueresponseto

thetestmaterial.Also,thechoiceofcontrolarticlesshouldbematchedasclosely asreasonablypossibletothetestsamplephysicalcharacteristics.Thisisrecommendedinordertoallowcomparisonofthespecifictissuereaction(s)withthat ofasimilarmaterialwhoseclinicalacceptabilityandbiocompatibilitycharacteristicshavebeenestablishedtodetermineacceptancecriteriaforthetest.

Anotherkeyconsiderationfortheimplanttestforabiopolymeriswiththe implantationtimepoints.ISO10993-6states:“Forabsorbablematerials,thetest periodshallberelatedtotheestimateddegradationtimeofthetestproduct ataclinicallyrelevantimplantationsite.Whendeterminingthetimepointsfor sampleevaluation,anestimationofthedegradationtimeshallbemade.”Usually,inpracticewetrytoestimatetheabsorptionprofilebasedonthespecific metabolismrateandmethodofthematerialandtheimplantsystem.Afterthis, wesetthreetimeperiods:onewherewefirstseedegradation(usuallybetween twoandfourweeks),secondwhenhalfthesampleisdegraded,andthirdwhenwe seea“steadystate”inthesamplematerial.Asteadystateisdefinedasapointin timewherethebodyisnolongerinteractingwiththematerialandnoadditional changesarehappening.Forexample, invivo implantationtestswithaPLLAdensityscaffolddemonstratedfastdegradationinthefirstthreeweeks,afterwhich thedegradationrateprogressivelydecreased[20].Thismilestoneisreachedwhen thebodyhaseitherencapsulatedorotherwisedealtwiththeforeignmaterialor whenfulldegradationofthematerialhasoccurred.

Asmentionedabove,anappropriatecontrolisthebasisfortheacceptance criteriaofthetestitself,makingitanessentialcomponentforarelevantand applicabletestsystem.Theimplantationtestissetupsothattheevaluation isconductedbycomparingtheresultofthetestsitehistopathologywiththe controlsite.Thus,ifthechosencontrolarticleisahardpieceofmetalor plasticthatwouldnotinduceinteractionwiththesurroundingtissues,then thecomparisonwiththeimplantsiteofthebiopolymerwouldprobablynotbe favorable,leadingtoahighertissuereactivityandmakingitlooklikethetest materialisnon-biocompatible.However,ifanappropriatecontrolisused,then thehistopathologicalcomparisonofthetestandcontrolarticlesitescanbe madewithconfidence,andacorrectunderstandingoftheimplantationriskof thematerialcanbedrawn.

1.5Conclusion

Biopolymersoccupyauniqueandadvantageousspaceasamedicaldevicematerial.Devicesmadefromthesenaturallyoccurringorbiomimeticsubstanceshave thedistinctadvantagethatthematerialitselfisakintothosetissuesthedevice contacts.Fromabulkperspective,thereisnoconcernregardingthematerialas aforeignbody.Biopolymersalsohaveenvironmentalandmanufacturingadvantagesastheyareoftenproducednotfrompetroleumderivativesbutbyliving systems.

Incontrasttothemajoradvantagespresentedbybiopolymerswithinthe contextofbiocompatibility,thereareacoupleofkeyconcernsthatmustbe

1AdvancesinBiocompatibility:APrerequisiteforBiomedicalApplicationofBiopolymers addressed.Thenaturaloriginofthesematerialsdoesnotmeanthattheyarefree frommanufacturingresiduals.Contactwithsolventsthroughmanufacturing andpurificationstepscanintroducecontamination,ascancontactwithstorage andprimarypackagingmaterials.Chemicalanalysisscreeningforthesecompoundscanbecomplicatedbythecomplexorganicnatureofthedevicematerial. Additionally,manybiopolymersaredegradableorresorbablebythebody.While thisis,inprinciple,apositivetherapeuticeffect,itcanbedifficulttoprovethat thesafetyofthedevicedoesnotchangeoverthedegradationlifetime.

Thepalletofmaterialsaffordedbybiopolymersallowsanevenbroaderspectrumofmedicaldeviceswithhugepotentialtohelpmankind.Thebiocompatibilityprinciplesdiscussedinthischaptercanbeappliedtobiopolymerstoaddress concernswithregardtotheirsafety.Useofthoughtfulrisk-basedtestingstrategiescanconservativelymitigaterisk,allowingmoreofthesedevicestoreachfull maturityindevelopmentandarriveonthemarket.

References

1 Rebelo,R.,Fernandes,M.,andFangueiro,R.(2017).Biopolymersinmedical implants:abriefreview. ProcediaEngineering 200:236–243.

2 Yadav,P.,Yadav,H.,Shah,V.G.etal.(2015).Biomedicalbiopolymers,their originandevolutioninbiomedicalsciences:asystematicreview. Journalof ClinicalandDiagnosticResearch:JCDR 9(9):ZE21.

3 Sahana,T.andRekha,P.(2018).Biopolymers:applicationsinwoundhealing andskintissueengineering. MolecularBiologyReports 45:2857–2867.

4 Labet,M.andThielemans,W.(2009).Synthesisofpolycaprolactone:a review. ChemicalSocietyReviews 38(12):3484–3504.https://doi.org/10 .1039/B820162P.

5 Chien,L.J.andLee,C.K.(2007).Enhancedhyaluronicacidproductionin Bacillussubtilis bycoexpressingbacterialhemoglobin. BiotechnologyProgress 23(5):1017–1022.

6 Chien,L.J.andLee,C.K.(2007).Hyaluronicacidproductionbyrecombinant Lactococcuslactis. AppliedMicrobiologyandBiotechnology 77(2):339–346.

7 Liu,L.,Wang,M.,Du,G.,andChen,J.(2008).Enhancedhyaluronicacid productionof Streptococcuszooepidemicus byanintermittentalkaline-stress strategy. LettersinAppliedMicrobiology 46(3):383–388.

8 Helenius,G.,Bäckdahl,H.,Bodin,A.etal.(2006).Invivobiocompatibilityof bacterialcellulose. JournalofBiomedicalMaterialsResearchPartA 76A(2): 431–438.

9 Hoenich,N.A.(2007).Celluloseformedicalapplications:past,present,and future. BioResources 1(2):270–280.

10 Rockwood,D.N.,Preda,R.C.,Yücel,T.etal.(2011).Materialsfabrication from Bombyxmori silkfibroin. NatureProtocols 6(10):1612–1631.

11 Auras,R.A.,Lim,L.-T.,Selke,S.E.,andTsuji,H.(2011). Poly(lacticAcid):Synthesis,Structures,Properties,Processing,andApplications.Wiley.

12 ISO/TS21726:2019(2016).Biologicalevaluationofmedical devices–Applicationofthethresholdoftoxicologicalconcern(TTC)for assessingbiocompatibilityofmedicaldeviceconstituents.StandardizationIOf.

13 Kroes,R.,Kleiner,J.,andRenwick,A.(2005).Thethresholdoftoxicological concernconceptinriskassessment. ToxicologicalSciences 86(2):226–230.

14 Munro,I.,Renwick,A.,andDanielewska-Nikiel,B.(2008).Thethresholdof toxicologicalconcern(TTC)inriskassessment. ToxicologyLetters 180(2): 151–156.

15 Hennes,E.(2012).Anoverviewofvaluesforthethresholdoftoxicological concern. ToxicologyLetters 211(3):296–303.

16 GuidelineIHT(2014).AssessmentandcontrolofDNAreactive(mutagenic)impuritiesinpharmaceuticalstolimitpotentialcarcinogenicrisk. InternationalConferenceonHarmonizationofTechnicalRequirementsfor RegistrationofPharmaceuticalsforHumanUse(ICH),Geneva.Citeseer (31May2017).http://academy.gmp-compliance.org/guidemgr/files/M7_R1_ ADDENDUM_STEP_4_2017_0331.PDF

17 EuropeanFoodSafetyAuthorityandWorldHealthOrganization(2016). ReviewoftheThresholdofToxicologicalConcern(TTC)Approachand DevelopmentofNewTTCDecisionTree.EFSASupportingpublication 2016:EN-1006.https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/sp.efsa .2016.EN-1006

18 Cramer,G.,Ford,R.,andHall,R.(1976).Estimationoftoxichazard–adecisiontreeapproach. FoodandCosmeticsToxicology 16(3):255–276.

19 Munro,I.C.,Ford,R.A.,Kennepohl,E.,andSprenger,J.(1996).Correlation ofstructuralclasswithno-observed-effectlevels:aproposalforestablishinga thresholdofconcern. FoodandChemicalToxicology 34(9):829–867.

20 Weng,W.,Song,S.,Cao,L.etal.(2014).Acomparativestudyofbioartificial bonetissuepoly-l-lacticacid/polycaprolactoneandPLLAscaffoldsappliedin boneregeneration. JournalofNanomaterials 2014:236.

AdvancedMicrobialPolysaccharides

FilomenaFreitas 1 ,CristianaA.V.Torres 1 ,DianaAraújo 1 ,InêsFarinha 1,2 , JoãoR.Pereira 1 ,PatríciaConcórdio-Reis 1 ,andMariaA.M.Reis 1

1 UCIBIO-REQUIMTE,ChemistryDepartment,FacultyofSciencesandTechnology,UniversidadeNovade Lisboa,CampusdaCaparica,Caparica2829-516,Portugal

2 73100Lda.,RuaIvoneSilvano 64o piso,1050-124Lisboa,Portugal

2.1Introduction

Microbialpolysaccharidesarehighmolecularweight(Mw)carbohydratepolymersproducedbymicroorganisms,namely,bacteria,fungi,yeast,andmicroalgae [1–3].Theyincludeintracellularpolysaccharidesthatareaccumulatedinthe cytoplasmofthecellsascarbonandenergyreserves(e.g.glycogen),cell-wall polysaccharidesthatcontributetothecells’structuralstability(e.g.chitin),and extracellularpolysaccharidesthataresecretedbythecells,formingeithera capsulethatremainsassociatedwiththecellsurface(capsularpolysaccharides [CPS])oraslimethatislooselyboundtothecellsurface(exopolysaccharides [EPS])[2,4].Ofthelasttype,CPSaremostlyassociatedwiththepathogenicity ofbacteriaandvirulence-promotingfactors[5],whileEPShavebeenproposed toprovideprotectionagainstenvironmentalstress,celladherencetosurfaces, andcarbonorwaterstoragereserves[6].

Polysaccharidescanbeusedintotwomainareasofapplication:(i)asstructuringagents,basedontheirabilitytoformpolymericstructures,suchas films,gels,emulsions,microparticles,andnanoparticles,and(ii)asbiological activematerials/compoundsthatcanbeusedforthedevelopmentofnovel pharmaceuticaldrugsorreplacesomeofthecurrentlyusedproducts[7,8]. Otherapplicationsincludetheiruseassourcesofhigh-valuemonomers,such asraresugars(e.g.fucose,rhamnose,ribose,glucuronicacid,etc.),togenerate oligosaccharides(e.g.galactooligosaccharides,fucooligosaccharides)thatcanbe usedinnutraceuticals[9].

Thischapterstartswithabriefoverviewonmicrobialpolysaccharidediversity intermsoffunctionalpropertiesandtheirmainareasofapplication(Section2.2), followedbyamoredetailedanalysisofthecurrentlymorerelevantandemerging areas(Sections2.3–2.7).

BiopolymersforBiomedicalandBiotechnologicalApplications, FirstEdition. EditedbyBerndH.A.RehmandM.FataMoradali. ©2021WILEY-VCHGmbH.Published2021byWILEY-VCHGmbH.

2.2FunctionalPropertiesandApplicationsofMicrobial Polysaccharides

Themaincomponentsofmicrobialpolysaccharidesarecarbohydrates.Glucose, galactose,andmannosearethemostcommonmonomers,butotherneutral sugarssuchasrhamnose,arabinose,andfucoseandsomeuronicacidsand aminosugarsarealsofrequentlyfoundinsuchbiopolymers.Inadditionto carbohydrates,microbialpolysaccharidesmayalsocontainseveralorganicacyl substituentsintheirmolecularchains,suchasester-linkedgroupsandpyruvate ketals[4,10,11].Giventhisdiversityofpolysaccharides’componentsthatmay includedifferentsugarmonomersaswellasseveralnoncarbohydrategroups, thereisawiderangeofpossiblemolecularstructuresforthesemacromolecules. Consequently,microbialpolysaccharidescandisplaydistinctphysicaland chemicalproperties.

Thepossiblemultiplecombinationsofmonomericunitsinpolysaccharide molecules,alongwiththestereospecificityofglycosidiclinkages(α or β anomers), leadtoverycomplexchemicalstructuresrangingfromlinearhomopolysaccharidestohighlybranchedheteropolysaccharides.Molecularmassdistribution, chemicalcomposition,andstructure,namely,thepresenceofionizablegroups thatconferthepolysaccharidesapolyelectrolytebehavior,greatlyaffecttheir properties,aswellasthenatureandnumberofintra-/intermolecularinteractions.Moreover,thepropertiesofpolysaccharidesmaybealteredusingmixtures withothercomponents,forexample,byblendingwithotherpolymersoradding saltsandcrosslinkingagents.

Someexamplesofmicrobialpolysaccharidesthathavebeendevelopedat theindustriallevelandarecurrentlycommercializedincludexanthan,aheteropolysaccharidecomposedofglucose,mannose,glucuronicacid,pyruvate, andacetate,producedby Xanthomonas sp.,whichisusedmainlyinfood, pharmaceutical,andpersonalcareproductsandinoilrecovery[12];dextran,a water-solubleglucansecretedbylacticacidbacteriaofthegenera Leuconostoc, Streptococcus, Weissella, Pediococcus,and Lactobacillus,whichisusedinfood, cosmetic,andmedicalapplications[13];hyaluronicacid(HA),alinearpolymer ofglucuronicacidand N -acetylglucosamineunits,producedby Streptococcus zooepidemicus thatisusedincosmetics,pharmaceuticals,andmedicine[14]; pullulan,alinear α-glucansecretedbytheblackyeast-like Aureobasidium pullulans thatisusedasathickeningagentandediblecoating[6,15];andscleroglucan,awater-soluble β-glucansecretedbytheplantpathogen Sclerotium sp. thatisusedinapplicationssuchasenhancedoilrecovery,food,cosmetic,and pharmaceutical[16].Additionally,thereareagrowingnumberofrecentreports onnewlydiscoveredpolysaccharides,withnovelmolecularstructures,obtained fromspeciesbelongingtodifferenttaxonomicgroups,whichdisplaynumerous biologicalactivities(Tables2.1and2.3)andmayturnintonovelapplications.

Biopolymersofmicrobialoriginhavebeenstudiedlatelyduetotheirimproved propertiesandeasyproductionwhencomparedwithothernaturalpolymers [4,78].Microorganismsusuallyhavehighergrowthratesthanalgaeandplants, andtheirproductionprocessescaneasilybemanipulatedtoimproveyieldsand

2.2FunctionalPropertiesandApplicationsofMicrobialPolysaccharides 21

Table2.1 Examplesofpolysaccharidesproducedbybacteriaandfungidisplayingbiologicalactivity.

MicrobialsourcePolysaccharideBiologicalactivityReferences

Bacteria

Acetobacterxylinum NCIM2526 FructanAntioxidant; anti-inflammatory [17]

Bacilluslicheniformis T4Fructo-fucanAnti-cytotoxic;antiviral[18]

Bacillustequilensis PS21Heteropolysaccharide(xylose, glucose,ribose,rhamnose, galactose)

Enterobacter A47Heteropolysaccharide(fucose, glucose,galactose,glucuronic acid,acetate,succinate, pyruvate)

Enterobactercloacae Z0206

Heteropolysaccharide(fucose, glucose,galactose,glucuronic acid)

Enterococcusfaecium K1Heteropolysaccharide (mannose,glucose,galactose)

Antioxidant[19]

Antioxidant[20]

Antioxidant;antidiabetic; hypolipidemic [21]

Hypocholesterolemic; antibiofilm;antioxidant [22]

Lactobacillus sp.Ca6 α-(1,6)-GlucanAntioxidant;antibacterial; woundhealing [23]

Lactobacilluscasei SB27Heteropolysaccharide (galactose,glucose)

Lactobacillusgasseri FR4Heteropolysaccharide (glucose,mannose,galactose, rhamnose,fucose)

Lactobacillus kefiranofaciens DN1

Heteropolysaccharide (mannose,arabinose,glucose, galactose,rhamnose)

Antitumor[24]

Antioxidant; antimicrobial [25]

Antibacterial[26]

Lactobacillus plantarum BR2 GlucomannanAntioxidant;antidiabetic; hypocholesterolemic [27]

Pediococcusparvulus 2.6 β-(1,3)-GlucanAnti-inflammatory; probiotic [28]

Pseudoalteromonas sp.S-5

Fungi

Heteropolysaccharide (mannose,glucose,galactose)

Antrodiacinnamomea Heteropolysaccharide(fucose, glucosamine,galactose, glucose,mannose,sulfate)

Anticancer[29]

Anticancer[30]

Aspergillus sp.Y16GalactomannanAntioxidant[31]

Candidautilis GlucomannanAntiarthritis;antioxidant[32]

Diaporthe sp. β-GlucanAntitumor[33]

Fusariumequiseti ANP2GlucomannanAntioxidant[34]

Fusariumsolani SD5RhamnogalactanAnti-inflammatory; anti-allergic [35]

Trichoderma kanganensis

Heteropolysaccharide (mannose,galactose,glucose, glucuronicacid)

Anticancer;antioxidant[36]

2AdvancedMicrobialPolysaccharides

productivity[79].Moreover,theproductionprocessisnotclimateorseasonal dependentandcanrelyontheuseoflow-costby-productsorwastesasraw materials[80].Microbialpolysaccharideshaveuniquefeaturesandproperties thatmakethemsuitabletoawiderangeofapplications.Morespecifically,these biopolymershavebeenextensivelyusedinfood,pharmaceutical,medical,and cosmeticproductsduetotheiruniqueperformancesasthickening,stabilizing, andbindingagents.Someofthesebiopolymers(e.g.bacterialalginate,gellan, FucoPol)canalsohaveintermolecularinteractionsthatcouldresultinpolymeric matrices,allowingthephysicalmanipulationofpolysaccharidesintostructured materialssuchasgels(e.g.hydrogels)orfilmsthatcouldbeusedinbiomedical applications[4,81].Addingtothisproperty,theabilityofpolysaccharidesto interactwithdifferentinorganicmaterialsrepresentsanimportantfeature fortheencapsulationofbioactivesubstances(e.g.pharmaceuticalsfortheir controlledrelease)andfortheincorporationofnanostructures(suchascarbon nanotubesormetallicnanoparticles[MNPs])toproduceenhancedbiomaterials (withsynergeticconductiveormagneticproperties,respectively)[82].

2.3CommerciallyRelevantMicrobialPolysaccharides: EstablishedUsesandNovel/ProspectiveApplications

Thegreatdiversityofmicrobialpolysaccharidecompositionandfunctional propertiesenablestheirapplicationinseveralindustrialfields(e.g.medical,food products,pharmaceutical,biomedicine).Althoughonlyfewarecommercialized, amongthemarepullulan,scleroglucan,xanthangum,dextran,levan,gellan gum,andhyaluronicacid.

2.3.1Pullulan

Pullulanisafungalpolymerproducedby A.pullulans.Itisaneutral,linear glucosehomopolysaccharidecomposedof α-(1,6)maltotrioseunits[83,84].Pullulanpresentsauniquelinkagepatternshowingremarkablephysicalproperties, suchashighsolubility,adhesiveness,formingfibers,andthinbiodegradablefilm capacity,whicharetransparentandimpermeabletooxygen[15,85].Therefore, pullulanoffersavarietyofpotentialindustrialandmedicalapplications.Fora longtime,pullulanmembranes/filmshavebeenusedascoatingandpackaging materialinthefoodindustry,butnowadaystheyarealsobeingusedindietary capsuleformulations.Pullulan-basedoralcareproductsarealsobeingcommercialized.Duetotheeasydecomposition,itisusedascoatinginthepaperindustry. Modifiedpullulanisusedasrawmaterialinpharmaceuticalapplications,namely, nanoparticles,bioimaging,plasmaexpander,tissueengineering,etc.[84–86].

Thecancertherapyandbioremediationareemergingmarketsforpullulan, duetoitsbioactivitywithsomecytotoxicmoleculesandtheadsorptioncapacity forsomeheavymetals[84,85].Moreover,currentlyseveralresearchgroups arestudyingnovelpullulancompositesblendedwithotherbiodegradable materials(e.g.pullulan/dextran,pullulan/ricestarchgel,andpullulan/cellulose)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.