Download full Accelerated life testing of one-shot devices: data collection and analysis narayanaswa

Page 1


Narayanaswamy Balakrishnan

Visit to download the full and correct content document: https://ebookmass.com/product/accelerated-life-testing-of-one-shot-devices-data-coll ection-and-analysis-narayanaswamy-balakrishnan/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Chi-Squared Data Analysis and Model Testing for Beginners 1st Edition Carey Witkov

https://ebookmass.com/product/chi-squared-data-analysis-andmodel-testing-for-beginners-1st-edition-carey-witkov/

Residual Current Devices: Selection, Operation, and Testing Stanislaw Czapp

https://ebookmass.com/product/residual-current-devices-selectionoperation-and-testing-stanislaw-czapp/

Data Parallel C++ : Programming Accelerated Systems

Using C++ and SYCL James Reinders

https://ebookmass.com/product/data-parallel-c-programmingaccelerated-systems-using-c-and-sycl-james-reinders/

One Last Shot (Alaska Air One Rescue Book 1) Susan May

Warren

https://ebookmass.com/product/one-last-shot-alaska-air-onerescue-book-1-susan-may-warren/

Data Analysis

for

the Life Sciences with R 1st Edition

https://ebookmass.com/product/data-analysis-for-the-lifesciences-with-r-1st-edition/

Data Parallel C++: Programming Accelerated Systems Using C++ and SYCL 2nd Edition James Reinders

https://ebookmass.com/product/data-parallel-c-programmingaccelerated-systems-using-c-and-sycl-2nd-edition-james-reinders/

Nanostructured Multiferroics Raneesh Balakrishnan

https://ebookmass.com/product/nanostructured-multiferroicsraneesh-balakrishnan/

Structural Adhesive Joints: Design, Analysis, and Testing K. L. Mittal

https://ebookmass.com/product/structural-adhesive-joints-designanalysis-and-testing-k-l-mittal/

Statistics for Ecologists Using R and Excel: Data Collection, Exploration,

https://ebookmass.com/product/statistics-for-ecologists-using-rand-excel-data-collection-exploration/

AcceleratedLifeTestingofOne-shotDevices

AcceleratedLifeTestingofOne-shotDevices

DataCollectionAndAnalysis

NarayanaswamyBalakrishnan

McMasterUniversity Hamilton,Canada

ManHoLing

TheEducationUniversityofHongKong

TaiPo,HongKongSAR,China

HonYiuSo UniversityofWaterloo Waterloo,Canada

Thisfirsteditionfirstpublished2021 ©2021byJohnWileyandSons,Inc.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthis titleisavailableathttp://www.wiley.com/go/permissions.

TherightofNarayanaswamyBalakrishnan,ManHoLing,andHonYiuSotobeidentifiedasthe author(s)ofthisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontent thatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthiswork andspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefactthatan organization,website,orproductisreferredtointhisworkasacitationand/orpotentialsourceof furtherinformationdoesnotmeanthatthepublisherandauthorsendorsetheinformationorservices theorganization,website,orproductmayprovideorrecommendationsitmaymake.Thisworkissold withtheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.The adviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwith aspecialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmay havechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthe publishernorauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,including butnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Balakrishnan,Narayanaswamy.,1956-author.|Ling,ManHo,author.|So,Hon Yiu,author.

Title:Acceleratedlifetestingofone-shotdevices:datacollectionand analysis/NarayanaswamyBalakrishnan,McMasterUniversity,Hamilton, Canada,ManHoLing,TheEducationUniversityofHong,Kong,New Territories,HongKong,HonYiuSo,UniversityofWaterloo,Waterloo, Canada.

Description:Firstedition.|Hoboken,NJ,USA:Wiley,2021.|Includes bibliographicalreferencesandindex.

Identifiers:LCCN2020035725(print)|LCCN2020035726(ebook)|ISBN 9781119664000(cloth)|ISBN9781119664017(adobepdf)|ISBN 9781119663942(epub)

Subjects:LCSH:Acceleratedlifetesting.|Failureanalysis(Engineering)

Classification:LCCTA169.3.B352021(print)|LCCTA169.3(ebook)|DDC 620/.00452–dc23

LCrecordavailableathttps://lccn.loc.gov/2020035725

LCebookrecordavailableathttps://lccn.loc.gov/2020035726

CoverDesign:Wiley

CoverImage:©Piergiov/GettyImages

Setin9.5/12.5ptSTIXTwoTextbySPiGlobal,Chennai,India

10987654321

Withgreatloveandaffection,wededicatethisbookto

SarahandJuliaBalakrishnan,andColleenCutlerNB

GraceChu,SophiaLing,andSheldonLingMHL

TianFengandVictoriaSoHYS

Contents

Preface xi

AbouttheCompanionWebsite xiii

1One-ShotDeviceTestingData 1

1.1BriefOverview 1

1.2One-ShotDevices 1

1.3AcceleratedLife-Tests 3

1.4ExamplesinReliabilityandSurvivalStudies 4

1.4.1Electro-ExplosiveDevicesData 4

1.4.2GlassCapacitorsData 5

1.4.3SolderJointsData 5

1.4.4Grease-BasedMagnetorheologicalFluidsData 6

1.4.5MiceTumorToxicologicalData 7

1.4.6ED01ExperimentData 7

1.4.7SerialSacrificeData 7

1.5RecentDevelopmentsinOne-ShotDeviceTestingAnalysis 10

2LikelihoodInference 13

2.1BriefOverview 13

2.2UnderCSALTsandDifferentLifetimeDistributions 13

2.3EM-Algorithm 14

2.3.1ExponentialDistribution 16

2.3.2GammaDistribution 18

2.3.3WeibullDistribution 21

2.4IntervalEstimation 26

2.4.1AsymptoticConfidenceIntervals 26

2.4.2ApproximateConfidenceIntervals 28

2.5SimulationStudies 30

2.6CaseStudieswithRCodes 41

3BayesianInference 47

3.1BriefOverview 47

3.2BayesianFramework 47

3.3ChoiceofPriors 49

3.3.1LaplacePrior 49

3.3.2NormalPrior 49

3.3.3BetaPrior 50

3.4SimulationStudies 51

3.5CaseStudywithRCodes 59

4ModelMis-SpecificationAnalysisandModelSelection 65

4.1BriefOverview 65

4.2ModelMis-SpecificationAnalysis 65

4.3ModelSelection 66

4.3.1AkaikeInformationCriterion 66

4.3.2BayesianInformationCriterion 67

4.3.3Distance-BasedTestStatistic 68

4.3.4ParametricBootstrapProcedureforTestingGoodness-of-Fit 70

4.4SimulationStudies 70

4.5CaseStudywithRCodes 76

5RobustInference 79

5.1BriefOverview 79

5.2WeightedMinimumDensityPowerDivergenceEstimators 79

5.3AsymptoticDistributions 81

5.4RobustWald-typeTests 82

5.5InfluenceFunction 83

5.6SimulationStudies 85

5.7CaseStudywithRCodes 91

6Semi-ParametricModelsandInference 95

6.1BriefOverview 95

6.2ProportionalHazardsModels 95

6.3LikelihoodInference 97

6.4TestofProportionalHazardRates 99

6.5SimulationStudies 100

6.6CaseStudieswithRCodes 102

7OptimalDesignofTests 105

7.1BriefOverview 105

7.2OptimalDesignofCSALTs 105

7.3OptimalDesignwithBudgetConstraints 106

7.3.1SubjecttoSpecifiedBudgetandTerminationTime 107

7.3.2SubjecttoStandardDeviationandTerminationTime 107

7.4CaseStudieswithRCodes 108

7.5SensitivityofOptimalDesigns 113

8DesignofSimpleStep-StressAcceleratedLife-Tests 119

8.1BriefOverview 119

8.2One-ShotDeviceTestingDataUnderSimpleSSALTs 119

8.3AsymptoticVariance 121

8.3.1ExponentialDistribution 121

8.3.2WeibullDistribution 122

8.3.3WithaKnownShapeParameter ��2 124

8.3.4WithaKnownParameterAboutStressLevel ��1 125

8.4OptimalDesignofSimpleSSALT 126

8.5CaseStudieswithRCodes 128

8.5.1SSALTforExponentialDistribution 128

8.5.2SSALTforWeibullDistribution 131

9Competing-RisksModels 141

9.1BriefOverview 141

9.2One-ShotDeviceTestingDatawithCompetingRisks 141

9.3LikelihoodEstimationforExponentialDistribution 143

9.3.1WithoutMaskedFailureModes 144

9.3.2WithMaskedFailureModes 147

9.4LikelihoodEstimationforWeibullDistribution 149

9.5BayesianEstimation 155

9.5.1WithoutMaskedFailureModes 155

9.5.2LaplacePrior 156

9.5.3NormalPrior 157

9.5.4DirichletPrior 157

9.5.5WithMaskedFailureModes 158

9.6SimulationStudies 159

9.7CaseStudywithRCodes 165

10One-ShotDeviceswithDependentComponents 173

10.1BriefOverview 173

10.2TestDatawithDependentComponents 173

10.3CopulaModels 174

10.3.1FamilyofArchimedeanCopulas 175

10.3.2Gumbel–HougaardCopula 176

x Contents

10.3.3FrankCopula 177

10.4EstimationofDependence 180

10.5SimulationStudies 181

10.6CaseStudywithRCodes 184

11ConclusionsandFutureDirections 187

11.1BriefOverview 187

11.2ConcludingRemarks 187

11.2.1LargeSampleSizesforFlexibleModels 187

11.2.2AccurateEstimation 188

11.2.3GoodDesignsBeforeDataAnalysis 188

11.3FutureDirections 189

11.3.1WeibullLifetimeDistributionwithThresholdParameter 189

11.3.2FrailtyModels 189

11.3.3OptimalDesignofSSALTswithMultipleStressLevels 189

11.3.4ComparisonofCSALTsandSSALTs 190

AppendixADerivationof Hi (a, b) 191

AppendixBObservedInformationMatrix 193

AppendixCNon-IdentifiableParametersforSSALTsUnderWeibull Distribution 197

AppendixDOptimalDesignUnderWeibullDistributionswithFixed ��1 199

AppendixEConditionalExpectationsforCompetingRisksModelUnder ExponentialDistribution 201

AppendixFKendall’sTauforFrankCopula 205

Bibliography 207

AuthorIndex 217

SubjectIndex 221

Preface

Lifetimeinformationobtainedfromone-shotdevicesisverylimitedastheentire dataareeitherleft-orright-censored.Forthisreason,theanalysisofone-shot devicetestingdataposesaspecialchallenge.Thisbookprovidesseveralstatisticalinferentialmethodsforanalyzingone-shotdevicelifetimedataobtainedfrom acceleratedlife-testsandalsodevelopsoptimaldesignsfortwomainstreamacceleratedlife-tests–constant-stressandstep-stressacceleratedlife-tests–thatare commonlyusedinreliabilitypractice.Thediscussionsprovidedinthebookwould enablereliabilitypractitionerstobetterdesigntheirexperimentsfordatacollectionfromefficientacceleratedlife-testswhentherearebudgetconstraintsinplace. Thisisimportantfromestimationandpredictionpointofviewassuchoptimal designswouldresultinasaccurateaninferenceaspossibleundertheconstraints imposedonthereliabilityexperiment.Moreover,Rcodesarepresentedwithin eachchaptersothatuserscantryoutperformingtheirownanalysisonone-shot devicetestingdata.

Inaddition,theinferentialmethodsandtheproceduresforplanningacceleratedlife-testsdiscussedinthisbookarenotonlylimitedtoone-shotdevices alonebutalsocanbeextendednaturallytoacceleratedlife-testswithperiodic inspections(interval-censoring)andthosewithcontinuousmonitoringand censoring(right-censoring).Thebookfinallyconcludesbyhighlightingsome importantissuesandproblemsthatareworthconsideringforfurtherresearch. Thismaybeespeciallyusefulforresearchscholarsandnewresearchersinterested intakingonthisinterestingandchallengingareaofresearchinreliabilitytheory andpractice.

Itispossiblethatsomepertinentresultsorreferencesgotomittedinthisbook, andweassureyouthatitisduetoinadvertencyonourpartandnotdueto scientificantipathy.Wewillappreciategreatlyifthereadersinformusofany corrections/omissions,oranycommentspertinenttoanyofthediscussionsin thebook!

OursincerethanksgototheentireWileyteam,Ms.MindyOkura-Marszycki, Ms.KathleenSantoloci,andMr.BrettKurzman,fortakinggreatinterestinthis projectfromdayone,foralltheirhelpandencouragementduringthewhole course,andfortheirfineassistanceduringthefinalproductionstageofthebook. Ourthanksalsogotoourresearchcollaboratorsandgraduatestudentsfortheir incisivecommentsandqueries,whichalwaysbenefitedusgreatlyandhelped clarifysomeofourownideas!WeexpressoursincereappreciationtoMs.Elena MariaCastillaGonzalez,adoctoralstudentofProfessorLeandroPardointhe DepartmentofStatisticsandOperationsResearchatComplutenseUniversity ofMadrid,Spain,forhercarefulreadingofChapter5andalsoforsharingwith ussomeRcodesthatshehaddevelopedconcerningrobustinferentialmethods forone-shotdevicetestanalyses.Lastbutnotleast,ourspecialthanksgotoour familiesfortheirpatienceandunderstanding,andforprovidingconstantsupport andencouragementduringourworkonthisbook!

Finally,thefirstauthor(NB)wishestostatetohisolderdaughter,Ms.Sarah Balakrishnan,thatthoughshelostoutongettinghisVolvocarduetoamajor caraccident,sheshouldbeheartenedbythefactthattheaccidentresultedinthe germinationofhisinterestandideasonone-shotdevices(airbags),andultimately thisbooksolelydedicatedtothetopic!

July,2020

NarayanaswamyBalakrishnan ManHoLing HonYiuSo

Thisbookisaccompaniedbyacompanionwebsite:

www.wiley.com/go/Balakrishnan/Accelerated_Life_Testing

TheStudentcompanionsitewillcontainthecodesandcasestudies.

One-ShotDeviceTestingData

1.1BriefOverview

One-shotdevicetestingdataanalyseshaverecentlyreceivedgreatattentionin reliabilitystudies.Theaimofthischapteristoprovideanoverviewonone-shot devicetestingdatacollectedfromacceleratedlife-tests(ALTs).Section1.2surveys typicalexamplesofone-shotdevicesandassociatedtestsinpracticalsituations. Section1.3describesseveralpopularALTs,whileSection1.4providessome examplesofone-shotdevicetestingdatathataretypicallyencounteredinreliabilityandsurvivalstudies.Finally,Section1.5detailssomerecentdevelopments onone-shotdevicetestingdataanalysesandassociatedissuesofinterest.

1.2One-ShotDevices

Valisetal.(2008)definedone-shotdevicesasunitsthatareaccompaniedby anirreversiblechemicalreactionorphysicaldestructionandcouldnolonger functionproperlyafteritsuse.Manymilitaryweaponsareexamplesofone-shot devices.Forinstance,themissionofanautomaticweapongetscompleted successfullyonlyifitcouldfirealltheroundsplacedinamagazineorinammunitionfeedbeltwithoutanyexternalintervention.Suchdeviceswillusuallyget destroyedduringusualoperatingconditionsandcanthereforeperformtheir intendedfunctiononlyonce.

ShakedandSingpurwalla(1990)discussedthesubmarinepressurehulldamage problemfromaBayesianperspectiveandassessedtheeffectofvariousstrengths ofunderwatershockwavescausedbyeitheranucleardeviceorachemicaldevice ontheprobabilityofdamagetoasubmarinepressurehull.Arecordismadeof whetheracopyofadiminutivemodelofasubmarinepressurehullisdamaged ornot,andaspecificstrengthoftheshockwaveonthemodel.Fanetal.(2009)

AcceleratedLifeTestingofOne-shotDevices:DataCollectionandAnalysis, FirstEdition. NarayanaswamyBalakrishnan,ManHoLing,andHonYiuSo. ©2021JohnWiley&Sons,Inc.Published2021byJohnWiley&Sons,Inc. CompanionWebsite:www.wiley.com/go/Balakrishnan/Accelerated_Life_Testing

consideredelectro-explosivedevicesinmilitaryapplications,whichinducta currenttoexciteinnerpowderandmakethemexplode.Naturally,wecannot adjudgethefunctioningconditionoftheelectro-explosivedevicefromitsexterior, butcanonlyobserveitbydetonatingitdirectly.Afterasuccessfuldetonation, thedevicecannotbeusedanymore;ifthedetonationbecomesafailure,wewill alsonotknowwhenexactlyitfailed.Nelson(2003)describedastudyofcrack initiationforturbinewheels.Eachofthe432wheelswasinspectedonceto determinewhetherithadstartedtocrackornot.Newby(2008)providedsome otherexamplesofone-shotdevices,suchasfireextinguishersormunitions.A fulltestwouldrequiretheuseoftheconsidereddevicesand,therefore,their subsequentdestruction.Thetestcarriedoutwouldshowwhetheradeviceisstill inasatisfactorystate,orhasfailedbythatinspectiontime.

One-shotdevicetestingdataalsoariseindestructiveinspectionprocedures, whereineachdeviceisallowedforonlyasingleinspectionbecausethetestitself resultsinitsdestruction.Morris(1987)presentedastudyof52Li/SO2 storage batteriesunderdestructivedischarge.Eachbatterywastestedatoneofthree inspectiontimesandthenclassifiedasacceptableorunacceptableaccordingtoa criticalcapacityvalue.

Ideally,reliabilitydatawouldcontainactualfailuretimesofalldevicesplaced ontest(assuming,ofcourse,theexperimentercouldwaituntilalldevicesfail), sothattheobservedfailuretimescanrevealthefailurepatternovertime,andwe couldthenestimatethereliabilityofthedevicereasonably.But,inpractice,many life-testswouldgetterminatedbeforealltheunitsfail.Suchanearlystoppageof thelife-testbytheexperimentermaybeduetocostortimeconstraintsorboth. Thiswouldresultinwhatiscalledas“right-censoreddata”becausetheexactfailuretimesoftheunfaileddevicesareunknown,butallweknowisthatthefailure timesofthosedevicesarelargerthantheterminationtime.Considerableliteratureexistsonstatisticalinferenceforreliabilitydataunderright-censoring;for exampleonemayrefertothebooksbyCohen(1991),BalakrishnanandCohen (1991),andNelson(2003).

Moreover,whennondestructiveandperiodicinspectionsarecarriedondevices, theirexactfailuretimeswillnotbeobserved,buttheintervalswhereinthefailures occurredwillonlybeavailable.Ifafailureisobservedbythefirstinspection, thenitisknownthatthefailuretimeofthedeviceislessthanthefirstinspection time,resultingin“left-censoring.”Similarly,ifafailureisobservedbetweentwo consecutiveinspectiontimes,thenitisknownthatthefailuretimeisbetween thesetwocorrespondinginspectiontimes,resultingin“interval-censoring.” Finally,thefailuretimesofallsurvivingunitsatthefinalinspectiontimeare right-censoredastheirexactfailuretimeswillnotbeobserved.Exactfailure timescanonlybeobservedfromalife-testingexperimentwithcontinuous

1.3AcceleratedLife-Tests

surveillance.Theperiodicinspectionprocesswithnondestructiveevaluation wouldactuallyprovideareasonableapproximationtofailuretimesofdevices undertest,especiallywhentheinspectiontimeintervalsareshort,eventhough theprecisionofinferencewillbelessinthiscase.

Itisusefultonotethatinalltheprecedingexamplesofone-shotdevices,we willnotobservetheactuallifetimesofthedevices.Instead,wewouldonlyobserve eitherasuccessorafailureattheinspectiontimes,andsoonlythecorresponding binarydatawouldbeobserved,consequentlyresultinginlesspreciseinference. Inthismanner,one-shotdevicetestingdatadifferfromtypicaldataobtainedby measuringlifetimesinstandardlife-testsand,therefore,posesauniquechallenge inthedevelopmentofreliabilityanalysis,duetothelackoflifetimeinformation beingcollectedfromreliabilityexperimentsonsuchone-shotdevices.Ifsuccessful testsoccur,itimpliesthatthelifetimesarebeyondtheinspectiontimes,leadingto right-censoring.Ontheotherhand,thelifetimesarebeforetheinspectiontimes, leadingtoleft-censoring,iftestsresultinfailures.Consequently,alllifetimesare eitherleft-orright-censored.Insuchasettingofthelifetimedata,Hwangand Ke(1993)developedaniterativeproceduretoimprovetheprecisionofthemaximumlikelihoodestimatesforthethree-parameterWeibulldistributionandto evaluatethestoragelifeandreliabilityofone-shotdevices.Somemoreexamples ofone-shotdevicesintheliteratureincludemissiles,rockets,andvehicleairbags; see,forexample,BainandEngelhardt(1991),Guoetal.(2010),andYunetal. (2014).

1.3AcceleratedLife-Tests

Asone-shotdevices(suchasammunitionorautomobileairbags)areusuallykept foralongtimeinstorageandrequiredtoperformitsfunctiononlyonce,the reliabilityrequiredfromsuchdevicesduringtheirnormaloperatingconditions wouldnaturallybehigh.So,itwouldbehighlyunlikelytoobservemanyfailuresontestsundernormaloperatingconditionswithinashortperiodoftime. Thisrenderstheestimationofreliabilityofdevicestobeachallengingproblem fromastatisticalpointofview.Inthisregard,ALTscouldbeutilizedtomitigate thisproblem.InALTs,devicesaresubjecttohigher-than-normalstresslevelsto induceearlyfailures.Inthisprocess,morefailurescouldlikelybeobtainedwithin alimitedtesttime.Astheprimarygoaloftheanalysisistoestimatethereliability ofdevicesundernormaloperatingconditions,ALTmodelswouldthentypically extrapolate(fromthedataobtainedatelevatedstresslevels)toestimatethereliabilityundernormaloperatingconditions.ALTsareknowntobeefficientincapturingvaluablelifetimeinformation,especiallywhenthereisaneedtoshorten

thelife-testingexperiment.Forthisreason,ALTshavebecomepopularandare commonlyadoptedinmanyreliabilityexperimentsinpractice.Onemayreferto thedetailedreviewspresentedbyNelson(1980),CramerandKamps(2001),Pham (2006),andMeekerandEscobar(2014),andtheexcellentbooklengthaccountprovidedbyNelson(2009).

Constant-stressacceleratedlife-tests(CSALTs)andstep-stressaccelerated life-tests(SSALTs)aretwopopularALTplansthathavereceivedgreatattention intheliterature.UnderaCSALT,eachdevicegetstestedatonlyoneprespecified stresslevel.Tomentionafewrecentworks,forexample,Wangetal.(2014) consideredCSALTswithprogressivelyType-IIrightcensoredsamplesunder Weibulllifetimedistribution;forpertinentdetailsonprogressivecensoring, seeBalakrishnan(2007)andBalakrishnanandCramer(2014).Wang(2017) discussedCSALTswithprogressiveType-IIcensoringunderalowertruncated distribution.Linetal.(2019)studiedCSALTsterminatedbyahybridType-I censoringschemeundergenerallog-location-scalelifetimedistributions.SSALTs areanalternativetoapplystresstodevicesinawaythatstresslevelswillincrease atprespecifiedtimesstep-by-step.ForSSALTs,therearethreefundamental modelsfortheeffectofincreasedstresslevelsonthelifetimedistributionofa device:ThetamperedrandomvariablemodelproposedbyDeGrootandGoel (1979),thecumulativeexposuremodelofSedyakin(1966)andNelson(1980); seealso(NikulinandTahir,2013),andthetamperedfailureratemodelproposed byBhattacharyyaandSoejoeti(1989).AllthesemodelsofSSALTshavebeen discussedextensivelybymanyauthors.Gouno(2001)analyzeddatacollected fromSSALTsandpresentedanoptimaldesignforSSALTs;seealsoGouno (2007).ZhaoandElsayed(2005)analyzeddataonthelightintensityoflight emittingdiodescollectedfromSSALTswithfourstresslevelsunderWeibulland log-normaldistributions.Forthecaseofexponentiallifetimedistribution,by consideringasimpleSSALTunderType-IIcensoring,Balakrishnanetal.(2007) developedexactlikelihoodinferentialmethodsforthemodelparameters;see alsoBalakrishnan(2008)fordetails,whileXiongetal.(2006)consideredthe situationwhenthestresschangesfromalow-levelstresstoahigh-levelstressat arandomtime.

1.4ExamplesinReliabilityandSurvivalStudies

1.4.1Electro-ExplosiveDevicesData

Fanetal.(2009)considereddata,presentedinTable1.1,on90electro-explosive devicesundervariouslevelsoftemperatureatdifferentinspectiontimes.Ten devicesundertestateachconditionwereinspectedtoseewhethertherewereany

Table1.1 Failurerecordsonelectro-explosivedevicesunderCSALTs withtemperature(K).

Source:Fanetal.(2009).

failuresornotateachinspectiontimeforeachtemperaturesetting.Thesedata werethenusedtoestimatethereliabilityofelectro-explosivedevicesatdifferent missiontimesunderthenormaloperatingtemperature.

1.4.2GlassCapacitorsData

Zelen(1959)presenteddatafromalife-testofglasscapacitorsatfour higher-than-usuallevelsoftemperatureandtwolevelsofvoltage.Ateach oftheeightcombinationsoftemperatureandvoltage,eightitemsweretested. Weadoptthesedatatoformone-shotdevicetestingdatabytakingtheinspection times(hours)as �� ∈{300,350, 400,450}, whicharesummarizedinTable1.2. Thesedatawerethenusedtoestimatethemeanlifetimeofglasscapacitorsfor 250Vand443Ktemperature.

1.4.3SolderJointsData

Lauetal.(1988)considereddataon90solderjointsunderthreetypesofprinted circuitboards(PCBs)atdifferenttemperatures.Thelifetimewasmeasuredasthe numberofcyclesuntilthesolderjointfailed,whilethefailureofasolderjointis definedasa10%increaseinmeasuredresistance.Asimplifieddatasetisderived fromtheoriginaloneandpresentedinTable1.3,wheretwostressfactorsconsideredaretemperatureandadichotomousvariableindicatingifthePCBtypeis “copper-nickel-tin”ornot.

Table1.2 FailurerecordsonglasscapacitorsunderCSALTswithtwostress factors:temperature(K)andvoltage(V).

Source:Zelen(1959).

Table1.3 FailurerecordsonsolderjointsunderCSALTswithtemperature(K)anda dichotomousvariableindicatingifthePCBtypeis“copper-nickel-tin(CNT)”ornot.

Source:Lauetal.(1988).

1.4.4Grease-BasedMagnetorheologicalFluidsData

Zhengetal.(2018)studiedgrease-basedmagnetorheologicalfluidsunderSSALTs withfourlevelsoftemperatureandobservedwhethertheirviscositiesorshear stressesdecreasedbymorethan10%aftertests.Twentysamplesofgrease-based magnetorheologicalfluidsweresubjecttohigher-than-normaloperatingtemperature.Then,eachsamplewasinspectedonlyonceandonlywhetherithadfailedor notattheinspectiontimewasobserved,andnottheactualfailuretime.Thedata collectedinthismanner,presentedinTable1.4,werethenusedtoestimatethe meanlifetimeofgrease-basedmagnetorheologicalfluidsunderthenormaloperatingtemperature.

1.4.5MiceTumorToxicologicalData

Itisimportanttopointoutthatone-shotdevicetestingdataarisefromdiverse fieldsbeyondreliabilityengineering,suchasinmicetumorstudiesfrom tumorigenicityexperiments;seeKodellandNelson(1980).Insuchastudy,each mousereceivedaparticulardosageofbenzidinedihydrochlorideinitsdrinking waterandwaslatersacrificedtodetectwhethersometumorshaddevelopedby thenornot.Tumorpresencecanbedetectedonlyatthetimeofmouse’ssacrifice ornaturaldeath.ThesedataaresummarizedinTable1.5.Thedatacollectedin thisformwerethenusedtomeasuretheimpactofthechemicaldosageonthe riskoftumordevelopment.

1.4.6ED01ExperimentData

LindseyandRyan(1993)describedexperimentalresultsconductedbyNational CenterforToxicologicalResearchin1974.3355outof24000femalemicewererandomizedtoacontrolgrouporgroupsthatwereinjectedwithahighdose(150ppm) ofaknowncarcinogen,called2-AAF,todifferentpartsofthebodies.Theinspectiontimesonthemicewere12,18,and33monthsandtheoutcomesofmicewere deathwithouttumor(DNT)anddeathwithtumor(DWT),andsacrificedwithouttumor(SNT)andsacrificedwithtumor(SWT).Balakrishnanetal.(2016a), intheiranalysis,ignoredtheinformationaboutpartsofmousebodieswherethe drugswereinjectedandcombinedSNTandSWTintoonesacrificedgroup,and denotedthecauseofDNTasnaturaldeathandthecauseofDWTasdeathdueto cancer.ThesedataaresummarizedinTable1.6.Theythenestimatedthechance ofdeathwithouttumor.

1.4.7SerialSacrificeData

Lingetal.(2020)wereprimarilyconcernedwiththedata(Berlinetal.,1979),presentedinTable1.7,onthepresenceorabsenceoftwodiseasecategories–(a)

Table1.4 Failurerecordsongrease-basedmagnetorheologicalfluidsunderSSALTswith temperature(K).

Source:Zhengetal.(2018).

Table1.5 Thenumberofmicesacrificed,withtumorfromtumorigenecityexperiments data.

Source:KodellandNelson(1980).

thymiclymphomaand/orglomerulosclerosisand(b)allotherdiseases–foran irradiatedgroupof343femalemicegiven �� -radiationandacontrolgroupof361 radiation-freefemalemicetostudytheonsettimeandtherateofdevelopmentof radiation-induceddisease.Allofthemiceinbothgroupsweresacrificedatvarious times,withthepresenceofadiseaseindicatingthatthediseaseonsetoccurred beforesacrifice,whiletheabsenceofadiseaseindicatingthatthediseaseonset wouldoccuraftersacrifice.

Table1.6 Thenumberofmicesacrificed,diedwithouttumor,anddiedwithtumorfrom theED01experimentdata.

Numberofmice

Test

Source:LindseyandRyan(1993).

Table1.7 Serialsacrificedataonthepresenceorabsenceoftwodiseasecategories:(a) thymiclymphomaand/orglomerulosclerosisand(b)allotherdiseases.

Numberofmice

Test

Source:Berlinetal.(1979).

1.5RecentDevelopmentsinOne-ShotDeviceTesting Analysis

Wenowprovideabriefreviewofsomerecentdevelopmentsonone-shotdevice testingdataanalysesunderALTs.ForCSALTs,Fanetal.(2009)comparedthree differentpriordistributionsintheBayesianapproachformakingpredictionson thereliabilityatamissiontimeandthemeanlifetimeofelectro-explosivedevices undernormaloperatingconditions.Inaseriesofpapers,BalakrishnanandLing (2012a,b,2013,2014a)developedexpectation-maximization(EM)algorithms forthemaximumlikelihoodestimationofmodelparametersbasedonone-shot devicetestingdataunderexponential,Weibullandgammalifetimedistributions. Inadditiontoparameterestimation,differentmethodsofconfidenceintervalsfor themeanlifetimeandthereliabilityatamissiontimeundernormaloperating conditionshavealsobeendiscussedbytheseauthors.Themaximumlikelihood estimationaswellasassociatedtestsofhypotheses,thougharemostefficient whentheassumedmodelisindeedthetruemodel,areknowntobenon-robust whentheassumedmodelisviolated,forexample,bythepresenceofsome outlyingvaluesinthedata.Withthisinmind,weightedminimumdensitypower divergenceestimatorshaverecentlybeendevelopedforone-shotdevicetesting dataunderexponential,Weibull,andgammadistributions(Balakrishnanetal., 2019a,b,2020a,b).

Someotherimportantinferentialaspects,apartfromtheworksontheestimationofmodelparametersandhypothesistestsdescribedabove,havealsobeen addressedbyanumberofauthors.BalakrishnanandLing(2014b),forinstance, havedevelopedaproceduretoobtainCSALTplanswhentherearebudgetconstraintsfortestingone-shotdevices.LingandBalakrishnan(2017)alsostudied modelmis-specificationeffectsonone-shotdevicetestingdataanalysesbetween Weibullandgammadistributions,whileBalakrishnanandChimitova(2017)conductedcomprehensivesimulationstudiestocomparetheperformanceofseveral goodness-of-fittestsforone-shotdevicetestingdata.

Intheframeworkofcompetingrisksanalysis,Balakrishnanetal.(2015,2016a,b) discussedtheanalysisofone-shotdevicetestingdatawhenthedevicescontain multiplecomponentsandhencehavingmultiplefailuremodes.Anotherextensionthathasbeenprovidedforone-shotdevicetestingisbyLingetal.(2016)who havedevelopedproportionalhazardsmodelsforanalyzingsuchdata.Optimal

SSALTplansforone-shotdevicetestingexperimentwithlifetimesfollowingexponentialandWeibulldistributionshavebeendiscussedbyLing(2019)andLingand Hu(2020).

PanandChu(2010)haveinvestigatedtwo-andthree-stageinspectionschemes forassessingone-shotdevicesinseriessystemsofcomponentshavingWeibulllifetimedistributions.Finally,ChengandElsayed(2016–2018)haveexaminedseveral approachestomeasurethereliabilityofone-shotdeviceswithmixtureofunits undervariousscenariosandhavepresentedreliabilitymetricsofsystemswith mixturesofnonhomogeneousone-shotunitssubjecttothermalcyclicstressesand furtheroptimaloperationaluseofsuchsystems.

Inthechaptersthatfollow,weshallelaborateonallthesedevelopmentsand alsohighlighttheirapplications.

LikelihoodInference

2.1BriefOverview

Likelihoodinferenceisoneoftheclassicalmethodsfortheestimationofmodel parameters,anditreliesonthemaximizationoflikelihoodfunctionofanassumed modelbasedontheobserveddata.Inthischapter,wedetailtheprocedureof findingthemaximumlikelihoodestimates(MLEs)ofmodelparameters,mean lifetime,andreliabilityundernormaloperatingconditionsonthebasisofone-shot devicetestingdataunderconstant-stressacceleratedlife-tests(CSALTs)fordifferentlifetimedistributions.Severalassociatedintervalestimationmethodsarealso discussedforalllifetimeparametersofinterest.Thediscussionsprovidedhereare primarilyfromtheworkscarriedoutbyBalakrishnanandLing(2012a,b,2013, 2014a).Then,theresultsofasimulationstudyevaluatingtheperformanceofthe developedpointandintervalestimationmethodsarepresented.Finally,twodata setspresentedinthelastchapterareusedtoillustratealltheinferentialresults discussedhere.

2.2UnderCSALTsandDifferentLifetimeDistributions

SupposeCSALTsareperformedon I groupsofone-shotdevices.Supposefor i = 1, 2, , I , inthe ithtestgroup, Ki one-shotdevicesaresubjectto J typesofacceleratingfactors(suchastemperature,humidity,voltage,andpressure)atstresslevels xi =(xi1 , xi2 , , xiJ ) andgetinspectedattime ��i fortheircondition.Thecorrespondingnumbersoffailures, ni , arethenrecorded.Thedatathusobservedcan besummarizedasinTable2.1.

Fornotationalconvenience,weuse z ={��i , Ki , ni , xi , i = 1, 2, , I } todenotethe observeddata,and �� forthemodelparameter.Supposethelifetimeinthe ithtest grouphasadistributionwithcumulativedistributionfunction(cdf) F (t; ��i ), with

AcceleratedLifeTestingofOne-shotDevices:DataCollectionandAnalysis, FirstEdition. NarayanaswamyBalakrishnan,ManHoLing,andHonYiuSo. ©2021JohnWiley&Sons,Inc.Published2021byJohnWiley&Sons,Inc. CompanionWebsite:www.wiley.com/go/Balakrishnan/Accelerated_Life_Testing

Table2.1 One-shotdevicetestingdataunderCSALTswithmultipleacceleratingfactors, variousstresslevels,anddifferentinspectiontimes.

TestInspection

groupStresslevelstimeNumberoftesteddevicesNumberoffailures

Theobservedlikelihoodfunctionisthengivenby

) isthereliabilityatinspectiontime ��i and C isthe normalizingconstant.Wethenmakeuseofthedatatodeterminesomelifetime characteristicsofdevices,fromthelikelihoodfunctionin(2.1),undernormal operatingconditions x0 =(x01 , x02 , … , x0J ), suchasthemodelparameter, ��, mean lifetime, ��, andreliabilityatmissiontime t, R(t)

2.3EM-Algorithm

Likelihoodinferenceonone-shotdevicetestingdatahasbeendiscussedextensivelyformanyprominentlifetimedistributions;seeBalakrishnanandLing (2012a,b,2013,2014a).Inthissection,wedescribetheexpectation-maximization (EM)frameworkfordeterminingtheMLEsofallparametersofinterest.

Inone-shotdevicetesting,asmentionedearlier,noactuallifetimesare observed,and,assuch,allobserveddataarecensored.EMalgorithmisknown tobeaconvenientandefficientmethodforestimatingmodelparametersinthe presenceofcensoring;see,forexample,McLachlanandKrishnan(2008)forall pertinentdetailsconcerningthismethod,itsvariations,andapplications.This methodhasnowbecomeastandardmethodofmodel-fittinginthepresenceof missingdata.TheEMalgorithminvolvestwostepsineachiterationofthenumericalmethodofmaximizingthelikelihoodfunctionsuchastheonepresentedin (2.1):expectation-step(E-step)inwhichthemissingdataareapproximatedby theirexpectedvalues,andmaximization-step(M-step)inwhichthelikelihood function,withimputedvaluesreplacingthemissingdata,getsmaximized.

Supposethelifetimesofdevicesfollowadistributionwithprobabilitydensity function(pdf) f (t; ��). Wefirstnotethatthelog-likelihoodfunction,basedonthe completedata,is

Inthe mthstepoftheiterativeprocess,theobjectivethenistoupdatetheestimateofparameter �� bythevaluethatmaximizesthefunction

basedonthecurrentestimate ��(m) Thecurrentestimate ��(m) isusedinobtaining theupdatedestimate ��(m+1) intheM-step,andthentheconditionalexpectation Q(��, ��(m+1) ) in(2.3)isobtainedbasedon ��(m+1) intheE-step.Thesetwostepsare thenrepeateduntilconvergenceisachievedtoadesiredlevelofaccuracy.Itis evidentthatweactuallysolvetheincompletedataproblemofmaximizingthelikelihoodfunctionin(2.1)byfirstapproximatingthemissingdataandthenusingthe approximatedvaluestofindtheestimateoftheparametervectorasthesolution forthecompletedataproblem.

However,inthemaximizationstep,aclosed-formsolutionmaynotalways befound,andinsuchacase,aone-stepNewton–Raphsonmethodcanbe employedforthispurpose.Thiswouldrequirethesecond-orderderivativesofthe log-likelihoodfunctionwithrespecttothemodelparameters.Inthepresentcase, letusintroduce

and

Then,theupdatedestimateobtainedthroughtheone-stepNewton–Raphson methodisgivenby

Inadditiontoestimatesofmodelparameters,ourinterestmayalsobeon somelifetimecharacteristics,suchasmeanlifetimeandreliabilityundernormal operatingconditions.Asthesequantitiesarefunctionsofmodelparameters,their estimatescanbereadilyfoundbypluggingintheMLEsofmodelparameters intotherespectivefunctions,andthenthedeltamethodcanbeemployedto determinethecorrespondingstandarderrorsaswell;see,forexample,Casella andBerger(2002).

2.3.1ExponentialDistribution

Letusfirststartwiththeexponentialdistribution,whichisoneofthemostpopular lifetimedistributions;see,forexample,Johnsonetal.(1994)andBalakrishnan andBasu(1995)fordevelopmentsonvariousmethodsandapplicationsofthe exponentialdistribution.Inthiscase,Fanetal.(2009)andBalakrishnanandLing (2012a,b)studiedinferentialmethodsforone-shotdevicetestingdataunderexponentialdistributionwithsingleandmultipleacceleratingfactors.Letususe E to denotetheexponentialdistributioninwhatfollows.Inthiscase,inthe ithtest group,thecdfandpdfoftheexponentialdistribution,withrateparameter ��i > 0, aregivenby

respectively.Itsmeanlifetimeandreliabilityatmissiontime t undernormaloperatingconditions x0 =(x01 , x02 , … , x0J ) arethengivenby

and

(t)= 1 FE (t; ��0 )=

respectively.Asitisnecessarytoextrapolatethedataobservedfromtheelevated stresslevels xi =(xi1 , xi2 , … , xiJ ), tolifetimecharacteristicsofdevicesundernormaloperatingconditions x0 =(x01 , x02 , … , x0J ), therateparameter ��i in(2.7)gets relatedtothestresslevelsinalog-linearlinkfunctionoftheform,with xi0 = 1, ln(��

where ��E =(e0 , e1 , , eJ ) nowbecomesthenewmodelparameter. Itisworthmentioningthatmanywell-knownstress-ratemodels,suchas Arrhenius,powerlaw,inversepowerlaw,andEyringmodels,areallspecialcases ofthelog-linearlinkfunctionin(2.9),withsuitabletransformationsonthestress variables;see,forexample,WangandKececioglu(2000).

UndertheEMframework,thelog-likelihoodfunctionbasedonthecomplete data,obtainedreadilyfrom(2.8),isgivenby

andtheconditionalexpectationin(2.3)becomes

where A(m) i = E[Ti |z,�� (m) E ] canbecomputedintheE-step,asdescribedbelow. Thefirst-orderderivativeswithrespecttothemodelparameters,requiredfor themaximizationofthequantity Q(��E , ��(m) E ) in(2.10),arethengivenby

Aclosed-formsolutionisnotavailablefor(2.11),however.So,intheM-stepof theEMalgorithm,weemploytheone-stepNewton–Raphsonmethod,asmentionedearlier.Thisrequiresthesecond-orderderivativesof(2.10)withrespectto themodelparameters,whicharegivenby

Next,theconditionalexpectationrequiredintheE-stepiseasytoderiveasit onlyinvolvesthefailedandunfaileddevices.Forthefaileddevices,theproportion is ni ∕Ki ,andthelifetimesinthiscaseareright-truncatedattheinspectiontime ��i (astheycannotbemorethan ��i ).Similarly,fortheunfaileddevices,theproportion is1 ni ∕Ki ,andthelifetimesareleft-truncatedattheinspectiontime ��i (asthey cannotbelessthan ��i ).Consequently,weobtaintheconditionalexpectationof Ti , giventheobserveddataandthecurrentestimate ��(m) E of ��E , asfollows: A(m) i = E[Ti |z, ��(m) E ] = ( ni Ki )

i 0 tfE (t; ��(m) E )dt FE (��i ; ��(m) E ) + (1 ni Ki

where ��(m) i = exp(∑J j=0 e(m) j xij ) and ̂ F (��i )= ni ∕Ki istheempiricalprobabilityoffailurebyinspectiontime ��i

WhentheMLEsofthemodelparameters ̂ ��E =( ̂ e0 , ̂ e1 , … , ̂ eJ ) aredetermined,we canreadilyhavetheMLEsofmeanlifetimeandreliabilityatmissiontime t under

normaloperatingconditions x0 =(x01 , x02 , … , x0J ), forexample,tobe

and

respectively.

2.3.2GammaDistribution

Astheexponentialdistributionwouldonlybesuitableformodelingconstant hazardrate,itwouldbenaturaltoconsiderthelifedistributiontobegammaas itpossessesincreasing,decreasing,andconstanthazardrateproperties;see,for example,Johnsonetal.(1994).Moreover,itincludesexponentialdistributionas aparticularcase.Forthisreason,BalakrishnanandLing(2014a)extendedthe worktogammalifetimedistributionwithmultipleacceleratingfactorswithboth scaleandshapeparametersvaryingoverstressfactors.

Letususe G todenotegammadistributioninwhatfollows.Specifically,inthe ithtestgroup,weassumethelifetimestofollowagammadistributionwithshape parameter ��i > 0andscaleparameter ��i > 0, withcdfandpdfgivenby

and

respectively,where

∕Γ(z) isthelowerincomplete gammaratioand Γ(z)= ∫ ∞ 0 x z 1 exp(−x )dx isthecompletegammafunction.The meanlifetimeandreliabilityatmissiontime t undernormaloperatingconditions x0 =(x01 , x02 , … , x0J ) are,respectively,givenby

where Γ(z, s)= 1 �� (z, s) istheupperincompletegammaratio.Forextrapolatingthedataobservedfromtheelevatedstresslevels xi =(xi1 , xi2 , … , xiJ )

tolifetimecharacteristicsofdevicesundernormaloperatingconditions x0 = (x01 , x02 , … , x0J ), inthiscase,bothparameters ��i and ��i arerelatedtothestress levelsinlog-linearlinkfunctionsoftheform,with xi0 = 1,

Thus,thenewmodelparameteroftheconsideredmodelis

Here,undertheEMframework,thelog-likelihoodfunction,basedonthecompletedata,isreadilyobtainedfrom(2.14)tobe

Let A(m) i = E[ln(Ti )|z, ��(m) G ] and B(m) i = E[Ti |z, ��(m) G ]. Then,theconditionalexpectationin(2.3)becomes

Thefirst-orderderivativeswithrespecttothemodelparameters,requiredfor themaximizationofthequantity Q(��G , ��(m) G ) in(2.16),aregivenby �� Q(��G , ��(m) G ) �� aj

(

) i

, for j = 0, 1, … , J . Thecorrespondingsecond-orderderivativesare

2 Q(��G , ��(m) G ) �� ap �� aq =− I

=1

2 Q(��G , ��(m) G ) �� bp �� bq =− I

Q(��G , ��(m) G ) �� ap �� bq =− I

xip xiq ��i (��i Ψ′ (��i )+Ψ(��i )+ ln(��i )− A(m) i ),

20 2LikelihoodInference

for p, q = 0, 1, … , J , where Ψ(z)= �� ln Γ(z)∕�� z and Ψ′ (z) arethedigammaand trigammafunctions,respectively;seeAbramowitzandStegun(1972)fora discussiononthecomputationofthesefunctions.

Hereagain,theconditionalexpectationsrequiredintheE-step, A(m) i and B(m) i , onlyinvolvethefailedandunfaileddevices.Forthefaileddevices,theproportion is ni ∕Ki ,andthelifetimesareright-truncatedattheinspectiontime ��i ,whileforthe unfaileddevices,theproportionis1 ni ∕Ki ,andthelifetimesareleft-truncated attheinspectiontime ��i . Consequently,weobtaintheconditionalexpectations, giventheobserveddataandthecurrentestimate ��(m) G of ��G , asfollows:

�� (m) i 0 ln(t)t

(m) i 1 exp(−t)dt Γ(�� (m) i )FG (��i ; ��(m) G ) + (1 ni Ki ) ∫ ∞ ��i ∕�� (m) i ln(t)t�� (m) i 1 exp(−t)dt

Γ(�� (m) i )(1 FG (��i ; ��(m) G )) = ln(�� (m) i )+ H1 (�� (m) i , ��i �� (m) i )(

̂ F (��i ) FG (��i ; ��(m) G ) )

+ {Ψ(�� (m) i )− H1 (�� (m) i , ��i �� (m) i )}( 1

̂ F (��i ) 1 FG (��i ; ��(m) G ) ) and

B(m) i = E[Ti |z, ��(m) G ] = ( ni Ki ) ∫ ��i 0 tfG (t; �� (m) i ,�� (m) i )dt FG (��i ; ��(m) G ) + (1 ni Ki ) ∫ ∞ ��i tfG (t; �� (m) i ,�� (m) i )dt 1 FG (��i ; ��(m) G )

= �� (m) i �� (m) i �� (�� (m) i + 1, ��i �� (m) i )(

̂ F (��i )

FG (��i ; ��(m) G ) )

+ �� (m) i �� (m) i à (�� (m) i + 1, ��i �� (m) i )( 1

̂ F (��i ) 1 FG (��i ; ��(m) G ) ) ,

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Download full Accelerated life testing of one-shot devices: data collection and analysis narayanaswa by Education Libraries - Issuu