[FREE PDF sample] Probability and statistical inference 3rd edition magdalena niewiadomska-bugaj ebo

Page 1


and Statistical Inference 3rd Edition Magdalena Niewiadomska-Bugaj

Visit to download the full and correct content document: https://ebookmass.com/product/probability-and-statistical-inference-3rd-edition-magd alena-niewiadomska-bugaj/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Probability and Statistical Inference 3rd Edition

Magdalena Niewiadomska-Bugaj

https://ebookmass.com/product/probability-and-statisticalinference-3rd-edition-magdalena-niewiadomska-bugaj-2/

Probability and Statistical Inference 9th Edition, (Ebook PDF)

https://ebookmass.com/product/probability-and-statisticalinference-9th-edition-ebook-pdf/

Exact Statistical Inference for Categorical Data 1st Edition Shan

https://ebookmass.com/product/exact-statistical-inference-forcategorical-data-1st-edition-shan/

Probability (Schaum's Outline Series, 3rd ed.) 3rd Edition Seymour Lipschutz

https://ebookmass.com/product/probability-schaums-outlineseries-3rd-ed-3rd-edition-seymour-lipschutz/

Statistical Learning for Big Dependent Data (Wiley Series in Probability and Statistics) 1st Edition

https://ebookmass.com/product/statistical-learning-for-bigdependent-data-wiley-series-in-probability-and-statistics-1stedition-daniel-pena/

Statistical Inference in Financial and Insurance

Mathematics with R (Optimization in Insurance and Finance Set) 1st Edition Alexandre Brouste

https://ebookmass.com/product/statistical-inference-in-financialand-insurance-mathematics-with-r-optimization-in-insurance-andfinance-set-1st-edition-alexandre-brouste/

Schaum's Outline of Probability, 3e 3rd Edition Seymour Lipschutz

https://ebookmass.com/product/schaums-outline-ofprobability-3e-3rd-edition-seymour-lipschutz/

Statistical Methods for Survival Data Analysis 3rd

Edition Lee

https://ebookmass.com/product/statistical-methods-for-survivaldata-analysis-3rd-edition-lee/

Statistical Issues in Drug Development 3rd Edition

Stephen S. Senn

https://ebookmass.com/product/statistical-issues-in-drugdevelopment-3rd-edition-stephen-s-senn/

PROBABILITYAND STATISTICALINFERENCE

WILEYSERIESINPROBABILITYANDSTATISTICS

Establishedby WalterA.ShewhartandSamuelS.Wilks

Editors: DavidJ.Balding,NoelA.C.Cressie,GarrettM.Fitzmaurice,GeofH.Givens, HarveyGoldstein,GeertMolenberghs,DavidW.Scott,AdrianF.M.Smith,RueyS.Tsay

EditorsEmeriti: J.StuartHunter,IainM.Johnstone,JosephB.Kadane,JozefL.Teugels

The WileySeriesinProbabilityandStatistics iswellestablishedandauthoritative.Itcovers manytopicsofcurrentresearchinterestinbothpureandappliedstatisticsandprobability theory.Writtenbyleadingstatisticiansandinstitutions,thetitlesspanbothstate-of-the-art developmentsinthefieldandclassicalmethods.

Reflectingthewiderangeofcurrentresearchinstatistics,theseriesencompassesapplied, methodologicalandtheoreticalstatistics,rangingfromapplicationsandnew techniquesmadepossiblebyadvancesincomputerizedpracticetorigoroustreatmentof theoreticalapproaches.

Thisseriesprovidesessentialandinvaluablereadingforallstatisticians,whetherin academia,industry,government,orresearch.

Acompletelistoftitlesinthisseriescanbefoundat http://www.wiley.com/go/wsps

PROBABILITYAND STATISTICALINFERENCE

ThirdEdition

MagdalenaNiewiadomska-Bugaj
RobertBartoszy ´ nski†

Thiseditionfirstpublished2021 ©2021JohnWiley&Sons,Inc.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,in anyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedby law.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableat http://www.wiley.com/go/ permissions

TherightofMagdalenaNiewiadomska-BugajandRobertBartoszy ´ nskitobeidentifiedastheauthorsofthis workhasbeenassertedinaccordancewithlaw.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitus at www.wiley.com

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentations orwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaim allwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticular purpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsorpromotional statementsforthiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasacitation and/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsethe informationorservicestheorganization,website,orproductmayprovideorrecommendationsitmaymake.This workissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.The adviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaspecialist whereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedor disappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbe liableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental, consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Niewiadomska-Bugaj,Magdalena,author.|Bartoszy ´ nski,Robert, author.

Title:Probabilityandstatisticalinference/Magdalena Niewiadomska-Bugaj,RobertBartoszy ´ nski.

Description:Thirdedition.|Hoboken,NJ:Wiley-Interscience,2021.| Revisededitionof:Probabilityandstatisticalinference/Robert Bartoszy ´ nski,MagdalenaNiewiadomska-Bugaj.2nded.c2008.|Includes bibliographicalreferencesandindex.

Identifiers:LCCN2020021071(print)|LCCN2020021072(ebook)|ISBN 9781119243809(cloth)|ISBN9781119243816(adobepdf)|ISBN 9781119243823(epub)

Subjects:LCSH:Probabilities.|Mathematicalstatistics.

Classification:LCCQA273.B25842021(print)|LCCQA273(ebook)|DDC 519.5/4–dc23

LCrecordavailableathttps://lccn.loc.gov/2020021071

LCebookrecordavailableathttps://lccn.loc.gov/2020021072

CoverDesign:Wiley

CoverImages:(graph)CourtesyofMagdalenaNiewiadomska-Bugaj,Colorfulabstractlongexposurepictures© ArturDebat/GettyImages

Setin10/11.5ptTimesNewRomanMTStdbySPiGlobal,Chennai,India 10987654321

Tomyparents

3.3BinomialCoefficients44

3.4MultinomialCoefficients56

4ConditionalProbability,Independence,andMarkovChains59 4.1Introduction59

4.2ConditionalProbability60

4.3Partitions;TotalProbabilityFormula65

4.4Bayes’Formula69

4.5Independence74

4.6Exchangeability;ConditionalIndependence80

4.7MarkovChains*82

5RandomVariables:UnivariateCase93

5.1Introduction93

5.2DistributionsofRandomVariables94

5.3DiscreteandContinuousRandomVariables102

5.4FunctionsofRandomVariables112

5.5SurvivalandHazardFunctions118

6RandomVariables:MultivariateCase123

6.1BivariateDistributions123

6.2MarginalDistributions;Independence129

6.3ConditionalDistributions140

6.4BivariateTransformations147

6.5MultidimensionalDistributions155

7Expectation163

7.1Introduction163

7.2ExpectedValue164

7.3ExpectationasanIntegral171

7.4PropertiesofExpectation177

7.5Moments184

7.6Variance191

7.7ConditionalExpectation202

7.8Inequalities206

8SelectedFamiliesofDistributions211

8.1BernoulliTrialsandRelatedDistributions211

8.2HypergeometricDistribution223

8.3PoissonDistributionandPoissonProcess228

8.4Exponential,Gamma,andRelatedDistributions240

8.5NormalDistribution246

8.6BetaDistribution255

9RandomSamples259

9.1StatisticsandSamplingDistributions259 9.2DistributionsRelatedtoNormal261 9.3OrderStatistics266

9.4GeneratingRandomSamples272 9.5Convergence276

9.6CentralLimitTheorem287

12TestingStatisticalHypotheses373

12.1Introduction373 12.2IntuitiveBackground377

12.3MostPowerfulTests384

12.4UniformlyMostPowerfulTests396

12.5UnbiasedTests402

12.6GeneralizedLikelihoodRatioTests405

12.7ConditionalTests412

12.8TestsandConfidenceIntervals415

12.9ReviewofTestsforNormalDistributions416 12.10MonteCarlo,Bootstrap,andPermutationTests424

13LinearModels429 13.1Introduction429 13.2RegressionoftheFirstandSecondKind431 13.3DistributionalAssumptions436

13.4LinearRegressionintheNormalCase438 13.5TestingLinearity444

13.6Prediction447

PrefacetoThirdEdition

Youhaveinfrontofyouthethirdeditionofthe“ProbabilityandStatisticalInference,”a textoriginallypublishedin1996.Ihavebeenusingthisbookintheclassroomsincethen, andithasalwaysbeeninterestingtoseehowitservesthestudents,howtheyreacttoit, andwhatcouldstillbedonetomakeitbetter.Thesereflectionspromptedmetopreparea secondedition,publishedin2007.Butacademiaischangingquickly;whothestudentsare ischanging,andhowweshouldteachtohelpthemlearnischangingaswell.Thisiswhat mademeconsiderathirdedition.TheresponsefromWileyPublishingwaspositiveandmy workbegan.

TherewerethreemainchangesthatIsawasnecessary.First,addingachapteronthe basicsofBayesianstatistics,asIrealizedthatupperlevelundergraduatestudentsandgraduatestudentsneededanearlierintroductiontoBayesianinference.Anotherchangewasto makethebookmoreappropriatefortheflippedclassroomformat.Ihaveexperimentedwith itforthreeyearsnowanditisworkingquitewell.Thebookintroducesandillustratesconceptsthroughmorethan400examples.Preparingthematerialmainlyathomegivesstudents moretimeinclassforquestions,discussion,andforproblemsolving.Ihavealsoadded over70newproblemstomaketheselectioneasierfortheinstructor.Athirdchangewas includinganappendixwithanRcodethatwouldhelpstudentscompleteprojectsandhomeworkassignments.Mytwo-semesterclassbasedonthistextincludesthreeprojects.Thefirst one–inthefallsemester–hasstudentspresentapplicationsofselecteddistributions,includinggraphics.Twoprojectsforthespringsemesterinvolveresamplingmethods.Thenecessary Rcodeisincludedintheappendix.

TherearemanypeopletowhomIowemythanks.First,IwouldliketothankWiley EditorJonGurstelle,wholikedtheideaofpreparingthethirdedition.AfterJonaccepted anotherjobelsewhere,thebookandIcameundertheexcellentcareoftheEditorialTeamsof MindyOkura-Mokrzycki,KathleenSantoloci,LindaChristina,andKimberlyMonroe-Hill whohavesupportedmethroughoutthisprocess.IwouldalsoliketothankCarlaKoretsky, theDeanoftheCollegeofArtsandSciencesatWesternMichiganUniversity,andWMU Provost,SueStapleton,forgrantingmeasemester-longadministrativesabbaticalleavethat significantlyspeduptheprogressofthebook.

Iamindebtedtoseveralofmystudentsfortheirvaluablecomments.Iamalsograteful tomydepartmentalcolleagues,especiallyHyunBinKangandDuyNgo,whousedthetext inclassandgavemetheirvaluablefeedback.HyunBinalsohelpedmewiththeformattingoftheRcodeintheappendix.Finally,Ithankmyhusband,Jerzy,forhissupportand encouragement.

November2020

PrefacetoSecondEdition

Thefirsteditionofthisbookwaspublishedin1996.Sincethen,powerfulcomputershave comeintowideuse,anditbecameclearthatourtextshouldberevisedandmaterialon computer-intensivemethodsofstatisticalinferenceshouldbeadded.Tomydelight,Steve Quigley,ExecutiveEditorofJohnWileyandSons,agreedwiththeidea,andworkonthe secondeditionbegan.

Unfortunately,RobertBartoszy ´ nskipassedawayin1998,soIwaslefttocarryoutthis revisionbymyself.Irevisedthecontentbycreatinganewchapteronrandomsamples,adding sectionsonMonteCarlomethods,bootstrapestimatorsandtests,andpermutationtests. Moreproblemswereadded,andexistingoneswerereorganized.Hopefullynothingwaslost ofthe“spirit”ofthebookwhichRobertlikedsomuchandofwhichhewasveryproud.

Thisbookisintendedforseniorsorfirst-yeargraduatestudentsinstatistics,mathematics, naturalsciences,engineering,andanyothermajorwhereanintensiveexposuretostatistics isnecessary.Theprerequisiteisacalculussequencethatincludesmultivariatecalculus.We providethematerialforatwo-semestercoursethatstartswiththenecessarybackgroundin probabilitytheory,followedbythetheoryofstatistics.

Whatdistinguishesourbookfromothertextsisthewaythematerialispresentedandthe aspectsthatarestressed.Toputitsuccinctly,understanding“why”isprioritizedovertheskill of“howto.”Today,inaneraofundreamed-ofcomputationalfacilities,areflectioninan attempttounderstandisnotaluxurybutanecessity.

Probabilitytheoryandstatisticsarepresentedasself-containedconceptualstructures. Theirvalueasameansofdescriptionandinferenceaboutreal-lifesituationsliespreciselyin theirlevelofabstraction—themoreabstractaconceptis,thewiderisitsapplicability.The methodologyofstatisticscomesoutmostclearlyifitisintroducedasanabstractsystem illustratedbyavarietyofreal-lifeapplications,notconfinedtoanysingledomain.

Dependingonthelevelofthecourse,theinstructorcanselecttopicsandexamples, bothinthetheoryandinapplications.Thesecanrangefromsimpleillustrationsof concepts,tointroductionsofwholetheoriestypicallynotincludedincomparabletextbooks (e.g.,prediction,extrapolation,andfiltrationintimeseriesasexamplesofuseofthe conceptsofcovarianceandcorrelation).Suchadditional,moreadvanced,material(e.g., xiii

Chapter5onMarkovChains)ismarkedwithasterisks.Otherexamplesaretheproofof theextensiontheorem(Theorem6.2.4),showingthatthecumulativedistributionfunction determinesthemeasureontheline;theconstructionofLebesgue,Riemann–Stieltjes,and Lebesgue–Stieltjesintegrals;andtheexplanationofthedifferencebetweendoubleintegral anditeratedintegrals(Section8.3).

Inthematerialthatisseldomincludedinothertextbooksonmathematicalstatistics,we stresstheconsequencesofnonuniquenessofasamplespaceandillustrate,byexamples,how thechoiceofasamplespacecanfacilitatetheformulationofsomeproblems(e.g.,issuesof selectionorrandomizedresponse).Weintroducetheconceptofconditioningwithrespectto partition(Section4.4);weexplaintheBorel–Kolmogorovparadoxbywayoftheunderlying measurementprocessthatprovidesinformationontheoccurrenceofthecondition(Example 7.22);wepresenttheNeyman–Scotttheoryofoutliers(Example10.4);wegiveanewversion oftheproofoftherelationbetweenmean,median,andstandarddeviation(Theorem8.7.3); weshowanotherwayofconditioninginthesecretaryproblem(Example4.10).Among examplesofapplications,wediscussthestrategiesofservesintennis(Problem4.2.12),and aseriesofproblems(3.2.14–3.2.20)concerningcombinatorialanalysisofvotingpower.In Chapter11,wediscusstherenewalparadox,theeffectsofimportancesampling(Example 11.6),andtherelevanceofmeasurementtheoryforstatistics(Section11.6).Chapter14 providesadiscussionoftrueregressionversuslinearregressionandconcentratesmostlyon explainingwhycertainprocedures(inregressionanalysisandANOVA)work,ratherthan oncomputationaldetails.InChapter15,weprovideatasteofrankmethods—onelineof researchstartingwiththeGlivenko–CantelliTheoremandleadingtoKolmogorov–Smirnov tests,andtheotherlineleadingtoMann-WhitneyandWilcoxontests.Inthischapter,we alsoshowthetrapsassociatedwithmultipletestsofthesamehypothesis(Example15.3). Finally,Chapter16containsinformationonpartitioningcontingencytables—themethod thatprovidesinsightintothedependencestructure.WealsointroduceMcNemar’stestand variousindicesofassociationfortableswithorderedcategories.

Thebackboneofthebookistheexamplesusedtoillustrateconcepts,theorems,andmethods.Someexamplesraisethepossibilitiesofextensionsandgeneralizations,andsomesimply pointouttherelevantsubtleties.

Anotherfeaturethatdistinguishesourbookfrommostothertextsisthechoiceofproblems.Ourstrategywastointegratetheknowledgestudentsacquiredthusfar,ratherthan totraintheminasingleskillorconcept.Thesolutiontoaprobleminagivensectionmay requireusingknowledgefromsomeprecedingsections,thatis,reachingbackintomaterial alreadycovered.Mostoftheproblemsareintendedtomakethestudentsawareoffactsthey mightotherwiseoverlook.Manyoftheproblemswereinspiredbyourteachingexperience andfamiliaritywithstudents’typicalerrorsandmisconceptions.

Finally,wehopethatourbookwillbe“friendly”forstudentsatalllevels.Weprovide (hopefully)lucidandconvincingexplanationsandmotivations,pointingoutthedifficulties andpitfallsofarguments.Wealsodonotwantgoodstudentstobeleftalone.Thematerial instarredchapters,sections,andexamplescanbeskippedinthemainpartofthecourse,but usedatwillbyinterestedstudentstocomplementandenhancetheirknowledge.Thebook canalsobeausefulreference,orsourceofexamplesandproblems,forinstructorswhoteach coursesfromothertexts.

Iamindebtedtomanypeoplewithoutwhomthisbookwouldnothavereacheditscurrent form.First,thankyoutomanycolleagueswhocontributedtothefirsteditionandwhose namesarelistedthere.Commentsofmanyinstructorsandstudentswhousedthefirstedition wereinfluentialinthisrevision.IwishtoexpressmygratitudetoSamuelKotzforreferring metoStigler’s(1986)articleaboutthe“rightandlawfulrood,”whichwepreviouslyusedin thebookwithoutreference(Example8.40).MysincerethanksareduetoJungChaoWang

forhishelpincreatingtheR-codeforcomputer-intensiveproceduresthat,togetherwith additionalexamples,canbefoundonthebook’sftpsite

ftp://ftp.wiley.com/public/sc tech med/probability statistical

ParticularthanksareduetoKatarzynaBugajforcarefulproofreadingoftheentire manuscript,ŁukaszBugajformeticulouslycreatingallfigureswiththeMathematica software,andAgataBugajforherhelpincompilingtheindex.Changingallthosediapers hasfinallypaidoff.

Iwishtoexpressmyappreciationtotheanonymousreviewersforsupportingthebook andprovidingvaluablesuggestions,andtoSteveQuigley,ExecutiveEditorofJohnWiley& Sons,forallhishelpandguidanceincarryingouttherevision.

Finally,Iwouldliketothankmyfamily,especiallymyhusbandJerzy,fortheirencouragementandsupportduringtheyearsthisbookwasbeingwritten.

MagdalenaNiewiadomska-Bugaj

October2007

AbouttheCompanionWebsite

Thisbookisaccompaniedbyacompanionwebsite: www.wiley.com/go/probabilityandstatisticalinference3e ThewebsiteincludestheInstructor’sSolutionManualandwillbeliveinearly2021.

CHAPTER1

EXPERIMENTS,SAMPLESPACES,AND EVENTS

1.1INTRODUCTION

Theconsequencesofmakingadecisiontodayoftendependonwhatwillhappeninthefuture, atleastonthefuturethatisrelevanttothedecision.Themainpurposeofusingstatistical methodsistohelpinmakingbetterdecisionsunderuncertainty.

Judgingfromthefailuresofweatherforecasts,tomorespectacularpredictionfailures, suchasbankruptciesoflargecompaniesandstockmarketcrashes,itwouldappearthat statisticalmethodsdonotperformverywell.However,withapossibleexceptionofweather forecasting,theseexamplesare,atbest,onlypartiallystatisticalpredictions.Moreover, failurestendtobebetterrememberedthansuccesses.Whateverthecase,statistical methodsareatpresent,andarelikelytoremainindefinitely,ourbestandmostreliable predictiontools.

Tomakedecisionsunderuncertainty,oneusuallyneedstocollectsome data.Datamay comefrompastexperiencesandobservations,ormayresultfromsomecontrolledprocesses, suchaslaboratoryorfieldexperiments.Thedataarethenusedtohypothesizeaboutthe laws(oftencalled mechanisms)thatgovernthefragmentofrealityofinterest.Inourbook, weareinterestedinlawsexpressedinprobabilisticterms:Theyspecifydirectly,orallowus tocompute,thechancesofsomeeventstooccur.Knowledgeofthesechancesis,inmost cases,thebestonecangetwithregardtopredictionanddecisions.

Probabilitytheoryisadomainofpuremathematicsandassuch,ithasitsownconceptualstructure.Toenableavarietyofapplications(typicallycomprisingofallareasofhuman endeavor,rangingfrombiological,medical,socialandphysicalsciences,toengineering, humanities,business,etc.),suchstructuremustbekeptonanabstractlevel.Anapplication ofprobabilitytotheparticularsituationanalyzedrequiresanumberofinitialstepsinwhich theelementsoftherealsituationare interpreted asabstractconceptsofprobabilitytheory.

ProbabilityandStatisticalInference,ThirdEdition.MagdalenaNiewiadomska-BugajandRobertBartoszy ´ nski. ©2021JohnWiley&Sons,Inc.Published2021byJohnWiley&Sons,Inc.

EXPERIMENTS,SAMPLESPACES,ANDEVENTS

Suchinterpretationisoftenreferredtoasbuildinga probabilisticmodel ofthesituationat hand.Howwellthisisdoneiscrucialtothesuccessofapplication.

Oneofthemainconceptshereisthatofan experiment—atermusedinabroadsense.It meansanyprocessthatgeneratesdatawhichisinfluenced,atleastinpart,bychance.

1.2SAMPLESPACE

Inanalyzinganexperiment,oneisprimarilyinterestedinits outcome—theconceptthat isnotdefined(i.e., aprimitiveconcept)buthastobespecifiedineveryparticularapplication.Thisspecificationmaybedoneindifferentways,withtheonlyrequirementsbeingthat (1)outcomesexcludeoneanotherand(2)theyexhaustthesetofalllogicalpossibilities.

EXAMPLE1.1

Consideranexperimentconsistingoftwotossesofaregulardie.Anoutcomeismost naturallyrepresentedbyapairofnumbersthatturnupontheupperfacesofthedie sothattheyformapair (x,y ),with x,y =1, 2,..., 6 (seeTable1.1).

Table1.1Outcomesonapairofdice. y 123456

1(1,1)(1,2)(1,3)(1,4)(1,5)(1,6) 2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6) x 3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6) 4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6) 5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)

Inthecaseofanexperimentoftossingadiethreetimes,theoutcomeswill betriplets (x,y,z ),with x, y ,and z beingintegersbetween1and6.

Sincetheoutcomeofanexperimentisnotknowninadvance,itisimportanttodeterminethesetofallpossibleoutcomes.Thisset,calledthe samplespace,formstheconceptual frameworkforallfurtherconsiderationsofprobability.

Definition1.2.1 The samplespace,denotedby S ,isthesetofalloutcomesofanexperiment. Theelementsofthesamplespacearecalled elementary outcomes,or samplepoints

EXAMPLE1.2

InExample1.1,thesamplespace S has 62 =36 samplepointsinthecaseoftwotosses, and 63 =216 pointsinthecaseofthreetossesofadie.Thefirststatementcanbeverifiedbyadirectcountingoftheelementsofthesamplespace.Similarverificationofthe secondclaim,althoughpossibleinprinciple,wouldbecumbersome.InChapter3,we willintroducesomemethodsofdeterminingthesizesofsetswithoutactuallycounting samplepoints.

EXAMPLE1.3

Supposethattheonlyavailableinformationaboutthenumbers,thosethatturnupon theupperfacesofthedie,istheirsum.Insuchacaseasoutcomes,wetake11possible valuesofthesumsothat

Forinstance,alloutcomesonthediagonalofTable1.1—(6,1),(5,2),(4,3),(3,4), (2,5),and(1,6)—arerepresentedbythesamevalue7.

EXAMPLE1.4

Ifweareinterestedinthenumberofaccidentsthatoccuratagivenintersectionwithin amonth,thesamplespacemightbetakenastheset S = {0, 1, 2,... } consistingofall nonnegativeintegers.Realistically,thereisapracticallimit,say 1,000,ofthemonthly numbersofaccidentsatthisparticularintersection.Althoughonemaythinkthat itissimplertotakethesamplespace S = {0, 1, 2,..., 1,000}, itturnsoutthatitis oftenmuchsimplertotaketheinfinitesamplespaceifthe“practicalbound”isnot veryprecise.

Sinceoutcomescanbespecifiedinvariousways(asillustratedbyExamples1.1and1.3), itfollowsthatthesameexperimentcanbedescribedintermsofdifferentsamplespaces S Thechoiceofasamplespacedependsonthegoalofdescription.Moreover,certainsample spacesforthesameexperimentleadtoeasierandsimpleranalysis.Thechoiceofa“better” samplespacerequiressomeskill,whichisusuallygainedthroughexperience.Thefollowing twoexamplesillustratethispoint.

EXAMPLE1.5

Lettheexperimentconsistofrecordingthelifetimeofapieceofequipment,sayalight bulb.Anoutcomehereisthetimeuntilthebulbburnsout.Anoutcometypicallywill berepresentedbyanumber t ≥ 0 (t =0 ifthebulbisnotworkingatthestart),and therefore S isthenonnegativepartoftherealaxis.Inpractice, t ismeasuredwithsome precision(inhours,days,etc.),soonemightinsteadtake S = {0, 1, 2,... }.Whichof thesechoicesisbetterdependsonthetypeofsubsequentanalysis.

EXAMPLE1.6

Twopersonsenteracafeteriaandsitatasquaretable,withonechaironeachofits sides.Supposeweareinterestedintheevent“theysitatacorner”(asopposedtositting acrossfromoneanother).Toconstructthesamplespace,weletAandBdenotethe twopersons,andthentakeas S thesetofoutcomesrepresentedby12ideogramsin Figure1.1.Onecouldargue,however,thatsuchasamplespaceisunnecessarilylarge.

Ifweareinterestedonlyintheevent“theysitatacorner,”thenthereisnoneedto labelthepersonsasAandB.Accordingly,thesamplespace S maybereducedtothe setofsixoutcomesdepictedinFigure1.2.Buteventhissamplespacecanbesimplified. Indeed,onecouldusetherotationalsymmetryofthetableandarguethatoncethefirst personselectsachair(itdoesnotmatterwhichone),thenthesamplespaceconsistsof justthreechairsremainingforthesecondperson(seeFigure1.3).

Figure1.2 Possibleseatingsofanytwopersonsatasquaretable.

Figure1.3 Possibleseatingsofonepersoniftheplaceoftheotherpersonisfixed.

Samplespacescanbeclassifiedaccordingtothenumberofsamplepointstheycontain. Finite samplespacescontainfinitelymanyoutcomes,andelementsof infinitelycountable samplespacescanbearrangedintoaninfinitesequence;othersamplespacesarecalled uncountable.

Thenextconcepttobeintroducedisthatofan event.Intuitively,aneventisanything aboutwhichwecantellwhetherornotithasoccurred,assoonasweknowtheoutcomeof theexperiment.Thisleadstothefollowingdefinition:

Definition1.2.2 An event isasubsetofthesamplespace S .

EXAMPLE1.7

InExample1.1aneventsuchas“thesumequals7”containingsixoutcomes (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1) isasubsetofthesamplespace S .In Example1.3,thesameeventconsistsofoneoutcome,7.

Whenanexperimentisperformed,weobserveitsoutcome.Intheinterpretationdevelopedinthischapter,thismeansthatweobserveapointchosenrandomlyfromthesample space.Ifthispointbelongstothesubsetrepresentingtheevent A,wesaythat theeventA hasoccurred

Wewillleteventsbedenotedeitherbyletters A,B,C,... ,possiblywithidentifiers,such as A1 ,Bk ,..., orbymoredescriptivemeans,suchas {X =1} and {a<Z<b},where X

and Z aresomenumericalattributesofthesamplepoints(formally:randomvariables,tobe discussedinChapter5).Eventscanalsobedescribedthroughverbalphrases,suchas“two headsinarowoccurbeforethethirdtail”intheexperimentofrepeatedtossesofacoin.

Inallcasesconsideredthusfar,weassumedthatanoutcome(apointinthesamplespace) canbeobserved.Toputitmoreprecisely,allsamplespaces S consideredsofarwereconstructedinsuchawaythattheirpointswereobservable.Thus,foranyevent A,wewere alwaysabletotellwhetheritoccurredornot.

Thefollowingexamplesshowexperimentsandcorrespondingsamplespaceswithsample pointsthatareonly partiallyobservable:

EXAMPLE1.8 Selection

Candidatesforacertainjobarecharacterizedbytheirlevel z ofskillsrequiredforthe job.Theactualvalueof z isnotobservable,though;whatweobserveisthecandidate’s score x onacertaintest.Thus,thesamplepointin S isapair s =(z,x),andonlyone coordinateof s, x,isobservable.

Theobjectivemightbetofindselectionthresholds z0 and x0 ,suchthattherule: “acceptallcandidateswhosescore x exceeds x0 ”wouldleadtomaximizingthe(unobservable)numberofpersonsacceptedwhosetruelevelofskill z exceeds z0 .Naturally, tofindsuchasolution,oneneedstounderstandstatisticalrelationbetweenobservable x andunobservable z

Anotherexamplewhenthepointsinthesamplespaceareonlypartiallyobservableconcernsstudiesofincidenceofactivitiesaboutwhichonemayhesitatetorespondtruthfully, oreventorespondatall.Thesearetypicallystudiesrelatedtosexualhabitsorpreferences, abortion,lawandtaxviolation,druguse,andsoon.

EXAMPLE1.9 RandomizedResponse

Let Q betheactivityanalyzed,andassumethattheresearcherisinterestedinthefrequencyofpersonswhoeverparticipatedinactivity Q (forsimplicity,wewillcallthem Q-persons).Itoughttobestressedthattheobjectiveis not toidentifythe Q-persons, butonlytofindtheproportionofsuchpersonsinthepopulation.

Thedirectquestionreducedtosomethinglike“Areyoua Q-person?”isnotlikelyto beansweredtruthfully,ifatall.Itisthereforenecessarytomaketherespondentsafe, guaranteeingthattheirresponseswillrevealnothingaboutthemasregards Q.This canbeaccomplishedasfollows:Therespondentisgivenapairofdistinguishabledice, forexample,onegreenandonewhite.Shethrowsthembothatthesametime,insuch awaythattheexperimenterdoesnotknowtheresultsofthetoss(e.g.,thediceareina boxandonlytherespondentlooksintotheboxafteritisshaken).Theinstructionisthe following:Ifthegreendieshowsanoddface(1,3,or5),thenrespondtothequestion “Areyoua Q-person?”Ifthegreendieshowsanevenface(2,4,or6),thenrespond tothequestion,“Doesthewhitedieshowanace?”Theschemeofthisresponseis summarizedbytheflowchartinFigure1.4.

Theinterviewerknowstheanswer“yes”or“no”butdoesnotknowwhetheritis theanswertothequestionabout Q orthequestionaboutthewhitedie.Hereanatural samplespaceconsistsofpoints s =(i,x,y ), where x and y areoutcomesongreenand whitedie,respectively,while i is1or0dependingonwhetherornottherespondentis a Q-person.Wehave φ(s)= φ(i,x,y )= “yes”if i =1 and x =1, 3, or5forany y ,or if x =2, 4, 6, and y =1 forany i.Inallothercases, φ(s)= “no.”

Areyoua Q-person?

Whitedie 123456

Figure1.4 Schemeofarandomizedresponse.

Onecouldwonderwhatisapossibleadvantage,ifany,ofnotknowingthequestion askedandobservingonlytheanswer.Thisdoesnotmakesenseifweneedtoknowthe truthabouteachindividualrespondent.However,oneshouldrememberthatweare onlyaftertheoverallfrequencyof Q-persons.

Weareinfact“contaminating”thequestionbymakingtherespondentanswer eithera Q-questionorsomeotherauxiliaryquestion.Butthisisa“controlled contamination”:weknowhowoften(onaverage)therespondentsanswerthe auxiliaryquestion,andhowoftentheiransweris“yes.”Consequently,aswewill seeinChapter11,wecanstillmakeaninferenceabouttheproportionof Q-persons basedontheobservedresponses.

PROBLEMS

1.2.1 Listallsamplepointsinsamplespacesforthefollowingexperiments: (i) Wetossa balancedcoin.1 Ifheadscomeup,wetossadie.Otherwise,wetossthecointwomore times. (ii) Acoinistosseduntilthetotaloftwotailsoccurs,butnomorethanfour times(i.e.,acoinistosseduntilthesecondtailorfourthtoss,whichevercomesfirst).

1.2.2 Alice,Bob,Carl,andDianaentertheelevatoronthefirstfloorofafour-storybuilding.Eachofthemleavestheelevatoroneitherthesecond,third,orfourthfloor. (i) Describethesamplespacewithoutlistingallsamplepoints. (ii) Listallsample pointssuchthatCarlandDianaleavetheelevatoronthethirdfloor. (iii) Listall samplepointsifCarlandDianaleavetheelevatoratthesamefloor.

1.2.3 Anurncontainsfivechips,labeled 1,..., 5.Threechipsareselected.Listalloutcomesincludedintheevent“thesecondlargestnumberdrawnwas3.”

1.2.4 Inagameofcraps,theplayerrollsapairofdice.Ifhegetsatotalof7or11,hewins atonce;ifthetotalis2,3,or12,helosesatonce.Otherwise,thesum,say x,ishis “point,”andhekeepsrollingdiceuntileitherherollsanother x (inwhichcasehe wins)orherollsa7inwhichcaseheloses.Describetheevent“theplayerwinswith apointof5.”

1 Unlessspecificallystated,wewillbeassumingthatallcoinsand/ordicetossedarefair(balanced).

1.2.5 Theexperimentconsistsofplacingsixballsinthreeboxes.Listalloutcomesinthe samplespaceif: (i) Theballsareindistinguishable,buttheboxesaredistinguishable. (Hint:Thereare28differentplacements.) (ii) Neithertheballsnortheboxesaredistinguishable. (iii) Twoballsarewhiteandfourarered;theboxesaredistinguishable.

1.2.6 JohnandMaryplantomeeteachother.Eachofthemistoarriveatthemeeting placeatsometimebetween5p.m.and6p.m.Johnistowait20minutes(oruntil 6p.m.,whichevercomesfirst),andthenleaveifMarydoesnotshowup.Mary willwaitonly5minutes(oruntil6p.m.,whichevercomesfirst),andthenleaveif Johndoesnotshowup.Letting x and y denotethearrivaltimesofJohnandMary, determinethesamplespaceanddescribeevents(i)–(viii)bydrawingpictures,orby appropriateinequalitiesfor x and y .Ifyouthinkthatthedescriptionisimpossible, sayso. (i) JohnarrivesbeforeMarydoes. (ii) JohnandMarymeet. (iii) EitherMary comesfirst,ortheydonotmeet. (iv) Marycomesfirst,buttheydonotmeet. (v) Johncomesverylate. (vi) Theyarrivelessthan15minutesapart,andtheydonot meet. (vii) Maryarrivesat5:15p.m.andmeetsJohn,whoisalreadythere. (viii) Theyalmostmissoneanother.

Problems1.2.7–1.2.8showanimportanceofthesamplespaceselection.

1.2.7 Let E betheexperimentconsistingoftossingacointhreetimes,withHandTstandingforheadsandtails,respectively.

(i) Thefollowingsetofoutcomesisanincompletelistofthepointsofthesample space S oftheexperiment E :{HHH,HTT,TTT,HHT,HTH,THH}.Useatree diagramtofindthemissingoutcomes.

(ii) Analternativesamplespace S forthesameexperiment E consistsofthefollowingfouroutcomes:noheads (0),onehead (1),twoheads (2), andthreeheads (3). Whichofthefollowingeventscanbedescribedassubsetsof S butnotassubsetsof S = {0, 1, 2, 3}?

A1 = Morethantwoheads.

A2 = Headonthesecondtoss.

A3 = Moretailsthanheads.

A4 = Atleastonetail,withheadonthelasttoss.

A5 = Atleasttwofacesthesame.

A6 = Headandtailalternate.

(iii) Stillanothersamplespace S fortheexperiment E consistsofthefouroutcomes (0, 0), (0, 1), (1, 0), and (1, 1).Thefirstcoordinateis1ifthefirsttwotossesshowthe samefaceand0otherwise;thesecondcoordinateis1ifthelasttwotossesshow thesameface,and0otherwise.Forinstance,ifweobserveHHT,theoutcomeis (1, 0).Listtheoutcomesof S thatbelongtotheevent A = {(1, 1), (0, 1)} of S . (iv) Whichofthefollowingeventscanberepresentedassubsetsof S ,butcannotbe representedassubsetsof S ?

B1 = Firstandthirdtossshowthesameface.

B2 = Headsonalltosses.

B3 = Allfacesthesame.

B4 = Eachfaceappearsatleastonce.

B5 = Moreheadsthantails.

1.2.8 Let E beanexperimentconsistingoftossingadietwice.Let S bethesamplespace withsamplepoints (i,j ),i,j =1, 2,..., 6, with i and j beingthenumbersofdots thatappearinthefirstandsecondtoss,respectively.

(i) Let S bethesamplespacefortheexperiment E consistingofallpossiblesums i + j sothat S = {2, 3,..., 12}.Whichofthefollowingeventscanbedefinedas subsetsof S butnotof S ?

A1 = Onefaceodd,theothereven.

A2 = Bothfaceseven.

A3 = Facesdifferent.

A4 = Resultonthefirsttosslessthantheresultonthesecond.

A5 = Productgreaterthan10.

A6 = Productgreaterthan30.

(ii) Let S bethesamplespacefortheexperiment E consistingofallpossibleabsolute valuesofthedifference |i j | sothat S = {0, 1, 2, 3, 4, 5}.Whichofthefollowing eventscanbedefinedassubsetsof S butnotof S ?

B1 = Onefaceshowstwiceasmanydotsastheother, B2 = Facesthesame,

B3 = Onefaceshowssixtimesasmanydotsastheother,

B4 = Onefaceodd,theothereven,

B5 = Theratioofthenumbersofdotsonthefacesisdifferentfrom1.

1.2.9 ReferringtoExample1.9,supposethatwemodifyitasfollows:Therespondent tossesagreendie(withtheoutcomeunknowntotheinterviewer).Iftheoutcomeis odd,herespondstotheQ-question;otherwise,herespondstothequestion“Were youborninApril?”Again,theinterviewerobservesonlytheanswer“yes”or“no.”

Apartfromtheobviousdifferenceinthefrequencyoftheanswer“yes”tothe auxiliaryquestion(ontheaverage1in12insteadof1in6),arethereanyessential differencesbetweenthisschemeandtheschemeinExample1.9?Explainyour answer.

1.3ALGEBRAOFEVENTS

Next,weintroduceconceptsthatwillallowustoformcompositeeventsoutofsimplerones. Webeginwiththerelationsof inclusion and equality.

Definition1.3.1 Theevent A is contained intheevent B ,or B contains A,ifeverysample pointof A isalsoasamplepointof B .Wheneverthisistrue,wewillwrite A ⊂ B ,orequivalently, B ⊃ A.

Analternativeterminologyhereisthat A implies (or entails) B .

Definition1.3.2 Twoevents A and B aresaidtobe equal, A = B ,if A ⊂ B and B ⊂ A.

Itfollowsthattwoeventsareequaliftheyconsistofexactlythesamesamplepoints.

EXAMPLE1.10

Considertwotossesofacoin,andthecorrespondingsamplespace S consistingoffour outcomes:HH,HT,TH,andTT.Theevent A = “headsinthefirsttoss” = {HH,HT} iscontainedintheevent B = “atleastonehead” = {HH,HT,TH}.Theevents“the resultsalternate”and“atleastoneheadandonetail”implyoneanother,andhence areequal.

Definition1.3.3 Thesetcontainingnoelementsiscalledthe empty setandisdenotedby ∅ Theeventcorrespondingto ∅ iscalleda null (impossible)event.

EXAMPLE1.11 *2

Thereadermaywonderwhetheritiscorrecttousethedefinitearticleinthedefinition aboveandspeakof“the emptyset,”sinceitwouldappearthattheremaybemany differentemptysets.Forinstance,thesetofallkingsoftheUnitedStatesandthesetof allrealnumbers x suchthat x2 +1=0 arebothempty,butoneconsistsofpeopleand theotherofnumbers,sotheycannotbeequal.Thisisnotso,however,asisshownby thefollowingformalargument(toappreciatethisargument,oneneedssometraining inlogic).Supposethat ∅1 and ∅2 aretwoemptysets.Toprovethattheyareequal,one needstoprovethat ∅1 ⊂∅2 and ∅2 ⊂∅1 .Formally,thefirstinclusionistheimplication: “if s belongsto ∅1 ,then s belongsto ∅2 .”Thisimplicationistrue,becauseitspremise isfalse:thereisno s thatbelongsto ∅1 .Thesameholdsforthesecondimplication,so ∅1 = ∅2

Wenowgivethedefinitionsofthreeprincipaloperationsonevents: complementation, union,and intersection

Definition1.3.4 Thesetthatcontainsallsamplepointsthatarenotintheevent A willbe calledthe complement of A anddenoted Ac ,tobereadalsoas“not A.”

Definition1.3.5 Thesetthatcontainsallsamplepointsbelongingeitherto A orto B (so possiblytobothofthem)iscalledthe union of A and B anddenoted A ∪ B ,tobereadas “A or B .”

Definition1.3.6 Thesetthatcontainsallsamplepointsbelongingtoboth A and B iscalled the intersection of A and B anddenoted A ∩ B .

Analternativenotationforacomplementis A or A,whereasinthecaseofanintersection, oneoftenwrites AB insteadof A ∩ B . Theoperationsabovehavethefollowinginterpretationsintermsofoccurrences ofevents:

1.Event Ac occursifevent A doesnotoccur.

2.Event A ∪ B occurswheneither A or B orbotheventsoccur.

3.Event A ∩ B occurswhenboth A and B occur.

EXAMPLE1.12

Consideranexperimentoftossingacointhreetimes,withthesamplespace consistingofoutcomesdescribedasHHH,HHT,andsoon.Let A and B be theevents“headsandtailsalternate”and“headsonthelasttoss,”respectively. Theevent Ac occursifeitherheadsortailsoccuratleasttwiceinarowsothat Ac = {HHH, HHT, THH, HTT, TTT, TTH},while B c is“tailsonthelast toss,”hence, B c = {HHT, THT, HTT, TTT}.Theunion A ∪ B istheevent “eithertheresultsalternateoritisheadsonthelasttoss,”meaning A ∪ B = {HTH, THT, HHH, THH, TTH}.Observethatwhile A hastwooutcomesand B has

2 Asterisksdenotemoreadvancedmaterial,asexplainedinthePrefacetotheSecondEdition.

fouroutcomes,theirunionhasonlyfiveoutcomes,sincetheoutcomeHTHappears inbothevents.Thiscommonpartistheintersection A ∩ B .

Someformulascanbesimplifiedbyintroducingtheoperationofthe difference oftwo events.

Definition1.3.7 The difference, A \ B, ofevents A and B containsallsamplepointsthat belongto A butnotto B

The symmetricdifference, A ÷ B ,containssamplepointsthatbelongto A orto B ,butnot tobothofthem:

EXAMPLE1.13

InExample1.12,thedifference B c \ A isdescribedas“atleasttwoidenticaloutcomes inarowandtailsonthelasttoss,”whichmeanstheevent{HHT,HTT,TTT}.

Next,weintroducethefollowingimportantconcept:

Definition1.3.8 If A ∩ B = ∅,thentheevents A and B arecalled disjoint,or mutually exclusive

EXAMPLE1.14

BasedonExample1.12,weknowthatthefollowingtwoeventsaredisjoint: C = “more headsthantails”andtheintersection A ∩ B c = “theresultsalternate,endingwith tails.”

Example1.14showsthattodeterminewhetherornoteventsaredisjoint,itisnotnecessarytolisttheoutcomesinbotheventsandcheckwhetherthereexistcommonoutcomes. Apartfromthefactthatsuchlistingisnotfeasiblewhensamplespacesarelarge,itisoften simplertoemploylogicalreasoning.Inthecaseabove,iftheresultsalternateandendwith tails,thentheoutcomemustbeTHT.Sincetherearemoretailsthanheads, C doesnotoccur. Thedefinitionsofunionandintersectioncanbeextendedtothecaseofafiniteandeven infinitenumberofevents(tobediscussedintheSection1.4).Thus,

istheeventthatcontainsthesamplepointsbelongingto A1 or A2 or...or An .Consequently,(1.1)istheevent“atleastone Ai occurs.”Similarly,

istheeventthatcontainsthesamplepointsbelongingto A1 and A2 and...and An .Consequently,theevent(1.2)is“all Ai ’soccur.”

EXAMPLE1.15

Supposethat n shotsarefiredatatarget,andlet Ai , i =1, 2,...,n denotetheevent “thetargetishitonthe ithshot.”Then,theunion A1 ∪···∪ An istheevent“the

targetishit”(atleastonce).Itscomplement (A1 ∪···∪ An )c istheevent“thetarget ismissed”(oneveryshot),whichisthesameastheintersection Ac 1 ∩···∩ Ac n

Aperceptivereadermaynotethattheunions A1 ∪···∪ An andintersections A1 ∩···∩ An donotrequireanextensionofthedefinitionofunionandintersectionfor twoevents.Indeed,wecouldconsiderunionssuchas

, wheretheunionofonlytwoeventsisformedineachsetofparentheses.Theproperty ofassociativity(below)showsthatparenthesescanbeomittedsothattheexpression A1 ∪···∪ An isunambiguous.Thesameargumentappliestointersections. Theoperationsoneventsdefinedinthissectionobeysomelaws.Themostimportantones arelistedbelow.

Idempotence:

Doublecomplementation:

Absorption

Inparticular,

whichinviewof(1.3)meansthat

Commutativity:

Associativity:

Distributivity:

DeMorgan’sLaws

ItisoftenhelpfultouseVenndiagramsforstudyingrelationsbetweencompositeevents inthesamesamplespace.Thesamplespace S isthererepresentedbyarectangle,whileits subsetsrepresentevents(seeFigure1.5).

Thecomplementofevent A isrepresentedinFigure1.5a,theunionandintersectionof theevents A and B arerepresentedinFigure1.5bandc,respectively.

Venndiagramscanalsobeusedtocheckthevalidityofformulas.Forexample,consider thefirstDeMorgan’slaw(1.4)forthecaseoftwoevents:

Figure1.5 Complement,union,andintersection.

ThefirstDeMorgan’slaw.

Venndiagramsmadeseparatelyfortheleft-handsideandtheright-handsideof(1.5)(see Figure1.6)indicatethatbothregionsarethesame.Althoughapicturedoesnotconstitute aproof,itmayprovideconvincingevidencethatthestatementistrue,andsometimesmay evensuggestamethodofprovingthestatement.

PROBLEMS

Fortheproblemsbelow,rememberthatastatement(expressedasasentenceorformula)is trueifitistrueunder all circumstances,anditisfalseifthereisatleastonecasewhereit doesnothold.

1.3.1 Answertrueorfalse.Justifyyouranswer. (i) If A and B aredistinctevents(i.e., A = B ) suchthat A and B c aredisjoint,then Ac and B arealsodisjoint. (ii) If A and B are disjoint,then Ac and B c arealsodisjoint. (iii) If A and B aredisjoint,andalso B and C aredisjoint,then A and C aredisjoint. (iv) If A and B arebothcontainedin C , then C c ⊂ Ac ∩ B c (v) If A iscontainedin B , C iscontainedin D, and B isdisjoint from D ,then A isdisjointfrom C (vi) If A ∪ B c = B c ,then B ⊂ Ac

1.3.2 Inthestatementsbelow A,B,C ,and D areevents.Findthosestatementsorformulas thataretrue. (i) If A ∩ B = A ∩ C ,then B = C . (ii) A ∪ (A ∩ B ) ∪ (A ∩ B c )= A. (iii) A ∪ (A ∩ B ) ∪ (A ∩ B c )= B . (iv) If A \ B = C ,then A = B ∪ C . (v) (A ∪ B ) ∩ (C ∪ D )=(A ∩ C ) ∪ (A ∩ D ) ∪ (B ∩ C ) ∪ (B ∩ D ). (vi) (A ∩ B ) ∪ (C ∩ D )=(A ∪ C ) ∩ (A ∪ D ) ∩ (B ∪ C ) ∩ (B ∪ D ). (vii) (Ac ∪ B c ∪ C c )c = Ac ∩ B c ∩ C c . (viii) If A ⊂ B ,and B ∩ C = ∅,then C c ∩ A ∩ B c = ∅ (ix) If A ∩ B , A ∩ C and B ∩ C are notempty,then A ∩ B ∩ C isnotempty. (x) Showthat (A ÷ B ) ÷ C = A ÷ (B ÷ C )

1.3.3 Find X if: (i) A ÷ X = ∅. (ii) A ÷ X = A. (iii) A ÷ X = S . (iv) A ÷ X = B .

1.3.4 Inagroupof1,000studentsofacertaincollege,60takeFrench,417takecalculus, and509takestatistics.Moreover,20takeFrenchandcalculus,17takeFrenchand statistics,and147takestatisticsandcalculus.However,196studentsdonottakeany

Figure1.6

ofthesethreesubjects.DeterminethenumberofstudentswhotakeFrench,calculus, andstatistics.

1.3.5 Let A, B, and C bethreeevents.Match,wherepossible,events D1 through D10 with events E1 through E11 .Matchingmeansthattheeventsareexactlythesame;thatis, ifoneoccurs,somusttheotherandconversely(seetheDefinition1.3.2).(Hint:Draw aVenndiagramforeachevent D1 ,...,D10 , dothesameforevents E1 ,...,E11 ,and thencomparethediagrams.)

Amongevents A, B , C :

D1 = twoormoreoccur.

D3 = only A occurs.

D5 = noneoccurs.

D7 = atleastoneoccurs.

D9 = nomorethantwooccur.

E1 = A ∪ B ∪ C.

D2 = exactlyoneoccurs.

D4 = alloccur.

D6 = atmostoneoccurs.

D8 = exactlytwooccur.

D10 = B occurs.

E2 =(A ∩ B c ∩ C c ) ∪ (Ac ∩ B ∩ C c )

E3 =(A ∩ B )c

E4 =(A ∪ B ∪ C )c .

E5 = Ac ∩ B c ∩ C c

E6 = A ∩ B ∩ C.

E7 = B.

E8 = A ∩ B c ∩ C c

E9 =(A ∩ B ∩ C c ) ∪ (A ∩ B c ∩ C ) ∪

E10 =(A ∩ B

E11 =(

1.3.6 Astandarddeckofcardsisdealtamongplayers N,S,E, and W .Let Nk ,k =1, 2, 3, 4 betheevent“N hasatleast k aces,”andlet Sk ,Ek ,and Wk bedefinedsimilarly.For eachoftheeventsbelow,determinethenumberofacesthat N has. (i)

W1 . (ii) E2 ∩ (W2 ∪ S2 ). (iii) N3 \ N4 . (iv) S3

1.3.7 Fiveburglars, A,B,C,D, and E ,dividetheloot,consistingoffiveidenticalgoldbars andfouridenticaldiamonds.Let Ajk betheeventthat A got atleast j goldbarsand atmost k diamonds.Let Bjk ,Cjk denoteanalogouseventsforburglars B,C (e.g., B21 istheeventthat B got2,3,4,or5goldbarsand0or1diamond).Determinethe number x ofgoldbarsandthenumber y ofdiamondsreceivedby E ifthefollowing eventsoccur(ifdeterminationof x and/or y isimpossible,givetherangeofvalues):

C13 ∪ D13

1.3.8 Let A

bedefinedinductivelyby

1.4INFINITEOPERATIONSONEVENTS

Asalreadymentioned,theoperationsofunionandintersectioncanbeextendedtoinfinitely manyevents.Let A1 ,A2 ,... beaninfinitesequenceofevents.Then,

areevents“atleastone

Ifatleastoneevent Ai occurs,thenthereisonethatoccursfirst.Thisremarkleadstothe followingusefuldecompositionofaunionofeventsintoaunionof disjoint events:

where Ac 1 ∩···∩ Ac k 1 ∩ Ak istheevent“Ak isthefirsteventinthesequencethatoccurs.”

Foraninfinitesequence A1 ,A2 ,... onecandefinetwoevents:

and

thesebeing,respectively,theeventthat“infinitelymany Ai ’soccur”andtheeventthat“all exceptfinitelymany Ai ’soccur.”Heretheinnerunionintheevent(1.7)istheevent“atleast oneevent Ai with i ≥ k willoccur”;callthisevent Bk .Theintersectionover k meansthat theevent Bk occursforevery k .Nomatterhowlarge k wetake,therewillbeatleastone event Ai with i ≥ k thatwilloccur.Butthisispossibleonlyifinfinitelymany Ai soccur.

Fortheevent liminf An ,theargumentissimilar.Theintersection Ak ∩ Ak +1 ∩··· = Ck occursifallevents Ai with i ≥ k occur.Theunion C1 ∪ C2 ∪··· meansthatatleastoneof theevents Ck willoccur,andthatmeansthatall Ai willoccur,exceptpossiblyfinitelymany. Ifallevents(exceptpossiblyfinitelymany)occur,theninfinitelymanyofthemmust occur,sothat limsup An ⊃ liminf An .If limsup An ⊂ liminf An , then(seethedefinition ofequalityofevents)wesaythatthesequence {An } converges,and limsup An =liminf An

Themostimportantclassofconvergentsequencesofeventsconsistsof monotone sequences,when A1 ⊂ A2 ⊂··· (increasingsequence)orwhen A1 ⊃ A2 ⊃··· (decreasing sequence).Wehavethefollowingtheorem:

Theorem1.4.1 Ifthesequence A1 ,A2 ,... isincreasing,then

An =

, andincaseofadecreasingsequence,wehave

=1

An =

Proof :Ifthesequenceisincreasing,thentheinnerunion( ∞ i=1 Ai )in limsup An remains thesameindependentlyof k sothat limsup An = ∞ i=1 Ai .Ontheotherhand,theinner intersectionin liminf An equals Ak sothat liminf An = ∞ k =1 Ak ,whichisthesameas limsup An ,aswastobeshown.Asimilarargumentholdsfordecreasingsequences.

Thefollowingtwoexamplesillustratetheconceptofconvergenceofevents.

EXAMPLE1.16

Let B (r ) and C (r ) bethesetsofpointsontheplane (x,y ) satisfyingtheconditions x2 + y 2 <r 2 and x2 + y 2 ≤ r 2 , respectively.If An = B (1+1/n),then {An } isa decreasingsequence,andtherefore lim An = ∞ n=1 B (1+1/n).Since x2 + y 2 <

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.