Where can buy Physiologically based pharmacokinetic (pbpk) modeling and simulations 2nd edition shei

Page 1


Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulations 2nd Edition Sheila

Visit to download the full and correct content document: https://ebookmass.com/product/physiologically-based-pharmacokinetic-pbpk-modelin g-and-simulations-2nd-edition-sheila-annie-peters/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Reaction Rate Theory and Rare Events Simulations Baron Peters

https://ebookmass.com/product/reaction-rate-theory-and-rareevents-simulations-baron-peters/

Pure Colour: A Novel 2nd Edition Sheila Heti

https://ebookmass.com/product/pure-colour-a-novel-2nd-editionsheila-heti/

ABC

of

Wound Healing 2nd Edition Annie Price

https://ebookmass.com/product/abc-of-wound-healing-2nd-editionannie-price/

Basic Pharmacokinetics and Pharmacodynamics: An Integrated Textbook and Computer Simulations 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/basic-pharmacokinetics-andpharmacodynamics-an-integrated-textbook-and-computersimulations-2nd-edition-ebook-pdf/

Data Modeling and Database Design 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/data-modeling-and-databasedesign-2nd-edition-ebook-pdf/

Transportation Engineering: Theory, Practice and Modeling, 2nd Edition Dusan Teodorovic

https://ebookmass.com/product/transportation-engineering-theorypractice-and-modeling-2nd-edition-dusan-teodorovic/

Reservoir Simulations Shuyu Sun

https://ebookmass.com/product/reservoir-simulations-shuyu-sun/

Process Control: Modeling, Design, and Simulation 2nd Edition B. Wayne Bequette

https://ebookmass.com/product/process-control-modeling-designand-simulation-2nd-edition-b-wayne-bequette/

Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence Darryl I. Mackenzie & James D. Nichols & J. Andrew Royle & Kenneth H. Pollock & Larissa L. Bailey & James E. Hines

https://ebookmass.com/product/occupancy-estimation-and-modelinginferring-patterns-and-dynamics-of-species-occurrence-darryl-imackenzie-james-d-nichols-j-andrew-royle-kenneth-h-pollock-

PHYSIOLOGICALLYBASED PHARMACOKINETIC (PBPK)MODELINGAND SIMULATIONS

Thiseditionfirstpublished2022 ©2022byJohnWiley&Sons,Inc.

EditionHistory

PhysiologicallyBasedPharmacokinetic(PBPK)ModelingandSimulations:Principles,Methods,andApplicationsinthe PharmaceuticalIndustry,1stEdition,©2012byJohnWiley&Sons,Inc.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyform orbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw.Adviceonhow toobtainpermissiontoreusematerialfromthistitleisavailableathttp://www.wiley.com/go/permissions.

TherightofSheilaAnniePeterstobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

EditorialOffice

111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusatwww. wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsin standardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowof informationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreviewandevaluate theinformationprovidedinthepackageinsertorinstructionsforeachchemical,pieceofequipment,reagent,ordevicefor, amongotherthings,anychangesintheinstructionsorindicationofusageandforaddedwarningsandprecautions.While thepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarranties withrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties,including withoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreated orextendedbysalesrepresentatives,writtensalesmaterials,orpromotionalstatementsforthiswork.Thefactthatan organization,website,orproductisreferredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoes notmeanthatthepublisherandauthorsendorsetheinformationorservicestheorganization,website,orproductmay provideorrecommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedin renderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.You shouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmay havechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthors shallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental, consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Peters,SheilaAnnie,author.

Title:Physiologicallybasedpharmacokinetic(PBPK)modelingand simulations:principles,methods,andapplicationsinthe pharmaceuticalindustry/SheilaAnniePeters.

Description:Secondedition.|Hoboken,NJ:Wiley,2021.|Includes bibliographicalreferencesandindex.

Identifiers:LCCN2021038143(print)|LCCN2021038144(ebook)|ISBN 9781119497684(hardback)|ISBN9781119497769(adobepdf)|ISBN 9781119497790(epub)

Subjects:MESH:Pharmacokinetics|DrugDesign|Models,Biological Classification:LCCRM301.5(print)|LCCRM301.5(ebook)|NLMQV38| DDC615.7–dc23

LCrecordavailableathttps://lccn.loc.gov/2021038143

LCebookrecordavailableathttps://lccn.loc.gov/2021038144

CoverDesign:Wiley

CoverImage:CourtesyofSheilaAnniePeters

Setin9.5/11.5ptTimesbyStraive,Pondicherry,India

10987654321

Tomyreaderswhosetremendoussupportforthefirsteditioninspired metogivemybesttothisedition.

2.4InVitroMethodstoEvaluateDrug–

2.4.1CandidateDrugasaPotentialPerpetrator

2.4.2CandidateDrugasaPotentialVictimofInhibition

3.2.1CompartmentalModelingofLinearandNonlinear Pharmacokinetics(Enzymeand/orTransporterCapacity LimitationasWellasTarget-MediatedDrugDisposition)67

3.2.2PopulationPharmacokinetics 76

3.3Pharmacokinetics/PharmacodynamicsandPK/Efficacy(Exposure/ Response)Modeling 80

3.3.1PK/PDModelsforDirectEffect:Sigmoid Emax Model84

3.3.2PK/PDModelsforDirectEffect:ClassicalReceptorTheory86

3.3.3PK/PDModelsAccommodatingDelayedPharmacological Response 89

3.3.4PK/PDModelsAccommodatingFunctionalAdaptation LeadingtoNonlinearityinPharmacologicalResponsewith RespecttoTime 96

3.3.5PK/EfficacyModeling 97

3.3.6TranslationofPK/PDandPK/EfficacyModelingtoHuman100

3.3.7Average,Minimum,andMaximumSteady-State Concentrations 104

3.3.8EstimationofBiologicallyEffectiveDoseinHuman 107

3.3.9TherapeuticWindow 109

3.3.10StaticModelsforDrugInteractions 109

3.4PhysiologicallyBasedPharmacokinetic(PBPK)ModelingandIts IntegrationwithPharmacodynamicsandEfficacyModels 112

3.4.1PKModelingCompartmentalvsPBPK 112

3.4.2PKVariability:PopulationPK(popPK)ModelingvsPBPK114

3.4.3IntegrationofPBPKwithPD,QuantitativeSystems Pharmacology(QSP)ModelsorQuantitativeSystems ToxicologyandSafety(QSTS) 114

3.4.4PBPKModelstoEvaluateDrug–DrugInteractions 115

4.2 Drug AbsorptionandGutBioavailability

4.2.1SolubilityandDissolutionRate

4.2.2Permeability:Transcellular,Paracellular,andCarrier-Mediated Pathways

4.2.3BarrierstoMembraneTransport – LuminalDegradation,Efflux, andGutMetabolism

SpeciesDifferencesinPhysiology

4.4

4.4.1

4.5.1 InVitro, InSitu, and InVivo ModelsforEffectivePermeability148

4.5.2MeasurementofThermodynamicorEquilibriumSolubility153

4.5.5 InVitro ModelsforGutMetabolismandEstimationofFraction EscapingGutMetabolism

5 PHYSIOLOGICALMODELFORDISTRIBUTION

5.2.1PhysiologicalFactorsandSpeciesDifferencesinPhysiology171

5.3 InSilico ModelsofTissuePartitionCoefficients

5.4.1AssessmentofRateandExtentofBrainPenetration

6.1Introduction

6.2 Factors AffectingDrugMetabolismandExcretionofXenobiotics194

6.3ModelsforHepatobiliaryandRenalExcretion

6.3.1 InSilico Models

6.3.2 InVitro ModelsforHepaticMetabolism

6.3.3 InVitro ModelsforTransporters

6.4PhysiologicalModels

6.4.1Hepato-BiliaryEliminationofParentDrugandMetabolites205

7.1Introduction

7.2 Structure ofaGenericPhysiologically-BasedPharmacokinetic(PBPK)

7.3SomaticCompartments

7.3.1Lungs(

7.3.2ArterialBlood

7.3.3VenousBlood(

8.1Introduction

8.2.1PeptidesandProteins

8.2.2AntibodiesandAntibody-BasedTherapies

8.3PharmacokineticsofTherapeuticProteins

8.3.1Absorption

8.3.2RenalElimination

8.3.3Immunogenicity

8.3.5TransportbyConvectiveandTranscytoticExtravasation239

8.3.6CatabolicElimination(Proteolysis)

8.3.7FcRn-MediatedProtectionofIgGsAgainstCatabolismin FcRn-RichCells

8.3.8Distributionandlymphaticelimination

8.3.9Target-MediatedDrugDispositionandReceptor-Mediated Endocytosis

8.4PBPKModelingofMonoclonalAntibodies

8.4.1FullPBPKModelforMonoclonalAntibodies

8.4.2MinimalPBPKModelforMonoclonalAntibodies

8.5ApplicationsofPBPKModelingofMonoclonalAntibodies253

8.5.1PharmacokineticScaling

8.5.2PBPKIntegrationwithPharmacodynamicsofMonoclonal Antibodies

Distingui shingUncertaintyandVariability

9.5HandlingPopulationVariability

9.5.1 APOSTERIORI and APRIORI ApproachestoHandling PopulationVariability

9.5.2CorrelationsBetweenParameters

9.6.1LocalSensitivityAnalysis(One-at-a-time(OAT)and Derivative-basedMethods)

9.6.2ParameterInteractionsandGlobalSensitivityAnalysis(GSA)275

9.6.3GlobalSensitivityAnalysisforCorrelatedParameters(cGSA)278

9.6.4ApplicationsofSensitivityAnalysisforPBPKModels280

9.6.5LimitationsofGlobalSensitivityAnalysis 281

9.7UncertaintyandPopulationVariabilityinClinicalEfficacyandSafety282

10 NONCLINICAL,CLINICAL,ANDMODEL-INFORMED DRUGDEVELOPMENT

10.1Introduction:AnOverviewofDifferentPhasesofDrugDevelopment294 10.2 NonclinicalDevelopment

10.3.1First-in-Human,Single,andMultipleAscendingDoseStudies302 10.3.2Biopharmaceutics – AbsoluteOralBioavailabilityand BioequivalenceStudy

13.1Introduction:IntegrationofPBPKwithDrugEffectModels354

13.2 Dosing inSpecificPopulations

13.3PBPK/PDforBottom-UpPredictionofInter-PatientVariabilityin DrugResponse

13.4PBPK/PDforPredictingtheInter-PatientVariabilityinResponseto ProdrugsandActiveMetabolites

13.5PBPK/PDWhenSystemicConcentrationsarenottheDriverforDrug

13.5.1Pre-SystemicDrugTarget

13.5.2Effect-SiteDrugConcentrationDifferentfromSystemic Concentration

13.6PBPK/PDforMonoclonalAntibodies

13.7PBPKModelsLinkedtoQuantitativeSystemsPharmacologyand ToxicologyModels

13.7.1PBPK–QSTModelstoPredictDrug-InducedLiverInjury363 13.7.2PBPK–QSTModelstoPredictDrug-InducedCardiotoxicity367

14.2.2InvestigationofPhenotypicEffectsforNMEsPredominantly ClearedbyPolymorphicEnzymeorTransporter

14.2.3ProspectiveNestedDDIStudy

14.2.5PBPKModelingandSimulations

14.2.6ClaimsRelatingtoResultsofDDIStudies

14.2.7ImpactonLabel

14.3PBPKModelingofDifferentTypesofDrugInteractions

14.3.1PBPKModelingStrategy:NewMolecularEntityasVictim ofCYP-BasedDrugInteractions

14.3.2PBPKModelingStrategy:NewMolecularEntityas PerpetratorofCYP-BasedDrugInteractions

14.3.3Non-CYPBasedDrugInteractions

14.3.4Transporter-MediatedDrugInteractions

14.4DDIPredictionswithPBPKModelingandSimulationsinClinical DrugDevelopmentandRegulatorySubmissions

14.4.1DDIPredictionsAlongtheValueChain(Figure14.5)387

14.4.2PossibleRegulatoryOutcomes,BasedonthePredictionsfrom aVerifiedandValidatedPBPKModel

14.4.3RegulatoryAcceptanceofPBPKAnalysesIncludedin RegulatorySubmissions

14.4.4PredictivePerformanceofPBPKModels

14.5ComparisonofDDIPredictionUsingStaticandDynamicModels392

14.6Conclusions

15 DOSEEXTRAPOLATIONACROSSPOPULATIONS(HEALTHYADULT CAUCASIANTOPEDIATRIC,PREGNANTWOMEN,DIFFERENT

15.2 PBPK ModelingStrategyforDoseExtrapolation toSpecificPopulations

15.3PotentialBenefitsofPBPKModelingforDoseExtrapolationsto SpecificPopulations

15.4DoseExtrapolationstoSpecificpopulations

16 DOSEEXTRAPOLATIONACROSSPOPULATIONS:HEALTHY ADULTTOHEPATICANDRENALIMPAIRMENTPOPULATIONS417 16.1Introduction

16.2 PathophysiologicalChangesinOrganImpairment

16.3PBPKModelingStrategy:ModelDevelopment, Verification,Validation,andApplication

16.4BenefitsofApplyingValidatedPBPKModelstoOrgan-Impaired Populations

16.4.1EnhancingRegulatoryConfidenceintheApplication ofPBPKModelingforthePredictionofExposureinthe Organ-ImpairedPopulation

16.4.2ContributionofPBPKtotheTotalityofEvidence inEvaluatingtheEffectofRenalImpairmentonDrug ExposuretoInformLabelling

17.2 In Vitro – InVivoDisconnect,ParameterNon-Identifiabilityandthe ImportanceofIdentifyingFactorsLimitingAbsorptionThrougha DeconvolutionoftheMechanismsContributingtoGutBioavailability431 17.3Non-RegulatoryInternalApplicationsofPBPKModelingand

ReducingAgents(ARAs)

17.4.3InVitro – InVivoCorrelations(IVIVCs)toServe asSurrogateforBioequivalenceTesting(CaseStudy12)445

19.3.2ModelVerificationofPredictedExposureandValidationof

PREFACETOTHESECOND EDITION

Iamexcitedtobringoutthismuchimprovedsecondedition,encouragedbythesuccessof thefirsteditionof “Physiologically-BasedPharmacokinetic(PBPK)ModelingandSimulations:Principles,Methods,andApplicationsinthePharmaceuticalIndustry”.TheapplicationsofPBPKmodelingandsimulationshaveexponentiallygrownsincethepublicationof thefirsteditionofthebookin2012.Sincethattime,asurgeinPBPKregulatorysubmissions haspromptedtheregulatoryagenciestoreleaseguidelinesforthereportingofPBPKmodelingresultsthataccompanysubmissions.

TheadverseimpactoftheCOVID-19pandemiconglobaleconomiesisstillbeing evaluated.Pharmacompanieshavehadtheirfairshareoflossestoo.Clinicalstudies forvariousindicationshavebeenaffectedbystretchedhealthcareinfrastructure,recruitmentchallenges,lockdown,logisticsissues,andconfoundingdiseaseinfluenceonoutcomes.AlongwithWorldHealthOrganization’sSOLIDARITYtrialandInstitut nationaldelasantéetdelarecherchemédicale(INSERM)’sDiscoverytrial,nearlythousandclinicalstudiesrelatedtoCOVID-19havebeenregisteredworldwideinthefirsthalf of2020.Inaraceagainsttimetobringinnovativemedicinestothemarket,aheightened needforModel-InformedDrugDevelopment(MIDD)andthetotalityofevidenceitadvocateshasbecomeapparent.TheapplicationsofPBPKmodeling,animportantcomponent ofMIDD,supportingdoseoptimizationandassessmentofbenefit-riskratioshavebeen furthercatalyzedbythepandemic.

Thebookisintendedtoservetheinterestsofabroadanddiverseaudiencefromacademia,industry,andregulatoryagencies.Similartothefirsteditionofthebook,thissecondeditionhasasectionthatcoverstheprinciplesunderlyingpharmacokinetics,drug interactions,andphysiologicalmodelingofpharmacokineticprocessesaswellasinterindividualvariabilityforsmallmoleculedrugsandbiologics.Thesecondpartexposesthe readertothepowerfulapplicationsofPBPKmodelingalongthevaluechainindrugdiscoveryanddevelopment.Tofacilitatepotentialuseofthebookincoursesorworkshops,a newthirdsectionprovidingcasestudiesinthedifferentareasofapplicationofPBPKmodelinghasbeenintroducedinthiseditionattherequestofreadersandreviewers.Mostof thesecasestudiesarebuiltusingPK-Sim®,acomprehensivesoftwaretoolwithinthe OpenSystemsPharmacologySuiteforthephysiologicallybasedpharmacokineticmodelingofsmallandlargemolecules.

Inadditiontointroducingathirdsectiontothebook,thissecondeditionsimplifies complextopicsandprovidesabalancedviewofthevastpotentialofPBPKmodeling alongsidecurrentchallenges.Section-Iprovidessubstantiallyrevisedandreorderedcontentwithupdatedliteratureinallchapters.AnewchapterhasbeenaddedonNonclinical, ClinicalandModelInformedDrugDevelopment.ChaptersinSection-IIareentirelynew andfocusonthevastarrayofapplicationsinthefield.Two-thirdsofthefiguresinthe secondeditionareeitherrevisedornew.

IhopethattheinclusionofrecentadvancesinPBPKmodelingandtherevisionsmade inthecurrenteditionwillservetobenefitandengagethereaders.

PREFACETOTHEFIRSTEDITION

Physiologically-basedpharmacokinetic(PBPK)modellinghasmaderapidstridesinthe pharmaceuticalindustryinthelastdecadeorso,thankstoanincreasingawarenessofthe potentialapplicationsofthispowerfultool.Aspharmaceuticalcompaniesareworkingto integratePBPKmodellingintotheirleadselectioncycleandclinicaldevelopment,theavailabilityofcommercialsoftwarehasplayedakeyroleinenablingeventhosewithoutmodellingexpertisetocomeonboard.However,thisentailstheriskofmisuse,misinterpretation orover-interpretationofmodellingresults,iftheprinciplesandunderlyingassumptionsof PBPKmodellingarenotclearlyunderstoodbytheusers.Today,thechallengefacingpharmaceuticalcompaniesiseducatingandtrainingtheirstafftoachieveaneffectiveapplication ofPBPK/PDinprojectsacrossthevaluechain.Inthefuture,providersofeducationshould takeontheresponsibilityofmakingavailable,modellerswithappropriateskills.Giventhe complexityofPBPKmodelling,itiscertainlynotaneasytaskforabeginnerwithlittleorno backgroundtounderstandthemodelstructureandtobeawareofitslimitations.Thelackof atextbookonPBPKhasbeenafurtherdeterrent.Itishopedthatthebookwillserveasa primarysourceofinformationontheprinciples,methodsandapplicationsofPBPKmodelling,exposingthepowerofalargelyhiddenandunexploredtool.Applicationsinthe pharmasectorwillbethemainfocus,asapplicationsinenvironmentaltoxicologyand humanhealthriskassessment,havealreadybeenthesubjectofapreviouspublication.

Targetaudiencesforthebookincludestudentsandresearchersintheacademia,apart fromscientistsandmodellersinthepharmaceuticalindustry.Thebookcanalsobea resourceforR&Dmanagersinthepharmaceuticalindustry,seekingaquickoverview ofthebenefitsofapplyingPBPKmodellingalongthedrugdiscoveryanddevelopment valuechain.AnunderstandingoftheprinciplesofPBPKmodellingbyR&Dmanagement wouldenhancetheiracceptanceandappreciation,whichinturncantranslatetoeffective managerialsupportforPBPKmodelling.Thebookisintendedtoservetheinterestsof boththegeneralreader,whomayonlywantanoverviewoftheapplicationsofPBPKmodellingwithoutwantinganin-depthunderstandingoftheunderlyingmethods,andthespecialistreaderwhomaybeinterestedtobuildnewmodels.Forthegeneralreader,keywords highlightedincapitalsareexplainedattheendofthechapters.Noparticularexpertiseis assumedinordertokeepthebookaccessibletoadiverseaudience.Anextensivelistof bibliographicreferenceswillhelpthespecialistreadertobuildontheconceptsdeveloped inthebook.Ageneroususeoffigurestoillustrateconceptswillhelpthereadertogain valuableinsightsintothisfascinatingsubject.

Thebookcomprisestwoparts.Thefirstpartprovidesadetailedandsystematictreatmentoftheprinciplesbehindphysiologicalmodellingofpharmacokineticprocesses, inter-individualvariabilityanddruginteractionsforsmallmoleculedrugsandbiologics. ThesecondpartexposesthereadertothepowerfulapplicationsofPBPKmodellingalong thevaluechainindrugdiscoveryanddevelopment.

ACKNOWLEDGMENTS

MysincerethanksareduetoProf.AminRostami-Hodjeganwhoreviewedchaptersofthe bookrelatingtoapplicationsofPBPKmodeling,despiteotherdemandsonhistime.Being attheforefrontofresearchinthefieldofPBPKmodeling,hissuggestionswerevery valuableinstructuringthecontentandupdatingthechapterswiththelatestdevelopments inthearea.IamgratefultoAdamDarwich,NicolaMelillo,DanLiu,andAlexander Cooperwhosehelpwithreviewingmychaptersisgreatlyappreciated.Iwouldliketo thankmycolleaguesatMerckHealthcareKGaA,JoaoNSPereira,UlrikeGraadhand, AndreasDBecker,andAkashKhandelwalwhoalsohelpedreviewsomeofthechapters, andRainerStrotmannforlettingmeusesomefigureshecreated.Mydeepappreciation goestoChristinaPetersforfindingtimeinthemidstofherbusycareertocreatesome excellentfiguresforthisedition.IwouldliketoacknowledgetheenthusiasticsupportI receivedfromVigneshMurugesanforgatheringsomedataforthebook.Iamextremely gratefultoJanSchlender,AnnikaSchneider,andMichaelKrug,whooverthelasttwo years,devotedtheirtimetocreatingthecasestudiesinPK-SimaswellasHELPmanuals. Thisworkwouldnothavebeenpossiblewithouttheconsistentsupportextendedbymy friendsandfamily.

Thisbookisaccompaniedbyacompanionwebsite

www.wiley.com/go/peters/PBPK_modeling_simulations

Thewebsiteincludescasestudies.

SECTION I PRINCIPLES,METHODS ANDBACKGROUND INFORMATION

AREVIEWOF PHARMACOKINETICAND PHARMACODYNAMIC PRINCIPLES

CONTENTS

1.1Introduction

1.2PharmacokineticPrinciples................................4

1.2.1RoutesofDrugAdministration........................4

1.2.2IntravenousBolus.................................4

1.2.3PlasmaProteinBindingandBlood–PlasmaRatio.............9

1.2.4Hepatic,Renal,andBiliaryClearances..

1.2.5Extravascular(Subcutaneous,Intramuscular,andPerOral)Absorption16

1.2.6AbsorptionfromSolidDosageForms....................20

1.2.7RoleofTransportersinADME ........................22

1.2.8LinearandNon-LinearPharmacokinetics..................24

1.2.9IntravenousInfusion,RepeatedDosing,SteadyStateKinetics, andAccumulation.................................25

1.2.10ActiveMetaboliteandProdrugKinetics...................28

1.3PharmacokineticVariability..

PhysiologicallyBasedPharmacokinetic(PBPK)ModelingandSimulations:Principles, Methods,andApplicationsinthePharmaceuticalIndustry,SecondEdition.SheilaAnniePeters. ©2022JohnWiley&Sons,Inc.Published2022byJohnWiley&Sons,Inc. Companionwebsite:www.wiley.com/go/peters/PBPK_modeling_simulations

1.1INTRODUCTION

Thedoseanddosingfrequencyofadrug(dosageregimen),neededtomaintainanefficaciousconcentrationatthesiteofitspharmacologicalaction,foradurationthatislong enoughtoachievethetherapeuticobjective,shouldbesafeandconvenienttothepatient. Toachievethisoptimalexposureatthetargetsiteofpharmacologicalactioninhumans, therateandextentofmultipleprocesseslikedrugabsorptionfromthesiteofadministrationintosystemiccirculation,tissuedistribution,metabolism,andelimination(ADME) areoptimizedduringleadoptimizationindrugdiscovery.Pharmacokinetics(PK)isthe studyofthefateofdruginthebody,thatdeterminesitsexposure/concentrationatthetargeteffectsite,drivenbyADMEprocesses.Therelationshipoftheexposure/concentration atthetargeteffectsitetotheonset,intensity,anddurationofdrugactionisdeterminedby pharmacodynamics(PD).Awell-defined,quantitativerelationshipbetweendrugconcentrationsinbiologicalfluidsandpharmacodynamiceffectcansupporttheselectionofdose anddosingregimenforearlyclinicaltrials.ThischapterisintendedtoprovideabriefoverviewofPKandPDprinciples.Theforthcomingchapterswilldrawheavilyupontheconceptslaidoutinthischapter.

1.2PHARMACOKINETICPRINCIPLES

1.2.1RoutesofDrugAdministration

Commonroutesofdrugadministrationincludeperoral(PO),intramuscular(IM),subcutaneous(SC)intravenous(IV)bolusandinfusion,andintrathecal(aroundthespinalcord). Otherlesscommonroutesincludebuccal,sublingual,rectal,transdermal,inhalational,and topical.Theoralrouteisthemostpreferredroute,butitisnotsuitablefordrugsthatarenot stableinthegut,likeforexamplepeptideandproteindrugs.

1.2.2IntravenousBolus

Intravenous(IV)administrationensuresrapid,completedrugavailabilityfordrugsthatare notintheformofsuspensionsoroils,bybypassingabsorptionbarriers.Drugshavingpoor oralbioavailabilityorcausingunacceptablepainwhenadministeredintramuscularlyor subcutaneouslymaybeadministeredbythisroute.However,itispotentiallyhazardous,

astheinitialhighdrugconcentrationmayelicittoxiceffects.Therefore,theuseofIVroute isrestrictedtosituationsdemandingarapidonsetofactionasinanesthesia,emergency medicineetc.or,whenthepatientispersistentlyvomiting,isunconsciousoristooyoung tosafelyswallowsolidformsofmedication.ControlleddrugadministrationthroughIV infusionsoffersonewaytomitigatetheriskoftoxicity,astheinfusionmaybehaltedinthe unexpectedeventofadverseeffectsduringadministration.Apartfromcausingsevere pain,intra-arterialadministrationisassociatedwiththeriskofdangerouspressurebuildup inthemusclesleadingtodecreasedbloodflowandconsequentlytonerveandmuscledamage.Intra-arterialinjectionsarethereforereservedtosituationsinwhichlocalizationsto specifictissuesaredesired.

1.2.2.1Zero-andFirst-OrderKinetics. Drugeliminationfromthebodymayfollow zeroorfirst-orderkinetics(Figure1.1).Inzero-orderkinetics,aconstantamountofthe drugiseliminatedinacertaintime(e.g.,20mgperhour).Infirst-orderprocesses,aconstantproportionofthedrugiseliminatedinacertaintime(e.g.,20%perhour).Though relativelyrare,zero-orderkineticsmaybeencounteredinintravenousinfusionsaswellas ineliminationofsomedrugs(e.g.ethanol)butwillnotbefurtherelaboratedhere.

ThetemporalchangesinthedrugconcentrationsfollowinganIVbolusinjectionof 50mgofadrugwithfirst-orderkineticsaredepictedinFigure1.2.Theslopeandarea underthecurve(AUC)arethetwoparametersthatcanbeextractedfromtheconcentration-timeprofileasshowninthesemilogarithmicandlinearplotsrespectively.Other usefulpharmacokineticparametersmaybederivedfromthesetwoparameters,aswill becomeevidentfromthemathematicalderivationsbelow.

1.2.2.2Clearance,VolumeofDistribution,Half-life,and AUC. Thefirst-order rateequationdepictingtherateofchangeofdrugconcentrationsintheblood(C)is givenby

Figure1.1. Temporalchangesindrugconcentrationsfor(a)zero-orderand(b)first-order kinetics.

Dose(mg)1000 kel (h–1)070 half-life(h)1

Figure1.2. Linear(a)andsemilogarithmic(b)plotsofdrugconcentrationsvs.time.Area underthecurve(AUC)andslopearethetwoparametersthatcanbeobtainedfromthe plot. C2 and C1 aredrugconcentrationsattimes t2 and t1 respectively. kel,first-order eliminationrateconstant; CL,isthetotaldrugclearance;and V,volumeofdistribution.

where A istheamountofdruginthebodyatanytime, t, kel isthefirst-orderelimination rateconstant,and V isthevolumeofdistributionofthedrug.Theproductof kel and V is definedasthetotalclearance, CL,ofthedrugfromblood.

IntegratingEquation1.1( dC/dt=kel × C),

Takingnaturallogarithmsonbothsides,

Thus, kel maybeobtainedbymeasuringtheslopeofasemilogarithmicplotofdrug concentrationvstime(Figure1.2).

Similarly,integratingEquation1.2( dA/dt=kel × A)yields

where A0 istheinitialamountofdruginthebody,thedoseadministeredasIVbolus. Bringing A0 totheleft-handside,Equation1.5becomes,

Takingthenaturallogarithmsonbothsidesoftheresultingequationleadstothe following:

Thehalf-life(t1/2)ofadrug,definedasthetimetakenforhalfoftheadministereddrug togeteliminatedfromthebody(timetakenfordrugamountinbodytogofrom A0,to A0/2, ortimetakenforthedrugconcentrationtobehalved),isgivenby:

UsingEquation1.8,thehalf-lifeofadrugcanbecalculatedfromtheeliminationrate constant kel whichisobtainedfromthesemilogarithmicplotofconcentrationvs.time (Figure1.2).

IntegratingtheEquation1.2( dA=CL × Cdt)yields

where AUC istheareaunderthedrugconcentration-timeprofile(Figure1.2),whichmay beestimatedfromtheplotbyapplyingthetrapezoidalrule.Recognizingthattheintegral dA overtime0to t isthedose,Equation1.9becomes,

Knowingthedoseadministeredandthe AUC,clearancecanbecalculatedusing Equation1.10.Thevolumeofdistribution, V,ofthedrugcanbedeterminedusing Equation1.11,knowingthatclearanceistheproductof kel and V.

Mostsmallmoleculedrugsbindreversiblytoplasmaproteinssuchasalbuminand alpha-glycoprotein.Drugbindingtoplasmaproteinsisofmajorinterestinpharmacokineticsasitimpactsbothclearanceandvolumeofdistribution.Thusfar,thetermclearance referstobloodclearance.However,measurementsofdrugconcentrationsareoftendonein plasma,aswholebloodcontainscellularelements(redandwhitebloodcells,plateletsetc.)

andproteins(albumin,glycoproteins,globulin,lipoproteinsetc.).Theclearanceofadrug determinedusingtheAUCestimatedfromplasmadrugconcentration-timeprofileis referredtoplasmaclearance.Toconvertplasmaclearancetobloodclearance,thedistributionofadrugbetweenbloodandplasmashouldbemeasured.Theratioofdrugconcentrationsinbloodtoplasmaisknownasblood–plasmaratio(R).

Meanresidencetime isaparametercloselyrelatedtohalf-lifeandisdefinedasthe averagetimedrugmoleculesspendinthebodybeforebeingeliminated.Itisexpressedas thesumoftheresidencetimesofalldrugmolecules,dividedbythetotalnumberofmolecules.If dAe isthenumberofdrugmoleculesexitingthebodyattimeinterval t, MRT is givenby:

DifferentiatingEquation1.5(

Recognizingthattherateofdeclinein A = rateofamountexitingthebody, Ae:

Substitutingfor dAe usingEquation1.15inEquation1.12anddividingbothnumeratoranddenominatorby kel,weget

Thenumeratorofequationisthefirstmomentoftheconcentration–timeintegral,or theareaunderthecurveformedbytimeandtheproductofconcentrationandtime,also calledtheareaunderthefirstmomentcurve(AUMC).Thedenominatorofequationisthe sameas AUC asshownbelow:

Thus, MRT foranIVbolusisgivenbytheratioof AUMC and AUC

1.2.3PlasmaProteinBindingandBlood–PlasmaRatio

Drugsreversiblybindtoplasmaproteinsdependingupontheirlipophilicityandionizability.Ingeneral,thegreaterthelipophilicityofacompound,thegreateritsextentofplasma proteinbinding.Thebindingequilibriumcanberepresentedas:

[P]isproteinconcentration; Cu and Cb aretheunboundandboundconcentrationsofthe drugatequilibrium.Theequilibriumconstant, KA,alsocalledtheaffinityconstantis givenby

n isthenumberofbindingsitespermoleofthebindingprotein.Sincethetherapeuticconcentrationsofmostdrugsarelowrelativetothetotalproteinconcentration,[P]canbe assumedtobethetotalproteinconcentration[P]Total.Thefractionunboundinplasma (fup)canbeobtainedfromEquation1.20intermsof[P]Total orintermsoftheconcentrationsof α1-acidicglycoprotein(AGP),[P]AGP andalbumin[P]albumin:

Thefractionunboundinplasma(fup)thusdependsontheconcentrationsofplasma proteinsandtheaffinityofthedrugtotheplasmaproteins.Albuministheprincipalprotein towhichmanydrugsbind,followedbyAGP.Otherplasmaproteinsincludelipoproteins andglobulins.TheconcentrationsofvariousplasmaproteinsareshowninTable1.1. Albuminisdistributedinintravascular(plasma:43g/kgorgan)andextravascularorgans

TABLE1.1.Plasmaproteins.

Plasmaproteins

Albumin

α1-acidicglycoprotein (AGP)

Binding

Molecular weight(Da) Concentration (μM)

Bindsmainlytoanioniccompounds67000500–700

Bindsmainlytocationicdrugs.E.g.: tricyclicantidepressants

420009–23

(muscle:2.3g/kg,skin:7.7g/kg,liver:1.4g/kg,gut:5g/kg,andothertissues:3g/kg). Albuminexistsabundantlyintheinterstitialfluids.

Albuminhassixdistinctbindingsites,twoofwhichspecificallybindtolong-chain fattyacids,anotherselectivelybindstobilirubinandtwoothersbindtoacidicandlipophilicdrugs.Oneofthesetwodrugbindingsitesbindsdrugslikewarfarin,andphenylbutazone,whiletheotherbindsdrugssuchasdiazepamandibuprofen.Drugsbinding todifferentbindingsitesdonotcompetewithoneanother.Whenmorethan20%ofthe sitesareoccupied,concentrationdependenceofbindingbeginstogetappreciable,ultimatelyleadingtosaturationathigherconcentrations.Saturationofalbuminisrareand restrictedtodrugs(especiallyacids)withhi ghtherapeuticconcentration.However,the bindingsitesofafewdrugssuchastolbutam ideandsomesulfonamidesaresaturated evenattherapeuticconcentrations.AGPconcentrationsbeingmuchlowercompared toalbumin,saturationofAGPoccursatlowertherapeuticconcentrations.Theconcentrationsofseveralplasmaproteinscanbealteredbymanyfactorsincludingstress,surgery,liverdysfunction,andpregnancy.Mostcommonly,diseasestatesincreaseAGP concentrationwhilereducingalbuminconcentration.HigherlevelsofAGPhavebeen reportedinobesepatientswithnephrosis.Stress,cancer,andarthritishavebeenassociatedwithlowerAGPlevels.NeonateshavehigherAGPlevels.AGPisassociatedwith ahigherinter-individualvariabilitycomparedtoalbumin.Reducedlevelsofalbumin havebeenreportedinmyalgiapatients.Drugsthatarehighlyboundtoplasmaproteins areconfinedtothevascularspaceandarenotreadilyavailablefordistributiontoother tissuesandorgans.Manycarboxylicaciddrugsarenoteasilydisplacedfromplasma proteinsandhavealowdistributionvolume.However,thisisnottrueiftheaffinity ofadrugtotissueproteinsishigherthanthattoplasmaproteins.Ultrafiltrationandequilibriumdialysisarethetwocommonlyemployedmethodsforthedeterminationof plasmaproteinbinding(Wrightetal.,1996).Albuministheprincipaldrug-bindingproteinintissuesfollowedbyligandin.Measurementoftissuebindingisnotasstraightforwardasthatinplasma,asthetissuemustbedisrupted,anditisnotreadilyaccessiblefor sampling.Tissueproteinscannotbeeasilyseparatedintoitsconstituentsandcannot easilybequantified.

Theclearance( CL )ofmanylowhepatic-extractiond rugsislimitedbyproteinbinding.Onlytheunbounddrugisavailableforglomerularfiltrationandthereforeforrenal elimination.Anincreaseinunbounddrugconc entrationduetoareducedplasmaprotein bindingwillenablehighertissuedistributionandhigher CL .However,sincethehalf-life ofadrugisdirectlyproportionaltothedistr ibutionvolumeandinverselyproportionalto CL ,thereisnoneteffectonthehalf-life.T hus,changesinplasmaproteinbindingofa drugarenotlikelytobeclin icallyrelevant(BenetandHoener,2002)exceptinthefollowingcases:

(i)Thedrugis>98%boundtoplasmaproteins.Inthiscase,evenasmallshiftin plasmaproteinbindingcanhaveasubstantialeffectontheclearancebutless soonthedistributionvolume,thustemporarilyalteringtheunbounddrug concentrations.

(ii)Thedrughashighhepaticextraction.Theclearanceofsuchdrugswillbedependentonlyonthehepaticbloodflowrateandnotontheproductof fup ×CLint.Thus, anincreaseindistributionvolumeisnotsufficientlycompensatedforbyan increasein CL,leadingtoatemporaryincreaseinunbounddrugconcentrations.

(iii)Thereisarapidequilibriumbetweendrugconcentrationandpharmacological response(e.g.,lidocainewithaPK-PDequilibrationtimeoftwominutes)comparedtothetimerequiredforthebodytoregainequilibrium(about30minutes). Manyanti-arrhythmicdrugsandanestheticsrequireonlyashorttimeforachange inconcentrationtocauseachangeindrugeffect.Inthesecases,theresponseis sensitivetosmalltransientchangesinunbounddrugconcentrations.

Differencesinunbounddrugconcentrationsdiscussedin(i)or(ii)willhaveagreater impactonadrugwithanarrowtherapeuticwindow/safetymargin.Scalingofpharmacokinetic(PK)parameterslikeclearanceorvolumeofdistributionortranslationofpharmacodynamicproperties(Mageretal.,2009)frompreclinicalspeciestomanshouldalways bedonewiththeunboundparameters.Anycomparisons/correlationsofPKparameters shouldalsobedonewithunboundvalues.

Somedrugsalsobindtoanddistributeintoerythrocytes,themaindriversbeinglipophilicity,pKaandactiveuptakeintotheerythrocytes.Bindingsiteswithinerythrocytesare hemoglobin,proteinslikecarbonicanhydrase,andplasmamembrane.The blood–plasma concentrationratio (R)ofadrugisameasureofitsbindinganddistributiontoerythrocytes relativetoplasma.Acompoundhavingasimilarextentofbindingtotheconstituentsof erythrocytesandplasmahasablood–plasmaratioof1.Acidstendtohave R valuesof around0.5andrarelyexceed1,andbasestendtohaveahigherrangeofvalues,often exceeding1whileneutralsandampholyteshavevaluesofaround1(Hinderling, 1997).Uchimuraetal.(2010)describeseveralmethodstodetermine R.Commonly,it isdeterminedbymeasuringtheconcentrationsof 14C-labelleddruginerythrocytes(Ce) andplasma(Cp)infreshlycollectedblood.Then,knowingthehematocrit, H (thevolume fractionofbloodoccupiedbyerythrocytes), R isobtainedasfollows:

AccordingtoEquation1.21,consideringanaverage H of0.45,theminimumvalueof R canbe0.55whichcorrespondstonodistributionintoerythrocytes.However,thereisno upperlimit.Fortacrolimus, R isashighas55andexhibitsconcentrationdependence (Juskoetal.1995). R canalsobepredicted(Paixãoetal.,2009).

Partitioningcanbefastforsomedrugsanddistributionequilibriumisreachedwithin afewsecondstominutes.However,manydrugswithprimaryaminegroupsshowdelayed equilibriumprobablyduetotheformationofSchiffbaseswithmembranefattyacidsand aldehydes.Whilethedisplacementoftheplasma–protein–bounddrugtotheunboundis rapid(exceptforproteinmolecules),displacementoferythrocytebounddrugisrelatively slow.Foracidswithhighplasmaproteinbinding,distributionintoerythrocytescansignificantlyaffectitsdistributionvolume,asothertissuecompartmentsarenotassignificant. Ifblood–plasmaconcentrationratiosexceed1,asisthecaseforlipophilicbases,then plasmaclearancesignificantlyoverestimatesbloodclearanceandcouldevenexceed hepaticbloodflow.Thisisbecausetheconcentrationsmeasuredinplasmawillalways bemuchsmallercomparedtothatmeasuredinwholeblood.Thisisduetogreaterdistributionintotheerythrocyteswhen R is>1.Thus,bloodclearanceisrelatedtoplasmaclearanceandblood–plasmaratiobythefollowingequation:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.