Full download Administrative records for survey methodology asaph young chun pdf docx

Page 1


Administrative Records for Survey Methodology Asaph Young Chun

Visit to download the full and correct content document: https://ebookmass.com/product/administrative-records-for-survey-methodology-asaph -young-chun/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Cognition Marvin Chun

https://ebookmass.com/product/cognition-marvin-chun/

Eckweek, Peasedown-St-John, Somerset : Survey and Excavations at a Shrunken Medieval Hamlet 1988-1990 Andrew Young

https://ebookmass.com/product/eckweek-peasedown-st-john-somersetsurvey-and-excavations-at-a-shrunken-medievalhamlet-1988-1990-andrew-young/

Examples & Explanations for Administrative Law (Examples & Explanations Series) (Ebook PDF)

https://ebookmass.com/product/examples-explanations-foradministrative-law-examples-explanations-series-ebook-pdf/

2D

Materials for Nanophotonics Young Min Jhon

https://ebookmass.com/product/2d-materials-for-nanophotonicsyoung-min-jhon/

Fandom as Methodology: A Sourcebook for Artists and Writers

https://ebookmass.com/product/fandom-as-methodology-a-sourcebookfor-artists-and-writers-catherine-grant/

Process Improvement with Electronic Health Records 1st Edition

https://ebookmass.com/product/process-improvement-withelectronic-health-records-1st-edition/

Modern flexible multi-body dynamics modeling methodology for flapping wing vehicles Altenbuchner

https://ebookmass.com/product/modern-flexible-multi-bodydynamics-modeling-methodology-for-flapping-wing-vehiclesaltenbuchner/

EU Administrative Law 3rd Edition Paul Craig

https://ebookmass.com/product/eu-administrative-law-3rd-editionpaul-craig/

Corn Book for Young Folk Charles Burgess Williams

https://ebookmass.com/product/corn-book-for-young-folk-charlesburgess-williams/

AdministrativeRecordsforSurveyMethodology

WILEYSERIESINSURVEYMETHODOLOGY

EstablishedinPartbyWalterA.ShewhartandSamuelS.Wilks

Editors: MickP.Couper,GrahamKalton,J.N.K.Rao,NorbertSchwarz, ChristopherSkinner,LarsLyberg

EditorEmeritus: RobertM.Groves

AdministrativeRecordsforSurvey Methodology

Editedby AsaphYoungChun StatisticsResearchInstitute StatisticsKorea,RepublicofKorea

MichaelD.Larsen

DepartmentofMathematicsandStatistics SaintMichael’sCollege,UnitedStates

GabrieleDurrant

DepartmentofSocialStatisticsandDemography SouthamptonUniversity,UK

JeromeP.Reiter

DepartmentofStatisticalScience DukeUniversity,UnitedStates

Thisfirsteditionfirstpublished2021 ©2021JohnWileyandSons,Inc.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted, inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptas permittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableathttp:// www.wiley.com/go/permissions.

TherightofAsaphYoungChun,MichaelD.Larsen,GabrieleDurrant,andJeromeP.Reitertobeidentifiedas theauthorsoftheeditorialmaterialinthisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisit usatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkand specificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityor fitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensales materialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductis referredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthe publisherandauthorsendorsetheinformationorservicestheorganization,website,orproductmayprovide orrecommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengaged inrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyour situation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethat websiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhen itisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercial damages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Chun,AsaphYoung,editor.|Larsen,MichaelD.,1977-editor.

Title:Administrativerecordsforsurveymethodology/editedbyAsaph YoungChun,StatisticsResearchInstitute|StatisticsKorea,RepublicofKorea,MichaelD.Larsen, St.Michael’sCollege,Colchester,UnitedStates,GabrieleDurrant,UK,JeromeP. Reiter,UnitedStates.

Description:Firstedition.|Hoboken,NJ:Wiley,2021.|Series:Wiley seriesinsurveymethodology

Identifiers:LCCN2020030571(print)|LCCN2020030572(ebook)|ISBN 9781119272045(cloth)|ISBN9781119272052(adobepdf)|ISBN 9781119272069(epub)

Subjects:LCSH:Surveys–Methodology.|Surveys–Qualitycontrol.

Classification:LCCHA31.2.A362021(print)|LCCHA31.2(ebook)|DDC 001.4/33–dc23

LCrecordavailableathttps://lccn.loc.gov/2020030571

LCebookrecordavailableathttps://lccn.loc.gov/2020030572

CoverDesign:Wiley

CoverImage:©PopTika/Shutterstock

Setin9.5/12.5ptSTIXTwoTextbySPiGlobal,Chennai,India

10987654321

Contents

Preface xv

Acknowledgments xxi ListofContributors xxiii

PartIFundamentalsofAdministrativeRecordsResearch andApplications 1

1OntheUseofProxyVariablesinCombiningRegisterand SurveyData 3 Li-ChunZhang

1.1Introduction 3

1.1.1AMultisourceDataPerspective 3

1.1.2ConceptofProxyVariable 5

1.2InstancesofProxyVariable 7

1.2.1Representation 7

1.2.2Measurement 10

1.3EstimationUsingMultipleProxyVariables 12

1.3.1AsymmetricSetting 13

1.3.2UncertaintyEvaluation:ACaseofTwo-WayData 15

1.3.3SymmetricSetting 17

1.4Summary 20 References 20

2DisclosureLimitationandConfidentialityProtectionin LinkedData 25 JohnM.Abowd,IanM.Schmutte,andLarsVilhuber

2.1Introduction 25

2.2ParadigmsofProtection 27

2.2.1InputNoiseInfusion 29

2.2.2FormalPrivacyModels 30

2.3ConfidentialityProtectioninLinkedData:Examples 32

2.3.1HRS–SSA 32

2.3.1.1DataDescription 32

2.3.1.2LinkagestoOtherData 32

2.3.1.3DisclosureAvoidanceMethods 33

2.3.2SIPP–SSA–IRS(SSB) 34

2.3.2.1DataDescription 34

2.3.2.2DisclosureAvoidanceMethods 35

2.3.2.3DisclosureAvoidanceAssessment 35

2.3.2.4AnalyticalValidityAssessment 37

2.3.3LEHD:LinkedEstablishmentandEmployeeRecords 38

2.3.3.1DataDescription 38

2.3.3.2DisclosureAvoidanceMethods 39

2.3.3.3DisclosureAvoidanceAssessmentforQWI 41

2.3.3.4AnalyticalValidityAssessmentforQWI 42

2.4PhysicalandLegalProtections 43

2.4.1StatisticalDataEnclaves 44

2.4.2RemoteProcessing 46

2.4.3Licensing 46

2.4.4DisclosureAvoidanceMethods 47

2.4.5DataSilos 48

2.5Conclusions 49

2.A.1OtherAbbreviations 51

2.A.2Concepts 52 Acknowledgments 54 References 54 PartIIDataQualityofAdministrativeRecordsandLinking Methodology 61

3EvaluationoftheQualityofAdministrativeDataUsedinthe DutchVirtualCensus 63 PietDaas,EricS.Nordholt,MartijnTennekes,andSaskiaOssen

3.1Introduction 63

3.2DataSourcesandVariables 64

3.3QualityFramework 66

3.3.1SourceandMetadataHyperDimensions 66

3.3.2DataHyperDimension 68

3.4QualityEvaluationResultsfortheDutch2011Census 69

3.4.1SourceandMetadata:ApplicationofChecklist 69

3.4.2DataHyperDimension:CompletenessandAccuracyResults 72

3.4.2.1CompletenessDimension 73

3.4.2.2AccuracyDimension 75

3.4.2.3VisualizingwithaTableplot 78

3.4.3DiscussionoftheQualityFindings 80

3.5Summary 81

3.6PracticalImplicationsforImplementationwithSurveysand Censuses 81

3.7Exercises 82 References 82

4ImprovingInputDataQualityinRegister-BasedStatistics: TheNorwegianExperience 85 CoenHendriks

4.1Introduction 85

4.2TheUseofAdministrativeSourcesinStatisticsNorway 86

4.3ManagingStatisticalPopulations 89

4.4ExperiencesfromtheFirstNorwegianPurelyRegister-Based PopulationandHousingCensusof2011 91

4.5TheContactwiththeOwnersofAdministrativeRegistersWasPutinto System 93

4.5.1AgreementsonDataProcessing 93

4.5.2AgreementsofCooperationonDataQualityinAdministrativeData Systems 95

4.5.3TheForumsforCooperation 96

4.6MeasuringandDocumentingInputDataQuality 96

4.6.1QualityIndicators 96

4.6.2OperationalizingtheQualityChecks 97

4.6.3QualityReports 99

4.6.4TheApproachIsBeingAdoptedbytheOwnersofAdministrative Data 99

4.7Summary 100

4.8Exercises 101 References 104

5CleaningandUsingAdministrativeLists:EnhancedPractices andComputationalAlgorithmsforRecordLinkageand Modeling/Editing/Imputation 105 WilliamE.Winkler

5.1IntroductoryComments 105

5.1.1Example1 105

5.1.2Example2 106

5.1.3Example3 107

5.2Edit/Imputation 108

5.2.1Background 108

5.2.2Fellegi–HoltModel 110

5.2.3ImputationGeneralizingLittle–Rubin 110

5.2.4ConnectingEditwithImputation 111

5.2.5AchievingExtremeComputationalSpeed 112

5.3RecordLinkage 113

5.3.1Fellegi–SunterModel 113

5.3.2EstimatingParameters 116

5.3.3EstimatingFalseMatchRates 118

5.3.3.1TheDataFiles 118

5.3.4AchievingExtremeComputationalSpeed 123

5.4ModelsforAdjustingStatisticalAnalysesforLinkageError 124

5.4.1Scheuren–Winkler 124

5.4.2Lahiri–Larsen 125

5.4.3ChambersandKim 127

5.4.4Chipperfield,Bishop,andCampbell 128

5.4.4.1EmpiricalData 130

5.4.5Goldstein,Harron,andWade 132

5.4.6HofandZwinderman 133

5.4.7TancrediandLiseo 133

5.5ConcludingRemarks 133

5.6IssuesandSomeRelatedQuestions 134 References 134

6AssessingUncertaintyWhenUsingLinkedAdministrative Records 139 JeromeP.Reiter

6.1Introduction 139

6.2GeneralSourcesofUncertainty 140

6.2.1ImperfectMatching 140

6.2.2IncompleteMatching 141

6.3ApproachestoAccountingforUncertainty 142

6.3.1ModelingMatchingMatrixasParameter 143

6.3.2DirectModeling 146

6.3.3ImputationofEntireConcatenatedFile 148

6.4ConcludingRemarks 149

6.4.1ProblemstoBeSolved 149

6.4.2PracticalImplications 150

6.5Exercises 150 Acknowledgment 151 References 151

7MeasuringandControllingforNon-ConsentBiasinLinked SurveyandAdministrativeData 155 JosephW.Sakshaug

7.1Introduction 155

7.1.1WhatIsLinkageConsent?WhyIsLinkageConsentNeeded? 155

7.1.2LinkageConsentRatesinLarge-ScaleSurveys 156

7.1.3TheImpactofLinkageNon-ConsentBiasonSurveyInference 158

7.1.4TheChallengeofMeasuringandControllingforLinkageNon-Consent Bias 158

7.2StrategiesforMeasuringLinkageNon-ConsentBias 159

7.2.1FormulationofLinkageNon-ConsentBias 159

7.2.2ModelingNon-ConsentUsingSurveyInformation 160

7.2.3AnalyzingNon-ConsentBiasforAdministrativeVariables 162

7.3MethodsforMinimizingNon-ConsentBiasattheSurveyDesign Stage 163

7.3.1OptimizingLinkageConsentRates 163

7.3.2PlacementoftheConsentRequest 163

7.3.3WordingoftheConsentRequest 165

7.3.4ActiveandPassiveConsentProcedures 166

7.3.5LinkageConsentinPanelStudies 167

7.4MethodsforMinimizingNon-ConsentBiasattheSurveyAnalysis Stage 168

7.4.1ControllingforLinkageNon-ConsentBiasviaStatistical Adjustment 169

7.4.2WeightingAdjustments 169

7.4.3Imputation 170

7.5Summary 172

7.5.1KeyPointsforMeasuringLinkageNon-ConsentBias 172

7.5.2KeyPointsforControllingforLinkageNon-ConsentBias 172

7.6PracticalImplicationsforImplementationwithSurveysand Censuses 173

7.7Exercises 174 References 174

PartIIIUseofAdministrativeRecordsinSurveys 179

8ARegister-BasedCensus:TheSwedishExperience 181 MartinAxelson,AndersHolmberg,IngegerdJansson,andSaraWestling

8.1Introduction 181

8.2Background 182

8.3Census2011 183

8.4ARegister-BasedCensus 185

x Contents

8.4.1RegistersatStatisticsSweden 185

8.4.2FacilitatingaSystemofRegisters 186

8.4.3IntroducingaDwellingIdentificationKey 187

8.4.4TheCensusHouseholdandDwellingPopulations 188

8.5EvaluationoftheCensus 190

8.5.1Introduction 190

8.5.2EvaluatingHouseholdSizeandType 192

8.5.2.1SamplingDesign 192

8.5.2.2DataCollection 193

8.5.2.3Reconciliation 194

8.5.2.4Results 194

8.5.3EvaluatingOwnership 195

8.5.4LessonsLearned 198

8.6ImpactonPopulationandHousingStatistics 199

8.7SummaryandFinalRemarks 201 References 203

9AdministrativeRecordsApplicationsforthe2020 Census 205 VincentT.MuleJr,andAndrewKeller

9.1Introduction 205

9.2AdministrativeRecordUsageintheU.S.Census 206

9.3AdministrativeRecordIntegrationin2020CensusResearch 207

9.3.1AdministrativeRecordUsageDeterminations 207

9.3.2NRFUDesignIncorporatingAdministrativeRecords 208

9.3.3AdministrativeRecordsSourcesandDataPreparation 210

9.3.4ApproachtoDetermineAdministrativeRecordVacantAddresses 212

9.3.5ExtensionofVacantMethodologytoNonexistentCases 214

9.3.6ApproachtoDetermineOccupiedAddresses 215

9.3.7OtherAspectsandAlternativesofAdministrativeRecord Enumeration 217

9.4QualityAssessment 219

9.4.1MicrolevelEvaluationsofQuality 219

9.4.2MacrolevelEvaluationsofQuality 221

9.5OtherApplicationsofAdministrativeRecordUsage 224

9.5.1Register-BasedCensus 224

9.5.2SupplementTraditionalEnumerationwithAdjustmentsforEstimated ErrorforOfficialCensusCounts 224

9.5.3CoverageEvaluation 225

9.6Summary 226

9.7Exercises 227 References 228

10UseofAdministrativeRecordsinSmallArea Estimation 231

AndreeaL.Erciulescu,CarolinaFranco,andParthaLahiri

10.1Introduction 231

10.2DataPreparation 233

10.3SmallAreaEstimationModelsforCombiningInformation 238

10.3.1Area-levelModels 238

10.3.2Unit-levelModels 247

10.4AnApplication 252

10.5ConcludingRemarks 259

10.6Exercises 259 Acknowledgments 261 References 261

PartIVUseofAdministrativeDatainEvidence-Based Policymaking 269

11EnhancementofHealthSurveyswithDataLinkage 271 CordellGoldenandLisaB.Mirel

11.1Introduction 271

11.1.1TheNationalCenterforHealthStatistics(NCHS) 271

11.1.2TheNCHSDataLinkageProgram 272

11.1.3InitialLinkageswithNCHSSurveys 272

11.2ExamplesofNCHSHealthSurveysthatWereEnhancedThrough Linkage 273

11.2.1NationalHealthInterviewSurvey(NHIS) 273

11.2.2NationalHealthandNutritionExaminationSurvey(NHANES) 274

11.2.3NationalHealthCareSurveys 274

11.3NCHSHealthSurveysLinkedwithVitalRecordsandAdministrative Data 275

11.3.1NationalDeathIndex(NDI) 276

11.3.2CentersforMedicareandMedicaidServices(CMS) 276

11.3.3SocialSecurityAdministration(SSA) 277

11.3.4DepartmentofHousingandUrbanDevelopment(HUD) 277

11.3.5UnitedStatesRenalDataSystemandtheFloridaCancerData System 278

11.4NCHSDataLinkageProgram:LinkageMethodologyandProcessing Issues 278

11.4.1InformedConsentinHealthSurveys 278

11.4.2InformedConsentforChildSurveyParticipants 279

11.4.3AdaptiveApproachestoLinkingHealthSurveyswithAdministrative Data 280

11.4.4UseofAlternateRecords 281

11.4.5ProtectingthePrivacyofHealthSurveyParticipantsandMaintaining DataConfidentiality 282

11.4.6UpdatesOverTime 283

11.5EnhancementstoHealthSurveyDataThroughLinkage 284

11.6AnalyticConsiderationsandLimitationsofAdministrativeData 286

11.6.1AdjustingSampleWeightsforLinkage-Eligibility 287

11.6.2ResidentialMobilityandLinkagestoStateProgramsand Registries 288

11.7FutureoftheNCHSDataLinkageProgram 289

11.8Exercises 291

Acknowledgments 292 Disclaimer 292 References 292

12CombiningAdministrativeandSurveyDatatoImprove IncomeMeasurement 297 BruceD.MeyerandNikolasMittag

12.1Introduction 297

12.2MeasuringandDecomposingTotalSurveyError 299

12.3GeneralizedCoverageError 302

12.4ItemNonresponseandImputationError 305

12.5MeasurementError 307

12.6Illustration:UsingDataLinkagetoBetterMeasureIncomeand Poverty 311

12.7AccuracyofLinksandtheAdministrativeData 312

12.8Conclusions 315

12.9Exercises 316

Acknowledgments 317 References 317

13CombiningDatafromMultipleSourcestoDefinea Respondent:TheCaseofEducationData 323 PeterSiegel,DarrylCreel,andJamesChromy

13.1Introduction 323

13.1.1OptionsforDefiningaUnitRespondentWhenDataExistfrom SourcesInsteadoforinAdditiontoanInterview 324

13.1.2ConcernswithDefiningaUnitRespondentWithoutHavingan Interview 325

13.2LiteratureReview 326

13.3Methodology 327

13.3.1ComputingWeightsforInterviewRespondentsandforUnit RespondentsWhoMayNotHaveInterviewData(UsableCase Respondents) 327

13.3.1.1HowManyWeightsAreNecessary? 328

13.3.2ImputingDataWhenAllorSomeInterviewDataAreMissing 328

13.3.3ConductingNonresponseBiasAnalysestoAppropriatelyConsider InterviewandStudyNonresponse 329

13.4ExampleofDefiningaUnitRespondentfortheNational PostsecondaryStudentAidStudy(NPSAS) 330

13.4.1OverviewofNPSAS 330

13.4.2UsableCaseRespondentApproach 333

13.4.2.1Results 333

13.4.3InterviewRespondentApproach 335

13.4.3.1Results 336

13.4.4ComparisonofEstimates,Variances,andNonresponseBiasUsingTwo ApproachestoDefineaUnitRespondent 338

13.5Discussion:AdvantagesandDisadvantagesofTwoApproachesto DefiningaUnitRespondent 340

13.5.1InterviewRespondents 340

13.5.2UsableCaseRespondents 341

13.6PracticalImplicationsforImplementationwithSurveysand Censuses 342

13.AAppendix 343

13.A.1NPSAS:08StudyRespondentDefinition 343

13.BAppendix 343 References 348

Index 349

Preface

Samplesurveysareusedbygovernmentstodescribethepopulationsoftheircountriesandprovideestimatesforuseinpolicydecisionmaking.Surveyscanfocuson individuals,households,businesses,studentsandschools,patientsandhospitals, plotsofland,orotherentities.Forsurveystobeusefulforofficialpurposesthey mustcoverthetargetpopulation,representtheentiretyofthepopulation,collect informationonkeyvariableswithaccuratemeasurementmethods,andhavelarge enoughsamplesizessothatestimatesaresufficientlypreciseatnationalandsubnationallevels.Achievingthesefourgoalsinanationwidesamplesurveywitha limitedbudgetwhilebeingconductedinashorttimeintervalisverychallenging. Thepurposeofthisbookistoexploredevelopmentsintheuseofadministrative recordsforimprovingsamplesurveys.

Samplesurveysaimtogatherinformationonapopulation.Thetargetpopulationisthespecificpartofthepopulationthatoneaimstosurvey.Somepartsof thebroaderpopulationtypicallyareexcludedfromthetargetpopulationbased oncontactmode,datacollectionmode,thesurveyframeorlist,orconvenience. Individualswithoutaregularaddress,residinginsomeformsofgroupquarters, orwithoutphoneorInternetaccess,forexample,mightbeeffectivelyineligibleto serveasrespondents.Surveyframesrecordcontactinformationandsomeother variablesonmembersofapopulation,butofcoursetheydonotnecessarilyinclude allmembersofthepopulationandhaveup-to-dateinformationoneveryone.Some individualswithaccuratecontactinformationintheframewillproveharderthan otherstocontactorevenrefusetoparticipate.Surveysthenarepotentiallylimitedtoreportingaboutrespondentsandthepopulationtowhichtheyaresimilar. Surveyscannotbeoverlylongorelsetheyriskdeterringpotentialrespondents andcostingalotofmoneyperrespondent.Asaresult,surveyscanaccommodate onlysomanyquestions.Self-reportandlessdetailedquestions,withtheirinherentlimitations,forsensitiveandcomplexitems,oftenmustbeusedforexpediency.Budgetsfornationalsurveyscompetewithothergovernmentinterests.Even largesurveystypicallyhavesmaller-than-desiredsamplesizesinlocalareasandin

subsetsofthepopulation.Despitethesesignificantchallenges,officialstatistical agenciesaroundtheworldgathercriticallyusefuldataonamyriadoftopics.

Theconditionsforconductingsamplesurveyshavechangedimmenselyinthe past100years.Thereislittlechancethatchangewillslowdown.In-personsurveyshavebeenreplacedandaugmentedbysurveysbymail,byphone,andby Internet.Contactanddatacollectionviamultiplemodesnowarestandard.The socialenvironment,too,hasevolved.Responseratesarelower.Despitetechnologicaladvances,peopleareincreasinglybusy.Officialgovernmentsurveyscompete forattentionwithever-moremarketingandpolling.Concernsoverprivacyand confidentialityhavebeenelevated,rightlyso,inthepublicconsciousness.Simultaneously,government,researchers,andthepublicwantmorefromdataandsurveys.Officialsurveyscontributetoidentifyingchallengesandtoimprovementsin society.Itisnotpractical,ormaybeevenpossible,togetmoreoutofoldwaysof conductingsurveys.

Administrativerecordsinageneralsensearerecordskeptforadministrative purposesofthegovernment.Administrativerecordscanpertaintoalmostall aspectsoflife,includingtaxes,wages,education,health,residence,voting,crime, andpropertyandbusinessownership.Doesanindividualhavealicensefora dog,forfishingatpubliclakes,todriveacarormotorcycle,ortoownagun? Doesanindividualreceivepublicassistancethroughagovernmentprogram? Administrativerecords,essentialforgovernmentoperations,containawealthof informationonlargesegmentsofthepopulation,buttherearelimitations.The recordscontaininformationononlysomevariablesonsubsetsoftheoverallpopulation.Informationiscollectedsothatagovernmentcanexecuteitsprogram, butnottypicallyforotherpurposes.Additionalvariablesthatmightbeinteresting forstudypurposeslikelyarenotrecorded.Methodsofrecordingvariablesmight notbethosethatwouldbeusedinascientificstudy.Thoseincludedinan administrativedatafilearenotarandomsamplefromthepopulation.Some administrativerecordsarecollectedoverthecourseofseveralmonthsoryears, insteadofonlyduringasuccincttimeinterval.

Theuseofadministrativerecordshasbeenpartofthesurveyprocessformany decades.Surveytextbookssinceatleastthe1960s(Cochran1977;Kish1967; Hansen,Hurwitz,andMadow1953;Särndal,Swensson,andWretman1992) presentmethodsforusingauxiliaryvariables.Ittypicallyisassumedthatvalues ofauxiliaryvariablesareavailableforallmembersofthepopulationwithout error,oratleastthataggregatetotalsareknown.Theymighthavecomefroma census,fromalargesurveyataprevioustime,oraspartofthesampleframe. Auxiliaryvariablesareusedforstratifiedsurveys,probabilityproportionaltosize sampling,differenceestimation,andratioestimation.Often,theyaretreatedin classicliteratureasknown,fixedvalues.

Despitethelimitationsofadministrativerecords,researchers,includingthe authorsinthisbook,havebeenexploringhow“adrecs”canbeusedtoimprove samplesurveysintoday’sworldandbuildontherecordofpastsuccesses.They haveexaminednewpossibilitiesforusingadministrativerecordinformationto addressfourgoals(coverage,response,variables,andaccuracy)ofofficialsurveys. Increasingtimelinessanddecreasingcoststhroughuseofadministrativerecords alsoareofcontinuinginterest.

Thebookisorganizedintofoursections.Thefirstsectioncontainstwochapters. Chapter1,byLi-ChunZhang,presentsfundamentalchallengesandapproaches tointegratingsurveyandadministrativedataforstatisticalpurposes.Thechapter focusesonadministrativedata,alsocalledregisterorregistrydata,asasourcefor proxyvariables.Theproxyvariablesobtainedfromadministrativesourcescan,for example,enhanceasurveybyprovidingadditionalinformation,beusedforqualityassessmentofresponses,andprovidesubstitutesformissingvalues.Chapter 2,byJohnMarionAbowd,IanSchmutte,andLarsVilhuberaddressesconfidentialityprotectionanddisclosurelimitationinlinkeddata.Linkingdataonpopulationelementsisanessentialstepformanyusesofadministrativerecordsin conjunctionwithsurveydata.Ifindividualsfromasurveycanbelocateduniquely inadministrativerecords,thenvariablesinthoseadministrativerecordscanbe meaningfullyassociatedwiththeiroriginatingunits,therebygeneratinguseful proxyvariables.Datafilesfromsurveys,bothfromthoselinkedtoadministrative informationandthosenot,aremadeavailabletoresearchersandpolicyanalysts. Instandardpractice,valuesofpersonallyidentifyinginformation,suchasnames, fine-levelgeographicinformationincludingaddresses,birthdates,andidentificationnumbers,aresuppressed.Adatafilecontainingarichsetofvariablesfor analysis,however,increasesthechancethatsomeonecouldidentifyauniqueindividualfromthesurveyinthepopulationbasedonthevaluesforseveralvariables. Theconcernisthatsuchanidentificationviolateslegalpromisesofconfidentiality,causesharmtoindividualswhoviewtheirsurveyresponsesandadministrativeinformationassensitive,andendangersfuturesurveyoperations.Chapter2 describesthreeapplications,traditionalstatisticaldisclosurelimitationmethods, andnewdevelopments.Thearticleincludesdiscussionofhowresearchersaccess data(accessmodalities)andtheusefulness(analyticvalidity)ofdatamadeavailableaftermodificationforenhanceddisclosurelimitation.

Section2groupstogetherfivechaptersondataqualityandrecordlinkage. Chapter3,byPietDaas,EricSchulteNordholt,MartjinTennekes,andSaskia Ossen,examinesthequalityofadministrativedatausedintheDutchvirtual census.Achallengeinassessingqualityofadatasourceishavingbetterinformationonsomevariablesforatleastasubsetofthepopulation.CoenHendriks, inChapter4,reportsonimprovingthequalityofdatagoingintoNorwegian register-basedstatistics.InChapter5,WilliamWinklerconsidersawiderangeof

topicsfrominitialcleaningofdatafiles,recordlinkage,andintegratedmodeling, editing,andimputation.Theimpactofcleaningdatafilesthroughstandardizing variables,parsingvariablessuchasaddressesintoseparablecomponents,and checkingforlogicalerrorscannotbeoverstated.Variousapproachesareinuse forlinkingrecordsfromtwofilesonthesamepopulation.Dr.Winklerreviews severalenhancements,includingvariationsinstringcomparatormetricsand memoryindexing,thathavebeenputintopracticeattheU.S.CensusBureau. JerryReiterwritesaboutassessinguncertaintywhenusingadministrative recordsinChapter6.Alongwithsurveyestimates,onetypicallyneedstoprovide estimatesofstandarderror.Howdothequalityofadministrativerecordsand theperformanceofthelinkagetothesurveyimpacttheaccuracyofestimates? Multipleimputation(Rubin1986,1987)couldbeoneareaforfurtherexploration. InChapter7,JosephSakshaugaddressesthespecificquestionofmeasuringand controllingnon-consentbiaswhensurveysandadministrativedataarelinked together.Itisincreasinglycommonforsurveysthatplantolinkrespondentsto administrativedatatoaskforpermissiontodoso.Someindividualsrefusetogive permissionforlinkageorcannotbelinkedduetootherreasons,suchasrefusing toprovideinformationonkeylinkagevariables.Thosewhoserecordsarenot linkablecanbedifferentinmanywaysfromthosewhoserecordsare.Biasdueto non-consenttolinkageandfailedlinkageisthereforeanovelcontributingfactor tototalsurveyerror.

Section3containsfourarticlesonusesofadministrativerecordsinsurveysand officialstatistics.Chapter8byIngegerdJansson,MartinAxelson,AndersHolmberg,PeterWerner,andSaraWestlingdescribesexperiencesinthefirstSwedish register-basedcensusofthepopulation.Inaregister-basedcensus,thepopulation iscountedandcharacteristicsaregathereddirectlyfromadministrativerecords, which,inthiscase,arereferredtoaspopulationregisters.Chapter9byVincent TomMuleandAndrewKelleroftheU.S.CensusBureaupresentsresearchon administrativerecordsapplicationsfortheU.S.2020DecennialCensusofthe population.IntheU.S.,thereisnouniversalpopulationregisterandthecensus involvesenumeratingandgatheringbasicinformationoneverypersoninthe country.Administrativerecordshavebeenusedtoimprovethedatagathering processinthepast.Thischapterdescribesexpandedoptionsforimproved design,qualityandaccuracyassessment,anddealingwithmissinginformation.

Chapter10byAndreaErciulescu,CarolinoFranco,andParthaLahiriconcerns methodsforimprovingsmallareaestimationusingadministrativerecords.Surveysaredesignedtoprovideaccurateestimatesatanationalorlargesubnational level,butnottypicallyforsmallgeographicareasorgroups.Smallareaestimation usesmodelsthatprovidearationaleforborrowingstrengthofsampleacross smallareasforlocalestimation.Themethodologyreliesonanadvantageous bias–variancetrade-offandestimationadmissibilityideas(e.g.EfronandMorris 1975).Administrativerecordscanprovidekeyvariablesforuseinsuchmodels.

Section4looksbeyondstatisticalmethodologyforuseofadministrativerecords withsurveysandprovidesthreearticlesaboutusingadministrativedatain evidence-basedpolicymaking.Theapplicationsareinhealth,economics,and education.Chapter11,byCordellGoldenandLisaMirel,focusesonenhancementofhealthsurveysattheU.S.NationalCenterforHealthStatistics,through datalinkage.Chapter12,byBruceMeyerandNikolasMittag,concernseconomic policyanalysis,withanemphasisonusingadministrativerecordstoimprove incomemeasurements.Chapter13,byPeterSiegel,DarrylCreel,andJames Chromy,discussescombiningdatafrommultiplesourcesinthecontextof educationstudies.

Thebookisintendedforadiverseaudience.Itshouldprovideinsightintodevelopmentsinmanyareasandinmanycountriesforthoseconductingsurveysand theirpartnerswhomanageandseektoimproveadministrativerecords.Several articlespresenttheoryaswellasapplicationandadvicebasedonpracticalexperience.Manychaptersinthebookincludeexercisesforreflectiononthematerialpresented.Thebookcouldbeofinteresttostudentsofstatistics,surveysamplingandmethodology,andquantitativeapplicationsingovernment.Certainly, thebookwillhaveusefulchaptersforavarietyofcourses.

Datasciencehasemergedasatermforanintegrationofstatistics,mathematics,andcomputingandtheirintegrationintheefforttosolvecomplexproblems. Administrativerecordsalongwithlarge-scalesamplesurveysprovideasettingfor thebestapplicationsindatascience.Thisbookhopefullywillmotivatethosein thedatasciencecommunitytolearnaboutsurveysampling,officialstatistics,and arichbodyofworkaimingtoutilizeadministrativerecordsforsamplesurveys andsurveymethodology.

AsaphYoungChun 23May2020 StatisticsResearchInstitute StatisticsKorea,RepublicofKorea

MichaelD.Larsen DepartmentofMathematicsandStatistics SaintMichael’sCollege,UnitedStates

GabrieleDurrant DepartmentofSocialStatisticsandDemography SouthamptonUniversity,UK

JeromeP.Reiter DepartmentofStatisticalScience DukeUniversity,UnitedStates

xx Preface References

Cochran,W.G.(1977). SamplingTechniques,3e.Wiley. Efron,B.andMorris,E.(1975).DataanalysisusingStein’sestimatorandits generalizations. JournaloftheAmericanStatisticalAssociation 70(350):311–319. Hansen,M.H.,Hurwitz,W.N.,andMadow,W.G.(1953). SampleSurveyMethodsand Theory,Volume1:MethodsandApplications;Volume2:Theory.Wiley. Kish,L.(1967). SurveySampling,2e.Wiley.

Rubin,D.B.(1986).Statisticalmatchingusingfileconcatenationwithadjusted weightsandmultipleimputations. JournalofBusinessandEconomicStatistics 4: 87–94.

Rubin,D.B.(1987). MultipleImputationforNonresponseinSurveys.NewYork:Wiley. Särndal,C.-E.,Swensson,B.,andWretman,J.(1992). ModelAssistedSurveySampling. SpringerSeriesinStatistics:Springer.

Acknowledgments

Theoriginofthisbookcanbetracedtothe2017meetingoftheEuropeanSurvey ResearchAssociationandthesession“AdministrativeRecordsforSurveyMethodology”(https://www.europeansurveyresearch.org/conference/programme2017? sess=81).Dr.AsaphYoungChun(thenoftheU.S.BureauoftheCensus).was theleadorganizerandchair.Additionalcoordinatorsofthatsessionincluded Drs.MichaelLarsen(thenatGeorgeWashingtonUniversity,Washington,DC), IngegerdJansson(StatisticsSweden),ManfredAntoni(InstituteforEmployment Research,IAB,Germany),andDanielFussandCorinnaKleinert(LeibnizInstituteforEducationalTrajectories,Germany).Paperspresentedattheconference included“EvaluationoftheQualityofAdministrativeDataUsedintheDutch VirtualCensus”(Schulteetal.2017),“EvaluatingtheAccuracyofAdministrative DatatoAugmentSurveyResponses”(Berzofsky,Zimmer,andSmith2017),and “AssessingAdministrativeDataQuality:TheTruthisOutThere”(Chunand Porter2017).

Dr.ChunwithDr.Larsenproposedthebookentitled AdministrativeRecordsfor SurveyMethodology toWileypublishing.Theintentofthebookwastofollowon theconferenceandreachfurtherintotopicsandapplicationsinadditionalcountriesanddisciplines.Dr.JerryReiter(DukeUniversity)andDr.GabrieleDurrant (UniversityofSouthamptom)joinedtheteamasassistanteditors.Sincetheinceptionofthisbook,Dr.ChunhasjoinedStatisticsKoreaandDr.Larsenhasmoved toSaintMichael’sCollegeinVermont.

Thetopicsdescribedbyauthorsinthisbookhavebeendescribedbythese authorsandothersatinternationalconferencessincethe2017ESRAmeeting.Dr. ChunorganizedpanelsessionsattheJointStatisticalMeetingsin2019entitled “LinkedDatatoAdvanceEvidenceBuildinginPublicPolicy”(https://ww2.amstat .org/meetings/jsm/2019/onlineprogram/ActivityDetails.cfm?SessionID=218399) andin2018entitled“AdministrativeRecordsforSurveyMethodologyandEvidenceBuilding”(https://ww2.amstat.org/meetings/jsm/2018/onlineprogram/

ActivityDetails.cfm?SessionID=215012).Somecontributorstothecurrentbook participatedinthesepanels.

Wewishtothankindividualswhohavecontributedtowardbringingthisvolumetofruition.Manypeoplehaveworkedtogethertomakethisbookpossible. First,editorsmadecommentsandsuggestionstoimprovetheseveralchaptersin thisbook.Second,afewindividualsservedasanonymousreviewersonindividual chapters.Third,eightanonymousreviewsontheoverallschemeofthebookwere providedbythepublisherWiley.Fourth,theindividualauthorshavebeenattentivetocommentsandsuggestionsfromtheeditorsandreviewersandgenerous withtheirtimeinimprovingtheircontributions.Fifth,authorsandreviewershave contributedtotheseeffortswiththesupportoftheirgovernmentagencies,educationalinstitutions,sponsoredfundingorganizations,andcompanies.Togetherall involvedhavemadethepresentworkareality.Weapologizeifwehavefailedto mentionanycontributors.

Finally,wewishtothankindividualsatWileywhoagreedtopublishthis manuscriptandwhohavehelpedusalongtheway.Theirremindersofdeadlines andencouragementshavekeptusgoingthroughsometransitions.Specifically, wewishtothankAssociateEditorKathleenSantoloci,ProjectEditorsBlesy RegulasandLindaChristina,supportpersonMindyOkura-Marszycki,Managing EditorKimberlyMonroe-Hill,andContentRefinementSpecialistViniprammia PremkumarofWileyKnowledge&Learning.

Wehopeyoufindthechaptersinthisbookinterestinganduseful.Welookforwardtonewdevelopmentswiththeuseofadministrativerecordsandotherdata sourceswithsamplesurveys.

References

Berzofsky,M.,Zimmer,S.,andSmith,T.(2017).Evaluatingtheaccuracyof administrativedatatoaugmentsurveyresponses.Presentationatthe7th ConferenceoftheEuropeanSurveyResearchAssociation(ESRA).

Chun,A.Y.,andPorter,S.(2017).Assessingadministrativedataquality:thetruthis outthere.Presentationatthe7thConferenceoftheEuropeanSurveyResearch Association(ESRA).

Schulte,E.,Daas,P.,Tennekes,M.,andOssen,S.(2017).Evaluationofthequalityof administrativedatausedintheDutchvirtualcensus.Presentationatthe7th ConferenceoftheEuropeanSurveyResearchAssociation(ESRA).

ListofContributors

JohnM.Abowd

U.S.CensusBureau 4600SilverHillRoad Washington,DC20233

USA

CornellUniversity Ithaca,NY14853

USA

MartinAxelson StatisticsSweden

Box24300

StockholmSE-10451

Sweden

JamesChromy

RTIInternational ResearchTrianglePark,NC27709

USA

DarrylCreel

RTIInternational Rockville,MD20852

USA

PietDaas StatisticsNetherlands

CBS-weg11

Heerlen theNetherlands,6412EX

AndreeaL.Erciulescu Westat Rockville,MD20850

USA

CarolinaFranco U.S.CensusBureau 4600SilverHillRoad Washington,DC20233

USA

CordellGolden U.S.NationalCenterforHealth Statistics(NCHS) 3311ToledoRoad Hyattsville,MD20782

USA

CoenHendriks StatisticsNorway Akersveien26 0177Oslo

Norway AndersHolmberg StatisticsSweden Box24300 StockholmSE-10451

Sweden

xxiv ListofContributors

IngegerdJansson

StatisticsSweden Box24300

StockholmSE-10451

Sweden

AndrewKeller

U.S.CensusBureau

4600SilverHillRoad Washington,DC20233

USA

ParthaLahiri UniversityofMaryland CollegePark Maryland20742

USA

BruceD.Meyer

U.S.CensusBureau 4600SilverHillRoad Washington,DC20233

USA UniversityofChicago 1307E.60thStreet Chicago,IL60637

USA

LisaB.Mirel

U.S.NationalCenterforHealth Statistics 3311ToledoRoad Hyattsville,MD20782

USA

NikolasMittag CERGE-EI

Politickýchv ˇ ez ˇ n ˚ u7 11121Prague1

CzechRepublic

VincentT.MuleJr.

U.S.CensusBureau 4600SilverHillRoad Washington,DC20233

USA

EricS.Nordholt StatisticsNetherlands

CBS-weg11 Heerlen theNetherlands,6412EX

SaskiaOssen StatisticsNetherlands

CBS-weg11 Heerlen theNetherlands,6412EX

JeromeP.Reiter DukeUniversity Durham,NC27708

USA

JosephW.Sakshaug InstituteforEmploymentResearch RegensburgerStr.104 90478Nuremberg

Germany

LudwigMaximilianUniversityof Munich Ludwigstr.33 80539Munich

Germany

IanM.Schmutte UniversityofGeorgia Athens,GA30602

USA

PeterSiegel

RTIInternational ResearchTrianglePark,NC27709

USA

MartijnTennekes

StatisticsNetherlands

CBS-weg11

Heerlen theNetherlands,6412EX

LarsVilhuber

CornellUniversity Ithaca,NY14853

USA

SaraWestling StatisticsSweden Box24300 StockholmSE-10451

Sweden

WilliamE.Winkler U.S.CensusBureau 4600SilverHillRoad Washington,DC20233

USA

Li-ChunZhang UniversityofSouthampton SouthamptonSO171BJ

UK

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.