Where can buy Nano- and biocatalysts for biodiesel production 1st edition avinash p. ingle ebook wit

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/nano-and-biocatalysts-for-biodiesel-production-1st-ed ition-avinash-p-ingle/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Nanotechnology in Plant Growth Promotion and Protection

Avinash P. Ingle (Ed.)

https://ebookmass.com/product/nanotechnology-in-plant-growthpromotion-and-protection-avinash-p-ingle-ed/

Production of Biodiesel from Non-Edible Sources: Technological Updates A. Arumugam

https://ebookmass.com/product/production-of-biodiesel-from-nonedible-sources-technological-updates-a-arumugam/

Waste and Biodiesel: Feedstocks and Precursors for Catalysts Bhaskar Singh And Abhishek Guldhe (Eds.)

https://ebookmass.com/product/waste-and-biodiesel-feedstocks-andprecursors-for-catalysts-bhaskar-singh-and-abhishek-guldhe-eds/

Nano Technology for Battery Recycling, Remanufacturing, and Reusing (Micro and Nano Technologies) 1st Edition Siamak Farhad (Editor)

https://ebookmass.com/product/nano-technology-for-batteryrecycling-remanufacturing-and-reusing-micro-and-nanotechnologies-1st-edition-siamak-farhad-editor/

Biodiesel Technology and Applications Inamuddin

https://ebookmass.com/product/biodiesel-technology-andapplications-inamuddin/

Nano-Optics: Fundamentals, Experimental Methods, and Applications (Micro and Nano Technologies) 1st Edition Sabu Thomas (Editor)

https://ebookmass.com/product/nano-optics-fundamentalsexperimental-methods-and-applications-micro-and-nanotechnologies-1st-edition-sabu-thomas-editor/

Breeding oilseed crops for sustainable production : opportunities and constraints 1st Edition Gupta

https://ebookmass.com/product/breeding-oilseed-crops-forsustainable-production-opportunities-and-constraints-1st-editiongupta/

Practical Petroleum Geochemistry for Exploration and Production 1st Edition Edition Harry Dembicki (Auth.)

https://ebookmass.com/product/practical-petroleum-geochemistryfor-exploration-and-production-1st-edition-edition-harrydembicki-auth/

Nanofabrication for Smart Nanosensor Applications (Micro and Nano Technologies) 1st Edition Kaushik Pal (Editor)

https://ebookmass.com/product/nanofabrication-for-smartnanosensor-applications-micro-and-nano-technologies-1st-editionkaushik-pal-editor/

Nano-andBiocatalystsforBiodieselProduction

Editedby

AvinashP.Ingle

BiotechnologyCentre

DepartmentofAgriculturalBotany

Dr.PanjabraoDeshmukhKrishiVidyapeeth

Akola,Maharashtra

India

Thiseditionfirstpublished2021 ©2021byJohnWiley&SonsLtd.Allrightsreserved.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailable athttp://www.wiley.com/go/permissions.

TherightofAvinashP.Ingletobeidentifiedastheauthoroftheeditorialmaterialinthisworkhasbeen assertedinaccordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts visitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andthe constantflowofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices,the readerisurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertorinstructionsfor eachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesinthe instructionsorindicationofusageandforaddedwarningsandprecautions.Whilethepublisherand authorshaveusedtheirbesteffortsinpreparingthisbook,theymakenorepresentationsorwarranties withrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimall warranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessfora particularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensales materialsorpromotionalstatementsforthiswork.Thisworkissoldwiththeunderstandingthatthe publisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmay notbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthe publishernorauthorshallbeliableforanylossofprofitoranyothercommercialdamages,includingbut notlimitedtospecial,incidental,consequential,orotherdamages.Thefactthatanorganization,website, orproductisreferredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnot meanthatthepublisherandauthorsendorsetheinformationorservicestheorganization,website,or productmayprovideorrecommendationsitmaymake.Further,readersshouldbeawarethatwebsites listedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitis read.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercial damages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactour CustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317) 572-3993orfax(317)572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynot beavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteat ww.wiley.com.

LibraryofCongressCataloging-in-PublicationDataisappliedfor ISBN:978-1-119-73000-2

CoverDesign:Wiley

CoverImage:Gaspumpnozzle©CoronaBorealisStudio/Shutterstock,Oliveoil©Valentyn Volkov/Shutterstock,Buckyball©maggio07/GettyImages,NpmAmethyltransferase©LAGUNA DESIGN/SciencePhotoLibraryRF/GettyImages

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

Contents

Preface xv ListofContributors xix

1Biodiesel:DifferentFeedstocks,ConventionalMethods,andFactors AffectingitsProduction 1 HosseinEsmaeiliandSajadTamjidi

1.1Introduction 1

1.2DifferentFeedstocksforBiodieselProduction 3

1.2.1VegetableSources 3

1.2.2WasteOils 3

1.2.3AnimalFats 5

1.2.4MicroalgaOil 6

1.3ConventionalMethodsofBiodieselProduction 8

1.3.1Microemulsion 8

1.3.2PyrolysisorThermalCracking 8

1.3.3Transesterification 8

1.4CatalystsUsedinBiodieselProduction 9

1.4.1HomogeneousCatalysts 9

1.4.1.1HomogeneousAlkalineCatalysts 9

1.4.1.2HomogeneousAcidicCatalysts 9

1.4.2HeterogeneousCatalysts 10

1.4.2.1HeterogeneousAlkalineCatalysts 10

1.4.2.2HeterogeneousAcidCatalysts 10

1.4.3EnzymaticCatalysts 11

1.4.4Nanocatalysts 12

1.5EffectsofDifferentFactorsonBiodieselProductionYield 15

1.5.1ReactionTemperature 15

1.5.2AlcoholtoOilMolarRatio 16

1.5.3ReactionTime 17

1.5.4CatalystDosage 17

1.5.5pH 17

1.5.6MixingRate 17

1.5.7FattyAcids 18

1.5.8WaterContent 18

1.6PhysicalPropertiesofBiodiesel 18

1.7Conclusions 19 References 20

2Nano(Bio)Catalysts:AnEffectiveTooltoUtilizeWasteCookingOilfor theBiodieselProduction 31 RushikeshFopase,SwatiSharmaandLalitM.Pandey

2.1Introduction 31

2.2WasteCookingOils 33

2.3PretreatmentofWCOs 33

2.4TransesterificationProcess 34

2.4.1KineticsofTransesterification 36

2.5EnzymaticBiocatalysts 37

2.5.1Lipases 38

2.5.1.1ExtracellularLipases 38

2.5.1.2IntracellularLipases 39

2.6EnzymeImmobilizationTechniques 41

2.7PhysicalMethods 42

2.7.1Adsorption 42

2.7.2Encapsulation 45

2.7.3Entrapment 46

2.8ChemicalMethods 47

2.8.1CovalentBonding 47

2.8.2Cross-Linking 49

2.8.3Summary 50

2.9Conclusions 50 References 51

3AReviewontheUseofBio/NanostructuredHeterogeneousCatalysts inBiodieselProduction 59 SamuelSantos,JaimePuna,JoãoGomesandJorgeMarchetti

3.1Introduction 59

3.2UseofMicro-andNanostructuredHeterogeneousCatalystsinBiodiesel Production 62

3.2.1MicrostructuredHeterogeneousCatalysts 62

3.2.1.1SolidAcidCatalysts 62

3.2.1.2SolidBaseCatalysts 63

3.2.2NanostructuredHeterogeneousCatalysts 65

3.2.2.1GasCondensation 65

3.2.2.2VacuumDeposition 65

3.2.2.3ChemicalDeposition 66

3.2.2.4Sol-GelMethod 66

3.2.2.5Impregnation 67

3.2.2.6Nanogrinding 68

3.2.2.7Calcination-Hydration-Dehydration 68

3.3EnzymaticCatalysis 69

3.3.1HeterogeneousBiocatalysts(Lipases)andTheirImmobilization 69

3.3.1.1PhysicalAdsorption 70

3.3.1.2Entrapment 70

3.3.1.3CovalentBonding 71

3.3.1.4Cross-Linking 72

3.3.2Nano(Bio)Catalysts:ImmobilizationofEnzymesonNanosupports 73

3.3.2.1Nanoparticles 73

3.3.2.2CarbonNanotubes 75

3.3.2.3Nanofibers 76

3.3.2.4Nanocomposites 76

3.4Conclusions 77

References 78

4Calcium-BasedNanocatalystsinBiodieselProduction 93 PritiR.PanditandArchitMohapatra

4.1Introduction 93

4.2Nanocatalysts 94

4.3CaO-BasedNanocatalystsforBiodieselProduction 95

4.3.1SynthesisandCharacterizationofCaO-BasedNanocatalystsUsingWaste Material 99

4.3.2CaONanocatalystsSupportedwithMetalOxidesforBiodieselProduction 102

4.4EffectsofDifferentParametersonBiodieselProduction 105

4.4.1ReactionTime 105

4.4.2Temperature 105

4.4.3MethanoltoOilMolarRatio 106

4.4.4CatalystLoad 106

4.5ReusabilityandLeachingofNanocatalysts 106

4.6Conclusions 107

References 107

5TitaniumDioxide-BasedNanocatalystsinBiodieselProduction 115 ElijahOlawaleAjala,MaryAdejokeAjalaandHarvisBamideleSaka

5.1Introduction 115

5.2NaturalOccurrencesofTitania 117

5.2.1Rutile 117

5.2.2Anatase 118

5.2.3RhombicBrookite 118

5.2.4KaolinClays 118

5.2.5IlmenitesorManaccanite 120

5.3PrecursorsUsedfortheSynthesisofTiO2 NPs 120

5.3.1TitaniumTetrachloride 121

5.3.2TitaniumTetraisopropoxide 121

5.3.3TitaniumButoxide 122

5.4MethodsfortheSynthesisofTiO2 NPs 122

5.4.1PhysicalMethods 122

5.4.1.1BallMilling 122

5.4.1.2LaserAblation/Photoablation 123

5.4.1.3Sputtering 123

5.4.2ChemicalMethods 123

5.4.2.1Microemulsion 123

5.4.2.2Precipitation 124

5.4.2.3Sol-Gel 124

5.4.2.4Hydrothermal 125

5.4.2.5Solvothermal 125

5.4.2.6Electrochemical/Deposition 125

5.4.2.7Sonochemical 126

5.4.2.8DirectOxidation 126

5.4.3BiologicalMethods 126

5.4.3.1GreenSynthesisUsingPlantExtracts 126

5.4.3.2MicrobialSynthesis 128

5.4.3.3Enzyme-MediatedSynthesis 129

5.5MethodsfortheSynthesisofTiO2 -BasedNanocatalysts 130

5.5.1WetImpregnation 130

5.5.2DryImpregnation 131

5.6TiO2 -BasedNanocatalystsforBiodieselProduction 131

5.6.1SulfatedTiO2 Nanocatalysts 131

5.6.2AlkalineTiO2 Nanocatalysts 133

5.6.3Co-TransitionTiO2 Nanocatalysts 133

5.6.4AlkaliTiO2 Nanocatalysts 134

5.6.5BimetallicTiO2 Nanocatalysts 135

5.6.5.1TiO2 -Pd-Ni 135

5.6.5.2TiO2 -Au-Cu 135

5.7OtherTiO2 NanocompositeCatalysts 135

5.8Conclusions 136 References 136

6Zinc-BasedNanocatalystsinBiodieselProduction 143 AvinashP.Ingle

6.1Introduction 143

6.2FeedstocksUsedforBiodieselProduction 144

6.2.1VegetableOils 144

6.2.2MicrobialOils 145

6.2.3AnimalFats 145

6.2.4WasteOils 145

6.2.5Biomass 146

6.3ConventionalMethodsofBiodieselProduction 146

6.3.1Pyrolysis 146

6.3.2Transesterification 146

6.3.2.1HomogeneousAcidandBase(Alkali)-CatalyzedTransesterification 146

6.3.2.2HeterogeneousAcidandBase(Alkali)-CatalyzedTransesterification 147

6.3.2.3EnzymaticTransesterification 147

6.4NanotechnologyinBiodieselProduction 148

6.5Zinc-BasedNanocatalystsinBiodieselProduction 148

6.6Conclusions 151

References 152

7Carbon-BasedNanocatalystsinBiodieselProduction 157 RahulBhagat,HarrisPanakkal,IndarchandGuptaandAvinashP.Ingle

7.1Introduction 157

7.2FeedstocksUsedforBiodieselProduction 158

7.2.1VegetableOils 158

7.2.2Algae 159

7.2.3AnimalFats 160

7.2.4WasteCookingOils 160

7.3ConventionalHeterogeneousCatalysts 160

7.4Carbon-BasedHeterogeneousNanocatalysts 164

7.4.1CarbonNanotubes 166

7.4.2SulfonatedCarbonNanotubes 167

7.4.3Graphene/GrapheneOxide-BasedNanocatalysts 168

7.4.4CarbonNanofibersandCarbonDots 169

7.4.5CarbonNanohorns 170

7.4.6OtherCarbon-BasedNanocatalysts 171

7.5Conclusions 174 References 174

8FunctionalizedMagneticNanocatalystsinBiodieselProduction 183 KalyaniRajkumariandLalthazualaRokhum

8.1Introduction 183

8.2RelevanceofHeterogeneousCatalysisinBiodieselProduction 185

8.3SurfaceModificationandFunctionalizationofNPs 186

8.4ApplicationsofFunctionalizedMagneticNanocatalystsinBiodiesel Production 186

8.4.1Acid-FunctionalizedMagneticNanocatalysts 186

8.4.2Base-FunctionalizedMagneticNanocatalysts 189

8.4.3MagneticNanocatalystsFunctionalizedwithWasteMaterials 190

8.4.4IonicLiquid-ImmobilizedMagneticNanocatalysts 192

8.5Conclusions 194

References 195

9Bio-BasedCatalystsinBiodieselProduction 201 UmerRashid,Shehu-IbrahimAkinfalabi,NaeemahA.IbrahimandChawalit Ngamcharussrivichai

9.1Introduction 201

9.2Biodiesel:APotentialSourceofRenewableEnergy 204

9.2.1ProgressinBiodieselDevelopment 204

9.2.2DevelopmentofBiodieselinMalaysia 205

9.2.3BiodieselFeedstocks 206

9.2.3.1PFADasaBiodieselFeedstock 207

9.2.4CommonMethodsUsedforBiodieselReaction 208

9.2.4.1Esterification 209

9.2.4.2Transesterification 210

9.3HomogeneousCatalysisinBiodieselProduction 211

9.4HeterogeneousCatalysisinBiodieselProduction 213

9.5CatalystSupports 215

9.5.1Alumina 216

9.5.2Silicate 216

9.5.3ZirconiumOxide 217

9.5.4ActivatedCarbon 217

9.6HeterogeneousBio-BasedAcidCatalysts 217

9.7SynthesisofBio-BasedSolidAcidCatalysts 218

9.7.1PalmTreeFrondsandSpikelets 219

9.7.2 Jatrophacurcas219

9.7.3CoconutShells 220

9.7.4RiceHusks 220

9.7.5Bamboo 221

9.7.6CocoaPodHusks 221

9.7.7Hardwoods 222

9.7.8PeanutHulls 222

9.7.9WoodMixtures 223

9.7.10PalmKernelShells 223

9.8MagneticBio-BasedCatalystsforBiodieselProduction 224

9.9CharacterizationofBio-BasedCatalysts 228

9.9.1FieldEmissionScanningElectronMicroscopy(FESEM) 228

9.9.2FourierTransformInfrared(FT-IR) 229

9.9.3X-RayDiffraction(XRD) 229

9.9.4ThermogravimetricAnalysis(TGA) 230

9.9.5Temperature-ProgrammedDesorption–Ammonia(TPD-NH3 ) 231

9.9.6Brunauer–Emmett–Teller(BET)Analysis 231

9.10ReactionParametersAffectingBiodieselProduction 232

9.10.1ReactionTime 232

9.10.2CatalystConcentration 232

9.10.3MethanoltoFat/OilMolarRatio 232

9.10.4ReactionTemperature 233

9.10.5MixingRate 235

9.11Conclusions 235 References 236

10HeterogeneousNanocatalyticConversionofWastetoBiodiesel 249 NilutpalBhuyan,ManashJ.Borah,NeelamBora,DipankaSaikia,DhanapatiDeka andRupamKataki

10.1Introduction 249

10.2RoleofCatalystsinBiodieselProduction 250

10.3FeedstocksforBiodieselProduction 251

10.3.1First-GenerationFeedstocksorEdibleOils 251

10.3.2Second-GenerationFeedstocksorNon-EdibleOils 252

10.3.3Third-GenerationFeedstocksorAlgae 252

10.3.4OtherFeedstocks 253

10.4BiodieselProductionProcess 253

10.4.1Acid-CatalyzedTransesterification 254

10.4.1.1MechanismofAcid-CatalyzedTransesterification 256

10.4.2Alkali-orBase-CatalyzedTransesterification 256

10.4.2.1MechanismofAlkali-orBase-CatalyzedTransesterification 258

10.4.3OtherTypesofTransesterification 258

10.5VariablesAffectingTransesterification 259

10.6HeterogeneousNanocatalystsforBiodieselProduction 260

10.7CharacterizationofNanoparticlesUsedforBiodieselProduction 262

10.7.1X-RayDiffraction(XRD) 262

10.7.2ScanningElectronMicroscopy(SEM) 262

10.7.3EnergyDispersiveX-RayAnalysis(EDX) 262

10.7.4TransmissionElectronMicroscopy(TEM) 264

10.7.5AtomicForceMicroscopy(AFM) 264

10.7.6RamanSpectroscopy 264

10.7.7FourierTransformInfraredSpectroscopy(FT-IR) 264

10.7.8X-RayPhotoelectronSpectroscopy(XPS) 264

10.7.9ThermogravimetricAnalysis(TGA) 265

10.8InfluenceofNanoparticlePropertiesonBiodieselProduction 265

10.9SafetyIssuesAroundtheApplicationofNanocatalystsinBiodiesel Production 267

10.10FuturePerspectives 267

10.11Conclusions 268 References 269

11ApplicationofRareEarthCation-ExchangedNanozeoliteasa SupportfortheImmobilizationofFungalLipaseandtheirUsein BiodieselProduction 279 GuilhermedePaulaGuarnieri,AdrianodeVasconcellos,FábioRogériodeMoraes andJoséGeraldoNery

11.1Introduction 279

11.2CaseStudy 282

11.2.1OriginsofMaterialsandEnzymes 282

11.2.2PreparationofNa-FAUNanozeolites 282

11.2.3Ion-ExchangeExperiments 283

11.2.4EnzymeImmobilizationontoNanozeoliticSupports 283

11.2.5PhysicochemicalCharacterizationofAs-SynthesizedNanozeolitesand Nanozeolite–EnzymeComplexes 284

11.2.6SynthesisofFAAEs 286

11.2.7FAEEYieldsObtainedwithNanozeoliteComplexes 287

11.2.8ModelofLipaseImmobilizationontoZeoliteSupports 287

11.3Conclusions 290 References 290

12Lipase-ImmobilizedMagneticNanoparticles:Promising NanobiocatalystsforBiodieselProduction 295 ToobaTouqeer,MuhammadWaseemMumtazandHamidMukhtar

12.1Introduction 295

12.2TransesterificationforBiodieselProduction 296

12.2.1HomogenousCatalysts 296

12.2.2HeterogeneousCatalysts 297

12.2.3EnzymaticCatalysts 297

12.3AdvantagesofUsingMagneticNanobiocatalysts 297

12.3.1HighEnzymeLoadingandSurfaceAreatoVolumeRatio 298

12.3.2LowMassTransferRestrictionandHighBrownianMovement 299

12.3.3EffortlessRecoveryandReusability 299

12.3.4Stability 299

12.4SynthesisofNanobiocatalysts 299

12.4.1PreparationandFunctionalizationofNanostructures 299

12.4.2ImmobilizingEnzymesonNanomaterials 300

12.4.2.1AdsorptionImmobilization 300

12.4.2.2CovalentImmobilization 301

12.5TechniquesfortheCharacterizationofNanobiocatalysts 302

12.6TransesterificationUsingMagneticNanobiocatalysts 303

12.7FactorsAffectingEnzymaticTransesterification 304

12.7.1TypeofAlcoholUsed 304

12.7.2Solvent 305

12.7.3ReactionTemperature 306

12.7.4WaterContent 306

12.7.5AlcoholtoOilMolarRatio 306

12.7.6SourceofLipase 306

12.8Conclusions 307 References 307

13TechnoeconomicAnalysisofBiodieselProductionUsingDifferent Feedstocks 313 ShemelisNigatuGebremariam

13.1Introduction 313

13.2BiodieselProductionTechnologies 315

13.3FeedstockTypesforBiodieselProduction 317

13.4TechnicalPerformanceEvaluationofBiodieselProduction 318

13.4.1FuelPropertiesofBiodiesel 319

13.4.1.1FlashPoint 319

13.4.2ColdFlowProperties 319

13.4.2.1CloudPoint 320

13.4.2.2PourPoint 320

13.4.2.3ColdFilterPluggingPoint(CFPP) 321

13.4.3CetaneNumber 321

13.4.4Density 322

13.4.5Viscosity 323

13.4.6OxidationStability 323

13.4.7BiodieselQualityStandards 324

13.5EconomicPerformanceEvaluationoftheBiodieselProductionProcess 324

13.5.1FixedCapitalInvestmentCost 326

13.5.2WorkingCapital(Operating)Cost 329

13.6Conclusions 330 References 331

Index 339

Preface

Theeverincreasingpopulationandglobalindustrializationconsiderablyincreasethe energydemand.Thepetroleum-basedfuels(fossilfuels),coal,naturalgas,nuclear, andhydropowerarethemajorenergysourcescurrentlyavailableforuse.However, theutilizationoftheseenergiesexertsseveralnegativeimpactsontheenvironment includingissueslikeglobalwarming,greenhousegasemission,depletionoffossilfuel reserves,etc.Environmentalpollutionduetoreleaseofvariousparticulatemattersand contaminantsexertshazardouseffectsonhumanhealth.Therefore,itisanurgentneed tosearchrenewableandsustainablealternativeenergysourceshavingnovelfeatures likebiodegradability,ecofriendlynature,lowtoxicity,andeconomicalviability.These featuresareusuallypossessedbybiofuelslikebiodiesel.Sincelastfewdecades,biodiesel hasattractedagreatdealofattentionfromscientificaswellasapoliticalcommunitydue totheirmanyadvantagesoverpetroleumdiesellikeasignificantreductioningreenhouse gasemissions,non-sulfuremissions,non-particulatematterpollutants,possessverylow toxicity,biodegradablenature,andrenewability.

Althoughtechnologiesforindustrialproductionofbiodieselarealreadydeveloped,these conventionaltechnologiesreportedtohavesomedrawbacksbecausethoseareenergyand labor-intensive,expensive,timeconsuming,requiredhighamountofwater,etc.Inthiscontext,scientistsarelookingtowardsnanotechnologyasanewhopebecauseithaspotential torevolutionizedifferentareasofresearchaswellaslife.Recentstudies,alreadyconfirmed thatnanomaterialshavingasizeintherangeof1-100nmplayacrucialroleindifferent processes(i.e.esterificationandtransesterification)usedforbiodieselproduction.Nanomaterialsexhibitnovelandoutstandingpropertiesincludingstrongcatalyticactivitydue toitsminutesize.Todate,variousnanomaterialshavebeeninvestigatedandemployed asnanoandnanobiocatalystsinenhancedbiodieselproductionfromvariousrenewable sourceslikevegetableoils,microbialoils,wastecookingoils,animalfats,wastematerials, etc.Consideringthesefacts,theeditorattemptedtodiscusstherecentadvancesandroleof differentnanocatalysts,biocatalystsandnanobiocatalystsinbiodieselproductionthrough thisbook.

Inthisbook,therearetotal13chapters,whicharebroadlyfocusedontherecent advancesandtheroleofdifferentnanoandbiocatalystsfortheproductionofbiodiesel throughesterificationandtransesterification.Chapter1isanintroductorychapter,it mainlyfocusedonimportantfeedstocksusedfortheproductionofbiodiesel.Inaddition, italsoemphasizedonvariousconventionalmethodscommonlyemployedanddifferent

factorsaffectingtheindustrialproductionofbiodiesel.Chapter2isbasedonroleof differentnano(bio)catalystsintheproductionofbiodieselusingwastecookingoil.Italso highlightedontheissuesofwastecookingoildisposalanditsmanagementthroughtheir useasimportantfeedstockforbiodieselproduction.Authorsalsodescribedtheprocesses forthedevelopmentofnano(bio)catalystsviadifferentenzymeimmobilizationtechniques. InChapter3authorsreviewedtheroleofdifferentbio/nanostructuredheterogeneous catalystsinbiodieselproduction.Chapter4specificallyfocusedontheroleofcalciumoxide nanocatalystsintheproductionofbiodieselbecauseitisrevealedthatamongdifferent nanocatalysts,metaloxide-basednanocatalystsshowedbettercatalyticperformancesas farastransesterificationapproachisconcerned.Inthesimilarline,Chapter5discusses theroleoftitaniumdi-oxidenanocatalystsinbiodieselproduction.Inaddition,authors alsodescribedthedifferentprecursorscommonlyemployedinsynthesisoftitanium di-oxidenanoparticlesanddifferentsynthesismethods.Chapter6dealswithrecent advancesinthesynthesisofzinc-basednanocatalystsandtheireffectiveapplications inbiodieselproduction.Moreover,thischapterbrieflyhighlightedaboutthedifferent commonfeedstocksusedfortheproductionofbiodieselandconventionalapproaches routinelyinpracticeforindustrialproductionofbiodiesel.Chapter7examinesthe applicationsofanotherimportantkindofnanocatalystsi.e.carbon-basedheterogeneous nanocatalystsfortheproductionofbiodiesel.Chapter8emphasizesononeofthemost importantcategoryofnanocatalysts(functionalizedmagneticnanocatalysts)inbiodiesel production.Inrecentpast,scientificcommunityworkinginthisfieldsfocusingonthe useofmagneticnanocatalystsforrapidandeconomicallyviableproductionofbiodiesel. Themainadvantageofusingfunctionalizedmagneticnanocatalystsistheycanbeeasily recoveredduetotheirstrongmagneticnatureandreuseformultipletimesmakingthe down-streamprocessingeasyandcost-effective.Chapter9isabouttheapplicationof bio-basednanocatalystsforbiodieselproduction.Chapter10isdedicatedtotheuseof variousheterogeneousnanocatalystsintheconversionofwastetobiodiesel.Itdiscussed abouttheeffectivenessofheterogeneousnanocatalystsoverotherconventionalcatalysts. Chapter11focusedonapplicationofrare-earthcationexchangednanozeoliteasasupport fortheimmobilizationoffungallipaseandtheiruseinbiodieselproduction.Nanozeolites areconsideredtobeoneofthemostsuitablesupportfortheimmobilizationofenzymes commonlyemployedinbiodieselproductionbecausethesekindofsupportsprovides highstabilitytoenzymesandprotectsitfrominactivations.Chapter12emphasizeson applicationoflipaseimmobilizedmagneticnanoparticlesaspromisingnanobiocatalysts inbiodieselproduction.Thischaptersbrieflydiscussedaboutvarioustechniquesusedfor enzymeimmobilizationoflipaseonmagneticnanoparticlesandtheiradvantagesover othercatalystsasfarasbiodieselproductioninconcerned.Finalchapter13isfocused onthemostimportantandrelevantaspectsi.e.techno-economicalanalysisofbiodiesel productionusingdifferentfeedstocks.Thetechno-economicalanalysisofanyproductsis ofutmostimportantfromindustrialpointofview.Thisistheonlyanalysiswhichhelpto runtheindustrysmoothly.

Overall,thisbookcoversveryinformativechapterswrittenbyoneormorespecialists, expertsintheconcernedtopic.Inthisway,Iwouldliketoofferaveryrichguidefor researchersinthisfield,undergraduateorgraduatestudentsofvariousdisciplineslike biotechnology,nanotechnology,biofuelsectors,biorefiningfields,etc.andalliedsubjects.

Inaddition,thisbookisusefulforpeopleworkinginvariousbiorefiningindustries, regulatorybodies,andenergyrelatedorganizations.

Iwouldliketothankallthecontributorsfortheiroutstandingeffortstoprovide state-of-the-artinformationonthesubjectmatteroftheirrespectivechapters.Their effortswillcertainlyenhanceandupdatetheknowledgeofthereadersabouttheroleof nanotechnologyingeneralandnano(bio)catalystsinparticularforbiodieselproduction.I alsothankeveryoneintheWileyteamfortheirconstanthelpandconstructivesuggestions particularlytoHigginbothamSarah(SeniorEditor),Stefanie,Nivetha,andotherteam members.IamalsothankfultoScienceandEngineeringResearchBoard(SERB),DepartmentofScienceandTechnology,GovernmentofIndia,NewDelhiforprovidingfinancial assistanceintheformof“RamanujanFellowship”.

Ihopethatthebookwillbeusefulforallthereaderstofindtherequiredinformationon thelatestresearchandadvancesinthefieldofbiorefineryandbiofuelindustries.

AvinashP.Ingle

ListofContributors

MaryAdejokeAjala DepartmentofChemicalEngineering UniversityofIlorin Ilorin,KwaraState Nigeria

ElijahOlawaleAjala DepartmentofChemicalEngineering UniversityofIlorin Ilorin,KwaraState Nigeria

Shehu-IbrahimAkinfalabi InstituteofAdvancedTechnology UniversityPutraMalaysia Serdang

Malaysia

RahulBhagat DepartmentofBiotechnology GovernmentInstituteofScience Aurangabad,Maharashtra

India

NilutpalBhuyan DepartmentofEnergy TezpurUniversity Assam

India

NeelamBora DepartmentofEnergy TezpurUniversity Assam

India

ManashJ.Borah DepartmentofEnergy TezpurUniversity Assam

India

DhanapatiDeka DepartmentofEnergy TezpurUniversity Assam

India

FábioRogériodeMoraes PhysicsDepartment

SãoPauloStateUniversity–UNESP

SãoPaulo

Brazil

AdrianodeVasconcellos PhysicsDepartment

SãoPauloStateUniversity–UNESP

SãoPaulo

Brazil

xx ListofContributors

HosseinEsmaeili DepartmentofChemicalEngineering BushehrBranch IslamicAzadUniversity Bushehr

Iran

RushikeshFopase Bio-Interface&Environmental EngineeringLab,Departmentof BiosciencesandBioengineering IndianInstituteofTechnologyGuwahati Guwahati

India

ShemelisNigatuGebremariam HawassaUniversity WondoGenetCollegeofForestryand NaturalResources

Shashemene

Ethiopia

JoãoGomes

CERENA–CenterforNaturalResources andInstitutoSuperiorTécnico LisbonUniversity Lisbon Portugal ChemicalEngineeringDepartment InstitutoSuperiordeEngenhariadeLisboa LisbonPolytechnic,Lisbon

Portugal

GuilhermedePaulaGuarnieri PhysicsDepartment SãoPauloStateUniversity–UNESP SãoPaulo

Brazil

IndarchandGupta DepartmentofBiotechnology GovernmentInstituteofScience Aurangabad,Maharashtra

India

NaeemahA.Ibrahim InstituteofAdvancedTechnology UniversityPutraMalaysia Serdang

Malaysia

AvinashP.Ingle BiotechnologyCentre DepartmentofAgriculturalBotany Dr.PanjabraoDeshmukhKrishi Vidyapeeth Akola

Maharashtra

India

RupamKataki DepartmentofEnergy TezpurUniversity Assam

India

JorgeMarchetti FacultyofSciencesandTechnology NorwegianUniversityofLifeSciences Ås,Norway

ArchitMohapatra GujaratBiotechnologyResearchCentre Gandhinagar,Gujarat

India

HamidMukhtar InstituteofIndustrialBiotechnology GovernmentCollegeUniversity Lahore

Pakistan

MuhammadWaseemMumtaz DepartmentofChemistry UniversityofGujrat

Gujrat

Pakistan

JoséGeraldoNery PhysicsDepartment

SãoPauloStateUniversity–UNESP SãoPaulo

Brazil

ChawalitNgamcharussrivichai CenterofExcellenceinCatalysisfor BioenergyandRenewableChemicals (CBRC),FacultyofScience ChulalongkornUniversity Pathumwan

Thailand

CenterofExcellenceonPetrochemicaland MaterialsTechnology(PETROMAT) ChulalongkornUniversity Pathumwan

Thailand

HarrisPanakkal DepartmentofBiotechnology GovernmentInstituteofScience Aurangabad,Maharashtra

India

LalitM.Pandey Bio-Interface&Environmental EngineeringLab,Departmentof BiosciencesandBioengineering IndianInstituteofTechnologyGuwahati Guwahati

India

PritiR.Pandit GujaratBiotechnologyResearchCentre Gandhinagar,Gujarat

India

ListofContributors

JaimePuna CERENA–CenterforNaturalResources andInstitutoSuperiorTécnico LisbonUniversity

Lisbon

Portugal ChemicalEngineeringDepartment InstitutoSuperiordeEngenhariadeLisboa LisbonPolytechnic,Lisbon

Portugal

KalyaniRajkumari DepartmentofChemistry

NationalInstituteofTechnologySilchar India

DepartmentofChemistry C.V.RamanGlobalUniversity Bhubaneswar

India

UmerRashid InstituteofAdvancedTechnology UniversityPutraMalaysia Serdang

Malaysia

LalthazualaRokhum DepartmentofChemistry NationalInstituteofTechnologySilchar India

DepartmentofChemistry UniversityofCambridge Cambridge,UK

DipankaSaikia DepartmentofEnergy TezpurUniversity

Assam

India

xxii ListofContributors

HarvisBamideleSaka DepartmentofChemicalEngineering UniversityofIlorin Ilorin,KwaraState

Nigeria

SamuelSantos CERENA–CenterforNaturalResources and InstitutoSuperiorTécnico,Lisbon University Lisbon Portugal

SwatiSharma Bio-Interface&Environmental EngineeringLab,Departmentof BiosciencesandBioengineering IndianInstituteofTechnologyGuwahati Guwahati

India

SajadTamjidi DepartmentofChemicalEngineering BushehrBranch IslamicAzadUniversity Bushehr

Iran

ToobaTouqeer DepartmentofChemistry UniversityofGujrat

Gujrat

Pakistan

Biodiesel:DifferentFeedstocks,ConventionalMethods,and FactorsAffectingitsProduction

HosseinEsmaeili 1 andSajadTamjidi 2

1 DepartmentofChemicalEngineering,BushehrBranch,IslamicAzadUniversity,Bushehr,Iran

1 DepartmentofChemicalEngineering,ShirazBranch,IslamicAzadUniversity,Shiraz,Iran

1.1Introduction

Fossilfuelsareanon-renewablesourceofenergywhosereservesarelimited,andtheytake millionsofyearstodevelop(Bankovi ´ c–Ili ´ cetal.2014).Thewidespreaduseofpetroleum derivativesinrecentdecadeshasledtoenergycrisis,globalclimatechange,environmental pollution,andmanymedicalproblems,suchascardiovasculardiseasesandcancers(Dhiraj andMangesh2012).Collectively,alltheseconcerns,alongwithotherslikeglobalwarming andgreenhousegasemissions,havespurredthesearchforalternativefuels(e.g.,biohydrogen,biodiesel,bioethanol,biomethanol,biogas,naturalgas,andbioelectricity)thathave relativelylessadverseimpactsonandgreatercompatibilitywiththeenvironment(Demirbas2004;Nascimentoetal.2011;Fahdetal.2014).Accordingtoareportpresentedbythe InternationalEnergyAgency(IEA),by2035,worldenergyconsumptionwillincreaseby 33%(InternationalEnergyAgency2013),anditisanticipatedthat40%ofthegrowthwill comefromrenewablesources.Amongtherenewableenergies,biodieselhasrecentlyexperiencedsignificantdevelopmentsthankstoitsoutstandingadvantages,includinghigher cetanenumber(CN),nontoxicity,andhigherflashpointcomparedwithfossilfuels(Liu etal.2010;Hasheminejadetal.2011).Biodieselisabiofuelwithpropertiescloselymimickingthoseofdiesel,butwithoutunfavorablecontentssuchasnitrogen,sulfur,andpolycyclicaromatics.Thisrenewablebiofuelisamono-alkylestersoflong-chainfattyacidsthat isproducedfromvegetableoil,wasteedibleoil(WEO),wastecookingoil(WCO),waste non-edibleoil,animalfats,andmicroorganismssuchasalgae,fungi,andbacteria(Kralova andSjoblom2010;NabiandHoque2008).

Therearefourprimarymethodsofbiodieselproduction:blending,microemulsion, thermalcracking(pyrolysis),andtransesterification.Amongthese,thetransesterification reactionisthemostcommonlyusedfortheconversionofoilsintobiodiesel,becausethe fuelproducedbythismethodhasbeenfoundtobehighlycompatiblewithconventional dieselengines.Directuseofthevegetableoil-derivedbiodieseldamagessuchenginesdue tothehighviscosityoftheoil(Ramlietal.2017).Themostcommonshort-chainalcohols usedforthispurposeincludemethanolandethanol;thankstoitslowerprice,methanol Nano-andBiocatalystsforBiodieselProduction, FirstEdition.EditedbyAvinashP.Ingle. ©2021JohnWiley&SonsLtd.Published2021byJohnWiley&SonsLtd.

2

1Biodiesel:DifferentFeedstocks,ConventionalMethods,andFactorsAffectingitsProduction istheeconomicalcoholofchoice(Ramadhasetal.2005).Also,removalandrecoveryof methanolfromthefinalproduct(biodiesel)iseasierthanforotheralcohols(Allahand Alexandru2016).

Therearethreekindsofcatalystscommonlyusedforthisprocess:alkaline,acidic, andenzymatic.Acidicandalkalinecatalystscomeinbothhomogeneousandheterogeneoustypes.Homogeneousalkalinecatalysts(HACs)likeNaOHandKOHhavesome disadvantages,includingcorrosionproblems,nonrecyclability,andtheproductionofa largeamountofwaste,whileheterogeneouscatalystshaveseveraladvantages,including appropriaterecyclability,norequirementforawashingstep,andhigherefficiencyin biodieselproductioncomparedtohomogeneousones.However,enzymaticcatalystsalso haveseverallimitations,includingalowreactionrate,highcostoftheenzymes,and deactivationofthecatalyst,especiallywhenusedinindustry(Linetal.2011;Talhaand Sulaiman2016).Giventheselimitations,theuseofnanocatalystsforbiodieselproduction hasbeenextensivelyincreasedinrecentyears.Nanocatalystshaveseveraloutstanding advantages,includingreusability,highcatalyticactivity,highsurfacearea,andhigh efficiency(Ambatetal.2019;Seffatietal.2020).Apartfromthecatalyst,thereareseveral otherfactorsthataffecttheefficiencyofbiodieselproduction.Thesemainlyinclude reactiontime,reactiontemperature,alcoholtooilmolarratio,typeandconcentrationof catalyst,stirringrate,andfeedstock(oil)used(VermaandSharma2016).

Biodieselisalong-chainfatty-acidmethylester(FAME)derivedbythereactionbetween alcohol,oil,andanappropriatecatalyst(Pasupuletyetal.2013).Intheconventionalprocess,theoilreactswiththealcohol(methanol,ethanol,propanol,orbutanol)inthepresenceofacatalyst(alkaline,acidic,orenzymaticcatalyst)toproduceaFAME(biodiesel)as themainproductandglycerinasabyproduct(Sundusetal.2017).AccordingtotheUnited StatesEnvironmentalProtectionAgency(USEPA),theuseofbiodieselinavehicle’sengine decreasestheemissionofhydrocarbon(HC)(about70%)andofcarbonmonoxideandparticulatematter(50%)comparedtodieselfuel,butincreasesthatofNOx (about10%)(Geller andGoodrum2004).Phosphorusisanotherhazardousgaspresentindieselthatcanharm thecatalyticpartofthecontrolsysteminthevehicleengine.Therefore,theconcentration ofphosphorusintheoilmustbecontrolledinordertoprotectthesystem.Also,thepresenceofsulfurcandamagethecatalyticconverterandemissioncontrolsystem.Atpresent, thesulfurcontentincommercialbiodieselisnearlyzero,whichisoneofitsmainadvantagescomparedtopetro-diesel(Chenetal.2018).Moreover,thepresenceofwaterintheoil causeshydrolysisoftriglyceridetofreefattyacid(FFA)andthereforeleadstosoapformation.Ifwaterconcentrationintheoilismorethan0.05wt%,watermustberemoved(Chen etal.2018).Depositionofmetalssuchascalcium,magnesium,sodium,andpotassiumcan furthercausealotofproblemsinvehicleengines(Balasubramaniyan2016).

Theaimofthischapteristodiscussthevariousfeedstocks(i.e.oilsources)available(e.g. vegetableoil,microalgaoil,animalfat,andwasteoil)andtheirconversioninbiodieselusing differentconventionalheterogeneouscatalysts.Inaddition,recentadvancesandtheapplicationandimpactofheterogeneousnanocatalystsonbiodieselproductionarebrieflydiscussed,andtheimpactofvariousreactionparameterssuchastemperature,reactiontime, catalystcontent,andalcoholtooilratioonthetransesterificationreactionisdescribed. Specialfocusisgiventothephysicalpropertiesofbiodiesel,includingpourpoint,flash point,kinematicviscosity,CN,density,acidnumber,cloudpoint,andK + Na + Mg + Ca concentration,andtheircomparisonwithinternationalstandards.

1.2DifferentFeedstocksforBiodieselProduction

Morethan70%ofthecostofbiodieselproductionisrelatedtotherawmaterials.Biodiesel andpetro-dieselcostabout3.03and2.46US$/gal,respectively(Chenetal.2018).Inthe literature,anumberofdifferentfeedstocksarecommonlyusedforbiodieselproduction, includingvegetableoils,WEOs,animalfats,andmicroalgaoil(Channietal.2016).

1.2.1VegetableSources

Thevegetableoilsusedtoproducebiodieselcanbeeitheredibleornon-edible.More than95%ofthebiodieselproducedintheworldisproducedfromedibleoil,whichis easilyobtainedfromtheagriculturalindustries.However,large-scaleproductionofedible oil-derivedbiodieselmayhaveanegativeeffectonhumanlife,becauseitleadstoreduction offoodsupply(Guietal.2008).Themostcommonedibleoilsourcesusedforbiodiesel productionincludesunfloweroil(Visseretal.2011),rapeseedoil,peanutoil,sesameoil, riceoil,coconutoil(Karmakaretal.2010),soybeanoil,cornoil(AlptekinandCanakci 2008),andhazelnutoil(SanliandCanakci2008).

Incontrasttoedibleoil,non-edibleoilscan’tbeconsumedbyhumans,becauseofthe presenceoftoxiccompoundsinthesesources(Guietal.2008).Commonexamplesare palmoil(Salamatiniaetal.2013),jatrophaoil(Pramanik2003),cottonseedoil(Nabietal. 2009),castoroil(Visseretal.2011), Moringaoleifera seedoil(Ogbunugaforetal.2011), neemoil,jojobaoil,andseamango(Guietal.2008).Castoroilmaybethebestoptionfor biodieselproductionbecauseitdoesnotrequireheatandenergy,whicharenecessaryfor othersourcesofvegetableoil(Manan2013).

Currently,edibleoilsareinuseinseveralcountries,leadingtoincreasesintheircost,and hencethecostofthebiodieselproduced.Inthiscontext,itiseconomicallymoreefficientto usenon-edibleoils(Karmakaretal.2010).Table1.1showsthebiodieselconversionyield (BCY)ofdifferentvegetableoilsusedinthepresenceofHACs,suchasKOHandNaOH.The yieldofbiodieselproductioniscalculatedthroughEq.(1.1),proposedbySeffatietal.(2019):

1.2.2WasteOils

WEOsareoil-basedsubstancescontaininganimalorvegetablematterthatcanbeusedfor thepreparationoffoodorincookingbutarenotsuitableforconsumptionbyhumanbeings. TheamountofWEOproducedinanycountryaroundtheworldislarge,varyingdepending onthequantityofedibleoilconsumed.Morethan15milliontonsofWEOareproduced annuallyaroundtheglobe,mainlybycountrieslikeChina(4.5milliontons),Malaysia(0.5 milliontons),theUnitedStates(10milliontons),Taiwan(0.07milliontons),Canada(0.12 milliontons),andJapan(0.45–0.57milliontons),aswellasEuropeannations(0.7–1million tons)(Guietal.2008).Thisoilsourcecanbeconvertedtobiodieselviacatalyticandnoncatalyticreaction(supercriticaltransesterificationprocess)(Guietal.2008).Thedisposal ofWEOsandWCOsisamajorproblemastheycanpollutetheenvironment.Developed

1Biodiesel:DifferentFeedstocks,ConventionalMethods,andFactorsAffectingitsProduction

Table1.1 BiodieselproductionfromvegetableoilsinthepresenceofHACs(NaOHandKOH).

OilsourceCatalysttypeBCY(%)References

JojobaoilKOH83.5Bouaidetal.(2007)

RapeseedoilKOH97Jazieetal.(2012)

RapeseedoilNaOH92Jazieetal.(2012)

PeanutoilKOH95Jazieetal.(2012)

PeanutoilNaOH88Jazieetal.(2012)

Jatrophacurcas oilNaOH98Chitraetal.(2005)

Jatrophacurcas oilNaOH90BerchmansandHirata(2008)

Jatrophacurcas oilKOH95PatilandDeng(2009)

Jatrophacurcas oilKOH99Syametal.(2009)

Jatrophacurcas oilKOH93SahooandDas(2009)

Jatrophacurcas oilKOH99Tiwarietal.(2007)

RapeseedoilKOH96RashidandAnwar(2008)

SunfloweroilNaOH97.1Winayanuwattikunetal.(2008)

PeanutoilNaOH89Winayanuwattikunetal.(2008)

CornoilKOH96Winayanuwattikunetal.(2008)

CamelinaoilKOH97.9FrohlichandRice(2005)

CanolaoilKOH95Winayanuwattikunetal.(2008)

CottonoilNaOH96.9Winayanuwattikunetal.(2008)

PumpkinoilNaOH97.5Winayanuwattikunetal.(2008)

Jatrophacurcas oilNaOH98Winayanuwattikunetal.(2008)

Pongamiapinnata oilKOH98SahooandDas(2009)

countrieshaveadoptedpoliciesthatpenalizethedisposalofWEOsorWCOsviawater drainage.Biodieselproductionmaythusbethebestapproachtotheirdisposal,beingeconomicallyviableandefficient.InformationondieseldemandandtheavailabilityofWCOs indifferentcountriesshowsthatWCO-derivedbiodieselmaynotbesufficienttocompletely replacepetro-diesel.However,asignificantamountofbiodieselcanbeproducedfrom WCOs,helpingreducedependencyonoil-basedfuel.TheamountofWCOproducedinany onecountryvariesaccordingtotheutilizationofvegetableoil(KulkarniandDalai2006).

ItiswellinvestigatedthatWEOorWCOcanbeusedasalow-costfeedstockforthe productionofbiodiesel.However,duetothepresenceofparticulatecontaminantsand impuritiesinWCOs,biodieselproducedfromthesesourcesshowsrelativelyhighvaluesof pourpointandcloudpoint.Therefore,pretreatmentormodificationofsuchoilsisessential priortotheiruseforbiodieselproduction.Thiscanbeachievedusingparticularchemical processes(Ghaneietal.2014).AccordingtoAllahandAlexandru(2016),theoverallcost involvedintheproductionofbiodieselusingWCOsiscomparativelylessthanthatwith vegetableoilsanddieselfuel.Table1.2showstheBCYofbiodieselproductionfromWCOs inthepresenceofdifferentcatalysts.

Table1.2 BiodieselproductionfromWCOsinthepresenceofdifferentcatalysts.

Catalyst

KOH57.319.050.991.2896.33Dhingraetal.(2016)

CaO508:l11.596Degfieetal.(2019)

Ba/CaO656:13388Balakrishnanetal. (2013)

Copper/zincoxide558:1120.83397.71GurunathanandRavi (2015)

4Mn–6Zr/CaO8015:13392.1Mansiretal.(2018)

MgO6524:12193.3Ashoketal.(2018)

Calcium diglyceroxide 609:110.593.5Guptaetal.(2015)

KOH/clinoptilolite652.25:18.10.22397.45Mohadesietal.(2020)

SO4 /Fe-Al-TiO2 9010:132.596Gardyetal.(2018)

Butyl-methyl imidazolium hydrogensulfate 16015:15195.65Ullahetal.(2015)

Wasteeggshell659:152.7587.8Pengetal.(2018)

NaOH69.3716.7:14.5717.0894.6LeungandGuo(2006)

KOH941.516:160Foroutanetal.(2018a)

NaOH851.516:160Foroutanetal.(2018b)

NaOH88.80.331.17:160Lametal.(2010)

KOH87269:187Lametal.(2010)

H2 SO4 99441.8245:170Lametal.(2010)

1.2.3AnimalFats

Theoilsobtainedfromanimalfatsareanotherkindofnon-edibleoilusedforbiodieselproduction.Theimportantanimalfatsthatareusedassourcesoftheseoilsincludechickenfat (Seffatietal.2019),goatfat(ChakrabortyandSahu2014),duckfat(LiuandWang2013), muttonfat(Mutrejaetal.2011),andlamb,cow,andporkfats(Bankovi ´ c–Ili ´ cetal.2014). Amongthese,goatandmuttonfatarethemostpreferentiallyusedfeedstocksforbiodiesel production.Thetotalpopulationofgoatsintheworldisaround861.9million,ofwhich 514.4millionareinAsia(Hassanetal.2016).Theglobalsheeppopulationis1078.2million andthatinAsiais452.3million,whichisabout42%oftheworldtotal(Aziz2010).Therefore,thesetwosourcesoffeedstockscanbeusedasanimportantoilsourceforbiodiesel productioninAsia.Thefinalcostofbiodieselproducedfromrawoils(e.g.vegetableoils) iscomparativelyhigherthanthatofpetroleum-derivedfuelsbecausethecostoffeedstock (i.e.theoil)representsabout70–90%ofthetotalexpenseofbiodieselproduction(Zhang etal.2003;Doradoetal.2006).However,thecostofbiodieselproductioncanbedecreased byusingnon-edibleoilssuchaswasteoilsandanimalfats.Figure1.1showsthesharesof

1Biodiesel:DifferentFeedstocks,ConventionalMethods,andFactorsAffectingitsProduction

Others

Oil source

Soybean oil

Animal fats

Rapeseed oil

Sunflower oil Sunflower oil

Rapeseed oil

Animal fats

Palm oil Palm oil

Others

Soybean oil

Figure1.1 Percentagesofvariousoilsourcesusedinbiodieselproduction.

Table1.3 Biodieselproductionfromanimalfatsinthepresenceofdifferentcatalysts.

OilsourceCatalysttypeBCY(%)References

TallowoilH2 SO4 98.28Bhattietal.(2008)

NiletilapiaoilKOH98.2Santosetal.(2010)

PoultryoilH2 SO4 99.72Bhattietal.(2008)

BeeftallowKOH90.8Bankovi ´ c–Ili ´ cetal.(2014)

PorklardKOH91.4Bankovi ´ c–Ili ´ cetal.(2014)

MuttonfatKOH78.3Bankovi ´ c–Ili ´ cetal.(2014)

ChickenfatH2 SO4 99Bankovi ´ c–Ili ´ cetal.(2014)

GoattallowNaOH96EsmaeiliandForoutan(2018)

GoattallowKOH98EsmaeiliandForoutan(2018)

GoatfatMgO93.12RasouliandEsmaeili(2019)

ChickenfatCaO94.4Keihanietal.(2018)

ChickenfatCaO75.4Awaluddinetal.(2010)

differentsourcesofoilinbiodieselproduction.Ascanbeseen,themostcommonsources ofbiodieselproductionarevegetableoils,suchassoybeanandpalmoil,whichareusedin about50%ofallbiodieselproducedglobally,whilelessthan20%ofbiodieselisproduced bymeansofanimalfats(Gnanaprakasametal.2013).Moreover,Table1.3showstheBCY ofdifferentanimalfatsinthepresenceofacidicandbasecatalysts.

1.2.4MicroalgaOil

Thehighoilcontentspresentinmicroalgaemakethemapromisingsourceofoilfor biodieselproduction.Thecostofmicroalgaoilislessthanorequaltothatofanimaland vegetableoils(Chenetal.2018).Microalgaeseemtobetheonlybiodieselsourcewith

Table1.4 Biodieselproductionfrommicroalgaoilsinthepresenceofdifferentcatalysts.

OilsourceCatalysttype

(%)References

Chlorella protothecoides KOH681.330.756:198.6Ya¸sarand Altun(2018)

Spirulinamaxima KOH650.330.759:186.1Rahman etal.(2017)

Nannochloropsis sp. Ca(OCH3 )2 803330:199Teoetal. (2016)

MicroalgaoilCaO55—29:196.3Sivaand Marimuthu (2015)

Chlorella pyrenoidosa biomass Sulfuricacid1203——92.5Caoetal. (2013)

Neochloris oleoabundans ultrasonic-assisted H2 SO4 ————98Singhetal. (2017)

Neochloris oleoabundans H2 SO4 andNaOH two-step transesterification process 65110—91Singhetal. (2017)

MicroalgaoilK-Pumice6021018:177Cercado etal.(2017)

Chlorella sp.H2 SO4 238115—79.9Ehimenetal. (2010)

MicroalgaoilNaOH600.2212:185Cercado etal.(2018)

MicroalgaoilKOH600.2312:185Cercado etal.(2018)

MicroalgaoilLiOH600.2512:155Cercado etal.(2018) thepotentialtoentirelyreplacefossildiesel.Theycontainhighamountsofoilthatcan beconvertedtobiodieselandhaveahighercapabilitytoproduceitcomparedtoother feedstockssuchassoybean,corn,canola,coconut,jatropha,andpalmoil(Chisti2007) Moreover,microalgaegeneratemanydifferenttypesofHCs,lipids,andothercompounds thatarerequiredtoproducebiodiesel.Theyhavelargeproductivityandanaffordablecost (Chisti2007;Chenetal.2018).

Thecapabilityofsomefeedstocksforbiodieselproductionhasbeenstudied,andthe resultsshowthatmicroalgaoilcanreplaceotheroilsources(Chenetal.2018). Chlorella protothecoides (Chenetal.2012), Nannochloropsisoculate, Phaeodactylumtricornutum, Scenedesmusdimorphus (Islametal.2013), Chlorellaemersonii, Chlorellasalina,and Chlorellavulgaris (Talebietal.2013)aresomemicroalgaethatshowhighcapabilityfor biodieselproduction.Table1.4providesacomparisonbetweendifferentmicroalgaoils.

1.3ConventionalMethodsofBiodieselProduction

Directuseofanimalfatsandvegetableoils(edibleandnon-edible),aswellasothersources forbiodieselproduction,isnotpracticalbecauseofthehighviscosityandreactivenessof unsaturatedHCs.Severalmethodshavebeenproposedandroutinelyusedtoreducethe kinematicviscosityofoilsinordertoreachtherequiredqualityforuseindieselengines, includingdirectuseandmixing,pyrolysis,microemulsion,andtransesterification.Among them,thetransesterificationmethodismostcommonlyapplied,duetoitshighBCY (KirubakaranandArulMozhiSelvan2018;Wahlundetal.2004).

1.3.1Microemulsion

AccordingtotheInternationalUnionofPureandAppliedChemistry(IUPAC),a microemulsionisathermodynamicallystablesystemdevelopedupondispersionofwater inoiloroilinwaterinthepresenceofsurfactantparticles,inwhichonephaseiscontinuousandtheotherisdispersedinthecontinuousphasewithasizebetween0.001and 0.15 μm(Esmaeilietal.2014,2018).Thebiodieselproducedbythismethodhasaproper CN.Thealcoholsusedaremethanol,ethanol,and1-butanol.Theuseofalcoholcanreduce thefuelviscosityandimproveseparationofoilsandalkylnitrate;inaddition,alcoholcan alsoincreasetheCNofthefuel(KirubakaranandArulMozhiSelvan2018;Gebremariam andMarchetti2017).Themicroemulsionmethodissimpleandenvironmentallyfriendly, asitproducesverysmallamountsofpollutants.However,itrequireshightemperatures andexpensivedevices,andthepurityofthebiodieselproducedislow(Linetal.2011).

1.3.2PyrolysisorThermalCracking

Inpyrolysis,orthermalcracking,chemicalchangesareappliedusingheatinthepresence ofairornitrogen(Yaman2004).Severalstudieshavebeenperformedonthethermalcrackingofoilstoobtaineddieselfuelasendproduct.Thermaldecompositionofoilresultsin theproductionofseveralgroupsofcomponents,includingthealkanes,alkenes,alkadienes, carboxylicacids,andaromatics.Differenttypesofvegetableandplantoilsundergodifferentstructuralchangesafterthermaldecomposition.Thebiodieselproducedexhibitsalow viscosityandahighCNcomparedtovegetableoil.Theprocesshassomedisadvantages, includinglowvolatility,highviscosity,andstabilityagainstitsownsimplicity(Linetal. 2011).Ingeneral,thebiodieselproducedthroughmicroemulsionandthermalcracking methodsdemonstratescomparativelylowCN,leadingtoincompletecombustion,which makestheapproachnonconvenient(Linetal.2011;Abbaszaadehetal.2012).

1.3.3Transesterification

Amongallproposedmethods,thetransesterificationreactionisthemostreliableand effectiveforbiodieselproductiononbothexperimentalandindustrialscales,becauseit requireslowtemperatureandpressureandacomparativelyshortreactiontime.Ithasa highconversionyieldandisasimpleconversionprocess(GebremariamandMarchetti 2017;Linetal.2011).

Thetransesterificationprocessisthereactionbetweenanoilandanalcoholinthe presenceofanappropriatecatalysttoproducemethylester(biodiesel)andglycerol.The roleofthecatalystinthisprocessistospeedupthereaction.Afterthereaction,theviscosity ofoilreduces,whilemaintainingitsheatingvalue.Thealcoholsusedaremostlymethanol, ethanol,propanol,andbutanol,particularlytheformertwo;methanolismostcommonly usedtoproducebiodieselbecauseofitslowcostandcomparativelyhighreactivity,and becauseitresultsintheproductionofFAMEswithhighervolatilityincomparisonto thefatty-acidethylesters(FAEEs).TheviscosityofFAEEsisslightlyhigherthanthatof FAMEs,buttheirpourpointandcloudpointareslightlylower(Seffatietal.2020;Foroutan etal.2020).Thoughthetransesterificationprocessisreversible,theprocessefficiencyis affectedbyseveralfactors,includingthereactantratio,catalystcontent,andreactionconditions(Demirbas2008).Furthermore,theuseofmoremethanolresultsinmorebiodiesel production,butexcessuseleadstohighercosts.Usually,catalystsareusedtoincreasethe yieldandrateofthereaction;thesemaybealkaline,acidic,orenzymatic,withthealkaline catalystsleadingtoafasterreactionthantheacidiccatalysts(Bozbas2008;Canakci2007).

1.4CatalystsUsedinBiodieselProduction

Thecatalystsusedforbiodieselproductionareclassifiedintofourgroups:homogeneous catalysts,heterogeneouscatalysts,enzymaticcatalysts,andnanocatalysts(Narasimharao etal.2007).Thesewillbebrieflydiscussedinthissection.

1.4.1HomogeneousCatalysts

1.4.1.1HomogeneousAlkalineCatalysts

Atindustrialscale,biodieselisusuallyproducedusingHACssuchaspotassiumhydroxide (KOH)andsodiumhydroxide(NaOH).Thesetypesofcatalystsareusedinindustrialapplicationsformanyreasons.Thereportsavailableshowthatthereactionrateinthepresence ofanalkalinecatalystisabout4000-foldfasterthanthatusinganacidiccatalyst,though thistypeofcatalystislimitedtovegetable-derivedoilswithFFAconcentrationlessthan 6wt%.Ifanoil(e.g.WEO)containsFFAhigherthan6wt%,analkalinecatalystcannotbe anappropriateoptionasitmayreactwiththeFFAtoproducesoap,whichisundesirable, asitcandeactivatethealkalinecatalyst,affectingthebiodieselproductionyield(Esmaeili andForoutan2018;KulkarniandDalai2006).

1.4.1.2HomogeneousAcidicCatalysts

WhentheFFAcontentinoilishigh,liquidacidiccatalystscanbeused.Twoimportant acidiccatalystsarecommonlyemployed:sulfuricacidandchloricacid.However,while thesecatalystshaveseveraladvantages,theyalsohavesomedisadvantages,includinga comparativelylowreactionrate,theneedforhighreactiontemperatures,highalcoholto oilratios,catalystseparation,andcorrosionissues.OtheracidiccatalystslikeHCl,H3 PO4, andorganicsulfonateacidscanalsobeusedtoproducebiodiesel(Jacobsonetal.2008).The keyparametersforanacidiccatalystaretheprotonation(generationofpositivecharges)of thecarbonylgrouponthetriglyceridesandthealcohol,whichattacksthepositive-charged

1Biodiesel:DifferentFeedstocks,ConventionalMethods,andFactorsAffectingitsProduction

Table1.5 Biodieselproductionfromdifferentoilsusinghomogeneousalkaliandacidiccatalysts.

OilsourceCatalysttype

JojobaoilKOH25—1.35—83.5Bouaidetal. (2007)

PeanutoilKOH601.50.56:195Jazieetal. (2012)

PeanutoilNaOH601.50.56:188Jazieetal. (2012)

RapeseedoilKOH601.516:197Jazieetal. (2012)

RapeseedoilNaOH601.516:192Jazieetal. (2012)

MicroalgaoilLiOH600.2512:155Cercadoetal. (2018)

ChickenfatH2 SO4 5024—30:199.72Bhattietal. (2008)

MuttonfatH2 SO4 6024—30:198.28Bhattietal. (2008)

CottonseedoilPhosphoric Acid 12010510:199.79Dholakiya (2012)

carbonatomtoformatetrahedralintermediate(Demirbas2008;KobergandGedanken 2013;Aransiolaetal.2014).

Table1.5showstheBCYsofvariousoilsourcesusinghomogeneousacidicandalkaline catalysts.

1.4.2HeterogeneousCatalysts

1.4.2.1HeterogeneousAlkalineCatalysts

Heterogeneouscatalystsaresuperiortohomogeneouscatalystsbecausetheyalloweasy separationofthebiodieselandbyproductslikeglycerol.Theyalsoentaillowerproductioncostsandareenvironmentallyfriendly(Seffatietal.2019;Saoud2018).Oxidesand derivativesofalkalinemetals(e.g.Ba,Mg,Ca,Be,Sr,andRa)havebeenstudiedbyseveralresearchers.Amongthem,MgandSroxideshavebeenextensivelyappliedascatalystsforbiodieselproductionduetotheirdesirableheterogeneousnature(Rasouliand Esmaeili2019;Yooetal.2010).Inaddition,wastematerialscanbeusedtoproduceheterogeneouscatalysts.Severalmaterials,suchaseggshell,molluskshell,andbone,canbe usedtoproduceheterogeneousalkalinecatalystslikecalciumoxide(CaO).Theyalsohelp managetheproblemofwastematerials,whichisanimportantconcern.TheCaOproduced fromwastematerialsoffersgreatpotentialasacatalystintheproductionofbiodieseland hasbeenwidelystudied(Keihanietal.2018;Foroutanetal.2020;ChakrabortyandSahu 2014).

1.4.2.2HeterogeneousAcidCatalysts

ThetransesterificationreactionoffatsandoilsinthepresenceofHACssuchasNaOH, NaOMe,KOH,andKOMehasseveralproblemsresultingfromlargeamountsofFFA.

Thoughthesecatalystscanbeappliedtoproducebiodiesel,alargeamountofmethanol andcatalystisconsumed.Also,homogeneousacidcatalystssuchasH2 SO4 ,HCl,and H3 PO4 havelessBCYthantheHACs,andtheyrequirehighertemperatures,methanol tooilratios,pressures,andcatalystcontentstoproducebiodieselwithanadequateBCY. Heterogeneousacidcatalystscanbeeasilyusedinapackedbedcontinuousflowreactor: oneoftheirmainadvantages.Also,theuseofheterogeneousacidcatalystsenableseasy separationandpurificationoftheproductandreduceswasteproduction(Boeyetal. 2013;Meleroetal.2009).Recentresearchlookingfornewcatalystshasdemonstratedthat heterogeneousacidiccatalystssuchaszirconiumoxide(ZrO2 )andcationicresinsshow greatpotentialforreplacingtheliquidhomogeneousacidiccatalysts(Jacobsonetal.2008).

Table1.6showstheBCYsofvariousoilsourcesusingheterogeneousacidicandalkali catalysts.

1.4.3EnzymaticCatalysts

Thetransesterificationreactionusingenzymaticcatalystshassomeadvantages.The reactioninthepresenceofenzymaticcatalystsoccurswithoutformationofsoapand continuesfreeofpurification,washing,andneutralizationproblems.Also,thetransesterificationreactioncanbecarriedoutundernormalconditions,andthiscatalysthas noproblemwithoilscontaininglargeamountsofFFA(ShahidandJamal2011).Other

Table1.6 Biodieselproductionfromdifferentoilsusingheterogeneousacidicandalkaline catalysts.

OilsourceCatalysttype

Nannochloropsis sp.Ca(OCH3 )2 803330:199Teoetal. (2016)

MicroalgaoilK-Pumice6021018:177Cercado etal.(2017)

WastecookingoilKOH/clinoptilolite650.2238.12.25:197.45Mohadesi etal.(2020)

WastecookingoilBa/CaO65336:188Balakrishnan etal.(2013)

WastecookingoilCopper/zincoxide550.833128:197.71Gurunathan andRavi (2015)

Wastecookingoil4Mn-6Zr/CaO803315:192.1Mansiretal. (2018)

WastecookingoilCalcium diglyceroxide 600.519:193.5Guptaetal. (2015)

WastecookingoilWasteeggshell652.7559:187.8Pengetal. (2018)

WastecookingoilSO4 /Fe-Al-TiO2 902.5310:196Gardyetal. (2018)

WastecookingoilButyl-methyl imidazolium hydrogensulfate 1601515:195.65Ullahetal. (2015)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Where can buy Nano- and biocatalysts for biodiesel production 1st edition avinash p. ingle ebook wit by Education Libraries - Issuu