Where can buy Supramolecular chemistry on surfaces : 2d networks and 2d structures neil r. champness

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/supramolecular-chemistry-on-surfaces-2d-networks-a nd-2d-structures-neil-r-champness/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Layered 2D Materials And Their Allied Application

Inamuddin

https://ebookmass.com/product/layered-2d-materials-and-theirallied-application-inamuddin/

2D Materials for Nanophotonics Young Min Jhon

https://ebookmass.com/product/2d-materials-for-nanophotonicsyoung-min-jhon/

Two-Dimensional (2D) NMR Methods Konstantin Ivanov

https://ebookmass.com/product/two-dimensional-2d-nmr-methodskonstantin-ivanov/

Design Basics: 2D and 3D 8th Edition, (Ebook PDF)

https://ebookmass.com/product/design-basics-2d-and-3d-8thedition-ebook-pdf/

Xenes 2D Synthetic Materials Beyond Graphene Alessandro Molle

https://ebookmass.com/product/xenes-2d-synthetic-materialsbeyond-graphene-alessandro-molle/

Spintronic 2D Materials: Fundamentals and Applications (Materials Today) Wenqing Liu (Editor)

https://ebookmass.com/product/spintronic-2d-materialsfundamentals-and-applications-materials-today-wenqing-liu-editor/

2D Nanomaterials for Energy Applications: Graphene and Beyond Spyridon Zafeiratos (Editor)

https://ebookmass.com/product/2d-nanomaterials-for-energyapplications-graphene-and-beyond-spyridon-zafeiratos-editor/

2D Functional Nanomaterials: Synthesis, Characterization and Applications Ganesh S. Kamble (Ed.)

https://ebookmass.com/product/2d-functional-nanomaterialssynthesis-characterization-and-applications-ganesh-s-kamble-ed/

Python Graphics: A Reference for Creating 2D and 3D Images, 2e 2nd Edition Bernard Korites

https://ebookmass.com/product/python-graphics-a-reference-forcreating-2d-and-3d-images-2e-2nd-edition-bernard-korites/

SupramolecularChemistryonSurfaces

SupramolecularChemistryonSurfaces

2DNetworksand2DStructures

Editor

Prof.NeilR.Champness UniversityofBirmingham SchoolofChemistry

Edgbaston B152TTBirmingham UnitedKingdom

CoverImage: Reproducedfrom “On-surfacechemicalreactions characterisedbyultrahighresolution scanningprobemicroscopy”

A.Sweetman,N.R.Champness,and A.Saywell. Chem.Soc.Rev.,2020, 49, 4189–4202,withpermissionfrom TheRoyalSocietyofChemistry.

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>

©2022WILEY-VCHVerlagGmbH&Co. KGaA,Boschstr.12,69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34491-8

ePDFISBN: 978-3-527-81668-2

ePubISBN: 978-3-527-81670-5

oBookISBN: 978-3-527-81669-9

Typesetting Straive,Chennai,India

Printedonacid-freepaper 10987654321

Contents

Preface ix

1Two-DimensionalSupramolecularChemistryonSurfaces 1 NeilR.Champness References 6

2CharacterisationandInterpretationofOn-SurfaceChemical ReactionsStudiedbyUltra-High-ResolutionScanningProbe Microscopy 9 AdamSweetman,NeilR.Champness,andAlexSaywell

2.1Introduction 9

2.2SPMUnderUHVConditions 10

2.2.1On-SurfaceReactions 11

2.2.2CharacterisationofMolecule-SubstrateSystemsviaSTM 12

2.2.3ncAFM 15

2.3PracticalStepsinAccomplishingSub-MolecularImaging 16

2.3.1SamplePreparation 16

2.3.1.1DepositionofOrganicMoleculesatLowTemperature 17

2.3.1.2CODeposition 17

2.3.1.3DecouplingLayers 18

2.3.2ConstructionoftheqPlusSensor 18

2.3.3TipPreparation 19

2.3.3.1TipFunctionalisation 19

2.3.4PracticalConsiderationsforImaging 21

2.3.4.1DriftandCreep 21

2.3.4.2AmplitudeCalibration 22

2.3.4.3ApparentDissipationandMechanicalCouplingoftheSensor 22

2.3.4.4Crosstalk 22

2.3.4.5ForceInversion 23

2.4InterpretationofSub-MolecularContrastattheSingleBondLevel 23

2.4.1ForcesintheTip-SampleJunction 24

2.4.1.1Non-siteSpecificInteractions–The‘Background’ 24

2.4.1.2LocalDispersionInteractions–The‘Halo’ 24

2.4.1.3PauliRepulsion–The‘CarbonBackbone’ 24

2.4.1.4ChemicalBonding 25

2.4.1.5LocalElectrostaticInteractions 25

2.4.2ResponseoftheProbeParticle–DistortionsinImaging 25

2.4.2.1FlexibilityofAdsorbedCO 26

2.4.2.2Electrostatics 28

2.4.2.3ChemicalSensitivity 29

2.5CharacterisingOn-SurfaceReactionswithncAFM 29

2.5.1PracticalConsiderationsforCharacterisingOn-SurfaceReactions 31

2.5.2SynthesisandCharacterisationofGrapheneBasedNanostructures 32

2.5.3StudyingtheEvolutionofOn-SurfaceReaction 34

2.6Conclusions 38 Acknowledgements 39 References 39

3ComplexityinTwo-DimensionalMulticomponent Assembly 43

KunalS.Mali,JoanTeyssandier,NereaBilbao,andStevenDeFeyter

3.1Introduction 43

3.2Two-ComponentSelf-AssembledSystems 45

3.2.1Two-ComponentSystems:Host–GuestArchitectures 46

3.2.1.1HostNetworksfromIntrinsicallyPorousBuildingBlocks 46

3.2.1.2HostNetworksfromSelf-AssemblyofBuildingBlocks 49

3.2.1.3Two-ComponentSystems:Host–GuestArchitecturesBasedon Surface-ConfinedTwo-DimensionalCovalentOrganicFrameworks (2D-sCOFs) 57

3.2.2Two-ComponentSystems:Non-Host–GuestArchitectures 59

3.3Three-ComponentSystems 62

3.3.1Three-ComponentSystems:Two-ComponentHostNetwork + Guest 62

3.3.2Three-ComponentSystems:One-ComponentHostNetwork + Two DifferentGuests 65

3.3.3Three-ComponentSystems:Non-host–GuestSystems 69

3.4Four-ComponentSystems 71

3.4.1Four-ComponentSystems:Host–GuestArchitectures 72

3.4.2Four-ComponentSystems:Non-host–GuestArchitectures 75

3.5SummaryandPerspectives 76 References 76

4ComplexityinTwo-DimensionalAssembly:UsingCoordination Bonds 81 NianLinandJingLiu

4.1Introduction 81

4.2AsymmetricLinkers 82

4.3MultipleTypesofLinkers 86

4.4Multiple-Level(Hierarchical)Interaction 88

4.5MultipleBindingModes 90

4.6SummaryandOutlook 97 References 97

5ComplexityinTwo-DimensionalAssembly:Quasicrystalline Structures 103 S.AlexKandel

5.1History 103

5.2RandomTilings 104

5.3QuasicrystallineTilings 108 References 114

6UsingSelf-AssemblytoControlOn-SurfaceReactions 117 ZhantaoPeng,LingboXing,andKaiWu

6.1Introduction 117

6.2MediatingOn-SurfaceReactionSelectivity 119

6.3MediatingOn-SurfaceReactionPathway 124

6.4MediatingOn-SurfaceReactionSite 125

6.5BriefSummaryandPerspective 130 Acknowledgement 131 References 131

7CovalentlyBondedOrganicStructuresviaOn-Surface Synthesis 135 CanWang,HaimingZhang,andLifengChi

7.1Introduction 135

7.2Dehalogenation 136

7.2.1UllmannCoupling 136

7.2.2SonogashiraCoupling 141

7.2.3HeckReaction 141

7.3Dehydrogenation 143

7.3.1(SP3 -C)AlkanePolymerisation 143

7.3.2(SP2 -C)ArylandAlkeneCyclodehydrogenation 145

7.3.2.1Aryl–ArylDehydrogenationCoupling 145

7.3.2.2Bottom-UpFabricationofGrapheneNanoribbons(GNRs) 148

7.3.2.3Homo-CouplingofTerminalAlkene 150

7.3.3(SP1 -C)Alkyne–GlaserCoupling 151

7.3.4HierarchicalDehydrogenationofX—HBonds(X = NandC) 152

7.4DehydrationReaction 153

7.4.1Schiff-BaseReaction 153

7.4.2ImidisationCondensationReaction 156

7.4.3BoronicAcidCondensation 156

7.4.4DecarboxylativePolymerisation 157

7.4.5DimerisationandCyclotrimerisationofAcetyls 159

7.5OtherReactions 159

7.5.1ClickReaction 159

7.5.1.1Azide–AlkyneCycloaddition 159

7.5.1.2Diels–AlderReaction 160

7.5.2Bergman-LikeReaction 161

7.5.3N-HeterocyclicCarbenesFormationandDimerisation 162

7.5.4 σ-BondMetathesis 163

7.5.5DiacetylenePolymerisation 164

7.6ConclusionandPerspectives 165 References 166

8HybridOrganic-2DTMDHeterointerfaces:TowardsDevices Using2DMaterials 171 YuL.HuangandAndrewT.S.Wee

8.1Introduction 171

8.2AtomicStructures 172

8.2.1Pristine2DTMDs 172

8.2.2Organic/2DTMDInterfaces 174

8.3SurfaceFunctionalisationof2DTMDsbyOrganics 177

8.3.1DefectEngineering 177

8.3.2PhaseEngineering 179

8.4FundamentalElectronicProperties 180

8.4.1EnergyLevelAlignment 181

8.4.2InterfacialChargeTransfer 184

8.4.3ScreeningEffect 190

8.5ApplicationsinDevices:Organic-2DTMDp–nHeterojunctions 192

8.6Conclusion 193

Acknowledgements 194 References 194

9SurfaceSelf-AssemblyofHydrogen-BondedFrameworks 199 NicholasPearceandNeilR.Champness

9.1Introduction 199

9.2CarboxylicAcidSupramolecularSynthons 200

9.3Imide-MelamineSupramolecularSynthons 205

9.4FromHydrogen-bondingSynthonstoCovalently-organic Frameworks 211

9.5HeteromolecularHydrogen-bondingSynthons 213

9.6Conclusions 215 References 215

Index 219

Preface

Thefieldofsupramolecularchemistryhasdevelopedfromitsinceptiontonow influencethinking,strategies,andapplicationacrossthechemicalandmaterials sciences.Whilstremarkableprogresshasbeenmadeinmanyfields,theneedto interfacesupramolecularsystemstotherealworldhasspurredinterestinperformingsupramolecularchemistryonsurfaces.Thegoalofstudyingsupramolecular self-assemblyprocesseshasinturnengenderednewideas,newconcepts,and ultimatelyanewfieldofstudy.

Interestingly,thisfreshresearchfocushasbroughttogetherexpertsfrommany differentbackgroundscreatingnewinterdisciplinaryconnections,notablybetween syntheticchemistsandphysicists.Surface-basedsupramolecularchemistryisa trulymultidisciplinaryfield.Indeed,thefieldhasrapidlydevelopedandtheoriginal focusonhydrogen-bondedsystemshasbeenjoinedbytheexploitationofother supramolecularinteractions.Similarly,someresearchershavemovedtowardsusing self-assemblyprocessesthatenabletheformationofcovalentbondsandhence robustchemicalsystems,suchasnanoscalegraphenes.

Thesestudiesrelyoncharacterisationtechniques,particularlyscanning-probe microscopies,thatenablemolecular,andevensubmolecular,resolution.Notonly dosuchapproachesresultinvisuallyinspiringimagestheyalsoallowappreciation ofsupramolecularstructureswithalevelofdetailthatisrarelyachievablein traditionalsupramolecularchemistry.Inturn,thishasledtothediscoveryofcomplexquasi-crystallinearraysandhighlycomplexarrangements.Thesefascinating structuressparktheimaginationandmovebeyondmuchthathasbeenachievedin supramolecularchemistry.

Alltheseremarkabledevelopmentsandnewavenuesofresearchhavespurred increasingattentiontohowthesesystemsmaybeexploitedindevicesoperatingat thesingle-moleculelevel.Theinteractionbetweenthesurfaceandthoseabsorbed moleculesallowsdirectinteractionbetweenmolecularsystemsandthemacroscopic worldandhasledtoincreasinginterestindevelopingdevices,particularlyemployingelectronicproperties.Thus,thefieldisdevelopingfromsimplecuriosityand structuralfascinationtowardsapplications.

Itistimelytoevaluateprogressinthefieldandtoappreciatewherethefocushas beenandwhereitisgoing.Hence,thiscollectionsurveysthefieldfromthepoint ofviewofexpertswhohavedevotedtheirendeavourstodevelopthisnewareaof

x Preface science.Iamgratefultoallthoseauthorsfortheirexcellentcontributionsandfor soclearlyexpoundingtheirvisionoftheresearcharea.Ihopethatthechapters containedhereinwillinspirethemanyresearchersinthefieldbutalsothosewho currentlysitaroundtheperipheryofthisactivitywhetherchemist,physicist,orthe nextgenerationofscientist.

NeilR.Champness Birmingham April2021

Two-DimensionalSupramolecularChemistryonSurfaces

NeilR.Champness

UniversityofBirmingham,SchoolofChemistry,Edgbaston,BirminghamB152TT,UK

Supramolecularchemistryrepresentsoneofthecentralthemesofmodernchemical sciences.Crossingtraditionalboundariesofchemistry,materialsscience,biology, andphysics,thefieldofsupramolecularchemistryaffordsopportunitiestocreate newmoleculesandmaterials,withfarreachingimplicationsformanyanddiverse applications.ThesignificanceofsupramolecularchemistryliesbehindtwoNobel Prizes,1987[1]and2016[2–4],andisnownotonlyafieldinitsownrightbutis alsoacentralunderpinningthemeinalmostanyareaofchemistry.Theprimary principleofsupramolecularchemistryistheuseofnon-covalentinteractionstocreateandcontrolself-assembledstructures.Alargerangeofinteractionsisavailable tothesupramolecularchemisttoinfluenceandcontrolself-assemblyprocesses. Fromhydrogenbonds[5–7]andhalogenbonds[8,9]to π-interactions[10,11], coordinationbonds[12,13]andthemechanicalbond[2,3,14–16],interactions ofdifferentstrengthsandvaryingdegreesofgeometricalpreferencesareavailable todesignandcreatestructures.Wheninitsinfancy,supramolecularchemistry focussedpredominantlyonsyntheticstrategiesincombinationwithunderstanding thefundamentalpropertiesofthenon-covalentinteractionsemployed.Overrecent years,thefieldhasdevelopedtosuchanextentthatitisnowcommonplacetofocus efforttowardsapplicationsandtheserangeacrossavastspectrum.Supramolecular chemistryissowide-rangingthatitsrelevancecanbeappliedtodiversefields,from biology[17,18]andmedicine[18,19]tonewmaterials[20,21]andenergy-related applications[22,23].

Theoriginsofsupramolecularchemistrylieinsolution-basedsystems,usingintermolecularinteractionstocreatesupermolecules.Fromtheseorigins,supramolecularchemistryisnowobservedinmostphases,notablyinthesolid-state,through crystalengineering[24,25],inliquidcrystals[26]andionicliquids[27],andeven inthegasphase[28].Itwasonlynaturalthatsupramolecularchemistrystrategies wouldcometobeappliedtothetwo-dimensional(2D)environmentofsurfaces (Figure1.1).Thisseeminglynaturalprogressionalsoraisedanumberofchallenges topractitionersofthesubject,notleastintermsofappreciatingthisquitedifferent

SupramolecularChemistryonSurfaces:2DNetworksand2DStructures,FirstEdition. EditedbyNeilR.Champness. ©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

2 1Two-DimensionalSupramolecularChemistryonSurfaces

environmentandperhapsmostimportantlythedifferenttechniquesthatareused tocharacteriseandinterpretsurface-basedmolecularsystems.

(b)

1Two-DimensionalSupramolecularChemistryonSurfaces 3

Figure1.1 Examplesoftwo-dimensionalsupramolecularchemistryonsurfacesdiscussed withinthisvolume.(a)ncAFMimageofahydrogen-bondednaphthalene-1,4:5,8tetracarboxylicdiimide(NTCDI)islandonaAg:Si(111)–(√3 × √3)R30∘ surfaceacquired at77K.Theimagerevealssub-moleculardetailsoftheself-assembledstructure;(b)STM imageofself-assembledarraysofferrocene-carboxylicacid(FcCOOH);eachbrightfeature representsaseparateFcCOOHmolecule,whichthenassembleintopentamershighly reminiscentofaPenrosetilingarrangement;(c)Surface-assistedC–Ccouplingreaction usedtopreparestraightgraphenenanoribbonsfrombianthrylmonomers,includingaSTM imageofnanoribbon,followingcyclodehydrogenationat400 ∘ C,withpartlyoverlaid molecularmodel(rightinblue)andadensity-functionaltheorymodel(bottomleftingrey); (d)Schematicrepresentationofastrategyusedtoprepareamulticomponentsystemusing a‘core–shell’approach.Eachcolourrepresentsadifferentmolecularbuildingblock; (e)SchematicrepresentationandSTMimageshowingdibenzothiopheneboundtothe cornervacancyofaS-edge-terminatedMoS2 nanocluster.Source:Imagesreproducedwith permissionasfollows:(a)Sweetmanetal.[29];(b)reproducedwithpermissionfrom SpringerNaturefromWasioetal.[30];(c)reproducedwithpermissionfromSpringerNature fromCaietal.[31];(d)Malietal.[32];(e)reprintedandadaptedwithpermissionfrom Tuxenetal.[33].Copyright(2010)AmericanChemicalSociety.

Whereasthetechniquesappliedtocharacterisingsolutionphase,orsolid-state, supramolecularsystemsarecommonacrosssyntheticchemistry,forexample, NMRspectroscopy,massspectrometry,andX-raydiffraction,characterisationof surface-boundmoleculesisaquitedistinctdomain.Themostcommonapproaches tocharacterisingmolecularspeciesonsurfacesarescanningprobemicroscopies (SPM).Specifically,techniquessuchasscanning-tunnellingmicroscopy(STM)[34] andatomicforcemicroscopy(AFM)[35]representthedominantcharacterisation methodsusedintheanalysisofsurface-basedsupramolecularsystems.Theseimagingmicroscopiescanbe,andoftenare,supplementedbyotherapproaches,suchas X-rayphotoelectronspectroscopy(XPS),butSPMapproachesprovideinvaluable insightintospecificmoleculararrangementsallowingdeterminationofthegeometricstructureoforganicmoleculeswithmolecularresolution.Morerecently,the developmentofnoncontactatomicforcemicroscopy(ncAFM)[36]allowsthecharacterisationofsupramolecularsystemswithsub-molecularresolution[37].Theuse ofSPMcharacterisationtechniquesinitselfpresentsopportunities,whicharerarely availabletothoseworkinginotherphases,notleastbecausesuchmicroscopies functionatthemolecular,orevensub-molecular,levelandasaresultinformation, bothstructuralandelectronic,canbegatheredforindividualmoleculesanddefined self-assembledarrays.Incomparison,techniquessuchasNMRspectroscopy orX-raydiffractionrelyuponthesignalfromcomparativelylargenumbersof molecules.Thus,thecharacterisationofsurface-basedsupramolecularsystemscan giveadetailedpictureofthestructuresandeventransformationsbetweendifferent arrangementswithahighdegreeofresolution.Thecomplexities,challenges,and advantagesofdifferentSPMtechniquesarediscussedinmoredetailbySweetman, Champness,andSaywellinthisvolume.

Afurtheraspectofthedetailedimagingwithmolecularresolutionisthatthis allowscharacterisationofstructuresthatwouldproveextremelychallengingbyany othertechnique.UsingSPMtechniquesallowsreadyidentificationofdefectswithin supramoleculararraysbutintriguinglyallowsthestudyofextendedstructures,

1Two-DimensionalSupramolecularChemistryonSurfaces

whichdonotpossesslong-rangeorder,withmolecularresolution.Thisapproach hasbeenappliedtothestudyofrandom,entropicallystabilised,rhombustilings [29,38,39],amolecularPenrosetile[30],quasicrystallinestructures[40],and fascinatingassembliesthatexhibitthestructureofSerpi ´ nskitriangles[41].The complexissueswithstudyingandcharacterisingquasicrystalline2Darraysare discussedindetailbyKandelinthisbook.

Thestudyofsupramolecularchemistryonsurfacesprobablybeganwithearly studiesofhydrogen-bondedassemblies[42–44]buthasspreadtoemployother non-covalentinteractionsincludingcoordinationbonds[45,46]andweakervan derWaalsinteractions[47–49].Theuseofdifferentintermolecularinteractions isdiscussedthroughoutchaptersinthisvolume.Inparticular,Mali,Teyssandier, Bilbao,andDeFeyterdiscusstheuseofhydrogenbondsandvanderWaals interactionstocreatecomplexstructureswhereastheapplicationofcoordination bondsispresentedbyLinandLiu.Itwillbecomecleartothereaderthatthechoice ofintermolecularinteractioninfluencesthechoiceofexperimentalconditions used,includingdepositionconditions,useofultra-highvacuum(UHV)orstudies atthesolid–solutioninterface,andeventhenatureofthesurfaceemployedfor surfaceself-assembly.Theinteractionsbetweensurface,substrate,solution,and self-assembledarrayareallimportantindeterminingthesubtleenergeticbalance betweendifferentproducts[50].

Thesestudieshavenowdevelopedfurthertocreatecovalentlylinkedstructures includingnanographenes[51,52]andcovalent-organicframeworks(COFs)[53]. Allofthesestrategiespresenttheirowndistinctadvantages,anddisadvantages,but importantlyrepresentabroadpaletteforresearcherstoemployandexplore.Weaker interactionssuchashydrogenbonds,vanderWaalsinteractions,andevencoordinationbonds,formreversiblyandthereforefacilitatetheformationofwellorganised, andrelativelydefect-free,supermoleculestructuresovercomparativelylargeareas. Creatinglargerdefectfreestructurescanbemorechallengingusingcovalentbonds althoughtheuseofreversibly-formedbondssuchasimines[54]hasbeendeveloped toaidinthisrespect.Nanographenes,wherecarbon–carbonbondsareanabsolute requirement,presentquitedifferentchallengesbutremarkableadvanceshavebeen madeinthisarea.InthisvolumePeng,Xing,andWudiscusstheuseofintermolecularinteractionstocontrolon-surfacereactionsandWang,Zhang,andChipresent developmentsinthefieldofon-surfacereactionstocreatecovalentlybondedsystems.

Anothermajorchallengethatrequiresthoughtwhenoneconsiderssurface-based supramolecularchemistryarethereactionenvironmentandconditions.Firstly,itis typicaltouseasurfacethatisatomicallyflatoratleastclosetoatomicallyflat.This ratherstringentrequirementfacilitatestheuseofSPMcharacterisationandsimultaneouslycontrolstheintroductionofsurface-basedreactivesitestotheself-assembly process.Eventhoughatomicallyflatsurfacesarecommonlyused,itwouldbeamistaketoconsiderthesurfaceasaninnocentbystanderintheself-assemblyprocess. Indeed,adsorptionbetweenthesurfaceandthemoleculesinvolvedinself-assembly isessentialtoallowtheformationofasurface-boundorsurface-supported, supramolecularstructure[50].Arangeofsurfacesareavailabletoresearchers

1Two-DimensionalSupramolecularChemistryonSurfaces 5 investigatingsuchsystemsbutsomearemorecommonthanothers,notably highly-orientedpyrolyticgraphite(HOPG)andAu(111).However,insomeareas ofstudy,thesurfaceplaysanintegralroleinthereactionprocessprovidingactive sites,suchasmetalatoms,whichcatalysetheformationofaspecificproduct[55].

Theothermajoraspectthatinfluencestheself-assemblyprocessistheexperimentalconditionsoftheexperiment.SPMtechniquescanbeusedinbothUHV conditionsorattheinterfacebetweensurfaceandsolution.Thesequitedifferent conditionspresentbothadvantagesanddisadvantagesdependingonthespecificmoleculesandreactionprocessesbeinginvestigated.Forexample,studying moleculesandself-assembledaggregatesinUHVconditionscanleadtohigher resolutionimaging,inpartbecauselowertemperatures(belowthefreezingpointof solvents)canbeaccessed.Additionally,ncAFMimagingspecificallyrequiresUHV conditions.However,theintroductionofmoleculestothesurfacetypicallyinvolves sublimation,andhenceheatingofthesample.Sublimationisnotalwayspossible andthermaldegradationisasignificantimpedimentforcomplexmolecules.Milder electrospraydepositiontechniqueshavebeendeveloped[56]buttheuseofthis approachisnotyetwidespread.Incontrast,studiesatthesolution-solidinterface directlyimageself-assembledstructuresinthepresenceofsolvent.Intermsof preparativeconditions,thisapproachisquitestraightforward,simplyimaging attheinterfacebetweenadropofsolventcontainingthemoleculesofinterest andthesubstrate.Althoughthisapproachoffersmanyadvantagesthechoiceof solvent,whichislimitedbytherequirementsforimaging,canclearlyinfluence theself-assemblyprocess,potentiallywithsolventmoleculesinteractingoreven co-adsorbingwiththetargetspecies.Althoughimagestendtohavelowerresolution thanUHVstudies,thisisnotalwaysthecaseandremarkableexamplesofmolecular resolutionwithAFMhavebeenreported[49].

Ultimately,thepossibilitiesthatarisefromthevariousapproachestocreate supramolecularstructuressuggestthepossibilityofcreatingmolecularleveldevices andtheapplicationof2Dmaterials.Theadvancesinthisareaareillustratedin thechapterbyHuangandWeewheretheydiscusstherapidlyadvancingfieldthat studies2Dtransitionmetaldichalcogenidesandtheirpotentialintegrationwith organicmoleculesformultifunctionalflexibledevices.

Thisbookbringstogetherperspectivesfromresearchleadersinthefield.Itcan beseenthatacrossthebreadthofthesubject,therearemanyfascinatingexamples ofapplyingsupramolecularchemistrytothedevelopmentofsurface-basedarrays. Whetherthroughthedirectimplementationofhydrogenbonds,coordination bonds,orwell-designedvanderWaalsinteractions,orthroughthecontrolled formationofcovalently-bondedarrays,itisclearthatstrategiesforcreating2D arraysonsurfacesarewelldeveloped.Athemethatcommonlyarisesthroughout thecontributionsisthatofcomplexity.Itisnotasurprisethatthissubjecthas becomeprominentinthefieldofsurface-basedsupramoleculararrayswhenone considersthespecificityoftheSPMcharacterisationtechniquesemployedfor characterisation.Whenoneappliesatechniquethataffordsmolecularresolution, allowingdetailedappreciationofextendedframeworks,theircomplexitybecomes allthemoreapparent,drawingtheattentionofresearchersandhencebecominga

1Two-DimensionalSupramolecularChemistryonSurfaces

focusforinvestigation.Remarkablediscoverieshavebeenmadeacrossthefieldand inturn,spurnewendeavours.Anemergingaspectofthefieldistheimplementation ofsyntheticstrategiestowardsnewapplicationswithelectronicpropertiesofnew structuresreceivingnotableattention.However,otherdirectionsofresearchare alsoemergingatthesolid–solutioninterface,forexample,applyingthechiralityof surfacearrays.Exploitingtheinterplaybetweensurface-basedarraysandsolution chemistrypromisestobeofsignificanceinapplicationsrangingfromsensingtothe interfacewithbiologicalprocesses.

Insummary,asiscommonfornewareasofscience,thefieldnowstandsata crossroads.Theoriginsofthefieldhavebeenbasedondevelopinganunderpinningmethodologyforbothsynthesisandcharacterisationandanappreciationof themanyfactorsthataffectsurface-basedsupramolecularassembly.Increasingly, thereisafocusondevelopingthesefascinating2Dmaterialsforspecificapplicationsandfortheirincorporationintodevices.Iamconfidentthatalltheauthorsof theotherchapterswillagreethatthereisapromisingandbrightfutureforthearea of2Dchemistryonsurfaces.

References

1 Lehn,J.-M.(1988). Angew.Chem.Int.Ed.Engl. 27:89–112.

2 Stoddart,J.F.(2017). Angew.Chem.Int.Ed. 56:11094–11125.

3 Sauvage,J.-P.(2017). Angew.Chem.Int.Ed. 56:11080–11093.

4 Feringa,B.L.(2017). Angew.Chem.Int.Ed. 56:11060–11078.

5 Li,Z.T.andWu,L.Z.(eds.)(2015). HydrogenBondedSupramolecularMaterials Heidelberg:Springer.

6 Prins,L.J.,Reinhoudt,D.N.,andTimmerman,P.(2001). Angew.Chem.Int.Ed. 40:2382–2426.

7 Gonzalez-Rodriguez,D.andSchenning,A.P.H.J.(2011). Chem.Mater. 23: 310–325.

8 Metrangolo,P.,Meyer,F.,Pilati,T.etal.(2008). Angew.Chem.Int.Ed. 47: 6114–6127.

9 Gilday,L.C.,Robinson,S.W.,Barendt,T.A.etal.(2015). Chem.Rev. 115: 7118–7195.

10 Hunter,C.A.andSanders,J.K.M.(1990). J.Am.Chem.Soc. 112:5525–5534.

11 Bauzá,A.,Deyà,P.M.,andFrontera,A.(2015).Anion-π interactionsin supramolecularchemistryandcatalysis.In: NoncovalentForces,Challenges andAdvancesinComputationalChemistryandPhysics,vol.19(ed.S.Scheiner), 471–500.NewYork:Springer.

12 Chakrabarty,R.,Mukherjee,P.S.,andStang,P.J.(2011). Chem.Rev. 111: 6810–6918.

13 Lanigan,N.andWang,X.(2013). Chem.Commun. 49:8133–8144.

14 Stoddart,J.F.(2009). Chem.Soc.Rev. 38:1802–1820.

15 Ba˛k,K.M.,Porfyrakis,K.,Davis,J.J.,andBeer,P.D.(2020). Mater.Chem.Front. 4:1052–1073.

16 Mena-Hernando,S.andPérez,E.M.(2019). Chem.Soc.Rev. 48:5016–5032.

17 Peng,H.-Q.,Niu,L.-Y.,Chen,Y.-Z.etal.(2015). Chem.Rev. 115:7502–7542.

18 Williams,G.T.,Haynes,C.J.E.,Fares,M.etal.(2021). Chem.Soc.Rev. 50: 2737–2763.

19 Smith,D.K.(2018). Chem.Commun. 54:4743–4760.

20 Stupp,S.I.andPalmer,L.C.(2014). Chem.Mater. 26(1):507–518.

21 Amabilino,D.B.,Smith,D.K.,andSteed,J.W.(2017). Chem.Soc.Rev. 46: 2404–2420.

22 Griffin,S.L.andChampness,N.R.(2020). Coord.Chem.Rev. 414:213295.

23 Cordova,K.E.andYaghi,O.M.(2017). Mater.Chem.Front. 1:1304–1309.

24 Desiraju,G.R.(2013). J.Am.Chem.Soc. 135:9952–9967.

25 Aakeröy,C.,Champness,N.R.,andJaniak,C.(2010). CrystEngComm 12:22–43.

26 Saez,I.M.andGoodby,J.W.(2005). J.Mater.Chem. 15:26–40.

27 Hayes,R.,Warr,G.G.,andAtkin,R.(2015). Chem.Rev. 115:6357–6426.

28 Schalley,C.A.(2000). Int.J.MassSpectrom. 194:11–39.

29 Blunt,M.O.,Russell,J.,Giménez-López,M.C.etal.(2008). Science 322: 1077–1081.

30 Wasio,N.A.,Quardokus,R.C.,Forrest,R.P.etal.(2014). Nature 507:86–89.

31 Cai,J.,Ruffieux,P.,Jaafar,R.etal.(2010). Nature 466:470–473.

32 Mali,K.S.,Pearce,N.,DeFeyter,S.,andChampness,N.R.(2017). Chem.Soc. Rev. 46:2520–2542.

33 Tuxen,A.,Kibsgaard,J.,Gøbel,H.etal.(2010). ACSNano 4:4677–4682.

34 Binnig,G.,Rohrer,H.,Gerber,C.,andWeibel,E.(1982). Appl.Phys.Lett. 40: 178–180.

35 Binnig,G.,Quate,C.F.,andGerber,C.(1986). Phys.Rev.Lett. 56:930–933.

36 Gross,L.,Mohn,F.,Moll,N.etal.(2009). Science 325:1110–1114.

37 Sweetman,A.M.,Jarvis,S.P.,Sang,H.etal.(2014). Nat.Commun. 5:3931.

38 Stannard,A.,Russell,J.C.,Blunt,M.O.etal.(2012). Nat.Chem. 4:112–117.

39 Steeno,R.,Minoia,A.,Gimenez-Lopez,M.C.etal.(2021). Chem.Commun. 57: 1454–1457.

40 Urgel,J.I.,Écija,D.,Lyu,G.etal.(2016). Nat.Chem. 8:657–662.

41 Shang,J.,Wang,Y.,Chen,M.etal.(2015). Nat.Chem. 7:389–393.

42 Barth,J.V.,Weckesser,J.,Cai,C.etal.(2000). Angew.Chem.Int.Ed. 39: 1230–1234.

43 Griessl,S.,Lackinger,M.,Edelwirth,M.etal.(2002). SingleMol. 3:25–31.

44 Theobald,J.A.,Oxtoby,N.S.,Phillips,M.A.etal.(2003). Nature 424:1029–1031.

45 Stepanow,S.,Lingenfelder,M.,Dmitriev,A.etal.(2004). Nat.Mater. 3:229–233.

46 Dong,L.,Gao,Z.,andLin,N.(2016). Prog.Surf.Sci. 91:101–135.

47 Elemans,J.A.A.W.,Lei,S.,andFeyter,S.D.(2009). Angew.Chem.Int.Ed. 48: 7298–7332.

48 Elemans,J.A.A.W.,DeCat,I.,Xu,H.,andDeFeyter,S.(2009). Chem.Soc.Rev. 38:722–736.

49 Tobe,Y.,Tahara,K.,andDeFeyter,S.(2021). Chem.Commun. 57:962–977.

50 Song,W.,Martsinovich,N.,Heckl,W.M.,andLackinger,M.(2013). J.Am.Chem. Soc. 135:14854–14862.

8 1Two-DimensionalSupramolecularChemistryonSurfaces

51 Narita,A.,Wang,X.-Y.,Feng,X.,andMüllen,K.(2015). Chem.Soc.Rev. 44: 6616–6643.

52 Song,S.,Su,J.,Telychko,M.etal.(2021). Chem.Soc.Rev. 50:3238–3262.

53 Jin,Y.,Hu,Y.,Ortiz,M.etal.(2020). Chem.Soc.Rev. 49:4637–4666.

54 Xu,L.,Zhou,X.,Yu,Y.etal.(2013). ACSNano 7:8066–8073.

55 Judd,C.,Haddow,S.L.,Champness,N.R.,andSaywell,A.(2017). Sci.Rep. 7: 14541.

56 Saywell,A.,Magnano,G.,Satterley,C.J.etal.(2010). Nat.Commun. 1:75.

CharacterisationandInterpretationofOn-SurfaceChemical ReactionsStudiedbyUltra-High-ResolutionScanningProbe Microscopy

AdamSweetman 1 ,NeilR.Champness 2 ,andAlexSaywell 3

1 UniversityofLeeds,SchoolofPhysicsandAstronomy,LeedsLS29JT,UK

2 UniversityofBirmingham,SchoolofChemistry,Edgbaston,BirminghamB152TT,UK

3 UniversityofNottingham,SchoolofPhysicsandAstronomy,NottinghamNG72RD,UK

2.1Introduction

Thedevelopmentofsupramolecularchemistryonsurfacesisreliantupondetailed characterisationatthemolecularlevel.Avarietyofapproacheshavebeenemployed tounderstandthedetailedarrangementofmoleculesinself-assembledarraysbut thedominantandtypicallymostinformativetechniquesarebaseduponscanning probemicroscopy(SPM).Inthemainscanning-tunnellingmicroscopy(STM)[1] hasbeenhighlysuccessfulinestablishingadetailedappreciationofthestructure ofsupramolecularsystems,oftenatthemolecularlevel,butitcanbehelpfulto supplementthisapproachwithothertechniquesthatallowananalysisofthechemicalspeciationorotherstructuralfeaturesthatSTMcannotprobe.Forexample, X-rayphotoelectronspectroscopy(XPS)[2–5]allowsinvestigationofthechemical compositionofmoleculeswithinsupramoleculararrays,andtechniquessuchas X-raystandingwave(XSW)analysis[6]canprobethemolecularconformationsof adsorbedmolecules.However,STMandatomicforcemicroscopy(AFM)[7]arethe mostcommontechniquesusedtostudysurface-basedsupramolecularstructures. Indeed,SPMsfacilitatethecharacterisationofsinglemoleculesandassembliesof molecules,confinedtoasupportingsubstrate,onthemolecularorsub-molecular level.ThedefiningcharacteristicofallvariantsofSPMistheuseofaprobetomeasureaspecificprobe–sampleinteractionoveragridofpoints,whichisusedtogeneratean‘image’ofawell-definedspatialregionofthesurface;oftenresultingin resolutiononthesub-Ångströmlevel.

Conceptually,theprobeisterminatedwithasingleatomanditistheinteraction betweenthisatomandthemolecule-substratesystemwhichismeasured.Theoriginsofthisprobe–sampleinteractiondeterminetheinterpretationoftheresulting imagebutcommonlytheinformationacquiredprovidesarelativelysimplepathway tounderstandingstructuralarrangements.Thus,theterminatingatomattheapex oftheprobeistypicallybroughttowithinafewÅngströmofthesurfaceand,due tothestrongdistancedependenceoftheprobe–surfaceinteractions,themeasured

SupramolecularChemistryonSurfaces:2DNetworksand2DStructures,FirstEdition. EditedbyNeilR.Champness.

©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

2CharacterisationandInterpretationofOn-SurfaceChemicalReactions

interactionisdominatedbythepositionandpropertiesofthesingleterminating atom.InbothSTM[1]andAFM[7],thecurrentflowbetweentheprobeandsample ortheprobe–sampleinteractionforce,respectively,aremeasured.Inthemajority ofapplications,theprobeiseitherformedfromametalwire,sharpenedmechanicallyoretchedchemically,oranetchedsilicontip.Theresolutionobtainablecanbe furtherimprovedwhentheapexofthetipisfunctionalisedwithawell-definedterminatingspecies,suchasCO[8],providingaprobewithadefinedsizeandknown intermolecularchemistry.Itisthelocalisednatureoftheprobe–sampleinteraction measuredbytheprobe,whichgivesrisetothehighspatialresolutionwhichallows thestudyofmolecule-substratesystemsontheatomicandmolecularlevel.

AnoteworthyfeatureofallSPMtechniquesisthattheacquireddatadirectly correspondstoreal-spacemeasurements,whichallowanimageofthesurface tobeproduced.ThisisdistinctfromtechniquessuchasX-raycrystallography andlow-energyelectrondiffraction(LEED)whereensemblereciprocalspace measurementsareconvertedtoproduceareal-spacestructure.Suchimagesofthe surface,particularlyofmolecule-substratesystems,mayoftenofferwhatappears tobeaneasilyaccessibleviewofmolecularstructureand/orreactionprocesses. However,greatcareshouldalwaysbetakenwheninterpretingthedataacquired; theacquireddataprovidesawealthofinformationontheelectronicandchemical structureofthesystemunderstudywhichisdistinctfrom,althoughoftenrelated to,thetopographyoftheadsorbedmolecules.

ThischapterseekstoprovideabackgroundtoSPMstudiesofmolecule-substrate systemsandhowtheycanbeemployedtounderstandself-assembledstructures andinparticularsurface-basedreactionprocesses.Thechapterwillfocusonthe underlyingtheoryandexperimentalconsiderationsthatarerequiredtoconductand interprettheinvestigationofon-surfacesynthesisreactionsusinghigh-resolution SPMmethodologies.However,thespecificexamplesdiscussedinthischapter alsoprovidetheunderpinningconceptsthatcanbeappliedtorelatedareasof surface-basedmolecularassemblysuchasthosediscussedintheotherchapters withinthisvolume.ThechapterprovidesdetailsofthebasicpremiseofSPM studiesformolecule-substratesystems,includinganoverviewoftheexperimental conditions(Section2.2),andprovidesanin-depthdiscussionofthetechnical aspectsofperformingnoncontactatomicforcemicroscopy(ncAFM)experiments (Section2.3).Thephysicalprocessesunderlyingtheprobe–moleculeinteraction willbeusedasabasisfordiscussionofimageinterpretation(Section2.4),and inthefinalsection(Section2.5)examplesofon-surfacereactionsinvestigatedby SPMwillbegiven;focusingspecificallyontheformationofgraphenestructures (includinggraphenenanoribbons–GNRs)andcyclisationreactions(e.g.Bergman cyclisation).

2.2SPMUnderUHVConditions

AlthoughtherearemanyexamplesoftheimplementationofSPMinambient,liquid, andevenelectrochemicalenvironments,herewespecificallyfocusontheultra-high

2.2SPMUnderUHVConditions 11 vacuum(UHV)studiesconductedatcryogenictemperatures(e.g. <5K–achievable usingliquidhelium).AUHVenvironmentisusuallyavitalprerequisiteforthe formationofatomicallyflatandcleansubstrates.AllSPMtechniquesworkoptimally,withregardstothecharacterisationofmolecularspecies,whenlargeareas (>100nm2 )offlatsurfaceareaccessible.Theselargeatomicallyflatregionsfacilitatesub-molecularandatomicresolution,whichisinitselfaprerequisiteforthe characterisationofon-surfacechemicalreactions.

SamplepreparationunderUHVconditionsallowscontaminant-freesurfacesto beproduced(simplybylimitingexposuretocontaminantspecies),offersaccurate temperaturecontrolforsamplepreparation(withspecifictemperaturesrequiredto formcertainsurfacereconstructions),andfacilitatestheuseofthecleaningproceduresdescribedinSection2.3.TypicallyUHVchambersallowpressuresdownto ∼10 10 mbar,andlower,tobeobtained.CryogenicSPMsystemsalsoallowsamples tobecooledto <5K(inhibitingbothmoleculardiffusionandtheprogressofchemicalreactions–requiredtostudyintermediatestatesofon-surfacereactions).

ThereishoweveradisconnectbetweentheuseofUHVandtheenvironment inwhichindustrialscale,orevenlab-based,chemicalreactionsoftentakeplace: specificallywithregardstotheenvironmentinwhichsolution-phasereactionsare performed.Ingeneral,itisnotpossibletointroducesolventsintoUHV(asthehigh vapourpressureofmanysolventsrendersthemincompatiblewithaUHVenvironment),meaningthatreactionsinvestigatedbySPMunderUHVarestudiedinthe absenceofsolvents.Inaddition,studyingsuchmolecule-substratesystemsunder UHV,asopposedtoambientconditions,givesrisetoseveralchallenges(including theinherenttechnicaldifficultiesofsimplymovingsamplesaroundinaUHVenvironment).Mostnotableistheissueoftransferringthemoleculestoasurfaceheldin UHV.Inthesimplestcase,acrucibleloadedwiththemoleculesunderstudycanbe introducedtotheUHVsystemwithsubsequentthermalevaporationusedtoproduce asub-monolayertomulti-layerfilmuponthesubstrate.However,inmanycases,the moleculesmaybenon-volatileorthermallylabileandinsuchcases,oneofavariety ofalternativetechniqueshastobeemployed[9].

ThereareseveralbenefitsinutilisingUHV-SPMcomparedtoothercharacterisationtechniques.Themoleculestobestudieddonothavetobecrystalline(asis thecaseforsomediffraction-basedtechniques)andonlyverysmallquantitiesof materialarerequiredforstudybySPM(comparedto,forexample,nuclearmagnetic resonance[NMR]).Combinedwiththeexceptionallyhighspatialresolutionoffered bySPM,thetechniquehasrecentlygainedimportanceasacharacterisationtechniquethatcanprovide‘realspace’characterisationofmolecule-substratesystems, whichbothcomplementsandenhancesthechemicalandstructuralcharacterisation offeredbyensembleaveragingtechniques.

2.2.1On-SurfaceReactions

AnobviousconsiderationwithregardstocharacterisationutilisingSPMtechniques isthatthemoleculesinvestigatedhavetobestudiedonasupportingsubstrate;prohibitingthestudyofsolventconfinedsystems.TheoperationalmechanicsofSPM

2CharacterisationandInterpretationofOn-SurfaceChemicalReactions

lendthemselvestothestudyofsystemsconfinedtoa2Dsubstrateandprovidean invaluabletechniqueforinvestigatingchemicalreactionsupon,apotentiallyreactiveand/orcatalytic[10],surface(seereviews[10–15]andreferencestherein).Asthe systemstobestudiedareonasubstrate,thisprecludestheuseoftransmissionelectronmicroscopy(TEM)whichcanalsobeusedinprincipletoprovideatomic-level resolution,butisgenerallyunsuitableforthestudyofmolecule-substratesystems duetothethicknessofthesubstratesrequired.

ThemajorbenefitofcharacterisationviaSPMisthelevelofspatialresolutionachievable(verticalresolutionoflessthan5pmandsub-angstromlateral resolutionisroutine).Thisisbaseduponsensitivemeasurementsoftheprobe–substrate/moleculeinteraction(videinfra).Astheprobeplaysavitalpartinthe measurements,oneneedstoconsideritsshape,anditselectronicandchemical properties,asthesecanpotentiallygiverisetoavarietyof‘artefacts’(Section2.3 discussesthisindetail).Anadditionalbenefitofconfiningachemicalreactiontoa 2Dplaneisthepotentialtocontrolreactionsviadifferentmethodologiestothose availableinsolution[16].Thetechniquehasalsobeenshowntoallowdifferent stagesduringtheprogressionofachemicalreactiontobestudied(i.e.initial,final, andevenintermediatestates)[13].

TwomainvariantsofSPMhavecommonlybeenemployedtostudyon-surface reactions;STMandAFM.Inparticular,aspecificvariantofAFM,ncAFM,providesasub-molecularresolutionthatallowscharacterisationofthespatialposition ofchemicalgroupswithinamolecule,aswellasfacilitatingnotonlytheobservation ofsinglechemicalbonds[8]butprovidingamethodologytodistinguishthebond order(i.e.single,double,ortriplecarbon–carbonbondspecies)[17].ItisimportanttonotethatthespecificaspectsofncAFM(discussedindetailthroughoutthis chapter)providesub-molecularresolution,andtherefore,sub-molecularresolution ncAFMispartofthefamilyofSPMtechniques,itisnotsimplyamodeofoperationthatcanbeappliedtootherSPMsystemsandrequires,atleastinthecurrent implementation,aspecificexperimentalset-up.

Thelevelofsub-molecularresolutionprovidedbyncAFMcanbeusedtocomplementtraditionalcharacterisationtechniques(e.g.NMR,GLC,LEED)and,for example,allowsalevelofsingle-moleculecharacterisation,whichcanaidinthe structuraldeterminationofcompletelynewspecies(typifiedbytheroleofncAFM inthecharacterisationofaplanar,proton-poorcompoundincombinationwith computationalstudies[18])aswellasdistinguishingbetweenthestructureof asphaltenes(polycyclicaromatichydrocarbonswithincrudeoil;whosestructural analysisisatremendouschallengefornon-spatiallyresolvedtechniques)[19].

2.2.2CharacterisationofMolecule-SubstrateSystemsviaSTM

Therearemany‘flavours’ofSPMalldesignatedbyaconfusingmenagerieof acronyms,includingbutnotlimitedtoSTM,ncAFM,KPFM(Kelvinprobeforce microscopy),andSNOM(scanningnear-fieldopticalmicroscopy).Thearchetypal exampleofthissetofmethodsisSTM.IncommonwithallSPMmethodologies, STMworksbyscanningaprobeacrossasurface,inthiscasewithanappliedbias

2.2SPMUnderUHVConditions 13 (relativetotheprobe–whichisusuallydefinedasgrounded).Theconductingtip (usuallymetallic)ismovedinastraightlineacrossaconducting/semi-conducting surfaceandtheinteractionbetweentheprobeandthetipmeasured(inthecase ofSTM,themeasuredquantityisthemagnitudeofthecurrentflowduetoelectronstunnellingbetweentheprobeandthesurface,orviceversa).Detailsofthe conceptsunderpinningSTMaregiveninseveralexcellenttextbooks[20,21],but insummary,thesalientpointsare:(i)thesubstrateisbiasedrelativetotheprobe (typicallyintherange ±2V),(ii)theresultantflowofelectronsbetweentheprobe andthemolecule/substrateisrecorded,(iii)themagnitudeofthistunnel-current (I )hasanexponentialdependenceonthedistancebetweentheprobeandthe substrate/molecule,and(iv)theverticalprobeposition(z)canbevariedinorder togiveaconstantcurrentastheprobeismovedlaterallyacrossthesurface(this feed-backmodeisknownasaconstant-currentoperation)or(v)theverticalprobe positioniskeptconstantandthecurrentisrecordedatvariouslateralpositions abovethesubstrate/molecule,knownasconstant-heightmode(seeFigure2.1).

AnSTMimageisproducedbyobtainingaseriesoflinescans(shownin Figure2.1a),whicharethencombinedtoforma2Dimage.Inconstantcurrent mode, I ismaintainedatafixedset-point,typicallyafewpicoamperes,andthe resultantimage,therefore,showsthevariationin z astheprobeisscannedover thesurface.Inconstantheightmode,imageswillshowthevariationin I withtip position.Itisimportanttonotethatthemeasuredcurrent,forafinitebiasvoltage, isproportionaltothesumofthecontributionsforthelocaldensityofstates(LDOS) fromwhichtunnellingispossible[20,21];i.e.themeasuredcurrentisrelatedtothe electronicstructureofthemolecule/substrate,andisnotnecessarilywellcorrelated tothespatialpositionoftheatomicnuclei.Inthisrespect,thepathoftheprobein constant-currentmodedoesnotsimplyprovideatopographicheightbutisbetter interpretedasamapoftheLDOS.Thisissuemanifestsinthecharacterisation ofmoleculeswheremolecularorbitalsareoftendelocalisedoverthemolecular speciesunderstudy.Therefore,preventingthepositionofindividualatoms,within similarchemicalenvironments(e.g.conjugatedaromaticcarbons),frombeing resolvedastheywilloftenformpartofthesamefeatureobservedwithinanSTM image.However,incaseswhereelectroniccharacterislocalisedoverspecific chemicalmoieties,STMimagesmaybecompared(atleastasanapproximation) tothechemicalstructureofthemoleculeunderstudy.Anexampleofthisis showninFigure2.1cwherethestructureofabrominatedterfluorenemolecule (α,ω-dibromoterfluorene[DBTF])canbecomparedwithaconstant-currentSTM image[22];featuresrelatedtotheperipheralBratomsandcentralfluorenegroups arevisible.Suchelectronicstructuresareoftencomparedwithdensityfunctional theory(DFT)basedsimulationsofSTMimages,whichcanhelpidentifymolecular structureandconformations[24].

WhileSTMcanprovidesub-molecularresolution,itsuffers,incommonwith allSPMtechniques,withregardstothenon-trivialinterpretationoftheacquired data.AlthoughDFTstudiesusedinconjunctionwithSTMdataoftenoffergood agreementandprovideaplausibleinterpretationoftheresults(intermsofamore completeappreciationoftheexpectedLDOS),anoverrelianceonDFTcanlead

STMncAFM

Figure2.1 OutlineofSPMimageacquisitionandexamplesofmolecularcharacterisation.(a)Schematicshowingimageacquisitionviaaseriesofline profilesinconstantcurrentoperationofSTM.(b)OperationofSTMinconstant-heightmode.(c)ExampleofSTMcharacterisationofasingleDBTF moleculeviaSTM[22](Scalebar:1nm, V Sample-bias =− 0.4V, ISet-point = 5.5pA).(d)Exampleofcharacterisationofgraphdiynemacrocyclesviaconstant heightncAFMusingaCOtip[23](Scalebar:0.6nm).Source:STMimagein(c)reproducedfromSaywelletal.[22]withpermissionfromJohnWiley& Sons,Inc.,Copyright2012.Imagesin(d)reprintedwithpermissionfromLiuetal.[23].Copyright2018AmericanChemicalSociety.

Graphdiynemacrocycles

2.2SPMUnderUHVConditions 15 topotentialpitfallsascalculatingtheenergyandspatialdistributionofmolecular orbitalsforsurfaceadsorbedspeciescanbechallenging(specificallywhentaking intoaccounthybridisationwithelectronicsurfacestates).Thisisnottosaythat STMisnotabletoprovidereliableandinformativeevidencewithregardstothe studyofmolecule-surfacesystems,butratherthatitisbestusedinconjunction withcomplementarytechniquestoensurerobustcharacterisationofthestructural, chemical,andelectronicpropertiesofthemoleculesunderstudy.

2.2.3ncAFM

RecentlyncAFMhasrisentoprominenceasatechniqueforcharacterisationof molecule-substratesystemsonthesub-molecularlevel.Thebasicpremisefor dataacquisitionisthesameasSTM,withimagesformedlinebyline.Inthecase ofncAFM,therelevantinteractionistheforcebetweentheprobeandmolecule substrate-system.ThefocuswithinthischapterisontheuseofqPlusimplementationofncAFM(seeRefs.[25,26],andcitationstherein,fordetailsofthetechnique).

AnexcellentdescriptionoftheunderlyingprinciplesofncAFMisgiveninRef. [27],buttosummarise:Theprobe,isaffixedtoacantilever,whichisoscillatedat it’sresonantfrequency,andtheinteractionbetweenthetipandsampleresultsina changeinthisresonantfrequency.Thisshiftintheresonantfrequency, Δf ,isthe signalmeasuredwithinncAFM(inthesameway I isrecordedinSTM).Feedback circuitsareusedtoexcitethecantileveratitsresonancefrequencyandkeepthe oscillationamplitudeconstant(typically ∼0.5Å–asdiscussedbyGiessibl[28]).

SimilartoSTMconstantcurrentmeasurements,the z-heightcanbeadjustedduring scanningtokeep Δf constant(constant Δf imaging),butwithinthischapter,we discussconstantheightmeasurementswherethe z-heightoftheproberelativeto thesurfaceiskeptfixedandthe Δf signalisrecordedasafunctionofprobeposition.

ExamplencAFMimagesareshowninFigure2.1dwherethestructureoftwo graphdiynemacrocyclesareclearlyresolvedwithintheconstantheightncAFM data[23].Byconvention,brightfeatureswithintheconstantheightncAFMimages correspondtoapositiveincreasein Δf andareoftensimplyinterpretedasa topologicallyhigherregionofthemolecule(however,asdiscussedindetailbelow, thisisonlythecaseifthenatureoftheinteractionforcebetweenthe‘higher’and ‘lower’partsofthemoleculeisidentical).

Itisusefultobrieflycommentuponthenomenclaturechosenforthisparticular versionofAFM.TheterminologyncAFMisusedhere,asopposedtodynamicforce microscopy(DFM)orfrequencymodulatedatomicforcemicroscopy(FM-AFM); FM-AFMreferstothefactthatthefrequencyshift, Δf ,isthemainobservable.These termsareoccasionallyusedinterchangeablywithncAFM,anditisimportanttonote thatsomeconfusioncanarisewithcomparisontotheso-called‘contact’,‘intermittentcontact’,and‘tapping’modesofcantileverAFM.Fortheexperimentsdiscussed here,measurementsareacquiredinconstantheightoperationandthe‘non-contact’ aspectreferstothefactthatthemethodisdistinctfromthe‘contact’modesofcantileverAFM.

2CharacterisationandInterpretationofOn-SurfaceChemicalReactions

ncAFMandSTMtechniquesareoftenusedinconjunctiontocharacterise molecule-substratesystems.ncAFMprovidesgreaterlateralresolution,dueinpart totheshorterinteractionrange(Pauli-repulsion),andinprincipleoffersaroute towardschemicalspecificity.TheimageacquisitiontimeforncAFMis,however, significantlyslowerthanSTM,andsoitiscommonpracticetofirstcharacterisethe molecule-substratesystemusingSTM(ofcourse,theinitialSTMcharacterisation canalsoprovideimportantcomplimentaryinformationontheelectronicstructure ofthemolecules).Inaddition,ncAFMimagesarepredominantlyacquiredinconstantheightoperation,whichisnotalwayscompatiblewithnon-planarmolecules. TheremainderofthechapterwillfocusontheapplicationofthencAFMtechnique andtheinterpretationofthedataacquiredforvariousmolecule-substratesystems.

2.3PracticalStepsinAccomplishingSub-Molecular Imaging

Whilethefundamentalunderlyingphysicalprinciplesofultra-highresolutionin ncAFMimagingofsinglemoleculesarerelativelysimple,andcanbeunderstood withreferencetostraightforwardempiricalmodels(seeSection2.4.1),thetechnical stepsrequiredtoachieveitinpracticearesomewhatdemandingandrequireadegree ofspecialistexpertisetoreproduce.

First,itshouldbeemphasisedthatthesubstantialchallengesof‘conventional’ lowtemperatureUHVSPMmustbeovercome.Theseincludefundamentalssuch astheconstructionofhighstability,vibrationallyisolated,scanhead,UHVgeneration,lowlevelsofmechanicalandelectricalnoise,andmountingoftheinstrument inasuitablelow-temperaturecryostat.Fortunately,manyofthesecorechallenges maynowberoutinelysurmountedusingcommerciallyavailablesystems,andso inthissection,weonlyhighlightthosechallengesspecifictoultra-highresolution imagingoforganicmoleculeswithfunctionalisedtips,assumingafullyfunctioning UHVSPM.

Itshouldbenotedthatinprinciplesub-molecularresolutioncanbeaccomplishedwithawidevarietyofsensors,includingconventionalsiliconcantilevers [29,30],andlengthextensionalresonatorssuchastheKolibrisensor[31].However, practicallymostoftheliteratureonthetopichasusedtheqPlussensor[8,25] implementation,andthereforeinthefollowingwewillassumethisisthesetup underconsideration.

2.3.1SamplePreparation

Althoughinprinciplehighresolutioncanbeachievedonalmostanyatomically flatsubstrate[29,30,32]inpractice,mostimagingoforganicmoleculesisdone usingsinglemetalcrystalswithlowindexplanes(e.g.Cu(111),Ag(111))asasubstrate.TheseareeasilypreparedinUHVviasputter/annealingcyclesandallowfor straightforwardpreparationofthetip(asdescribedinSection2.3.3)withoutthe

2.3PracticalStepsinAccomplishingSub-MolecularImaging 17 riskofcreatinganelectricallyinsulatingapex,ascanbethecaseonsemiconductingorinsulatingsubstrates.Forthepurposesofhigh-resolutionimagingoforganic molecules,thereareanumberofadditionalpreparationstepsthatareworthcoveringinsomedetail.

2.3.1.1DepositionofOrganicMoleculesatLowTemperature

Mostsmallorganicmoleculeshaverelativelylowdiffusionbarriersoncoinagemetal surfaces,andreadilyaggregateintoislands[33],orevenreconstructthesurface[34], ifdepositedatroomtemperature.Fortheinvestigationofisolatedmolecules,itis thereforerecommendedthatthedepositionbeperformedatlowtemperatures.Practically,thisisbestdonebydirectdepositionintothescanheaditself.Thisistypically doneusingathermaleffusion(Knudsen)cellfilledwithathermallypurifiedpowder (99%purityorbetter)oftherequiredmolecule,positionedtofaceoneoftheshuttersoftheSPMcryostat(notethatlarge,orfragile,molecules,mayrequiremore sophisticateddepositiontechniquestobeutilised[9]).

Thecellisboughtuptotherequireddepositiontemperature,andonceaconstant rateofdepositionismeasured(preferablycalibratedpreviouslyusingaquartz crystalmicrobalance[QCM]orsimilar),theshuttertothecryostatisopenedfora shortperiodoftime.Inordertopreventdiffusionofthemoleculesonthesurface, typicaldepositiontimesareontheorderoflessthanaminuteinordertoprevent thesubstratetemperatureexceeding ∼10K.Dependingontheexactmolecule, andsubstrate,combination,thistemperaturerequirementmaybestricter,or morerelaxed,andmustbecalibratedtoeachexperimentalsetup.Generally,it isrecommendedtousehigherfluxes,andshorterdepositiontimes,inorderto minimisethetemperatureincrease,butpracticallythefluxofagivenmolecule, inaparticularmicroscope,mustbecalibratedonacase-by-casebasistogivethe requiredcoverage.Iftherequiredcoveragecannotbereachedinthegiventime, multipledepositionscanbeperformed,ontheprovisothatnosingledeposition exceedsthetemperaturethresholdfordiffusion.

2.3.1.2CODeposition

Althoughtechniquesvary,typicallyCOmoleculesarenotdepositedviadirect(line ofsight)deposition,butinsteadtheUHVchamberisbackfilledwithCOgasupto pressureontheorderof10 8 mbar[8,25],byadmittingultra-highpuritygasviaa UHVleakvalve.Oncethepressurehasstabilised,theshuttersofthecryostatare openedforashortperiod(asforthedepositionoforganicmolecules).Although exposuresaresometimesgiveninLangmuir,itshouldbenotedthatthepressureof agasatthesampleisoftensignificantlylowerthanthatreadonthevacuumgauges, socoveragesmustagainbecalibratedonasystembysystembasis.COdeposition istypicallyperformedafterdepositionoftheorganicmolecules,asadiffusionbarrierforCOisnormallysmallerthanthediffusionbarrierforthelargermolecules, andsodepositingtheCOasafinalstepreducesthelikelihoodofinducingCOdiffusionduringdepositionoforganicmolecules.Itshouldbenotedthatthisback-filling techniquecanresultinalargequantityofCOgasbeingabsorbedontothecryostat shieldsthemselves,andshouldthecryostatwarmup,alargenumberofmolecules

2CharacterisationandInterpretationofOn-SurfaceChemicalReactions

willdesorbfromtheshields,raisingthepressureinthechamber,andinevitablycontaminatinganysamplesstoredinthesamechamber.Therefore,onceCOgashas beendosedintothesystem,itisessentialtokeepthecryostatcolduntiltheexperimentiscomplete.Thequantityofgasadsorbedmayevenbehighenoughtotrip iongaugesandionpumps,soparticularcaremustbetakenduringwarm-upafter repeatedCOdepositioneventsatlowtemperature.Alargenumberofpassivating molecules/atomshavebeenshowntoworkforhighresolutionncAFMoforganic molecules(includingCO,xenon,chlorine,bromine,andiodine[35]),buttheoverwhelmingmajorityofimagingisperformedeitherwithCO,orxenon,mostlydue totheirreadyavailability,easeofdeposition,andalargevolumeofworkdescribingprotocolsforthemanipulation.Theformergenerallyproduceshigherresolution images,butalsoproducesagreaterdegreeofdistortionduetotheflexibilityofthe apex.Theexactchoiceofapassivatingagentcanalsohaveasignificantinfluence onthecontrastduetoitsinteractionwiththeshort-rangeelectrostaticfieldofthe molecule[36,37](seeSection2.4.1.5).

2.3.1.3DecouplingLayers

Theuseofathindecouplinglayer(e.g.1–3monolayers[ML]ofNaClorMgO)is anon-essentialbutoftenusedstepinsub-molecularcontrastimaging.TheabsorptionofmoleculesontoathininsulatinglayerisusedinSTMstudiestodecouple theelectronicstructurebypreventinghybridisationofmolecularorbital’swiththe surface[38,39],whereasforAFMstudiestheprimarybenefitisthatthetipfunctionalisationmaybeperformedmoreeasilybypickingtheCOmoleculeupfromthe insulatinglayer,asthebindingstrengthtothesurfaceisdramaticallyreduced[8],a factormoreimportantonreactivemetalssuchascopper,comparedtolessreactive metalssuchassilverorgold.Generally,alowcoverage(lessthanhalfamonolayer) ispreferred,suchthatpatchesofcleanmetalremainfortippreparation.Growth of2MLthickislandsofNaClcanbeachievedbydepositionontothemetalcrystal outsideofthescanhead,withasampletemperatureofaround293K.Preparation techniquesvaries,butsomegroupsreportthatdepositionslightlybelowroomtemperature(e.g.270K)ispreferentialforthegrowthof2MLislandsandhelpsprevent wettingofthesurfacebytheNaCl.Particularcaremustbetakenatthisstageas depositionattoohighatemperaturewillresultinacompletewettingofthesurface by1MLNaCl,whichcanbedifficulttodetectimmediatelyviaSTMimaging.

2.3.2ConstructionoftheqPlusSensor

WhilstthegeometryoftheqPlussensoriswelldescribed[25],practicallyconstructingacompletesensorfromscratchrequiresadegreeofexperimentalskillandpreferablyspecialisedequipment.Boththeattachmentofthetuningforktoasuitable baseandtheattachmentofthemetaltiptotheendofthefreetineoftheforkmust bedonecarefullysuchthattheresonantfrequencyand Q factorofthecantilever arenotcompromised.Inpractice,thisisbestaccomplishedbyusingassmallan amountofappropriateUHVcompatibleepoxyresinaspossible,ensuringthatno epoxyresinbridgesthegapbetweenthetwotinesofthetuningfork,andmaking

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.