Photoinitiators: structures, reactivity and applications in polymerization jean-pierre fouassier 202

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/photoinitiators-structures-reactivity-and-applications-i n-polymerization-jean-pierre-fouassier/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Manipulations viscerales avancees Jean Pierre Barral

https://ebookmass.com/product/manipulations-viscerales-avanceesjean-pierre-barral/

Manipulation des disques intervertébraux Jean-Pierre Barral

https://ebookmass.com/product/manipulation-des-disquesintervertebraux-jean-pierre-barral/

Geomorphology and Volcanology of Costa Rica Jean Pierre Bergoeing

https://ebookmass.com/product/geomorphology-and-volcanology-ofcosta-rica-jean-pierre-bergoeing/

RAFT Polymerization - Methods, Synthesis, and Applications in 2 Vol. Moad Graeme (Ed.)

https://ebookmass.com/product/raft-polymerization-methodssynthesis-and-applications-in-2-vol-moad-graeme-ed/

Chemical Reactivity in Confined Systems: Theory, Modelling and Applications Pratim Kumar Chattaraj

https://ebookmass.com/product/chemical-reactivity-in-confinedsystems-theory-modelling-and-applications-pratim-kumar-chattaraj/

Non-destructive Testing and Evaluation of Civil Engineering Structures Jean-Paul Balayssac

https://ebookmass.com/product/non-destructive-testing-andevaluation-of-civil-engineering-structures-jean-paul-balayssac/

Optical Holography: Materials, Theory and Applications

https://ebookmass.com/product/optical-holography-materialstheory-and-applications-pierre-alexandre-blanche/

Metal Oxide Nanostructures Chemistry: Synthesis from Aqueous Solutions 2nd Edition Jean-Pierre Jolivet

https://ebookmass.com/product/metal-oxide-nanostructureschemistry-synthesis-from-aqueous-solutions-2nd-edition-jeanpierre-jolivet/

Columnar Structures of Spheres: Fundamentals and Applications Jens Winkelmann

https://ebookmass.com/product/columnar-structures-of-spheresfundamentals-and-applications-jens-winkelmann/

Photoinitiators

Photoinitiators

Structures,ReactivityandApplicationsinPolymerization

Volume1

Writtenby

Jean-PierreFouassier

JacquesLalevée

Photoinitiators

Structures,ReactivityandApplicationsinPolymerization

Volume2

Writtenby

Jean-PierreFouassier

JacquesLalevée

Authors

Prof.Jean-PierreFouassier 15,rueduChâteau 68590SaintHippolyte France

Prof.JacquesLalevée UniversityofHauteAlsace UMRCNRS7361 15,rueJeanStarcky 68057MulhouseCedex France

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformationcontained inthesebooks,includingthisbook,tobefreeof errors.Readersareadvisedtokeepinmindthat statements,data,illustrations,proceduraldetailsor otheritemsmayinadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailablefromthe BritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhis publicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableonthe Internetat<http://dnb.d-nb.de>.

©2021WILEY-VCHGmbH,Boschstr.12,69469 Weinheim,Germany

Allrightsreserved(includingthoseoftranslation intootherlanguages).Nopartofthisbookmaybe reproducedinanyform–byphotoprinting, microfilm,oranyothermeans–nortransmittedor translatedintoamachinelanguagewithoutwritten permissionfromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenottobeconsidered unprotectedbylaw.

PrintISBN: 978-3-527-34609-7

ePDFISBN: 978-3-527-82128-0

ePubISBN: 978-3-527-82126-6

oBookISBN: 978-3-527-82129-7

Typesetting SPiGlobal,Chennai,India

Printedonacid-freepaper 10987654321

PartIPhotopolymerizationReactionsandPhotoinitiators: Backgrounds 1

1BackgroundsinPhotopolymerizationReactions:AShort Overview 3

1.1PhotopolymerizationandPhoto-cross-linking 3

1.1.1Reactions 3

1.1.2PhotoinitiationStep 4

1.1.3DifferentKindsofPhotopolymerizationReactions 4

1.1.4MonomersandOligomers 4

1.1.5PhotopolymerizableFormulations 6

1.1.6UVCuring 6

1.1.7Imaging 6

1.1.8ControlledPhotopolymerization 7

1.2PhotopolymerizationReactions 7

1.2.1MonomersandOligomersinPhotopolymerizationReactions 7

1.2.1.1Monomers/OligomersinRadicalPhotopolymerization 8

1.2.1.2Monomers/OligomersinCationicPhotopolymerization 10

1.2.1.3MonomersinThiol–enePhotopolymerization 11

1.2.1.4MonomersinChargeTransferPhotopolymerization 12

1.2.1.5MonomersinAnionicPhotopolymerization 12

1.2.1.6MonomersinPhotoinducedCopper-CatalyzedAzide–Alkyne Cycloaddition 12

1.2.1.7MonomersinPhotoactivatedHydrosilylationReactions 12

1.2.2MonitoringthePhotopolymerizationReaction 13

1.2.3KineticLawsinPhotopolymerizationReactions 13

1.2.3.1RadicalPhotopolymerization 13

1.2.3.2CationicPhotopolymerization 15

1.2.3.3DependenceofPhotopolymerizationRate 15

1.2.3.4Laser-InducedPhotopolymerization 16

1.2.3.5KineticsofthePhotopolymerizationinBulk 17

1.2.4OxygenInhibition 18

1.2.5RoleofLightStabilizers 18

1.2.6CompetitiveAbsorptionofLightbyaPigment 20

1.2.7RoleofEnvironmentinthePolymerizationReaction 21

1.3ImplementationofPhotopolymerizationReactionsandBriefOverview oftheApplications 22

1.3.1LightSourcesforPhotopolymerizationReactions 22

1.3.1.1ElectromagneticRadiation 22

1.3.1.2CharacteristicsofaLightSource 23

1.3.1.3AvailableLightSources 23

1.3.2BriefOverviewoftheApplicationAreas 27 References 29

2PhotoinitiatingSystem 35

2.1CharacteristicsofaPhotoinitiatingSystem 35

2.1.1GeneralProperties 35

2.1.2AbsorptionofLightbyaMolecule 35

2.1.2.1AbsorptionSpectrum 35

2.1.2.2MolecularOrbitalsandEnergyLevels 36

2.1.2.3AbsorptionofLightandOpticalTransitions 36

2.1.2.4AbsorptionIntensity 37

2.1.2.5ReciprocityLaw 38

2.1.2.6MultiphotonicAbsorption 38

2.1.3Jablonski’sDiagram 39

2.1.4KineticsoftheExcitedStateProcesses 40

2.1.5PhotoinitiatorandPhotosensitizer 40

2.1.6AbsorptionofaPhotosensitiveSystem 42

2.1.7InitiationStepofaPhotoinducedPolymerization 42

2.1.7.1ProductionofInitiatingSpecies 43

2.1.7.2CompetitiveReactionsintheExcitedStates 43

2.1.7.3ReactivityinBulkvs.Solution:RoleofDiffusion 43

2.1.7.4CageEffects 44

2.2ApproachofPhotochemicalandChemicalReactivity 45

2.3ReactivityofaPhotosensitiveSystem 46

2.4Efficiencyvs.Reactivity 48 References 49

PartIIPhotoinitiators:Structures,ExcitedStates,Reactivity, andEfficiency 55

3CleavableRadicalPhotoinitiators 59

3.1BenzoylChromophore-BasedPhotoinitiators 59

3.1.1BenzoinDerivatives 61

3.1.2BenzoinEtherDerivatives 62

3.1.2.1AbsorptionofBenzoinEthers 62

3.1.2.2PhotolysisofBenzoinEthers 63

3.1.2.3CleavageProcessinBenzoinEthers 64

3.1.2.4InitiatingRadicalsinBenzoinEthers 64

3.1.2.5SubstitutionEffectsinBenzoinEtherDerivatives 64

3.1.2.6EffectofLewisAcidsonBenzoinEthers 65

3.1.3HalogenatedKetones 65

3.1.4DialkoxyacetophenonesandDiphenylacetophenones 65

3.1.5MorpholinoandAminoKetones 66

3.1.6HydroxyAlkylAcetophenones 67

3.1.7KetoneSulfonicEsters 69

3.1.8ThiobenzoateDerivatives 70

3.1.9SulfonylKetones 70

3.1.10OxysulfonylKetones 71

3.1.11OximeEsters 71

3.2HydroxyAlkylHeterocyclicKetones 72

3.3BenzophenoneandThioxanthoneMoiety-BasedCleavableSystems 72

3.3.1BenzophenonePhenylSulfides 72

3.3.2Ketosulfoxides 72

3.3.3BenzophenoneThiobenzoates 73

3.3.4BenzophenoneSulfonylKetones 73

3.3.5SilylMoietyContainingCleavableBenzophenoneandThioxanthone Derivatives 73

3.4BenzoylPhosphineOxideDerivatives:aC—PBondBreaking 73

3.5TrichloromethylTriazines 76

3.6BiradicalGeneratingKetones 76

3.7Diketones 76

3.8SilylGlyoxylates 77

3.9Peroxides 77

3.10Peresters 78

3.11AzidesandAromaticBis-azides 79

3.12Carbon–GermaniumCleavableBond-BasedDerivatives 79

3.13Carbon–TinCleavableBond-BasedPIs 81

3.14Carbon–SiliconCleavableBond-BasedPIs 81

3.14.1BisSilylKetones 81

3.14.2Tetraacylsilanes 82

3.15Carbon–NitrogenCleavableBondContainingPIs 82

3.15.1AzoDerivatives 82

3.15.2PhenacylPyridiniumDerivatives 83

3.15.3PhenacylEthylCarbazoliumDerivatives 83

3.15.4N-substitutedDiazabicyclononanes 83

3.16Boron–SulfurCleavableBondContainingPIs 84

3.17Boron–NitrogenCleavableBondContainingPIs 84

3.18DisilaneDerivatives 84

3.19DiselenideandDiphenylditellurideDerivatives 85

3.20Sulfur–CarbonCleavableBond-BasedDerivatives 85

3.21DisulfideDerivatives 86

3.22Oxyamines 86

3.22.1Alkoxyamines 86

3.22.2Silyloxyamines 86

3.23Barton’sEsterDerivatives 87

3.24HydroxamicandThiohydroxamicAcidsandEsters 87

3.25IonPairPIs 87

3.25.1Organoborates 88

3.25.2Polyoxometalate–oniumSaltIonPairs 88

3.25.3Naphthalimide–IodoniumSaltIonPairs 89

3.26OrganometallicCompounds 90

3.26.1Titanocenes 90

3.26.2MiscellaneousOrganometallicPIs 90

3.26.2.1ChromiumComplexes 90

3.26.2.2AluminateComplexes 90

3.26.2.3ZirconoceneDichloride 91

3.26.2.4ZincComplexes 91

3.27MetalSaltsandMetallicSaltComplexes 91

3.28MiscellaneousSystems 91

3.28.1Acetone 91

3.28.2PhosphineOxideDerivatives 92

3.28.3Sulfur–SiliconCleavableBond-BasedDerivatives 92

3.28.4DigermaneandDistannaneDerivatives 92

3.28.5HalogenatedKetones 92

3.28.6HydroxyAlkyl-ConjugatedKetones 92

3.28.7Dibenzothiophenes 93

3.28.8Self-initiatingMonomers 93

3.28.9Self-assembledPIMonolayers 93

3.28.10Silicon–HydrideTerminatedSurface 93

3.28.11SemiconductorNanoparticles 93

3.28.12Perovskites(Nanocrystals) 94 References 95

4Two-ComponentRadicalPhotoinitiators 117

4.1Ketone/HydrogenDonorandKetone/Electron/ProtonDonor Couples 117

4.1.1BasicMechanism 117

4.1.2HydrogenDonorsandElectron/ProtonDonors 119

4.1.2.1Amines 119

4.1.2.2ThioDerivatives 121

4.1.2.3Benzoxazines 121

4.1.2.4Aldehydes 122

4.1.2.5Acetals 122

4.1.2.6Hydroperoxides 122

4.1.2.7Silanes 122

4.1.2.8Silylamines 123

4.1.2.9Metal(IV)andAmineContainingStructures 123

4.1.2.10Silyloxyamines 123

4.1.2.11GermanesandStannanes 124

4.1.2.12BoraneComplexes 124

4.1.2.13PhosphorusContainingCompounds 124

4.1.2.14Monomers 125

4.1.2.15PhotoinitiatorItself 125

4.1.2.16AlcoholsandTHF 125

4.1.2.17PolymerSubstrates 125

4.2Ketone/ElectronAcceptorSystems 125

4.2.1Ketone/IodoniumSalt 125

4.2.1.1Benzophenone(orThioxanthone)/IodoniumSalt 125

4.2.1.2SilylKetone/IodoniumSalt 126

4.2.1.3Silylglyoxylate/IodoniumSalt 126

4.2.1.4Ketone/NovelIodoniumSalts 126

4.2.2Ketone/Triazine 126

4.3Ketone/DiethoxyacetateSalt 127

4.4Well-KnownandNovelTypeIIKetones 127

4.4.1BenzophenoneDerivatives 127

4.4.1.1Benzophenone 127

4.4.1.2ModifiedBenzophenones 128

4.4.2ThioxanthoneDerivatives 132

4.4.2.1Thioxanthone:AbsorptionandExcitedStates 132

4.4.2.2Well-KnownThioxanthonesasModels 134

4.4.2.3NovelThioxanthones 136

4.4.3Diketones 138

4.4.3.1AromaticDiketones 138

4.4.3.2Camphorquinone 139

4.4.4Ketocoumarins 140

4.4.5Coumarins 140

4.4.6AlkylPhenylglyoxylates 141

4.4.7SilylKetones 141

4.4.8SilylGlyoxylates 141

4.4.9OtherTypeIIKetoneSkeletons 142

4.4.9.1Anthraquinones 142

4.4.9.2Fluorenones 142

4.4.9.3Naphthoquinones 142

4.4.9.4AliphaticKetones 142

4.4.9.5Ketoesters 142

4.4.9.6CleavableKetonesasTypeIIPhotoinitiators 143

4.4.9.7Aldehydes 143

4.4.9.8Acetals 143

4.5Dye-BasedSystems 143

4.5.1UsualDye/AmineSystems 143

4.5.1.1EosinorRoseBengalasModels 143

4.5.1.2Dye/AmineInteraction:SomeKineticData 144

4.5.2Dye/AdditiveSystems:SomeExamples 144

4.5.2.1Dyes:Overview 144

4.5.2.2Additives 146

4.5.2.3SomeTypicalExamplesofDye/AdditiveSystems 147

4.5.3Dye-LinkedAdditiveIonPairs 149

4.5.4Dye-LinkedPhotoinitiatororCo-initiator-BasedSystems 149

4.5.5Dye/OniumSalts:ARevivalofInterest 150

4.5.5.1DyeswithD–π-A–π-DArrangements 150

4.5.5.2NIRPolymethineDyes 150

4.5.5.3SquaraineDye 151

4.5.5.4OtherExamplesofNovelDyesforNovelApplications 151

4.6OrganometallicCompound-BasedSystems 165

4.6.1Metallocene/Additive 165

4.6.2MetalCarbonyl/Additive 165

4.6.3MetalComplex/Olefin 168

4.6.4OrganometallicComplex/Amine 168

4.6.5CopperComplex/IodoniumSalt 168

4.6.6MiscellaneousOrganometallicCompound/AdditiveCouples 168

4.6.6.1OrganometallicCompound/Ketone-BasedSystems 168

4.6.6.2FerroceniumSalt/Additive 169

4.7Ketone/Ketone-BasedSystems 169

4.8Photoinitiator/Peroxide(orHydroperoxide)-BasedSystems 170

4.8.1RadicalPhotoinitiator/PeroxideInteractions 170

4.8.2Photobase/Peroxide 170

4.9TypeIPhotoinitiator/Additive 171

4.10Donor/AcceptorChargeTransferSystems 172

4.10.1OldSystems 172

4.10.2Amine/IodoniumSaltSystems 172 References 173

5CationicPhotoinitiatingSystems 199

5.1DiazoniumSalts 199

5.2OniumSalts 200

5.2.1IodoniumandSulfoniumSalts 200

5.2.1.1BasicModelCompounds 200

5.2.1.2PhotopolymerizationReaction 201

5.2.1.3AbsorptionProperties 202

5.2.1.4DecompositionProcessesofIodoniumSalts 202

5.2.1.5DecompositionProcessesofSulfoniumSalts 205

5.2.2DevelopmentofN,P,O(andOthers)CenteredOniumSalts 206

5.2.3DevelopmentintheIodoniumandSulfoniumSaltSeries 206

5.2.3.1SubstitutionEffectsinIodoniumandSulfoniumSaltDerivatives 207

5.2.3.2RecentDevelopmentsinIodoniumandSulfoniumSaltDerivatives 209

5.3OrganometallicDerivatives 212

5.3.1TransitionOrganometallicComplexes 212

5.3.2InorganicTransitionMetalComplexes 214

5.3.3NontransitionMetalComplexes 214

5.4PhotosensitizedDecompositionofOniumSalts 214

5.4.1Backgrounds 214

5.4.1.1PhotosensitizationThroughEnergyTransfer 214

5.4.1.2PhotosensitizationThroughElectronTransfer 215

5.4.2NovelDevelopmentsinElectronTransferReactions 219

5.4.2.1Photosensitizer-LinkedCationicMonomer 219

5.4.2.2PyriliumSalt/Hydroperoxide 219

5.4.2.3NovelSeriesofPhotosensitizers 219

5.5UnconventionalCationicSystems 222

5.5.1UpconversionNanoparticles 222

5.5.2CarbonNanotubes 222 References 222

6Anionic,Photoacid,andPhotobaseInitiatingSystems 241

6.1AnionicPhotoinitiators 241

6.1.1InorganicComplexes 241

6.1.2OrganometallicComplexes 242

6.1.3CyanoDerivative/AmineSystem 243

6.1.4Ketoprofen 243

6.1.5Amines 243

6.2NonionicPhotoacidGeneratorsSystems 243

6.2.1Sulfonates 244

6.2.2 N -Arylsulfonimides 244

6.2.3Naphthalimides 245

6.2.4Non-saltPyreneDerivatives 245

6.2.5 α-Disulfones 245

6.2.6Fullerenes 245

6.2.7Terarylene-BasedCompounds 246

6.3PhotobaseGeneratorsSystems 246

6.3.1OximeEsters 246

6.3.2Carbamates 246

6.3.3N-benzylatedStructure-BasedPhotobases 246

6.3.4Benzoylformamides 247

6.3.5AmmoniumChromophoreContainingBorateSalts 247

6.3.6AnionicChromophoreContainingAmmoniumSalts 248

6.3.7SuperBaseContainingPBGs 248

6.3.8OtherMiscellaneousSystems 249 References 249

7ReactivityofRadicalsTowardVariousSubstrates: UnderstandingandDiscussion 257

7.1Backgrounds 257

7.1.1DirectDetectionofRadicals 257

7.1.2AdditionofRadicalstoDoubleBonds 258

7.2ReactivityofRadicalsTowardOxygen,HydrogenDonors,Monomers, andAdditives 259

7.2.1AlkylandRelatedCarbon-CenteredRadicals 259

7.2.2ArylRadicals 261

7.2.3BenzoylRadicals 262

7.2.4AcrylateandMethacrylateRadicals 263

7.2.5AminoalkylRadicals 265

7.2.5.1Reactivity 265

7.2.5.2RoleoftheClassoftheAmine 268

7.2.5.3 N -PhenylGlycineDerivatives 268

7.2.5.4ChainLengthEffect 268

7.2.5.5RegioselectivityoftheHydrogenAbstractionReaction 269

7.2.5.6AminoalkylRadicalsandtheHalogenAbstractionReaction 270

7.2.5.7ReactivityUnderAir 270

7.2.6Phosphorus-CenteredRadicals 271

7.2.7ThiylRadicals 273

7.2.8SulfonylandSulfonyloxyRadicals 276

7.2.9SilylRadicals 277

7.2.9.1Characteristics 277

7.2.9.2ParticularBehavioroftheTris(trimethylsilyl)silylRadical 279

7.2.9.3ReactivityandPhotoinitiationUnderAir 280

7.2.9.4Silylamines 281

7.2.9.5OtherSourcesofSilylRadicals 282

7.2.10OxylRadicals 283

7.2.11PeroxylRadicals 284

7.2.11.1Characteristics 284

7.2.11.2InteractionwithH-Donors 286

7.2.11.3InteractionwithMonomers 287

7.2.11.4InteractionwithTriphenylphosphine 287

7.2.11.5SH 2Substitution 288

7.2.11.6OtherOxylsandPeroxyls 288

7.2.12AminylRadicals 288

7.2.13GermylandStannylRadicals 290

7.2.13.1Characteristics 290

7.2.13.2Reactivity 290

7.2.13.3ReactivityUnderAir 290

7.2.13.4ReactivityandStructureof(TMS)3 Ge• vs.(TMS)3 Si• 291

7.2.14BorylRadicals 292

7.2.14.1Characteristics 292

7.2.14.2Reactivity 293

7.2.14.3ReactivityUnderAir 295

7.2.14.4PhotoinitiationUnderAir 295

7.2.15LophylRadicals 295

7.2.16IminylRadicals 296

7.2.17Metal-CenteredRadicals 296

7.2.18PropagatingRadicals 298

7.2.19RadicalsinControlledPhotopolymerizationReactions 299

7.2.19.1PhotoinifertersandDithiocarbamylRadicals 299

7.2.19.2Light-SensitiveAlkoxyaminesandGenerationofNitroxides 300

7.2.20ReactivityofRadicalsTowardMetalSalts 302

7.2.21Radical/OniumSaltReactivityinFreeRadicalPromotedCationic Photopolymerization(FRPCP) 302 References 305

8RoleofExperimentalConditionsonthePerformanceof aRadicalPhotoinitiator 321

8.1RoleofViscosity 322

8.2RoleoftheSurroundingAtmosphere 324

8.3RoleoftheLightSource 325

8.4RoleofMonomerMatrix:AnExample 327 References 328

9ReactivityandEfficiencyofRadicalPhotoinitiators 333

9.1ReactivityofPhotoinitiators 334

9.1.1ExcitedStateProcesses 334

9.1.2CleavageProcesses 335

9.1.3ElectronandHydrogenTransferReactions 336

9.1.4ElectronTransferReactions 337

9.1.5RoleofBondDissociationEnergy 337

9.1.5.1RoleofBondDissociationEnergyinCleavableSystems 338

9.1.5.2RoleofBondDissociationEnergyinNon-cleavableSystems 340

9.1.6PhotoinitiatorQuenchingbyMonomers 340

9.1.7ReactivityoftheInitiatingRadical:AdditiontoDoubleBonds 342

9.1.8ReactivityoftheInitiatingRadical:InteractionwithHydrogen Donors 344

9.2Reactivity/EfficiencyofPhotoinitiators:ExamplesofStructural Effects 345

9.2.1Reactivity/EfficiencyRelationshipsinFluidMedia 345

9.2.1.1ExamplesofOil-SolublePhotoinitiatingSystems 345

9.2.1.2ExamplesofWater-SolublePhotoinitiatingSystems 349

9.2.2Reactivity/EfficiencyRelationshipsinHeterogeneousMedia 350

9.2.3Reactivity/EfficiencyRelationshipsinBulk 352

9.2.4PolymerizationEfficiencyinBulk:ExamplesofSomeEffects 354

9.3Up-to-dateApproachoftheReactivityandtheStructure/Property Relationships 359 References 362

Introduction xv

PartIIIHighPerformancePhotoinitiatingSystems: Achievements,Trends,Challenges,Opportunitiesand Applications 375

10DesignofPhotoinitiatorsforEnhancedPerformance:A MechanisticApproach 377

11MulticomponentRadicalPhotoinitiatingSystemsfor EnhancedReactivity 399

12PhotoinitiatingSystemsforFreeRadicalPromotedCationic Polymerization 435

13PhotoinitiatorsforNovelSpecificProperties 463

14IndustrialPhotoinitiators:ABriefOverview 531

PartIVPhotoinitiatorsforSpecificReactionsandTraditional orEmergingInnovativeApplications 537

15PhotoinitiatorsandLightSources:NovelDevelopments 539

16PhotoinitiatorsforControlled/LivingPolymerization Reactions 559

17PhotoinitiatorsinSpecificPolymerizationProcesses 591

18PhotoinitiatorsfortheCuringofThickorFilledSamples 641

19PhotoinitiatorsinVariousSectorsofIndustrial Applications 657 Conclusion 699 Index 703

Introduction xv

PartIPhotopolymerizationReactionsandPhotoinitiators: Backgrounds 1

1BackgroundsinPhotopolymerizationReactions:AShort Overview 3

2PhotoinitiatingSystem 35

PartIIPhotoinitiators:Structures,ExcitedStates,Reactivity, andEfficiency 55

3CleavableRadicalPhotoinitiators 59

4Two-ComponentRadicalPhotoinitiators 117

5CationicPhotoinitiatingSystems 199

6Anionic,Photoacid,andPhotobaseInitiatingSystems 241

7ReactivityofRadicalsTowardVariousSubstrates: UnderstandingandDiscussion 257

8RoleofExperimentalConditionsonthePerformanceof aRadicalPhotoinitiator 321

9ReactivityandEfficiencyofRadicalPhotoinitiators 333

Introduction xv

PartIIIHighPerformancePhotoinitiatingSystems: Achievements,Trends,Challenges,Opportunitiesand Applications 375

10DesignofPhotoinitiatorsforEnhancedPerformance:A MechanisticApproach 377

10.1TraditionalSearchofSubstituentEffectsinRadicalPhotoinitiators 377

10.1.1UsualSubstituentEffects 377

10.1.2LimitoftheUsualSubstituentEffect:AnIllustration 378

10.1.3NewlyDevelopedPossibilities 379

10.1.4SubstituentEffectsandReactivity 381

10.1.5SubstituentEffectsandNovelProperties 381

10.2SearchofNovelCleavableBonds 382

10.3MultifunctionalPhotoinitiatorsforanIncreasedVisibleLight Absorption 382

10.3.1BichromophoricPhotoinitiators 383

10.3.2DifunctionalRadicalPhotoinitiators 384

10.3.2.1BehaviorofaTypicalDifunctionalSystem 385

10.3.2.2NovelDifunctionalSystemsforRadicalandCationic Polymerization 385

10.3.3HighlyCoupledTri-functionalPhotoinitiatorsforRadicalandCationic Polymerization 385

10.3.3.1AvailableSystems 385

10.3.3.2Example:ATrifunctionalBenzoinether 386

10.3.3.3TetrafunctionalPhotoinitiators 387

10.3.4Push–PullPhotoinitiators 387

10.3.5PanchromaticPhotoinitiators 388

10.3.6SpecificReactivityofMultifunctionalPhotoinitiators 388

10.4PhotoinitiatorswithaThermallyActivatedDelayedFluorescence (TADF) 389

10.5AmineorPhosphine/IodoniumSaltChargeTransferComplexes 390

10.6MechanosynthesizedPhotoinitiators 391 References 392

11MulticomponentRadicalPhotoinitiatingSystemsfor EnhancedReactivity 399

11.1Photoinitiator/Amine/IodoniumSalt 399

11.1.1AromaticKetone/Amine/IodoniumSalt 400

11.1.2Camphorquinone/Amine/IodoniumSalt 400

11.1.3SilylKetone/Amine/IodoniumSalt 400

11.1.4Dye/Amine/IodoniumSalt 400

11.2Photoinitiator/Amine/OrganicHalide 402

11.2.1Dye/Amine/OrganicHalide 402

11.2.2Ketone/Amine/OrganicHalide 403

11.2.3OrganometallicCompound/Amine/OrganicHalide 403

11.2.3.1CopperComplex/Amine/OrganicHalide 403

11.2.3.2IronComplex/Amine/OrganicHalide 404

11.2.3.3IridiumComplex/Amine/OrganicHalide 404

11.3Photoinitiator/Amine/OtherAdditive 406

11.3.1Ketone/Amine/Bromocompound 406

11.3.2Dye/Amine/Bromocompound 406

11.3.3Ketone/Amine/Ketone 406

11.3.4Dye/Amine/Ketone 406

11.3.5Ketone/Amine/Silane 407

11.3.6Ketone/Amine/Germane 407

11.3.7Ketone/Amine/MetalSalt 407

11.3.8Dye/Amine/MetalSalt 407

11.3.9Ketocoumarin/Amine/FerroceniumSalt 407

11.3.10Ketone/Amine/ImideDerivatives 408

11.3.11Photoinitiator/Amine/Peroxide 408

11.4Photoinitiator/Borate/Additive 408

11.4.1Cyanine/Borate/Triazine 408

11.4.2Cyanine/Borate/PicoliniumSalt 409

11.4.3StyrylbenzothiazoliniumSalt/Borate/PyridiniumSalt 409

11.4.4Cyanine/Borate/Thiol 409

11.4.5Ketone/Borate/RutheniumSalt 409

11.5Photoinitiator/Cl-HABI/Thiol 409

11.6Photoinitiator/Silane/IodoniumSalt:AVeryVersatileSystem 410

11.6.1Dye/Silane/IodoniumSalt 410

11.6.2Ketone/Silane/IodoniumSalt 411

11.6.3OrganometallicCompound/Silane/IodoniumSalt 411

11.6.3.1Ruthenium(orIridium)/Silane/IodoniumSalt 411

11.6.3.2ZincComplex/Silane/IodoniumSalt 412

11.6.3.3Polyoxometallate/Silane/IodoniumSalt 412

11.7Photoinitiator/N -Vinylcarbazole/IodoniumSalt 412

11.7.1Ketone/N -Vinylcarbazole/IodoniumSalt 412

11.7.2Dye/N -Vinylcarbazole/IodoniumSalt 413

11.7.3OrganometallicCompound/N -Vinylcarbazole/IodoniumSalt 413

11.7.3.1CopperComplex/N -Vinylcarbazole/IodoniumSalt 413

11.7.3.2IronComplex/N -vinylcarbazole/IodoniumSalt 413

11.7.3.3MOFCompound/N -Vinylcarbazole/IodoniumSalt 415

11.7.3.4Perovskite/N -vinylcarbazole/IodoniumSalt 415

11.8Photoinitiator/Germane/IodoniumSalt 415

11.9Photoinitiator/CARET/IodoniumSalt 415

11.10Photoinitiator/TriphenylphosphineDerivative/IodoniumSalt 417

11.10.1CopperComplex/TriphenylphosphineDerivative/IodoniumSalt 417

11.10.2VanadiumorManganeseComplex/Triphenylphosphine Derivative/IodoniumSalt 417

11.10.3FerroceneDerivative/TriphenylphosphineDerivative/Iodonium Salt 418

11.11MiscellaneousPhotoinitiator/Additive/IodoniumSalt 418

11.11.1Photoinitiator/TinDerivative/IodoniumSalt 418

11.11.2Dye/Arylsulfinate/IodoniumSalt 419

11.11.3Dye/Dihydropyridine/IodoniumSalt 419

11.11.4KetoneorDye/Thiol/IodoniumSalt 419

11.11.5Ketone/Sulfinate/IodoniumSalt 419

11.12Photoinitiator/Additive/SulfoniumSalt 420 11.13ChargeTransferComplex/Peroxide 420

11.14Photoinitiator/Additive/Hydroperoxide 420

11.14.1Dye/FerroceniumSalt/Hydroperoxide 420

11.14.2MetalCarbonylCompound/Silane/Hydroperoxide 420

11.15OtherMiscellaneousThree-ComponentSystems 421

11.15.1Ketone/Triazine/Thiol 421

11.15.2PhosphineOxide/Silane/Borane 421

11.15.3Dye/Disulfide/NHCBorane 421

11.16Four-ComponentSystems:Examples 421

11.16.1Dye/FerroceniumSalt/Amine/Hydroperoxide 421

11.16.2Ketone/HABIDerivative/Amine/IodoniumSalt 422

11.16.3Cyanine/Borate/IodoniumSalt/Phosphine 422

11.16.4NIRDye/IodoniumSalt/Phosphine/ThermalInitiator 423 References 423

12PhotoinitiatingSystemsforFreeRadicalPromotedCationic Polymerization 435

12.1FRPCPProcess 435

12.2TypeIPhotoinitiator/IodoniumSaltTwo-ComponentSystems 436

12.2.1Ketone/IodoniumSalt 436

12.2.2Silylglyoxylate/IodoniumSalt 437

12.2.3Polysilane/IodoniumSalt 437

12.2.4Acylgermane/IodoniumSalt 437

12.2.5VinylHalide/IodoniumSalt 437

12.2.6OrganotelluriumCompound/IodoniumSalt 438

12.3TypeIPhotoinitiator/SulfoniumSalt 438

12.4TypeIPhotoinitiator/PyridiniumSalt 438

12.5TypeIPhotoinitiator/ZincSalt 438

12.6TypeIIPhotoinitiator/IodoniumSaltThree-ComponentSystems 439

12.6.1Photoinitiator/Amine/IodoniumSalt 439

12.6.2Photoinitiator/Silane/IodoniumSalt 439

12.6.2.1GeneralMechanism 439

12.6.2.2BasicKetone/Silane/IodoniumSaltSystems 440

12.6.2.3NovelDye/Silane/IodoniumSaltSystems 440

12.6.2.4OrganometallicCompound/Silane/IodoniumSalt 441

12.6.3Photoinitiator/Germane/IodoniumSalt 447

12.6.4Photoinitiator/Alcohol/IodoniumSalt 447

12.6.5Photoinitiator/N -Vinylcarbazole/IodoniumSalt 448

12.6.5.1Visible-Light-InducedFRPCP 448

12.6.5.2FRPCPUnderRedLights 449

12.6.5.3MulticolorPhotoinitiatorsandPanchromaticCationic Formulations 449

12.6.5.4CopperComplex/N -Vinylcarbazole/IodoniumSalt 449

12.6.5.5IronComplex/N -Vinylcarbazole/IodoniumSalt 450

12.6.5.6Perovskite/N -Vinylcarbazole/IodoniumSalt 451

12.6.6Photoinitiator/CARET/IodoniumSalt 451

12.6.7Photoinitiator/Alkylhalide/IodoniumSalt 451

12.6.8UpconversionNanoparticle-BasedSystems 451

12.7Addition/FragmentationReaction 452

12.8Photoinitiator/MetalSalt/Additive-BasedSystems 452 References 452

13PhotoinitiatorsforNovelSpecificProperties 463

13.1One-ComponentTypeIIPhotoinitiators 463

13.1.1BenzoylBenzodioxolaneDerivatives 463

13.1.2ThioxanthoneDerivatives 464

13.1.3Naphthoquinones 464

13.1.4Photoinitiator–Amine 465

13.1.5Photoinitiator–Monomer 466

13.1.6Photoinitiator–amine–monomer 466

13.1.7Photoinitiator–PolymerChainIonicPair 466

13.1.8Photoinitiator–thiol 466

13.1.9AldehydesasOne-ComponentSystems 467

13.1.10Bis-pyridiniumDerivatives 467

13.1.11MaskedPhotoinitiators 467

13.1.12Photoinitiator–Photosensitizer 468

13.1.13Photoinitiator–oniumsaltsystem 468

13.1.14Photoinitiator-ProtonatedBase 468

13.1.15ChargeTransferComplex(CTC)Systems 469

13.2Macrophotoinitiatiors 469

13.2.1TypeIMacrophotoinitiators 470

13.2.1.1Examples 470

13.2.1.2TypeIPhotoinitiator-LinkedPhotosensitizerMacrophotoinitiators 471

13.2.2TypeIIMacrophotoinitiators 471

13.2.2.1Examples 471

13.2.2.2Reactivity/Efficiency:aLimit 473

13.2.3SupportedandImmobilizedPhotoinitiators 474

13.2.4CopolymerizablePhotoinitiators. 475

13.2.5PolymericOniumSalts 476

13.2.6PolymericCross-linkablePhotoinitiators 476

13.3Water-SolublePhotoinitiators 477

13.3.1Water-SolubleTypeIPhotoinitiators 477

13.3.2Water-SolubleTypeIIPhotoinitiators 478

13.3.3CationicPhotoinitiators 480

13.3.4IncorporationofPhotoinitiatorsinacavity 480

13.3.5IncorporationofPhotoinitiatorsinaHeterogeneousEnvironment 480

13.4PhotoredoxCatalystsasPhotoinitiators 480

13.4.1PhotoinitiatorsInvolvingOxidationCycles 481

13.4.1.1Photoinitiator/Silane/IodoniumSalt 481

13.4.1.2Photoinitiator/Silane/SulfoniumSalt 482

13.4.1.3Photoinitiator/N -Vinylcarbazole/IodoniumSalt 482

13.4.1.4Photoinitiator/Amine/AlkylBromide 483

13.4.1.5Photoinitiator/Amine/IodoniumSalt 483

13.4.1.6Photoinitiator/IodoniumSalt/TinDerivative 483

13.4.1.7Photoinitiator/Thiol/Oxygen 483

13.4.2PhotoinitiatorsInvolvingReductionCycles. 484

13.4.2.1Photoinitiator/Amine/AlkylHalide 484

13.4.2.2Photoinitiator/Dye/Silane/IodoniumSalt 484

13.4.3SimultaneousOxidationandReductionCycle 484

13.4.4ExamplesofPolymerizationProfiles 485

13.5Two-PhotonAbsorptionPhotoinitiators 485

13.5.1CleavablePhotoinitiatorsforTwo-PhotonAbsorption 486

13.5.2TypeIIPhotoinitiatorsforTwo-PhotonAbsorption 486

13.5.3CationicPhotoinitiatorsforTwo-PhotonAbsorption 487

13.5.4PhotobasesforTwo-PhotonAbsorption 488

13.6PhotoinitiatorsforOvercomingOxygenInhibition 488

13.6.1DesignofHighlyReactivePhotoinitiators 489

13.6.2DesignofMigratedPhotoinitiators 489

13.6.2.1DesignofFluorinatedPhotoinitiators 489

13.6.2.2DesignofSiloxaneGroupContainingPhotoinitiators 489

13.6.3DesignofOxygen-TolerantSystems 489

13.6.4OxygenSelf-consumingPhotoinitiators 490

13.6.4.1OxygenSelf-consumingThioxanthoneDerivatives 490

13.6.4.2OxygenSelf-consumingAldehydeDerivatives 491

13.6.5Oxygen-MediatedRadicalFormation 491

13.6.5.1UseofSilanesasCo-initiatorsandOxygenScavenger 491

13.6.5.2CleavablePhotoinitiator/Thiol-ContainingThioxanthone 492

13.6.5.3UseofaSH2 Reaction 492

13.6.5.4UseofBoranes 493

13.6.6UseofPhosphines 493

13.6.7UseofOrganozirconiums 494

13.7PhotoinitiatorswithOtherMiscellaneousProperties 494

13.7.1Host–GuestSupramolecular-StructuredPhotoinitiators 494

13.7.2OrthogonalPhotoinitiators:DualInitiation 495

13.7.3MultiwavePhotoinitiators:Wavelength-SelectiveInitiation 496

13.7.4ChiralPhotoinitiators 497

13.7.5Self-initiatedMonomersasPhotoinitiators 497

13.8Eco-friendlyPhotoinitiators 498

13.8.1SafePhotoinitiators 498

13.8.2NaturalorBiosourcedPhotoinitiatorsandCo-initiators 499 References 500

14IndustrialPhotoinitiators:ABriefOverview 531

14.1RadicalIndustrialPhotoinitiators 532

14.2CationicIndustrialPhotoinitiators 534

14.3Tailor-MadeFormulationsofIndustrialPhotoinitiators 534

14.4ToxicityandREACHRegistrationofPhotoinitiators 535 References 535

PartIVPhotoinitiatorsforSpecificReactionsandTraditional orEmergingInnovativeApplications 537

15PhotoinitiatorsandLightSources:NovelDevelopments 539

15.1PhotoinitiatorsUnderSoftIrradiationConditions 539

15.2PhotoinitiatorsUnderSunlight 540

15.3PhotoinitiatorsUnderLEDandLaserDiodeIrradiationConditions 541

15.4NIRLight-InducedPolymerization 542

15.5NIRLight-InducedThermalPolymerization 544

15.6PhotoinitiatorsandPulsedLightIrradiation 545

15.7PhotoinitiatorsUnderVisibleLights:ResidualColorationofthe Coating 546

15.8ExamplesofEfficientPhotoinitiatorStructuresvs.theIrradiation Wavelengths 551 References 551

16PhotoinitiatorsforControlled/LivingPolymerization Reactions 559

16.1Dithiocarbamates 560

16.2 O-Alkoxyamines 562

16.3OrganometallicCompounds 563

16.3.1IridiumComplexes 563

16.3.2RutheniumComplexes 564

16.3.3CopperComplexes 564

16.3.3.1Copper(II)Complexes 564

16.3.3.2Copper(I)Complexes 565

16.3.4IronComplexes 566

16.3.5ZincComplexes 567

16.3.6MagnesiumComplexes 568

16.3.7CobaltComplexes 568

16.3.8ManganeseCarbonyls 569

16.3.9GoldComplexes 569

16.3.10Nobium-BasedCompounds 570

16.4Metal-FreeCompounds 570

16.4.1OrganicDyes 570

16.4.2OrganicTypeIPhotoinitiators 572

16.4.3Iodine-ContainingCompounds 572

16.4.4Hydrocarbons,Phenazines,andPhenothiazines 572

16.4.5ThiocarbonylthioCompounds 573

16.4.6Ketones 574

16.4.7MiscellaneousOrganicPhotoinitiators 574

16.5TiO2 –graphiticCarbonNitrideComposite 574

16.6IronOxidesandSalts 575

16.7PhotoinitiatorsinLivingCationicPolymerization 575

16.8PhotoinitiatorsinLivingAnionicPolymerization 577 References 577

17PhotoinitiatorsinSpecificPolymerizationProcesses 591

17.1PhotoinitiatorsforThiol–EneReactions 591

17.2PhotoinitiatorsinRelatedThiol–EneChemistries 593

17.2.1Silane–EneChemistry 593

17.2.2Phosphane–EneChemistry 594

17.2.3Iodo–EneChemistry 594

17.2.4Germane–EneChemistry 594

17.3PhotoinitiatorsforInterpenetratingPolymerNetworksSynthesis 595

17.3.1IPNSynthesisUnderIntenseUVLightExposure 595

17.3.1.1One-StepProductionofIPN 595

17.3.1.2Two-StepProductionofIPN 596

17.3.2IPNSynthesisUnderVisibleLights 596

17.3.2.1Visible-Light-InducedOne-StepFormationofIPN 596

17.3.2.2IPNSynthesisUsingTwo-ColorResponsiveInitiatingSystems 598

17.4PhotoinitiatorsinPhotoactivatedRedoxPolymerization 598

17.4.1Amine-andPeroxide-ContainingSystems 598

17.4.1.1Amine/Phosphine/IodoniumSalt/BenzoylPeroxide 598

17.4.1.2MABLIComplex/IodoniumSalt/Phosphine 599

17.4.1.3FerroceneDerivative/IodoniumSalt/Phosphine/Ammonium Persulfate 600

17.4.1.4LatentSuperbase/Peroxide 600

17.4.1.5ControloftheGelTime 600

17.4.2Amine-FreeandPeroxide-FreeSystems 600

17.5PhotoinitiatorsinPhoto-CuAACReactions 601

17.6PhotoinitiatorsinHydrosilylationReactions 601

17.7PhotoinitiatorsinHybridSol–GelPhotopolymerization 602

17.8PhotoinitiatorsfortheInSituGenerationofNanoparticles 603

17.8.1Photoinitiator/MetalSalt-BasedSystems 603

17.8.1.1CleavablePhotoinitiators 603

17.8.1.2TypeIIPhotoinitiators 604

17.8.1.3One-ComponentPhotoinitiators 604

17.8.1.4Metal-FunctionalizedPhotoinitiators 605

17.8.2Metal-CenteredPhotoinitiators 605

17.9PhotoinitiatorsinParticularExperimentalConditions 605

17.9.1PhotoinitiatorsforHydrogelSynthesis 605

17.9.2PhotoinitiatorsforPolymerizationofSelf-assembledSystems 606

17.9.2.1Photopolymerizationin(Micro)heterogeneousMedia 606

17.9.2.2Polymerization-InducedSelf-assembly(PISA) 608

17.9.3PhotoinitiatorsinIonicLiquids 609

17.9.4PhotoinitiatorsfortheElaborationofNovelArchitecturesThrough Grafting 610

17.10PhotoinitiatorsinMiscellaneousNovelReactions 614

17.10.1PhotoinitiatorsinSelf-HealingReactions 614

17.10.2PhotoinitiatorsinEpoxy-AminePolyadditionReactions 614

References 615

18PhotoinitiatorsfortheCuringofThickorFilledSamples 641

18.1PenetrationofLightinaThickSample 641

18.2UseofBleachablePhotoinitiators 642

18.3UseofHighIrradiances 643

18.4UseofTemperatureEffects 643

18.4.1Light-InducedTemperatureIncrease 643

18.4.2TemperatureControl 644

18.4.3ThermalCuringinDual-CureStrategies 644

18.4.4RoomTemperatureDualCuring 644

18.5UCNP-AssistedPhotopolymerizationUnderNIRLights 645

18.6UseofCatalyticPhotoredoxProcesses 645

18.7DesignofNovelPhotoinitiatingSystems 646

18.7.1PhotoinitiatorsforNIRLights 646

18.7.2SemiconductorNanoparticles 646

18.7.3ChargeTransferComplexes 647

18.7.4NovelPhotoinitiatingSystemsfortheManufactureofComposites 647 References 650

19PhotoinitiatorsinVariousSectorsofIndustrial Applications 657

19.1PhotoinitiatorsintheRadiationCuringArea 657

19.2PhotoinitiatorsinGraphicArts 661

19.3Photoinitiatorsin3DPrintingTechnologies 662

19.3.1Stereolithography 662

19.3.23DPrinting 662

19.3.3Two-Photon3DPrinting 664

19.3.4DirectLaserWriting 664

19.3.54DPolymerMicropatterning 665

19.3.6ExamplesofNovelPhotoinitiatorsin3DPrinting 665

19.4PhotoinitiatorsforBiomaterials 666

19.5PhotoinitiatorsforDentistryApplications 667

19.5.1Camphorquinone/Germane/IodoniumSaltSystem 668

19.5.2NovelGermylKetones 668

19.5.3NovelSilylKetone-BasedSystems 668

19.5.4NovelAcylsilanes 669

19.5.5Dyes 669

19.5.6NIRPhotoinitiatingSystems 669

19.5.7DesignofWater-CompatibleVisibleLightPhotoinitiators 669

19.5.8PhotoinitiatorsinDentalCompositesInvolvingaDifferent Chemistry 670

19.6Photoinitiatorsin(Micro)Electronics 670

19.7PhotoinitiatorsintheOpticsArea 672

19.7.1ManufactureofOpticalElements 672

19.7.2Holography 673

19.7.3PhotopolymerizationUsingNear-FieldOpticalTechniques 674

19.8PhotoinitiatorsinOrganicElectronics 674 References 674

Conclusion 699 Index 703

Introduction

Asalreadyknown,aphotoinitiator(PI)oraphotoinitiatingsystem(PIS),wherea PIisintroduced,allowstheinitiationofapolymerizationreactionunderexposure toalightsource.

Light-inducedpolymerizationreactionsarelargelyencounteredinmanyindustrialapplicationsorinpromisinglaboratorydevelopments.Thebasicideaistoreadilytransformaliquidmonomer(orasoftfilm)intoasolidmaterial(orasolidfilm) uponlightexposureatambienttemperature.Thehugesectorsofapplicationsare foundinbothtraditionalandhightechareassuchasradiationcuring,laserimaging,3Dprinting,microelectronics,optics,biosciences,dentistry,nanotechnology, etc.Radiationcuringisconsideredasagreentechnologythatcontinuesitsrapid development.

Photopolymerizationreactionscanbecarriedoutinvariousexperimentalconditions,suchasinfilms,gasphase,aerosols,multilayers,(micro)heterogeneousmedia orsolidstate,onsurface,inionicliquids,insituinthemanufacturingofmicrofluidic devices,invivo,evenundermagneticfield,etc.Verydifferentaspectsareconcerned ingradient,template,frontal,controlled,sol–gel,two-photon,redox,laser-induced, orspatiallycontrolledphotopolymerizations,etc.

AphotopolymerizationreactioninvolvesaPIoraPIS,apolymerizablemedium, andalightsource.Thephotoinitiatorplaysacrucialroleasitabsorbsthelight andstartsthereaction.Itsreactivitygovernstheefficiencyofthepolymerization. Theliteratureshowsthataconsiderablenumberofworksaredevotedtothedesign ofphotosensitivesystemsbeingabletooperateinmanyvarious(andsometimes exotic)experimentalconditions.

Fantasticdevelopmentshaveoccurredallalongthepastfivedecades.Significant achievementshavebeendonesincetheearlyworksonphotopolymerizationinthe 1960sandthetraditionaldevelopmentsoftheradiationcuringarea.Today,hightech applicationsarecontinuouslyemerging.Atailor-madephotochemistryandchemistryforthedesignofhigh-performancesystems(thatcanoperateatanywavelength, underlowlightintensityandunderair,ensureabettersafety,andprovidenovel handlingorenduseproperties)haveappearedinthisareaandhasachievedremarkablesuccess.Thesearchforasafeandgreentechnologyisgrowing.Interestingitems firstrelatetothepolymerscienceandtechnologyfieldbutalsotothephotochemistry,physicalchemistry,andorganicchemistryareas.

Inthepast40years,manyaspectsoflight-inducedpolymerizationreactionshave beendiscussedinbooksandreviewpapers.Eachofthesebooks,however,usually covermoredeeplyselectedaspectsdependingfirstontheorigin(universityand industry)andactivitysectoroftheauthor/editor(photochemistry,polymerchemistry,applications,etc)andsecondonthegoalsofthebook(generalpresentation ofthetechnology,guideforendusers,andacademicscope,etc).Ourprevious generalbookpublishedmorethan20yearsago(Hanser,1995)anddevotedtothe threephotoinitiation/photopolymerization/photocuringcomplementaryaspects alreadyprovidedafirstaccountonthephotosensitivesystems.Unfortunately,for obviousreasons,allthesethreefascinatingaspectsthatcontinuouslyappearedin theliteraturecouldnolongerbedevelopedindetailinasinglemonographbecause oftherapidgrowthoftheresearch.Thiswasthereasonwhyoursecondbook (PhotoinitiatorsforPolymerSynthesis)publishedin2012(Wiley)wasonlyfocused onthephotosensitivesystemsthatareusedtoinitiatethephotopolymerization reaction,theiradaptationtothelightsources,theirexcitedstateprocesses,their interactionwiththedifferentavailablemonomers,theirworkingoutmechanisms, andtheapproachforacompleteunderstandingofthe(photo)chemicalreactivity. Thissecondbookshowedthehugeprogressmadebetween1995and2012.

Whyanewbook?Indeed,bytheendof2010,onecouldhavehadthefeelingthat almosteverythinghadbeenforeseenandverifiedinthedesignofphotoinitiators andPISs.However,scienceisevergoingon!Thankstonovelmethodsofinvestigation(bothexperimentalandtheoretical)andnovelideasaccompaniedbysearches inotherareas(fineproductcatalogs,naturalcompounds,optoelectronics,organic light-emittingdiodes(OLEDs),solarcells,composites:lightweightmaterials,etc), ahugeprogresshasbeendoneinthepast10years!Alotofnovelstructurespreviouslyunimaginableandusableinnovelandpromisingapplicationshavebeen publishedandhaveopenednewunsuspectedhorizons.

HugechallengesremainintheareaofPIsandPISs,butaconstantdevelopmentisnotedin(i)nontoxic(orlesstoxic)systems,e.g.biologicalandmedical applications,foodpackaging,andforthesafetyoftheendusers(thetoxicityof manyclassicalPIshasbeenre-evaluatedinthecontextoftheREACHregistration); (ii)high-performancesystemsfortheaccesstolargerobjectsin3Dprinting,the highproductivityforthecuringofinks,coatings,paints,composites,theability tophotopolymerizepigmentedorhighlyfilledthicksamplesforcompositeswith improvedmechanicalproperties,andtheworkingoutinhydrogels,eco-friendly water-basedformulations,orself-assembledsystems;(iii)systemsoperatingunder safeirradiationdevicesandvisible,red,andnear-infrared(NIR)lightsources;and (iv)systemsfornewphotopolymerizationprocesses,e.g.controlledpolymerization, hybridpolymerizationtoreducepolymerizationstressandshrinkage,dualcure polymerizationcombiningredoxandlightactivationforreactionsinshadowareas, polymerizationofbiosourcedmonomers,two-photonphotopolymerization,and emulsionphotopolymerizationuponvisiblelights.

Thefollowingpictureschematicallydepicts60yearsofevolutionoftheresearch anddevelopmentinthisarea.Originally,thescreeningoftheavailablechemicals,thesynthesisofsuitablederivatives,andthelargeuseoftrialanderror

experimentsallowedtosatisfactorilyphotocuremonomer/oligomerformulations accordingtotheratherundemandingrequestedconditionsatthisperiod.Then, theinvestigationoftheexcitedstateprocessesandtheproposalofmechanistic schemeshelpedtodesignmorepowerfulsystemsforanimprovedperformance. Finally,themolecularorbital(MO)calculationsprovidednewsolutionsforthe constructionofefficientmoleculesandtheinterpretationofthechemicalreactivity. Questionsarisingfromendusersorresearchersforthedevelopmentofnovel applicationsleadtoademandofnovel“five-legged”photoinitiatorsthat,along time,aremoreandmoresophisticated.Moreover,goodfortune,closeattention,or brilliantideas,evenwithoutanyheavyexperimentalortheoreticalapproach,have alsoplayedakeyroleinthediscoveryofnovelstructuressomewhereonourplanet.

Theaboveconsiderationspromptedustowritetodayanewbookonphotoinitiatorsinwhichthemostrecentdevelopmentshavebeenstressed.Here,weintend (i)togivethebestup-to-datesituationofthesubjectandtaketimetobrieflydefinea lotofbasicprinciplesandconcepts,mechanisticreactionschemes,andexamplesof studiesthatremaintrueandarenotsubmittedtoasignificantagingona10year timescale,(ii)tokeepacompletepresentationoftheencounteredPISstogether withadiscussionofthestructure/excitedstateprocesses/reactivity/efficiencyrelationships,(iii)tofocusontheinvolvedmechanisms(theroleofthebasicresearch towardtheprogressoftheappliedresearchbeingabsolutelynecessary),and(iv)to outlinethelatestdevelopmentsandtrendsinthedesignofnoveltailor-madephotoinitiators/PISs(basedonexperimentalandtheoreticalapproaches)aswellasthe correspondingexisting,emerging,promising,orchallengingapplicationswherecurrentornewsystemsareemployed.Toouropinion,suchanextensiveandcomplete bookwithinthisphilosophyremainstotallyoriginaltoday.

Thebookisdividedintofourpartsincluding19chapters.Asmentionedbefore, wedecidedtoprovideabasicthoroughdescriptionoftheprocessesandmechanisms togetherwithanin-depthtreatmentofthedesignofPIsandPISsandageneralpresentationofthecurrentapplications.

Synthesis
Novel ideas from end users and researchers
New demand

InPartI,wedeliverageneralbutconcisepresentationofthebasicprinciples ofphotopolymerizationreactionswithadescriptionoftheavailablelightsources, thedifferentmonomers,thecharacteristics,kinetics,andmonitoringofthereactionstogetherwithafewwordsontheapplicationareas(Chapter1).Asitspecially concernsthepolymersciencepointofview,thischapterwillonlyfocusonwhatis necessarytoclearlyunderstandthefollowingchapters.Thecharacteristics,therole, thedifferentbasicprocesses,andthereactivity/efficiencyofthePISsaredescribed inChapter2togetherwithafewphotochemistrychecks.

PartIIisdevotedtothestructures,excitedstateprocesses,reactivity,andefficiency ofphotoinitiators.Inafirststep,weprovide(i)themostexhaustivepresentation ofthecommerciallyoracademicallyusedorpotentiallyinterestingPISsdeveloped intheliteraturesofar(photoinitiators,co-initiators,andphotosensitizers),(ii)the characteristicsoftheexcitedstates,(iii)theinvolvedreactionmechanisms,and (iv)acompletepresentationoftheexperimentalandtheoreticalreactivityofmore than15kindsofradicals.Beingawareoftheimportanceofatotalhomogeneity throughoutthebook,wekeepacompletequalitativeoverviewofalltheavailablesystemsdevelopedalongyears,butwewillfocusourattentiononnewly developedphotoinitiators,recentlyreportedstudies,andnoveldataonprevious well-knownsystems.Allthisinformationisprovidedforradicalphotoinitiators (Chapters3and4);cationicphotoinitiators(Chapter5);anionicphotoinitiators, photoacids,andphotobases(Chapter6);andinitiatingradicals(Chapter7).Ina secondstep,wediscusstheroleoftheexperimentalconditions,e.g.formulation viscosity,surroundingatmosphere,lightsourceemissionspectrum,andintensity ontheefficiencyofaphotopolymerizationreaction(Chapter8).Thereactivityand efficiencyofPISsinsolution,bulk,orfilm,underair,inhigh/low-viscositymedia orunderhigh/lowlightintensitiesaswellastheelaborationofstructure/property relationships(Chapter9)willberestrictedtoradicalstructuresasalmostnothing concernscationicsystems;thereactivity/efficiencyinmicroheterogeneousmedia willalsobeevoked.

InPartIII,weintroducespecificchapters(whichdidnotappearatallinthe previous2012book)todealwiththedesignofhigh-performancePISs:these chaptersallowtounderstandthenoveldirectionsofresearch,thebuildingupof novelchemicalstructuresofphotoinitiators,thesearchofadditiveswithmore suitablebonddissociationenergies(BDEs)andredoxproperties,thespecificrole ofPIsandPISsinup-to-datepossibilitiesofapplicationsandenduses,etc.We successivelypresentthesynthesisandmechanisticapproachofnovelarchitectures ofphotoinitiators(Chapter10);thedesignofmulticomponentradicalPISsfor anenhancedreactivity(Chapter11);therecenthugeprogressmadeinPISsfor freeradicalpromotedcationicphotopolymerization(Chapter12);theproposalof photoinitiatorsfornovelspecificandimprovedpropertiessuchasone-component, water-soluble,two-photonabsorptionoroxygen-tolerantcompounds,orthogonal photoinitiators,safephotoinitiators,andnaturalphotoinitiators(Chapter13);and theindustrialphotoinitiators(Chapter14).

PartIVisdevotedtotheroleofphotoinitiatorsinspecificreactionsandcurrentoremerginginnovativeapplications.Thedevelopmentofphotoinitiators

Introduction xix adaptedtonovellightsources(LEDs,sun,pulsedsources,NIRlights,etc.)is showninChapter15.Chapter16reviewsphotoinitiatorsincontrolledpolymerizationreactions.Photoinitiatorsusableinspecificpolymerizationprocesses (thiol–ene,interpenetratingpolymernetwork[IPN],redox,polymerization-induced self-assembly[PISA],copper-catalyzedazide-alkynecycloaddition[CUAAC],ionic liquids,hydrogels,incorporationofnanoparticles,etc.)aredetailedinChapter17. TherecentprogressinthedesignofphotoinitiatorsandPISsforthepolymerization ofthickfilmsisdescribedinChapter18.Finally,Chapter19coverssomeaspects ofphotoinitiatorsinindustrialapplications,e.g.coatings,graphicarts,3Dprinting, medical,optics,andelectronics.

WhenquestioningtheChemicalAbstractdatabase,manyreferencesappear.We havenotintendedtogivehereanexhaustivelistofreferencesorasurveyofthe patentliterature.Morethan1000referencesappearedeachyear.Pioneerworksare cited,butourpresentlistofreferencesmainlyrefersnowtopapersdispatchedduring thepast30/20yearswithanemphasisonthe2010–2019period.Theselectionof thearticlesismostofthetimearatherhardandsensitivetask.Wehavedoneour bestandbegforgivenessforpossibleomission.

Thisresearchfieldcontinuouslyknowsafantasticevolution.Wewouldlikenow tosharetherealpleasurewehad(andstillhave)inparticipatingandcontributing tothisarea.Writingthissecondbookwasreallyagreatpleasure.Wehopethatour readers,R&Dresearchers,engineers,technicians,Universitypeople,andstudents, involvedinvariousscientificand/ortechnicalareassuchasphotochemistry,polymerchemistry,organicchemistry,radicalchemistry,physicalchemistry,radiation curing,imaging,physics,optics,medicine,andnanotechnology,willappreciatethis bookandenjoyitscontent.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.