Get Biological reaction engineering: dynamic modeling fundamentals with 80 interactive simulation ex

Page 1


Biological Reaction Engineering: Dynamic Modeling Fundamentals with 80 Interactive Simulation Examples 3rd Edition Elmar Heinzle

Visit to download the full and correct content document: https://ebookmass.com/product/biological-reaction-engineering-dynamic-modeling-fun damentals-with-80-interactive-simulation-examples-3rd-edition-elmar-heinzle/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Modeling and Simulation of Dynamic Systems 1st Edition

Robert L. Woods

https://ebookmass.com/product/modeling-and-simulation-of-dynamicsystems-1st-edition-robert-l-woods/

Optimization Modeling with Spreadsheets 3rd Edition

https://ebookmass.com/product/optimization-modeling-withspreadsheets-3rd-edition/

Building Real-Time Marvels with Laravel: Create Dynamic and Interactive Web Applications Sivaraj Selvaraj

https://ebookmass.com/product/building-real-time-marvels-withlaravel-create-dynamic-and-interactive-web-applications-sivarajselvaraj/

Building Real-Time Marvels with Laravel: Create Dynamic and Interactive Web Applications 1st Edition Sivaraj Selvaraj

https://ebookmass.com/product/building-real-time-marvels-withlaravel-create-dynamic-and-interactive-web-applications-1stedition-sivaraj-selvaraj/

Fundamentals of Nuclear Science and Engineering 3rd Edition

https://ebookmass.com/product/fundamentals-of-nuclear-scienceand-engineering-3rd-edition/

Chemical Engineering Process Simulation 1st Edition

Nishanth G. Chemmangattuvalappil

https://ebookmass.com/product/chemical-engineering-processsimulation-1st-edition-nishanth-g-chemmangattuvalappil/

Introduction to Modeling and Simulation Mark W. Spong

https://ebookmass.com/product/introduction-to-modeling-andsimulation-mark-w-spong/

Engineering Intelligent Systems: Systems Engineering and Design with Artificial Intelligence, Visual Modeling Barclay R. Brown

https://ebookmass.com/product/engineering-intelligent-systemssystems-engineering-and-design-with-artificial-intelligencevisual-modeling-barclay-r-brown/

Process Control: Modeling, Design, and Simulation 2nd Edition B. Wayne Bequette

https://ebookmass.com/product/process-control-modeling-designand-simulation-2nd-edition-b-wayne-bequette/

BiologicalReactionEngineering

DynamicModelingFundamentalsWith80Interactive SimulationExamples

ElmarHeinzle

IrvingJ.Dunn

JohnIngham JiˇríE.Pˇrenosil

Third,CompletelyRevisedandEnlargedEdition

Authors

ElmarHeinzle BiochemicalEngineering SaarlandUniversity CampusA1.5 66123Saarbrücken Germany

IrvingJ.Dunn DepartmentofChemistryand AppliedBiosciences(retired) SwissFederalInstituteofTechnology Zurich(ETH) 8092Zürich Switzerland

JohnIngham DepartmentofChemicalEngineering(retired) UniversityofBradford BradfordBD71DP UnitedKingdom

JiˇríE.Pˇrenosil DepartmentofChemistryandApplied Biosciences(retired)

SwissFederalInstituteofTechnology Zurich(ETH) 8092Zuerich Switzerland

Cover Thecoverimageswerekindlyprovided bytheauthors

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformationcontained inthesebooks,includingthisbook,tobefreeof errors.Readersareadvisedtokeepinmindthat statements,data,illustrations,proceduraldetailsor otheritemsmayinadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData: Acataloguerecordforthisbookisavailablefrom theBritishLibrary.

BibliographicinformationpublishedbytheDeutsche Nationalbibliothek

TheDeutscheNationalbibliothekliststhis publicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableonthe Internetat<http://dnb.d-nb.de>.

©2021WILEY-VCHGmbH,Boschstr.12,69469 Weinheim,Germany

Allrightsreserved(includingthoseoftranslation intootherlanguages).Nopartofthisbookmaybe reproducedinanyform–byphotoprinting, microfilm,oranyothermeans–nortransmittedor translatedintoamachinelanguagewithoutwritten permissionfromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenottobeconsidered unprotectedbylaw.

PrintISBN: 978-3-527-32524-5

ePDFISBN: 978-3-527-82443-4

ePubISBN: 978-3-527-82442-7

oBookISBN: 978-3-527-68533-2

CoverDesign Formgeber,Mannheim,Germany

Typesetting SPiGlobal,Chennai,India

Printedonacid-freepaper

10987654321

Contents

Preface xiii

Acknowledgments xxi

NomenclatureforPartI xxiii

ListofSimulationExamples xxviii

PartIPrinciplesofBioreactorModeling 1

1ModelingPrinciples 3

1.1FundamentalsofModeling 3

1.1.1UseofModelsforUnderstanding,Design,andOptimizationof Bioreactors 3

1.1.2GeneralAspectsoftheModelingApproach 4

1.1.3GeneralModelingProcedure 6

1.1.4SimulationTools 8

1.1.5TeachingApplications 8

1.2DevelopmentandMeaningofDynamicDifferentialBalances 9

1.2.1DerivationofaBalanceEquationUsingRates 11

1.2.2ComputerSolution 12

1.3FormulationofMassBalanceEquations 13

1.3.1TypesofMassBalanceEquations 13

1.3.2BalancingProcedure 15

1.3.2.1CaseA:ContinuousStirredTankBioreactor 15

1.3.2.2CaseB:TubularReactor 16

1.3.2.3CaseC:RiverwithEddyCurrent 16

1.3.3TotalMassBalances 23

1.3.4ComponentBalancesforReactingSystems 24

1.3.4.1CaseA:ConstantVolumeContinuousStirredTankReactor 25

1.3.4.2CaseB:SemicontinuousReactorwithVolumeChange 26

1.3.4.3CaseC:Steady-stateOxygenBalancinginFermentation 27

1.3.4.4CaseD:InertGasBalancetoCalculateFlowRates 28

1.4AdditionalRelationships 29

1.4.1StoichiometryandMetaboliteandElementalBalancing 29

1.4.1.1SimpleStoichiometry 29

1.4.1.2MetabolicNetworkStoichiometry:MetaboliteBalancing 30

1.4.1.3ElementalBalancing 31

1.4.2YieldCoefficients 33

1.4.2.1MassYieldCoefficients 33

1.4.2.2Selectivity 34

1.4.2.3EnergyYieldCoefficients 34

1.5ThermodynamicsandEquilibriumRelationships 35

1.5.1ReactionEnthalpy 35

1.5.2ChemicalEquilibrium 35

1.5.3ReceptorBinding 35

1.5.4CaseA:CalculationofpHwithanIonChargeBalance 36

1.6EnergyBalancingforBioreactors 38

1.6.1AccumulationTerm 39

1.6.2FlowTerm 39

1.6.3WaterEvaporationTerm 40

1.6.4HeatTransferTerm 41

1.6.5ReactionHeatTerm 41

1.6.6CaseB:DeterminingHeatProductionRateofaBatchFermentation 42

1.6.7CaseC:DeterminingHeatTransferAreaorCoolingWater Temperature 42

1.7TimeConstants 43

1.7.1DerivationfromDifferentialEquations 44

1.7.2DerivationfromCapacityandRate 45

2BasicBioreactorConcepts 47

2.1InformationforBioreactorModeling 47

2.2BioreactorOperation 48

2.2.1BatchOperation 48

2.2.2SemicontinuousorFed-batchOperation 50

2.2.3ContinuousOperation 51

2.2.4SummaryandComparisonofBioreactors 54

3BiologicalKinetics 57

3.1EnzymeKinetics 58

3.1.1ReactionEquilibrium 58

3.1.2Michaelis–MentenEquation 58

3.1.3OtherEnzymeKineticModels 61

3.1.3.1DoubleMichaelis–MentenKinetics 62

3.1.3.2Inhibition 62

3.1.3.3SubstrateInhibition 63

3.1.3.4AllostericKinetics 64

3.1.3.5TemperatureandpHInfluence 64

3.1.4EnzymeDeactivation 65

3.2SimpleMicrobialKinetics 65

3.2.1BasicGrowthKinetics 65

3.2.2CellDeathandSterilization 67

3.2.3SpecificRates 67

3.2.4MonodGrowthKinetics 68

3.2.5SubstrateInhibitionofGrowth 69

3.2.6ProductInhibition 70

3.2.7OtherExpressionsforSpecificGrowthRate 70

3.2.8SubstrateUptakeKinetics 71

3.2.9SubstrateUptakeinWastewaterSystems 72

3.2.10ProductFormation 72

3.3Interacting(Micro-)organisms 72

3.3.1CaseA:ModelingofMutualismKinetics 75

3.3.2CaseB:KineticsofAnaerobicDegradation 76

3.4StructuredKineticModels 77

3.4.1TypesofStructuredKineticModels 77

3.4.2ExamplesofSimpleStructuredModels 78

3.4.2.1CaseC:ModelingGrowthandSynthesisofPoly-β-hydroxybutyricAcid (PHB) 79

3.4.2.2CaseD:ModelingofSustainedOscillationsinContinuousBaker’sYeast Culture 80

3.4.2.3CaseE:GrowthandProductFormationofanOxygen-Sensitive Bacillus subtilis Culture 81

3.4.3ModelingofMetabolicNetworks 84

3.4.3.1CaseF:DynamicKineticModelforDescribingMetabolicFluxes SecondaryMetaboliteSynthesisPathway 85

3.4.3.2CaseG:ModelingtheDynamicsofMammalianCellCultivationin Fed-batchCultures 88

4BasicBioreactorModeling 91

4.1GeneralBalancesforTank-typeBiologicalReactors 91

4.1.1TheBatchFermenter 92

4.1.2TheChemostat 93

4.1.3TheFed-batchFermenter 96

4.1.4BiomassProductivity 97

4.1.5CaseA:ContinuousFermentationwithBiomassRecycle 98

4.1.6CaseB:EnzymaticTanks-in-seriesBioreactorSystem 100

4.2ModelingTubularPlugFlowBioreactors 102

4.2.1Steady-stateBalancing 102

4.2.2Unsteady-stateBalancingforTubularBioreactors 103

5MassTransfer 105

5.1MassTransferinBiologicalReactors 105

5.1.1GasAbsorptionwithBioreactioninLiquidPhase 105

5.1.2Liquid–LiquidExtractionwithBioreactioninOnePhase 105

5.1.3SurfaceBiocatalysis 105

5.1.4DiffusionandReactioninPorousBiocatalyst 106

5.2InterphaseGas–LiquidMassTransfer 106

5.3GeneralOxygenBalancesforGas–LiquidTransfer 109

5.3.1ApplicationofOxygenBalances 111

5.3.1.1CaseA:Steady-stateGasBalancetoDeterminetheBiologicalUptake Rate 111

5.3.1.2CaseB:Determinationof kL a UsingaChemicalorBiochemicalReaction ConsumingOxygen 111

5.3.1.3CaseC:Determinationof kL a byaDynamicMethod 112

5.3.1.4CaseD:DeterminationofOxygenUptakeRatesbyaDynamic Method 113

5.3.1.5CaseE:Steady-stateLiquidBalancingtoDetermineOxygenUptake Rate 114

5.3.1.6CaseF:Steady-stateDeoxygenatedFeedMethodfor kL a115

5.3.1.7CaseG:BiologicalOxidationinanAeratedTank 115

5.3.1.8CaseH:ModelingNitrificationinaFluidizedBedBiofilmReactor 117

5.4ModelsforOxygenTransferinLarge-scaleBioreactors 120

5.4.1CaseA:ModelforOxygenGradientsinaBubbleColumn Bioreactor 122

5.4.2CaseB:ModelforaMultipleImpellerFermenter 123

6DiffusionandBiologicalReactioninImmobilizedBiocatalyst Systems 127

6.1ExternalMassTransfer 128

6.2InternalDiffusionandReactionWithinBiocatalysts 130

6.2.1DerivationofFiniteDifferenceModelforDiffusion–ReactionFlatPlate Systems 132

6.2.2FiniteDifferenceModelforDiffusion–ReactioninaSphere 135

6.2.3DimensionlessParametersfromDiffusion–ReactionModels 136

6.2.4TheEffectivenessFactorConcept 137

6.2.5CaseA:EstimationofOxygenDiffusionEffectsinaBiofilm 138

6.2.6CaseB:ComplexDiffusion–ReactionProcesses(Biofilm Nitrification) 138

7AutomaticBioprocessControlFundamentals 143

7.1ElementsofFeedbackControl 144

7.2MeasurementofProcessVariables 144

7.2.1SensorsUsedinBiotechnology 145

7.2.2CalculatedMeasuredVariables 146

7.2.3DynamicCharacteristicsofMeasurement 146

7.3TypesofControllerAction 147

7.3.1On–OffControl 147

7.3.2Proportional(P)Controller 147

7.3.3Proportional–Integral(PI)Controller 148

7.3.4Proportional–Integral–Derivative(PID)Controller 149

7.4ControllerTuning 150

7.4.1TrialandErrorMethod 151

7.4.2Ziegler–NicholsMethod 151

7.4.3UltimateGainMethod 152

7.4.4ErrorIntegralsforCharacterizationofControllerPerformance 152

7.5AdvancedControlStrategies 153

7.5.1CascadeControl 153

7.5.2Feed-forwardControl 153

7.5.3AdaptiveControl 154

7.5.4OtherTypesofAdvancedControl 155

7.6ApplicationStrategiesofBioprocessControl 155

8BasicCellandBioreactorModels 159

8.1BasicCellBalances 160

8.2TheLinkoftheCellBalancestoaBioreactor 162

8.2.1ContinuousWell-MixedStirred-tankBioreactor(Chemostat) 162

8.2.2BatchBioreactor 164

8.2.3CaseA:CheckingforMetabolicSteadyStateinaBatchCulture 164

8.2.4CaseB:CompartmentedCellandBioreactorModeling 165

8.3OrganismModeling 168

8.3.1CaseC:BioreactorandHuman-bodyModelforToxicityPrediction 169

ReferencesPartIandRecommendedTextbooksandReferencesfor FurtherReading 173

PartIIDynamicBioprocessModelingandSimulation ExamplesUsingtheBerkeleyMadonnaSimulation Language 187

9DynamicBioprocessModelingExamples 189

9.1ModelingaRomanFountain 190

9.2ModelingaLake 191

9.3ModelingaMammalianCellRecirculationReactorwithExternal Aeration 192

9.4ModelingProteinSynthesisandSecretioninaEukaryoticCell 193

9.5ModelingaLiverSinusoid 194

10SimulationExamplesofBiologicalReactionProcessesUsing BerkeleyMadonna 197

10.1IntroductorySimulationExamples 199

10.1.1BatchFermentation(BATFERM) 199

10.1.2ChemostatFermentation(CHEMO) 204

10.1.3Fed-batchFermentation(FEDBAT) 208

10.1.4IntroductoryExercisesinBioreactorModelBuilding 212

10.2BatchReactors 229

10.2.1KineticsofEnzymeAction(MMKINET) 229

10.2.2Lineweaver–BurkPlot(LINEWEAV) 231

10.2.3OligosaccharideProductioninEnzymaticLactoseHydrolysis (OLIGO) 234

10.2.4BatchHeatSterilization(BATSTER) 237

10.2.5GrowthoftheCoronavirus(CORONADYN) 242

10.3Fed-batchReactors 247

10.3.1VariableVolumeFermentation(VARVOLandVARVOLD) 247

10.3.2PenicillinFermentationUsingElementalBalancing(PENFERM) 252

10.3.3EthanolFed-batchDiauxicFermentation(ETHFERM) 260

10.3.4RepeatedFed-batchCulture(REPFED) 264

10.3.5RepeatedMediumReplacementCulture(REPLCUL) 267

10.3.6PenicillinProductioninaFed-batchFermenter(PENOXY) 270

10.4ContinuousReactors 275

10.4.1Steady-stateChemostat(CHEMOSTA) 275

10.4.2ContinuousCulturewithInhibitorySubstrate(CONINHIB) 278

10.4.3NitrificationinActivatedSludgeProcess(ACTNITR) 283

10.4.4TubularEnzymeReactor(ENZTUBE) 287

10.4.5DualSubstrateLimitation(DUAL) 290

10.4.6Two-stageChemostatwithAdditionalStream(TWOSTAGE) 294

10.4.7Two-stageCulturewithProductInhibition(STAGED) 298

10.4.8FluidizedBedRecycleReactor(FBR) 301

10.4.9NitrificationinaFluidizedBedReactor(NITBED) 305

10.4.10ContinuousEnzymaticReactor(ENZCON) 310

10.4.11ReactorCascadewithDeactivatingEnzyme(DEACTENZ) 313

10.4.12ContinuousProductionofPHBinaTwo-tankReactorProcess (PHBTWO) 317

10.4.13DichloromethaneinaBiofilmFluidizedSandBed(DCMDEG) 321

10.5OxygenUptakeSystems 329

10.5.1AerationofaTankReactorforEnzymaticOxidation(OXENZ) 329

10.5.2GasandLiquidOxygenDynamicsinaContinuousFermenter (INHIB) 332

10.5.3BatchNitrificationwithOxygenTransfer(NITRIF) 337

10.5.4OxygenUptakeandAerationDynamics(OXDYN) 340

10.5.5KLADYN,KLAFIT,andELECTFIT:DynamicOxygenElectrodeMethod for K L a343

10.5.6BiofiltrationColumnforRemovingTwoInhibitorySubstrates (BIOFILTDYN) 349

10.5.7OpticalSensingofDissolvedOxygeninMicrotiterPlates(TITERDYN andTITERBIO) 354

10.6DiffusionSystems 361

10.6.1DoubleSubstrateBiofilmReaction(BIOFILM) 361

10.6.2Steady-stateSplitBoundarySolution(ENZSPLIT) 366

10.6.3DynamicPorousDiffusionandReaction(ENZDYN) 369

10.6.4OxygenDiffusioninAnimalCellSphere(CELLDIFFBEAD) 374

10.6.5OxygenDiffusiontoaSingleCellorCellAggregate (CELLDIFFCYL) 378

10.6.6ImmobilizedBiofilminaNitrificationColumnSystem (NITBEDFILM) 385

10.7ControlledReactors 393

10.7.1FeedbackControlofaWaterHeater(TEMPCONT) 393

10.7.2TemperatureControlofFermentation(FERMTEMP) 397

10.7.3TurbidostatResponse(TURBCON) 402

10.7.4ControlofaContinuousBioreactorwithInhibitorySubstrate (CONTCON) 405

10.7.5AdaptiveControlofDissolvedOxygenatLowLevelsinBatchCulture (ADAPTOXCONT) 410

10.8MembraneandCellRetentionReactors 419

10.8.1CellRetentionMembraneReactor(MEMINH) 419

10.8.2FermentationwithPervaporation(PERVAPSUB) 422

10.8.3Two-stageFermentorwithCellRecycleforContinuousProductionof LacticAcid(LACMEMRECYC) 430

10.8.4TubularHollowFiberEnzymeReactorModuleforLactoseHydrolysis (LACREACT) 435

10.8.5ImmobilizedAnimalCellsinaFluidizedBedReactor (ANIMALIMMOB) 441

10.9Multi-organismSystems 447

10.9.1TwoBacteriawithOppositeSubstratePreferences(COMMENSA) 447

10.9.2CompetitiveAssimilationandCommensalism(COMPASM) 452

10.9.3StabilityofRecombinantMicroorganisms(PLASMID) 456

10.9.4Predator–PreyPopulationDynamics(MIXPOP) 461

10.9.5CompetitionBetweenOrganisms(TWOONE) 465

10.9.6CompetitionBetweenTwoMicroorganismsforanInhibitorySubstrate inaBiofilm(FILMPOP) 468

10.9.7ModelforAnaerobicReactorActivityMeasurement(ANAEMEAS) 473

10.9.8DynamicsofanEpidemicUsingtheSIRModel(SIRDYNand SIRDYNDIM) 479

10.10StructuredandMetabolicNetworkModels 487

10.10.1OscillationsinContinuousYeastCulture(YEASTOSC) 487

10.10.2StructuredModelforPHBProduction(PHB) 492

10.10.3MammalianCellCycleControl(MAMMCELLCYCLE) 496

10.10.4MetabolicDynamicsinSecondaryMetaboliteFluxesinPotatoTubers (POTATO) 500

10.10.5StructuredModeloftheProductionofAcetoinandButanediol (SUBTILIS) 505

10.10.6DynamicsofCultivationofCHOfortheProductionofMonoclonal Antibodies(CHOMAB) 509

AppendixAUsingtheBerkeleyMadonnaLanguageandAccessingthe SimulationExamples:AShortGuide 519

A.1.ComputerRequirements 519

A.2.DownloadingSimulationExamplesandtheBerkeleyMadonna ProgramforthisBook 519

A.3.RunningPrograms 520

Index 521

Preface

Ourgoalinthistextbookistoteach,throughmodelingandsimulation,thequantitativedescriptionofbioreactionprocessestoscientistsandengineers.Inworking throughthemanysimulationexamples,you,thereader,willlearntoapplymaterial andenergybalancestodescribethedynamicsofavarietyofbioreactorsandother biologicalsystems.Foryourefforts,youwillberewardedwithagreaterunderstandingofthedynamicsofbiologicalprocesses.Themanyexampleapplicationswillhelp youtogainconfidenceinmodeling,andyouwillfindthatthesimulationlanguage used,BerkeleyMadonna,isapowerfultoolfordevelopingyourownsimulation models.Yournewabilitieswillbevaluablefordesigningexperiments,forextractingkineticdatafromexperiments,indesigningandoptimizingbiologicalreaction systems,andfordevelopingbioreactorcontrolstrategies.

Thisbookisbasedonoursuccessfulcourse,“BiologicalReactionEngineering,” whichhasbeenheldannuallyintheSwissmountainresortofBraunwaldformany yearsandwhichisnowknown,throughoutinternationalbiotechnologycirclesas the“BraunwaldCourse.”Thiscoursehasbeencontinuedwithamodifieddirection andisnowcalled“BiosystemsEngineering:BioreactorandCellFactories.”Altogetherthecoursehasbeenheldfor40years.Thenewercoursecontinuesusing thebookbutputtingmoreemphasisonmodelingcellularsystemsandtheirreactorenvironment.Thisthirdeditionprovidesanexcellentbasisforteachingsystems biologyprinciples.Moredetailsonthecoursecanbefoundatourwebsite:http:// www.braunwald-bioengineering.de.

Modelingisoftenunfamiliartobiologistsandchemists,whoneverthelessneed modelingtechniquesintheirwork.Thegeneralfieldofbiochemicalreaction engineeringisonethatrequiresaverycloseinterdisciplinaryinteractionbetween appliedmicrobiologists,biologists,biochemists,biochemicalengineers,engineers, bioinformaticians,andmanagers;alargedegreeofcollaborationandmutual understandingisthereforeimportant.Microbiologists,molecularbiologists,and biochemistsoftenlacktheformaltrainingneededtoanalyzelaboratorykinetic datainitsmostmeaningfulsense,andtheymaysometimesexperiencedifficulty inparticipatinginengineeringdesigndecisionsandincommunicatingwithengineers.Theseareexactlythetypesofactivityrequiredinthemultidisciplinaryfield ofbiotechnology.Chemicalengineering’sgreateststrengthisitswell-developed

modelingconcepts,basedonmaterialandenergybalances,combinedwithkinetics ofreactionsandofmassandenergytransfer.

Biochemicalengineeringisadisciplinecloselyrelatedtoconventionalchemical engineeringinthatitattemptstoapplyphysicalprinciplestothesolutionofbiologicalproblems.Thisapproachmaybeappliedtothemeasurementandinterpretation oflaboratorykineticdata,tometabolicnetworkmodeling,e.g.formetabolicflux analysisormetabolicnetworkdesign,ortothedesignoflarge-scalefermentation, enzymaticorwastetreatmentprocesses.Thenecessaryinterdisciplinarycooperationrequiresthebiologicalscientistsandchemicalengineersinvolvedtohave atleastapartialunderstandingofeachother’sfields.Thepurposeofthisbook istoprovidethemathematicaltoolsnecessaryforthequantitativeanalysisof biologicalkineticsandrelatedbiologicalprocessphenomena.Moregenerally,the mathematicalmodelingmethodspresentedhereareintendedtoleadtoagreater understandingofhowthebiologicalreactionsystemsareinfluencedbyprocess conditions.

Engineeringsciencedependsheavilyontheuseofappliedtheory,quantitative correlations,andmathematics,anditisoftendifficultforallofus(notonlythe biologicalscientist)tosurmountthemathematicalbarrier,whichisposedbyengineering.Amistake,oftenmade,istoconfuse“mathematics”withtheengineering modelingapproach.Inmodeling,anattemptismadetoanalyzearealandpossiblyverycomplexsituationintoasimplifiedandunderstandablephysicalanalog. Thisphysicalmodelmaycontainmanysubsystems,allofwhichstillmakephysicalsense,butwhichnowcanbeformulatedwithmathematicalequations.These equationscanbehandledautomaticallybythecomputer.Thus,theengineerand thebiologistarefreedfromthedifficultiesofmathematicalsolutionandcantackle complexproblemsthatwereimpossibletosolvebefore.Models,however,stillhave tobeformulatedandoneofthemostimportanttoolsofthebiochemicalengineer, inthisoperation,isthesettingupofmaterialandenergybalanceequations.The stepofextractingaphysicalmodelfromacomplexrealsituationisactuallythemost importantandmostdifficult,thoughmostlynotsufficientlytreatedintextbooks.It requiresathoroughunderstandingofphysical,chemical,andbiologicalprinciples combinedwithacertainamountofphantasyandcreativity.Itmaynotbeeasyforthe biologistorbiochemisttofullyappreciatetheimportanceofdifferentialequations, butmaterialbalanceequationsarenotsodifficulttounderstand,sincethefirstlaw ofconservation,namelythatmattercanneitherbecreatednordestroyed,isfundamentaltoallscience.Materialbalances,whencombinedwithkineticrateequations, toformsimplemathematicalmodels,canbeusedwithverygreateffectasameans ofplanning,conducting,andanalyzingexperiments.Modelsareespeciallyimportantasameansofobtainingabetterunderstandingofprocessphenomena.Arationalandstringentapproachtoexperimentationanddesignrequiresaconsiderable knowledgeofthesystem,whichcanreallyonlybeachievedusingamathematical model.Suchamodelwillalsoassistinunderstanding,therebyreducingcostlyand time-consumingexperimentalwork.Thisbookattemptstodemonstratethisbyway ofthemanydetailedexamplesthatarebasedontheextendedscientificexperienceof

Preface xv theauthors.Manyofthemorecomplexexamplesareoftentakenfromourscientific publications.

Thecontributionmadetobiotechnologybythebiochemicalengineeringmodeling approachisespeciallyimportantbecausethebasicprocedurecanbedevelopedfrom afewfundamentalprinciples.Aspecialaimofthisbookistodemonstratethatyou donothavetobeanengineertolearnmodelingandsimulation.Thebasicconcepts ofthematerialbalance,combinedwithbiologicalandenzymekinetics,areeasily appliedtodescribethebehaviorofwell-stirredtankandtubularfermenters,mixed culturedynamics,interphasegas–liquidmasstransfer,internalbiofilmdiffusional limitations,andmetabolicorsignalingnetworkdynamics,asdemonstratedinthe computerexamplessuppliedwiththisbook.Suchmodels,whensolvedinteractively bycomputersimulation,becomemuchmoreunderstandabletonon-engineers.

TheBerkeleyMadonnasimulationlanguage,usedfortheexamplesinthisbook,is especiallysuitablebecauseofitssophisticatedcomputingpower,interactivefacility, andeaseofprogramming.Theuseofthisdigitalsimulationprogramminglanguage makesitpossibleforthereader,studentandteacher,toexperimentdirectlywith themodel,intheclassroomoratthedesk.Inthisway,itispossibletoimmediately determinetheinfluenceofchangingvariousoperatingparametersonthebioreactor performance–areallearningexperience.

Thesimulationexamplesservetoenforcethelearningprocessinaveryeffective mannerandalsoprovidehands-onconfidenceintheuseofasimulationlanguage. Thereaderscanprogramtheirownexamples,byformulatingnewmaterialbalance equationsorbymodifyinganexistingexampletoanewsetofcircumstances.Thus, byworkingdirectlyatthecomputer,theno-longer-passivereadercanexperiment directlyonthebioreactionsysteminaveryinteractivewaybychangingparameters andlearningabouttheirprobableinfluenceinarealsituation.Becauseofthespeed ofsolution,atruedegreeofinteractionispossiblewithBerkeleyMadonna,allowingparameterstobechangedeasily.Plottingthevariablesinanyconfigurationis easyduringarun,andtheresultsfrommultiplerunscanbeplottedtogetherfor comparison.Otherusefulfeaturesincludedatafittingandoptimization.

Inourexperience,modelinganddigitalsimulationhasprovenitselftobe absolutelythemosteffectivewayofintroducingandreinforcingnewconceptsthat involvemultipleinteractions.Thethinkingprocessisultimatelystimulatedtothe pointofsolidunderstanding.Inshort,modelingmakesyouthink!

OrganizationoftheBook

Thebookisdividedintotwoparts:apresentationofthebackgroundtheoryinPart IandthemodelingandcomputersimulationexercisesinPartII.Thefunctionof thetextinPartIistoprovidethebasictheoryrequiredtofullyunderstandandto makefulluseofthecomputerexamplesandsimulationexercises.Numerouscase studiesprovideillustrationtothetheory.PartIIconstitutesthemainpartofthis book.Newinthisthirdeditionareafewmodelingexamplesthathelpthereaderto traintheabilityofsettingupamodelandwritingthenecessarybalanceequations. Thesemodelscanthendirectlybetransferredtoafullsimulationmodel.Solutions

Preface

areprovidedontheWileywebsites.ThesimulationexamplesinPartIIprovidean excellentinstructionalandself-learningtool.Eachofthemorethan80examples isself-contained,includingamodeldescription,modelequations,exercises,computerprogramlisting,nomenclatureandreferences.Theexamplesarefoundon theWileywebsites:https://www.wiley-vch.de/ISBN978-3-527-32524-5andhttps:// www.wiley.com/go/heinzle.Theexercisesrangefromsimpleparameter-changing investigationstosuggestionsforwritinganewprogram.Thecombinedbookthus representsasynthesisofbasictheory,modelingexercises,andcomputer-basedsimulationexamples.

Quiteapartfromtheeducationalvalueofthetext,theintroductionanduseof theBerkeleyMadonnasoftwareprovidesthereaderwiththeconsiderablepracticaladvantageofadifferentialequationsolutionpackage.AscreenshotguideconcerningtheuseofthesoftwareisfoundontheWileywebsites.Freedemoversions canbedownloadedfromtheBerkeleyMadonnawebsite(www.berkeleymadonna .com).TheseunlicenseddemoversionsallowrunningallexamplesthatareavailableonWileywebsitesonly.Fullversionscanbeboughtthereandwouldallowmore functionalityconcerningprogrammodificationsandcutandpastefunctions.More detailsaboutBerkeleyMadonnaandusefulcomputerplatformsarebrieflydescribed intheAppendix,andmoreinformationisprovidedontheWileywebsites.TheHelp menuofBerkeleyMadonnaisveryuseful,andmanualscanbedownloadedfrom theirwebsite.

PartI:“PrinciplesofBioreactorModeling”coversthebasictheorynecessaryfor understandingthecomputersimulationexamples.Thissectionpresentsthebasic conceptsofmaterialbalancing,andtheircombinationwithkineticrelationships,to establishsimplebiologicalreactormodels,carefullypresentedinawaythatshould beunderstandabletobiologists.Infact,engineersmayalsofindthisrigorouspresentationofbalancingtobevaluable.Inordertoachievethisaim,themainemphasis ofthetextisplacedonanunderstandingofthephysicalmeaningandsignificance ofeachterminthemodelequations.Theaiminpresentingtherelevanttheoryis thusnottobeexhaustive,butsimplytoprovideabasicintroductiontothetheory requiredforaproperunderstandingofthemodelingmethodology.

Chapter1dealswiththebasicconceptsofmodeling,thebasicprinciples,developmentandsignificanceofdifferentialbalances,andtheformulationofmaterialand energybalancerelationships.Additionalrelationshipsareintroduced:stoichiometry,elementalbalancing,andtheyieldcoefficientconcept.Equilibriumrelationships focusonreactionequilibriumandacid-baseequilibriaforvaryingpHsystems.Time constantsareintroducedtoassistintheorder-of-magnitudeanalysis.Emphasisis giventophysicalunderstanding.

Chapter2introducesthevariedoperationalcharacteristicsofthevarioustypesof bioreactorsandtheirdifferingmodesofoperation,withtheaimofgivingaqualitativeinsightintothequantitativebehaviorofthecomputersimulationexamples.

Chapter3,ontheotherhand,presentsenzymeandmicrobialkinetics.Aparticular featureofthekinetictreatmentistheemphasisontheuseofmorecomplexmodels withinteractingmicroorganismsandwithastructureddescriptionofthecellular behavior.Suchmodelsrequiremuchmoreconsiderationtothebiologyofthesystem

Preface xvii duringthemodelingprocedure,butdespitetheiraddedcomplexitycannevertheless alsobesolvedwithrelativeease.Allthesemodelscanbecombinedwiththevarious kindsofbioreactorsystems.Theyserveasareminderthatbiologicalreactionsare reallyinfinitelycomplex.

Chapter4isusedtoderivegeneralmaterialbalanceequations,coveringthemany typesoffermentationtankreactors,includingtubularreactors.Thesegeneralized equationsarethensimplifiedtoshowtheirapplicationtothedifferingmodesof stirredtankbioreactoroperation,discussedpreviouslyandillustratedbythesimulationexamples.

Chapter5explainsthebasictheoryofinterfacialmasstransferasappliedtofermentationsystemsandshowshowequationsforratesofmasstransfercanbecombinedwithmaterialbalances,forbothliquidandgasphases.Aparticularextension ofthisapproachisthecombinationoftransferrateandmaterialbalanceequations tomodelsofincreasedgeometricalcomplexity,asrepresentedbylarge-scaleair-lift andmultipleimpellerfermenters.

Chapter6treatsthecasesofexternaldiffusiontoasolidsurfaceandinternal diffusioncombinedwithbiochemicalreaction,withpracticalapplicationtoimmobilizedbiocatalystandbiofilmsystems.Emphasizedhereistheconceptualease ofhandlingacomplexreactioninasolidbiocatalystmatrix.Theresultingsetsof tractabledifferentialdifferenceequationsaresolvedbysimulationtechniquesin severalexamples.

Chapter7describestheimportanceofcontrolandsummarizescontrolstrategies usedforbioreactionprocesses.Herethefundamentalsoffeedbackcontrolsystems andtheircharacteristicresponsesarediscussed.Thismaterialformsthebasisfor performingthemanyrecommendedcontrolexercisesinthesimulationexamples. Italsowillallowthereaderandsimulatortodevelophisowncontrolmodelsand simulationprograms.

Chapter8providesabriefintroductionofmodelingandsimulationtechniques appliedtocells,tissues,andorganisms.

PartII:“DynamicBioprocessModeling,DynamicBioprocessSimulation ExamplesandtheBerkeleyMadonnaSimulationLanguage,”comprisesChapter9, withsomeintroductorymodelingexercises.Solutionsfortheintroductorymodeling exercisesareprovidedontheWileywebsites:https://www.wiley-vch.de/ISBN9783-527-32524-5andhttps://www.wiley.com/go/heinzle.Chapter10containsthe manycomputersimulationexamplesandalsoanAppendix,whichgivestheinstructionsforusingBerkeleyMadonna(www.berkeleymadonna.com).Eachexample inChapter10includesadescriptionofitsphysicalsystem,themodelequations, thatweredevelopedinPartI,andalistofsuggestedexercises.Theprogramsare alsofoundontheWileywebsites.Theseexampleexercisescanbecarriedoutfor thereadertoexplorethemodelsystemindetail,anditissuggestedthatworkon thecomputerexercisesbedoneinclosereferencetothemodelequationsandtheir physicalmeaning,asdescribedinthetext.Theexercises,however,areprovided simplyasanideaforwhatmightbedoneandarebynomeansmandatoryor restrictive.Workingthroughaparticularexamplewilloftensuggestaninteresting variation,suchasacontrolloop,whichcanthenbeprogrammedandinserted.The

examplescoverawiderangeofapplicationandcaneasilybeextendedbyreference totheliterature.Theyarerobustandarewelltestedbyavarietyofundergraduate andgraduatestudentsandalsobymorethan500participantswhohavepreviously attendedtheBraunwaldcourse.Intacklingtheexercises,wehopeyouwouldsoon cometoshareourconvictionthat,besidesbeingveryuseful,computersimulation isalsofuntodo.

Forthethirdedition,thetextwasthoroughlyrevisedandsomeofourearlier, lessrelevantmaterialwasomitted.Thenomenclaturewascompletelyrevised, especiallyusing“C”assymbolforconcentrationand“r ”forratethroughoutthe book,followingasuggestionofourfriendMatthiasReussfromtheUniversityof Stuttgart.WealsothankhimandChristophWittmannfromtheSaarlandUniversity fortheirextendeddiscussiononthecontentofthisbookandthepresentationof simulationexamples.Inaddition,anumberofnewexamplesresultingmainlyfrom theauthors’latestresearchandteachingworkwereaddedincludingsomeexamples ofmodelingthecurrentcoronaviruspandemic.Therewasalsoanopportunityin thisneweditiontoeliminatemostofthepasterrorsandtoavoidnewonesasmuch aspossible.Chapter1“ModelingPrinciples”wasenrichedwithanintroduction ofmetabolicnetworkprinciplesandtheconceptoftimeconstants.InChapter3 “BiologicalKinetics,”themodelingofmetabolicnetworksisaddressedandlinked tosomerecentcasestudies.InChapter6“DiffusionandBiologicalReactionfor ImmobilizedBiocatalystSystems,”finitedifferencingisalsoappliedtospherical geometry,e.g.gainingimportanceforthequantitativedescriptionofspheroidsof animalorhumancellsappliedindrugandtoxicitytesting.Chapter7“Automatic ProcessControlFundamentals”hasnowanewsectionofthemeasurementofprocessvariablesthatisalsoimportantformodelingcontrolofbioreactorsrealistically. Thetuningofcontrollerusingsimulationisalsomoreemphasizedbyintroducing theapplicationofintegralerrorcriteria.Awholenewchapterisintroduced, Chapter8“BasicCellandBioreactorModels,”whichaddressesthebasicbalancing fordescribingmetabolicnetworksystemsincellsandcellcompartments,which arethencombinedwithdifferenttypesofbioreactorsandbioreactoroperation. Thischapteralsolinkstophysiologicallybasedpharmacokinetic(PBPK),thePBPK modelingandsimulation,anditsapplicationtomoderndrugefficacyandtoxicity testing.

PartIIisextendedwithaleadingChapter9thatfocusesonthestructuringof dynamicsimulationproblemsandmakingthefirstoftenmostdifficultstepsinsettingupamodel,definingusefulbalanceregionsandtheirinterconnections.Chapter 10isthelargestandmostoutstandingchapterofthebookbecauseitcontainsnumeroussimulationexamples,includingnewintroductoryexerciseexamplesinbioreactormodelbuilding(Section10.1.4).Somearerelativelysimpleandothersextendto morecomplexsystems,e.g.fordynamicmetabolicfluxanalysis.Allexamplesare completelyrevisedandusethenomenclatureasintroducedinPartItomakeaneasierswitchbetweenparts.Allsimulationexamplesarefreelyavailable,canbeeasily downloadedfromtheWileywebsites,andcanbedirectlyrunevenwithfreelyavailabledownloadversionsofBerkeleyMadonnabothforWindowsandmacOS;buying alicensewillenablefullfunctionality.Aspecial,reducedlicensefeeisofferedfor

Preface xix

thebuyersofourbook(https://www.BerkeleyMadonna.com/Biological_Reaction_ Engineering).

Ourbookhasanumberofspecialcharacteristics.Itwillbeobvious,inreadingit through,thatweconcentrateonlyonthosetopicsofbiologicalreactionengineering thatlendthemselvestomodelingandsimulationanddonotattempttocoverthe areacompletely.Ourownresearchworkisusedtoillustratetheoreticalpoints,from whichmanysimulationexamplesaredrawn.PartIbeginswiththedefinitionofsymbolsgenerallyusedhereandendswithalistofsuggestedbooksforsupplementary reading,togetherwiththelistofcitedreferences.Additionally,thenomenclaturefor eachsimulationexampleisprovidedseparately,thoughmostlyfollowingthegeneral nomenclatureasintroducedinthefirstpartofthebook.

Weareconfidentthatthebookwillbeusefultoalllifescientistswishingtoobtain anunderstandingofbiochemicalengineering,aswellastochemicalandbiochemicalengineerswantingtosharpentheirmodelingskillsandwishingtogainabetter understandingofbiochemicalprocessphenomena.Wealsoseeourbookasanexcellentintroductiontomodelingintheframeworkofemergingfieldsofsystemsbiology andbiosystemsengineering.Wehopethatteacherswithaninterestinmodeling willfindthistobeavaluabletextbookforundergraduateandgraduatebiochemical engineeringandbiotechnologicalcourses.

Acknowledgments

AmajoracknowledgmentshouldbemadetotheexcellentpioneeringtextsofFranks (1967and1972)andalsoofLuyben(1973),forinspiringourinterestindigitalsimulation.Weareespeciallygratefultoourstudentsandtothepast-participantsofthe Braunwaldcourse,fortheirassistanceinthecontinuingdevelopmentofthecourse andofthematerialpresentedinthisbook.Continualstimulusandassistancehave alsobeengivenbyourdoctoralcandidates,especiallyattheChemicalEngineering Department,ETH-Zurich,andfromstudentsoftheSaarlandUniversity.Themajorityofthesimulationexamplesinthebookaretakenfromourownresearchatthe ETHorSaarlandUniversity,asnotedthroughoutthereferences.

WeacknowledgetheeditingsupportbyZhipeiDu,LuuLoi,andDuyNguyen,all studentsoftheSaarlandUniversity.Wearegratefultoandhavegreatrespectforthe developersofBerkeleyMadonnaandhopethatthisnewversionofthebookwillbe usefulindrawingattentiontothiswonderfulsimulationlanguage.

Inparticular,theauthorsaresincerelythankfultoProfessorJohnR.Bournefor hissupportandforthefreedomthathegaveusforourworkthroughouttheyears attheETH.

NomenclatureforPartI

Symbols(Units)

A area(m2 )

a constantinlogisticequation(1/s)

A magnitudeofcontrollerinputsignal(various)

a specificarea(m2 /m3 )

b constantinlogisticequation(m3 /kgs)

b constantinLuedeking–Piretrelation(1/s)

B magnitudeofcontrolleroutputsignal(various)

C concentration(kg/m3 ,kmol/m3 )

cP heatcapacity(kJ/kgK,kJ/molK)

CPRcarbondioxideproductionrate(mol/s)

d differentialoperatoranddiameter(–,m)

D diffusivity(m2 /s)

D dilutionrate(1/s)

DMdrymassofcells(kg)

DOdissolvedoxygen(g/m3 ,%airsat.)

E elementalcompositionmatrix

Ea activationenergy(kJ/molK)

F flowrate(m3 /s)

f frequencyintheultimategainmethod(1/s)

G gasflowrate(m3 )

H henry’slawconstant(barm3 /kg)

hi partialmolarenthalpy(kJ/mol)

IAEintegralabsoluteerror(various)

ISEintegralsquareerror(various)

ITAEintegraltime-weightedabsoluteerror(various)

j diffusionalmassflux(kg/m2 s,mol/m2 s)

J totaldiffusionalmassflux(kg/sandmol/s)

J totaltransferrate(kg/sandmol/s)

k constant(various)

K equilibriumconstant(various)

K masstransfercoefficient(1/s)

NomenclatureforPartI

K D acid–basedissociationconstant(–)

kG a gasfilmmasstransfercoefficient(1/s)

K I inhibitionconstant(kg/m3 andkmol/m3 )

kL a liquidfilmmasstransfercoefficient(1/s)

K M Michaelis–Mentenconstant(kg/m3 andkmol/m3 )

K P proportionalcontrollergainconstant(various)

K S Monodsaturationcoefficient(kg/m3 )

K W dissociationconstantofwater

L length(m)

m maintenancecoefficient(1/s)

M massflux(kg/m2 s)

M mass(kgormol)

N molarflowrate(mol/s)

n numberofmoles(–)

n reactionorder(–)

OURoxygenuptakerate(mol/sandkg/s)

P outputcontrolsignal(various)

p pressure(Pa,bar)

pi partialpressureofI(bar)

q specificrate(kg/kgbiomasss)

r heatflow(kJ/m3 s)

R idealgasconstant(barm3 /Kmol)

R radius(m)

r reactionrate(kg/m3 s,kmol/m3 s)

R recycleflowrate(m3 /s)

r i reactionrateofcomponent i (kgi/m3 s)

r i/j reactionrateofcomponent i to j (kg/m3 s,kmol/m3 s)

RQrespirationquotient(molCO2 /molO2 )

r X growthrate(kgbiomass/m3 s)

S selectivity(–)

S slopeofprocessreactioncurve(various)

T temperature(∘ CorK)

t time(h,minands)

Tr transferrate(mol/m3 s)

U heattransfercoefficient(kJ/m2 Ks)

v flowvelocity(m/s)

V volume(m3 )

VCDviablecelldensity(cells/m3 )

vm maximumreactionrate(kmol/m3 s)

wmassfraction(–)

W wastagestreamflowrate(m3 /s)

x massfraction

y molfractioningas(–)

Y processoutputvalue(various)

Y yieldcoefficient(kg/kg)

Y i/j yieldof i from j (kg i/kg j,mol i/mol j)

Z lengthvariable(m)

Greek

Δ differenceoperator(–)

ΔG Gibb’sfreereactionenthalpy(kJ/mol)

ΔH enthalpychange(kJ/molorkJ/kg)

Φ Thielemodulus(–)

Σ summationoperator(–)

�� ratecoefficient(various)

�� ratecoefficient(various)

�� concentrationdifferencequantity(kg/m3 )

�� controllererror(various)

�� elasticitycoefficient(–)

�� effectivenessfactor(–)

�� specificgrowthrate(1/s)

�� m maximumgrowthrate(1/s)

�� stoichiometriccoefficient(–)

�� density(kg/m3 )

�� residencetime(s,min,orh)

�� timeconstant(s)

�� partialdifferentialoperator(–)

Note:Inallcasestimecanbespecifiedins,min,orh,inspecialcasesalso d

Indices

– barabovesymbolreferstodimensionlessvariable

*referstoequilibriumconcentration

0referstoinitial,inlet,external,andzeroorder

1referstotime t1 ,outlet,component1,tank1,andfirstorder 1,2,..., n referstostream,volumeelements,andstages 2referstotank2,time t2 ,andcomponent2 a referstoambient,heating,orcoolingtemperature

A referstoanions

A referstocomponent A,anions,andbulk

Ac referstoacetoinandacetoinformation aerreferstoaerobic agitreferstoagitation anaerreferstoanaerobic appreferstoapparent

ATPreferstoATP

ATP/X referstoconsumptionATPforbiomassformation

xxvi NomenclatureforPartI

avgreferstoaverage

B referstocomponent B,base,backmixing,andsurfaceposition

Bu referstobutanediol

C referstocell

C referstocombustion

C referstocoolant

c referstocritical

CO2 referstocarbondioxide

D referstodiffusion

d referstodeactivationanddeath

D referstoderivativecontrol

D referstodissociation

DO referstodissolvedoxygen

E referstoelectrode

E referstoenzyme

E referstoethanol

eqreferstoequilibrium

ES referstoenzyme–substratecomplex evapreferstoevaporation

F referstofeed

f referstofinal

F referstoformation

G referstogasandtocellularcompartment

H + referstohydrogenions

hp referstoheatproduction

ht referstoheattransfer

H2 Oreferstowater

i generalindex,referstocomponent i andtointerface

I referstoinhibitor

I referstointegralcontrol

I referstointegralcontrol inertreferstoinertcomponent

J referstojacket

K referstocellularcompartment

K + referstocations

L referstoliquid

L referstolag

L referstoligand

m referstomaximum

M referstometabolite maxreferstomaximum

mt referstomasstransfer

n referstotanknumber

NH4 referstoammonium

NO2 referstonitrite

NO3 referstonitrate

OandO2 refertooxygen obsreferstoobserved

P referstoparticle

P referstoproduct

P referstoproportionalcontrol

P referstoprotein

PA referstoproduct A

PB referstoproduct B

Q referstoheat

Q/O2 referstoheat–oxygenratio

Q/S referstoheat–substrateratio

q referstoreactionheat

r referstoreaction

R referstoreactor

R referstorecyclestream

R referstoresidualbiomass

S referstosubstrateandsurface satreferstosaturation setreferstosetpoint

SL referstoliquidfilmatsolidinterface

Sn referstosubstraten totreferstototal

X referstobiomass

X /ireferstobiomass–componentiratio

X /S referstobiomass–substrateratio

Z referstodifferencebetweencationsandions

ListofSimulationExamples

BATFERMBatchFermentation(10.1.1)

CHEMOChemostatFermentation(10.1.2)

FEDBATFed-BatchFermentation(10.1.3)

VariousIntroductoryExercisesinBioreactorModel Building(10.1.4)

MMKINETKineticsofEnzymeAction(10.2.1)

LINEWEAVLineweaver–BurkPlot(10.2.2)

OLIGOOligosaccharideProductioninLactoseHydrolysis (10.2.3)

BATSTERBatchHeatSterilization(10.2.4)

CORONADYNGrowthoftheCoronavirus(10.2.4)

VARVOLVariableVolumeFermentation(10.3.1)

VARVOLDVariableVolumeFermentation(10.3.1)

PENFERMPenicillinFermentationUsingElementalBalancing (10.3.2)

ETHFERMEthanolFed-batchDiauxicFermentation(10.3.3)

REPFEDRepeatedFed-batchCulture(10.3.4)

REPLCULRepeatedMediumReplacementCulture(10.3.5)

PENOXYPenicillinProductioninaFed-batchFermenter(10.3.6)

CHEMOSTASteady-stateChemostat(10.4.1)

CONINHIBContinuousCulturewithInhibitorySubstrate(10.4.2)

ACTNITRNitrificationinActivatedSludgeProcess(10.4.3)

ENZTUBETubularEnzymeReactor(10.4.4)

DUALDualSubstrateLimitation(10.4.5)

TWOSTAGETwo-stageChemostatwithAdditionalStream(10.4.6)

STAGEDTwo-stageCulturewithProductInhibition(10.4.7)

FBRFluidizedBedRecycleReactor(10.4.8)

NITBEDNitrificationinaFluidizedBedReactor(10.4.9)

ENZCONContinuousEnzymaticReactor(10.4.10)

DEACTENZReactorCascadewithDeactivatingEnzyme(10.4.11)

PHBTWOProductionofPHBinaTwo-tankReactorProcess (10.4.12)

DCMDEGDichloromethaneinaBiofilmFluidizedSandBed (10.4.13)

ListofSimulationExamples xxix

OXENZAerationofaTankReactorforEnzymaticOxidation (10.5.1)

INHIBGasandLiquidOxygenDynamicsinFermenter(10.5.2)

NITRIFBatchNitrificationwithOxygenTransfer(10.5.3)

OXDYNOxygenUptakeandAerationDynamics(10.5.4)

KLADYNDynamicKLaMethods(10.5.5)

KLAFITDynamicKLaMethods(10.5.5)

ELECTFITDynamicKLaMethods(10.5.5)

BIOFILTDYNBiofiltrationColumnforTwoInhibitorySubstrates (10.5.6)

TITERDYNOpticalSensinginMicrotiterPlates(10.5.7)

TITERBIOOpticalSensinginMicrotiterPlates(10.5.7)

BIOFILMDoubleSubstrateBiofilmReaction(10.6.1)

ENZSPLITSteady-stateSplitBoundarySolution(10.6.2)

ENZDYNDynamicPorousDiffusionandReaction(10.6.3)

CELLDIFFBEADOxygenDiffusioninAnimalCells(10.6.4)

CELLDIFFCYLOxygenDiffusiontoaSingleCellorCellAggregate (10.6.5)

NITBEDFILMImmobilizedBiofilminaNitrificationColumn(10.6.6)

TEMPCONTFeedbackControlofaWaterHeater(10.7.1)

FERMTEMPTemperatureControlofFermentation(10.7.2)

TURBCONTurbidostatResponse(10.7.3)

CONTCONFeedRateControlofInhibitorySubstrate(10.7.4)

ADAPTOXCONTAdaptiveControlofDissolvedOxygen(10.7.5)

MEMINHCellRetentionMembraneReactor(10.8.1)

PERVAPSUBFermentationwithPervaporation(10.8.2)

LACMEMRECYCTwoStageFermentorwithCellRecycle(10.8.3)

LACREACTHollowFiberEnzymeReactorforLactoseHydrolysis (10.8.4)

ANIMALIMMOBAnimalCellsinaFluidizedBedReactor(10.8.5)

COMMENSABacteriawithOppositeSubstratePreferences(10.9.1)

COMPASMCompetitiveAssimilationandCommensalism(10.9.2)

PLASMIDStabilityofRecombinantMicroorganisms(10.9.3)

MIXPOPPredator–PreyPopulationDynamics(10.9.4)

TWOONECompetitionBetweenOrganisms(10.9.5)

FILMPOPCompetitionforanInhibitorySubstrateinaBiofilm (10.9.6)

ANAEMEASModelforAnaerobicReactorActivityMeasurement (10.9.7)

SIRDYNDynamicsofanEpidemicUsingtheSIRModel(10.9.8)

SIRDYNDIMDynamicsofanEpidemicUsingtheSIRModel(10.9.8)

YEASTOSCOscillationsinContinuousYeastCulture(10.10.1)

PHBStructuredModelforPHBProduction(10.10.2)

MAMMCELLCYCLEMammalianCellCycleControl(10.10.3)

xxx ListofSimulationExamples

POTATOMetabolicFluxesinSecondaryMetabolisminPotato (10.10.4)

SUBTILISStructuredModeloftheProductionofAcetoinand Butanediol(10.10.5)

CHOMABProductionofMonoclonalAntibodiesbyCHOCells (10.10.6)

PrinciplesofBioreactorModeling

ModelingPrinciples

1.1FundamentalsofModeling

1.1.1UseofModelsforUnderstanding,Design,andOptimizationof

Bioreactors

Anysystemusedforcarryingoutbioreactions,fromsingleenzymaticreactionsto complexmulticellularreactionsystems,requiresacontainmentcalledabioreactor. Theperformanceofabioreactormayconventionallybeinvestigatedalmostentirely empirically.Inthisapproach,thebioreactorbehaviorwouldbestudiedunderpracticallyallcombinationsofpossibleoperatingconditions.Theresultswouldthen beexpressedasaseriesofinput–outputcorrelations,fromwhichtheperformance couldbedetermined.Thisempiricalprocedurecanbecarriedoutinaroutinemannerandrequiresrelativelylittlethoughtconcerningtheactualdetailsoftheprocess. Whilethismightseemtoberatherconvenient,theprocedurehasactuallydisadvantages,sinceverylittlerealunderstandingoftheprocesswouldbeobtained.Also verymanycostlyexperimentswouldberequiredinordertoobtaincorrelationsthat wouldcovereveryprocesseventuality.

Comparedtothis,themodelingapproachattemptstodescribebothactualand probablebioreactorperformances,bymeansofawell-establishedtheory.Described inmathematicalterms,aworkingmodelfortheprocessisestablished.Incarrying outamodelingtask,themodelerisforcedtoconsiderthenatureofalltheimportant parametersoftheprocess,theireffectontheprocess,andhoweachparametermust bedefinedinquantitativeterms.Themodelermustidentifytheimportantvariables andtheirseparateeffects,whichmayhaveahighlyinteractivecombinedeffecton theoverallprocessperformance.Thus,theveryactofmodelingisonethatforcesa betterunderstandingoftheprocess,sincealltherelevanttheorymustbecritically assessed.Inaddition,thetaskofformulatingtheoryintotermsofmathematical equationsisalsoverybeneficialinthatitforcesaclearformulationofbasic concepts.

Onceformulated,themodelcanbesolved,andthepredictedbehaviorcanbecomparedwithexperimentaldata.Anydifferencesinperformancemaythenbeused tofurtherredefineorrefinethemodeluntilagoodagreementisobtained.Once themodelisestablished,itcanthenbeused,withreasonableconfidence,topredict

BiologicalReactionEngineering:DynamicModelingFundamentalsWith80InteractiveSimulationExamples, ThirdEdition.ElmarHeinzle,IrvingJ.Dunn,JohnIngham,andJi ̌ r ́ ıE.P ̌ renosil. ©2021WILEY-VCHGmbH.Published2021byWILEY-VCHGmbH.

performanceunderdifferingprocessconditions.Itcanalsobeusedforpurposesas processdesign,optimization,andcontrol.Aninputofplantorexperimentaldata isofcourserequiredinordertoestablishorvalidatethemodel,butthequantityof experimentaldatarequired,ascomparedtothatoftheempiricalapproach,isconsiderablyreduced.Themajoradvantageofmodelingbasedontheunderlyingphysical andbiologicalprinciplesistheincreasedunderstandingoftheprocessthatwillbe linkedtoanincreasedpowerofresultingmodels,particularlywithrespecttotheir predictionpowerevenoutsidetheexperimentallystudiedparameterspace.Italso servesasanunambiguousbasisforcommunication.

Theseideasaresummarizedbelow:

Empiricalapproach: Measureproductivityforallcombinationsofreactoroperatingconditions,andmakecorrelations.

● Advantage:Littlethoughtisnecessary.

● Disadvantages:Manyexperimentsarerequired.Poorpredictivityoutsiderangeof experimentalobservation.

Modelingapproach: Establishamodelanddesignexperimentstodeterminethe modelparameters.Comparethemodelbehaviorwiththeexperimentalmeasurements.Usethemodelforrationaldesign,control,andoptimization.

● Advantages:Fewerexperimentsarerequired,andgreaterunderstandingis obtained.Goodpredictivepowerevenoutsideexperimentalspaceusedforsetting upandtuningthemodel.

1.1.2GeneralAspectsoftheModelingApproach

Anessentialstageinthedevelopmentofanymodelistheformulationoftheappropriatemassandenergybalanceequations(RussellandDenn1972).Thoughsynonymous,oftentheterm“materialbalance”ispreferredthan“massbalance.”Both relyontheconservationofmassinanyclosedsystem,onwhichenergybalancesare based.Tothesebalancesmustbeaddedappropriatekineticequationsforratesof cellgrowth,substrateconsumption,andproductformation;equationsrepresenting ratesofheatandmasstransfer;andequationsrepresentingsystempropertychanges, equilibriumrelationships,andprocesscontrol(BlanchandDunn1973).Additionally,theconservationofmomentumisthebasisforcorrespondingbalances,for example,Navier–Stokesequations,thatareusedforbuildingfluiddynamicmodels.Theseare,however,morecomplexandarenotusedinthisbook.Thecombinationoftheserelationshipsprovidesabasisforthequantitativedescriptionof theprocessandcomprisesthebasicmathematicalmodel.Theresultingmodelcan rangefromaverysimplecaseofrelativelyfewequationstomodelsofverygreat complexity.

Simplemodelsareoftenveryuseful,sincetheycanbeusedtodeterminethe numericalvaluesformanyimportantprocessparameters.Forexample,amodel basedonasimpleMonodkineticscanbeusedtodeterminebasicparametervaluessuchasthespecificgrowthrate(�� ),saturationconstant(K S ),biomassyield

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Get Biological reaction engineering: dynamic modeling fundamentals with 80 interactive simulation ex by Education Libraries - Issuu