Download ebooks file Digital transformation of the laboratory: a practical guide to the connected la

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/digital-transformation-of-the-laboratory-a-practical-gui de-to-the-connected-lab-klemen-zupancic/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

NFTs for Business: A Practical Guide to Harnessing Digital Assets 1st Edition Ahmed Bouzid

https://ebookmass.com/product/nfts-for-business-a-practicalguide-to-harnessing-digital-assets-1st-edition-ahmed-bouzid/

Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins 4th Edition Andreas D. Baxevanis

https://ebookmass.com/product/bioinformatics-a-practical-guideto-the-analysis-of-genes-and-proteins-4th-edition-andreas-dbaxevanis-2/

The Digital Transformation of Supply Chain Management Michela Pellicelli

https://ebookmass.com/product/the-digital-transformation-ofsupply-chain-management-michela-pellicelli/

Representing the Accused: A Practical Guide to Criminal Defense (Ebook PDF)

https://ebookmass.com/product/representing-the-accused-apractical-guide-to-criminal-defense-ebook-pdf/

A Practical Guide to Geriatric Neuropsychology Susan Mcpherson

https://ebookmass.com/product/a-practical-guide-to-geriatricneuropsychology-susan-mcpherson/

The Absolute Beginner's Guide to HTML and CSS: A Stepby-Step Guide with Examples and Lab Exercises 1st Edition Kevin Wilson

https://ebookmass.com/product/the-absolute-beginners-guide-tohtml-and-css-a-step-by-step-guide-with-examples-and-labexercises-1st-edition-kevin-wilson/

High Frequency Trading with C++: A Practical Guide to Dominating the Markets Bisette

https://ebookmass.com/product/high-frequency-trading-with-c-apractical-guide-to-dominating-the-markets-bisette/

Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins 4th Edition Andreas D. Baxevanis

https://ebookmass.com/product/bioinformatics-a-practical-guideto-the-analysis-of-genes-and-proteins-4th-edition-andreas-dbaxevanis/

Accurate Results in the Clinical Laboratory: A Guide to Error Detection and Correction 2nd Edition Ph.D. Dasgupta

https://ebookmass.com/product/accurate-results-in-the-clinicallaboratory-a-guide-to-error-detection-and-correction-2nd-editionph-d-dasgupta/

APracticalGuidetotheConnectedLab

Editedby KlemenZupancic TeaPavlek JanaErjavec

TheEditors

KlemenZupancic

SciNoteLLC

3000ParmenterSt. 53562MiddletonWI UnitedStates

TeaPavlek

SciNoteLLC

3000ParmenterSt. 53562MiddletonWI UnitedStates

JanaErjavec BioSistemikaLLC Koprskaulica98 1000Ljubljana Slovenia

CoverImage: TeaPavlek

Allbookspublishedby WILEY-VCH arecarefullyproduced.Nevertheless, authors,editors,andpublisherdonot warranttheinformationcontainedin thesebooks,includingthisbook,to befreeoferrors.Readersareadvised tokeepinmindthatstatements,data, illustrations,proceduraldetailsorother itemsmayinadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-Publication Data

Acataloguerecordforthisbookis availablefromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat <http://dnb.d-nb.de>

©2021WILEY-VCHGmbH,Boschstr. 12,69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).No partofthisbookmaybereproducedin anyform–byphotoprinting, microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc. usedinthisbook,evenwhennot specificallymarkedassuch,arenotto beconsideredunprotectedbylaw.

PrintISBN: 978-3-527-34719-3

ePDFISBN: 978-3-527-82505-9

ePubISBN: 978-3-527-82506-6

oBookISBN: 978-3-527-82504-2

Typesetting SPiGlobal,Chennai,India PrintingandBinding

Printedonacid-freepaper 10987654321

Contents

Preface xvii

PartIInspiration 1

1TheNextBigDevelopments–TheLaboftheFuture 3 RichardShuteandNickLynch

1.1Introduction 3

1.2Discussion 3

1.2.1People/Culture 4

1.2.2Process 5

1.2.3LabEnvironmentandDesign 6

1.2.4DataManagementandthe“RealAsset” 7

1.2.4.1DataintheHypothesis-driven,ResearchLab 7

1.2.4.2DataintheProtocol-drivenLab 8

1.2.4.3NewDataManagementDevelopments 9

1.2.5NewTechnology 11

1.2.5.1LabAutomationIntegrationandInteroperability 12

1.2.5.2QuantumComputingandtheLaboftheFuture 16

1.2.5.3ImpactofAIandML 18

1.2.6NewScience 19

1.2.6.1NewScienceinHealthCare 19

1.2.6.2NewScienceintheLifeSciencesDomain 20

1.2.6.3OtherImportantNewScienceAreas 21

1.3ThoughtsonLotFImplementation 22

1.4Conclusion 22 References 24

PartIIKnowledgeBase 33

2CrucialSoftware-relatedTermstoUnderstand 35 LukaMurn

2.1DigitalRevolution 35

2.2Computers 35

2.2.1Programs,Instructions,andProgrammingLanguages 37

2.2.2HardwareandSoftware 38

2.2.3OperatingSystems 38

2.2.4Abstraction 40

2.2.5Virtualization 40

2.3Internet 41

2.3.1WorldWideWeb(WWW) 42

2.3.2WebApplications 43

2.3.3WebApplicationsinComparisonWithTraditionalApplications 44

2.4CloudComputing 47

2.4.1ClassificationofCloudServices 48

2.4.1.1IaaS(infrastructureasaservice) 49

2.4.1.2PaaS(platformasaservice) 49

2.4.1.3SaaS(softwareasaservice) 49

2.4.2CloudDeploymentModels 50

2.4.2.1PublicCloud 50

2.4.2.2PrivateCloud 51

2.4.2.3HybridCloud 51

2.4.3IssuesandConsiderations 51

2.5ComputerPlatforms 52

2.5.1Desktop/Laptop/PC 53

2.5.1.1DesktopApplications 53

2.5.2Mobile 54

2.5.2.1MobileApplications 55

2.5.3Server/Web 55

2.5.3.1WebBrowser 56

2.5.4Embedded 56

2.5.5Cross-platform 56

2.6Applications 57

2.7ValuesofSoftware 58

2.7.1Features 58

2.7.2Design 58

2.8SoftwareDevelopment 58

2.9SoftwareProductLifecycle 59

2.10SoftwareDesign 61

2.10.1Code 61

2.10.2Data 63

2.11SoftwareQuality 64

2.12SoftwareIntegration 65

2.12.1API 66

2.12.2Middleware 67

2.12.3AuthenticationandAuthorization 67

2.12.4InternetofThings 67

2.13Data-flowModelingforLaboratories 67

2.14SoftwareLicensing 70

2.14.1ProprietarySoftwareLicenses 70

2.14.2OpenSource 70 References 72

3IntroductiontoLaboratorySoftwareSolutionsandDifferences BetweenThem 75 TilenKranjc

3.1Introduction 75

3.2TypesofSoftwareUsedinLaboratories 76

3.2.1ElectronicLabNotebook(ELN) 76

3.2.2LaboratoryInformationManagementSystem(LIMS) 78

3.2.3LaboratoryExecutionSystem(LES) 80

3.2.4LaboratoryDataManagementSystem(LDMS) 80

3.2.5ChromatographyDataManagementSystem(CDMS) 80

3.2.6ProcessAnalyticalTechnology(PAT)Software 81

3.2.7AutomationSchedulingSoftware 82

3.2.8LaboratoryInstrumentSoftware 82

3.2.9MiddlewareandRoboticProcessAutomation(RPA) 83

3.2.10DataAnalysisSoftware 83

3.2.11EnterpriseResourcePlanning(ERP) 84 References 84

4DataSafetyandCybersecurity 85 LukaMurn

4.1Introduction 85

4.1.1MagneticStorage 85

4.1.2Solid-stateDrives 86

4.2DataSafety 86

4.2.1Risks 86

4.2.2Measures 87

4.2.2.1Backups 87

4.2.2.2DataReplication 88

4.3Cybersecurity 88

4.3.1ThreatModel 89

4.3.1.1Untargeted/OpportunisticAttacks 89

4.3.1.2TargetedAttacks 90

4.3.2Risks 90

4.3.2.1PhysicalAccess 91

4.3.2.2SoftwareAccess 91

4.3.2.3PrivilegedUsers 93

4.3.2.4DatainTransit 93

4.3.2.5SocialEngineering 94

4.3.3Measures 96

4.3.3.1PhysicalProtection 96

4.3.3.2SoftwareandInfrastructuralMeasures 96

4.3.3.3Encryption 97

4.3.3.4PoliciesandProcesses 99

4.3.3.5Education 99

4.3.3.6Third-partySecurityReview 100 References 100

5FAIRPrinciplesandWhyTheyMatter 101

KeithRussell

5.1Introduction 101

5.2WhatIstheValueofMakingDataFAIR? 101

5.3ConsiderationsinCreatingLab-basedDatatoPrepareforIttoBe FAIR 102

5.4TheFAIRGuidingPrinciplesOverview 104 References 104

6TheArtofWritingandSharingMethodsintheDigital Environment 107 LennyTeytelmanandEmmaGanley

6.1Introduction 107

6.2ToolsandResourcesforTracking,Developing,Sharing,and DisseminatingProtocols 109

6.2.1ToolsforOrganizingandTrackingYourProtocols 109

6.3MakingYourProtocolsPublic 110

6.4TheArtofWritingMethods 111 References 113

PartIIIPractical 115

7HowtoApproachtheDigitalTransformation 117 JanaErjavec,MatjažHren,andTilenKranjc

7.1Introduction 117

7.2DefiningtheRequirementsforYourLab 118

7.2.1DigitizationVersusDigitalizationVersusDigitalTransformation 118

7.2.2DefiningtheApproachandScopeforYourLab–Digitization, Digitalization,orDigitalTransformation? 119

7.2.2.1WhichChallengesDoIHaveNow? 120

7.2.2.2WhichChallengesNeedMyImmediateAttention? 121

7.2.2.3WhichChallengesDoISeeintheFuture? 121

7.2.2.4WhatisMyLong-termBusinessStrategy? 122

7.2.2.5HowWillChangesAffectMyCurrentBusiness? 122

7.2.2.6HowWillIManageLegacyData? 123

7.2.2.7HowWillIGetPeopletoCooperate? 124

7.3EvaluatingtheCurrentStateintheLab 124

7.3.1DefiningtheOverallGoalsoftheDigitalizedLaboratory 124

7.3.1.1Example 124

7.3.2DefiningtheDataFlows 125

7.3.3DescribingtheProcesses 127

7.3.4IdentifyingtheBottlenecks 128

7.3.4.1BottlenecksinDataFlowOptimization 128

7.3.4.2EfficiencyandIntegrityofDataFlows 128

7.3.4.3Example:MakeDataMachineReadable 129

7.3.5OpportunitiesinProcessOptimization 130

7.3.5.1Time-consumingProcesses 130

7.3.5.2GeneralLaboratoryProcesses 131

7.3.6GapAnalysis 131

7.3.6.1Example 132 References 133

8UnderstandingStandards,Regulations,andGuidelines 135 MatjažHren

8.1Introduction 135

8.2TheNeedforStandardsandGuidelines 136

8.3HowDoesDigitalizationRelatetoStandardsandGuidelines 137

8.3.1StandardsShouldAffecttheSelectionoftheToolsforDigitalization 137

8.3.2DigitalToolsPromoteGoodPractices 138

8.4ChallengesRelatedtoDigitalizationinCertifiedLaboratories 140

8.5CanDigitalStrategybeImplementedwithoutCertification? 141 References 142

9InteroperabilityStandards 143 SörenHohmann

9.1SiLA 144

9.2AnIML 145

9.3Allotrope 146

9.4Conclusion 147

10AddressingtheUserAdoptionChallenge 149 JanaErjavec

10.1Introduction 149

10.2IdentifyKeyStakeholdersandExplaintheReasonsforChange 151

10.3EstablishaSteeringCommittee 152

10.4DefinetheProjectObjectives,ExpectedBehaviour,andTimeline 153

10.5CheckforUnderstandingandEncourageDebate 154

x Contents

10.6AcknowledgeIdeasandCommunicateProgress 155

10.7ProvideaFeedbackMechanism 155

10.8SetUpKeyExperienceIndicatorsandMonitorProgress 156

10.8.1Happiness 156

10.8.2Engagement 157

10.8.3Adoption 157

10.9GraduallyExpandtoaLargerScale 158

10.10Conclusions 159 References 160

11TestingtheElectronicLabNotebookandSettingUpaProduct Trial 161 BlazkaOrel

11.1Introduction 161

11.2TheProductTrial 161

11.3TheImportanceofaProductTrial 162

11.4SettingUpaProductTrial 163

11.4.1PhaseI:Planning 163

11.4.2PhaseII:Conceptualization 164

11.4.3PhaseIII:Testing 166

11.4.4PhaseIV:Reporting 170

11.5GoodPracticesofTestingaProduct 171

11.5.1TakingtheTimeforPlanning 172

11.5.2HavingaBiggerPictureinMind 172

11.5.3KeepingYourTestersMotivated 173

11.5.4SystematicEvaluationofProducts 173

11.5.5CooperatingwithVendors 174

11.6Conclusions 174 References 175

PartIVCaseStudies 177

12UnderstandingandDefiningtheAcademicChemical Laboratory’sRequirements:ApproachandScopeof DigitalizationNeeded 179 SamanthaKanza

12.1TypesofChemistryLaboratory 179

12.2DifferentStagesofDigitalization 179

12.3PreparatoryStage 180

12.3.1DigitalizationRequirements 181

12.3.2IssuesandBarrierstoAdoption 181

12.3.3SuggestedSolutions 181

12.4LaboratoryStage 182

12.4.1DigitalizationRequirements 182

12.4.2IssuesandBarrierstoAdoption 183

12.4.3SuggestedSolutions 184

12.5TransferalStage 185

12.5.1DigitalizationRequirements 185

12.5.2IssuesandBarrierstoAdoption 185

12.5.3SuggestedSolutions 186

12.6Write-upStage 186

12.6.1DigitalizationRequirements 186

12.6.2IssuesandBarrierstoAdoption 187

12.6.3SuggestedSolutions 187

12.7ConclusionsandFinalConsiderations 188 References 189

13GuidelinesforChemistryLabsLookingtoGoDigital 191 SamanthaKanza

13.1UnderstandingtheCurrentSetup 191

13.2UnderstandingYourScientistsandTheirNeeds 192

13.3UnderstandingUser-basedTechnologyAdoption 193

13.4BreakingDowntheBarriersBetweenScienceandTechnology 195

13.5MakingYourLaboratoryTeamUnderstandWhyThisIsNecessary 195

13.6WorkingwithDomainExperts 195

13.7ChoosingtheRightSoftware 196

13.8ChangingAttitudeandOrganization 196 References 197

14ElectronicLabNotebookImplementationinaDiagnostics Company 199 CaseyScott-Weathers

14.1MakingtheDecision 199

14.2ProblemswithPaperNotebooks 199

14.3DeterminingLaboratory’sNeeds 200

14.4Testing 201

14.5ADecision 201

14.6HowtoStructuretheELN 202

14.7Conclusion 203

15IdentifyingandOvercomingDigitalizationChallengesina Fast-growingResearchLaboratory 205 DorotheaHöpfner

15.1WhyGoingDigital? 205

15.2StepstoIntroduceELNsinLabPractice 207

15.2.1Step1:GettingtoKnowtheMarketorWhatWeCanExpectofan ELN 207

15.2.2Step2:DefiningtheNeedsofOurLabandOurRequirementsforan ELN 208

15.2.2.1DataStructure 209

15.2.2.2CompatibilitywithDatabases 209

15.2.2.3FlexibilityofDocumentationStyle 209

15.2.2.4ReportOptions 210

15.2.2.5Speed 210

15.2.3Step3:MatchingSteps1and2andTestingOurBestOptions 210

15.2.4Step4:GettingStartedinImplementingtheELN 211

15.3CreatingtheMindsetofaDigitalScientist 213

15.4TheDilemmaofDigitalizationinAcademia 214

16TurningPaperHabitsintoDigitalProficiency 217 TessaGrabinski

16.1FiveMainReasonsfortheImplementationofaDigitalSystemto ManagetheResearchData 217

16.1.1Scale-upoftheLaboratory 218

16.1.2ProtocolManagementIssues 218

16.1.3EnvironmentalandFinancialFactors 218

16.1.4IntroducingtheBenefitsofTechnologytoYoungerEmployees 219

16.1.5RemoteAccesstoDatabyAuthorizedSupervisors 219

16.2TheSix-stepProcessofGoingfromPapertoDigital 219

16.2.1DefiningtheSpecificNeedsoftheLaboratory 219

16.2.2TestingtheSoftwareandDefiningtheStandardWaytoUseIt 220

16.2.3OrganizingtheCollaborationBetweenLabMembersand Supervisors 221

16.2.4ManagingProjectsandSettingUpWorkProcesses 222

16.2.5VersioningofProtocolsandKeepingtheProtocolRepositoryUpto Date 225

16.2.6ChoosingtoDigitizeOnlyNewProjects 226

16.3OnboardingAllTeamMembersandEnhancingtheAdoptionoftheNew TechnologyintheLab 226

16.4BenefitsofSwitchingfromPapertoDigital 230

17GoingfromPapertoDigital:StepwiseApproachbythe NationalInstituteofChemistry(ContractResearch) 231 SamoAndrensekandSimonaL.Hartl

17.1PresentationofourCVTALaboratory 231

17.2DataManagementRequirementsExplainedinDetail 231

17.2.1MeaningofALCOA 232

17.2.2FDAandCFR21Part11 233

17.2.3MHRAandGxPDataIntegrityGuidanceandDefinitions 233

17.2.4DefinitionofTermsandInterpretationofRequirements 235

17.3GoingfromPapertoDigital 240

17.4ImplementationofSciNote(ELN)toCVTASystem 241

17.4.1SomeofCVTAuser’sRequirements(URS) 242

17.4.2FromDocumentationReviewandApprovaltoELN Implementation 242

17.4.3Step-by-StepImplementationofChangeControlManagementin SciNote 244

17.4.3.1CreatingProjectsinSciNote 245

17.4.3.2CreatingaWorkflow 245

17.4.3.3CreatingtheTasksandProtocolSteps 245

17.4.3.4Filtering,OverviewofDataandInventoryforChangeControl Management 246

17.4.3.5AuditTrailofChanges 246

17.4.3.6OverviewofallActivities 246

17.4.4OrganizationandSigningofCVTADocumentationinELNSciNoteDue toUserRolesandPermissions 250

17.4.4.1ManagingtheTeamRolesandResponsibilitieswithinSciNote 250

17.4.4.2ManagingProjectsforEfficientWorkwithClients 250

17.5SuggestionsforImprovementsandVisionfortheFuture 251 References 251

18WetLabGoesVirtual:InSilicoTools,ELNs,andBigDataHelp ScientistsGenerateandAnalyzeWet-labData 253 JungjoonLeeandYoonjooChoi

18.1CRISPR-Cas9Explained 254

18.2IntroductionoftheDigitalSolutionsandELNintotheLaboratory 255

18.3TheRoleoftheELNandInSilicoToolsintheGenome-editing Process 255

18.3.1DesigningsgRNA 255

18.3.2IssueswithPaper-basedProcessesandtheUseofELN 256

18.3.3High-contentImagingfortheTargetDiscovery 256

18.3.4PlantVirtualLaboratory 257

18.4TheRoleoftheELNandInSilicoToolsintheProteinDesign Process 258

18.4.1ProteinModeling 258

18.4.2ProteinRedesign 259

18.4.3ImportanceofKeepingtheElectronicRecords 260

18.4.4DevelopmentofTherapeuticAntibodies 260

18.4.5ImportanceofElectronicLabNotebookforCommunicationBetween TeamMembers 262 References 263

19DigitalLabStrategy:EnterpriseApproach 265 CesarTavares

19.1Motivation 265

19.1.1WhichProblemDoWeWanttoSolve? 265

19.1.2NewProblemsRequireNewAnswers 266

19.2DesigningaFlexibleandAdaptableArchitecture 267

19.3ThereisOnlyOneRule:NoRules 269

19.4TheLabDigitalizationProgramCompass 270

19.5Conclusion 273 References 273

PartVContinuousImprovement 275

20NextSteps–ContinuityAfterGoingDigital 277 KlemenZupancic

20.1AreYouReadytoUpgradeFurther? 277

20.2UnderstandingtheBigPicture 277

20.3WhattoIntegrateFirst? 279

20.3.1Integrations 280

20.3.2LaboratoryEquipment–ConceptsofIoTandLab4.0 281

20.3.2.1DoestheEquipmentSupportIntegrations? 281

20.3.2.2HowOftenIstheInstrumentBeingUsed? 282

20.3.2.3IsThereaHighChanceforHumanError? 282

20.3.2.4DoYouNeedOne-orTwo-waySync? 282

20.3.2.5IstheEquipmentUsingAnyStandards? 282

20.3.2.6IsEquipmentCloudConnected? 282

20.3.3DataRepositories 282

20.3.4DataAnalyticsTools 283

20.3.5OtherTypesofIntegrations 284

20.3.5.1ScientificSearchEnginesandLiteratureManagement 284

20.3.5.2DataSharing 284

20.3.5.3Publishing 285

20.3.5.4UpgradingPlans 285

20.4Budgeting 285

20.5ContinuousImprovementasaValue 286 References 286

PartVIVisionoftheFutureandChangingtheWayWeDo Science 287

21ArtificialIntelligence(AI)TransformingLaboratories 289 DunjaMladenic

21.1IntroductiontoAI 289

21.1.1Opportunities 289

21.1.2Needs 290

21.1.3Challenges 290

21.2ArtificialIntelligenceinLaboratories 291

21.2.1DataPreprocessing 291

21.2.2DataAnalytics 292

21.3ProcessMonitoring 293

21.4Discussion–HumanintheLoop 294 References 295

22Academic’sPerspectiveontheVisionAbouttheTechnology TrendsintheNext5–10Years 297 SamanthaKanza

22.1HybridSolutions 297

22.2VoiceTechnologies 298

22.3SmartAssistants 298

22.4InternetofThings 298

22.5RobotScientists 299

22.6MakingScienceSmart–IncorporatingSemanticsandAIintoScientific Software 300

22.7Conclusions 300 References 301

23LookingtotheFuture:AcademicFreedomVersusInnovation inAcademicResearchInstitutions 303 AlastairDownie

23.1Introduction 303

23.2CorporateCultureVersusAcademicFreedom 303

23.3SpoiledforChoice,butStillWaitingforthePerfectSolution 304

23.4BuildingaSingle,SharedInfrastructureforResearchData Management 305

23.5AJourneyofaThousandMilesBeginswithaSingleStep 307 Reference 308

24FutureofScientificFindings:Communicationand CollaborationintheYearstoCome 309 LennyTeytelmanandEmmaGanley

24.1Preprints:ReversingtheIncreasedTimetoPublish 309

24.2VirtualCommunities 310

24.3EvolvingPublishingModels 312

24.4FundersAreStartingtoPlayaRoleinFacilitatingandEncouraging RapidSharingandCollaboration 312

24.5Conclusion 314 References 314

25Entrepreneur’sPerspectiveonLaboratoriesin10Years 317 TilenKranjc

25.1DataRecording 317

25.2RecognitionofVoiceandWriting 318

25.3DataRecordingintheFuture 318

25.4ExperimentalProcesses 318

25.5ResearchProjectManagement 319

25.6ExperimentalPlanning 319

25.7VirtualReality 320

25.8SmartFurniture 320

25.9ExperimentExecution 321

25.10LaboratoryAutomationTrends 321

25.11CloudLaboratories 322

25.12DataAnalysisTrends 323

25.13ArtificialIntelligence 324

25.14DataVisualizationsandInterpretation 325

25.15Databases 325

25.16Conclusion 326 References 326

Index 329

Preface

Thesubjectofdigitaltransformationisactuallyaboutyou. Yourscience,youreverydayworkenvironment,yourpartnershipsandcollaborations,andtheimpactofyourworkonthefutureofscientificprogress. Welcometothisbook.

Asabrilliantastronomer,MariaMitchelloncesaid,“minglethestarlightwith yourlivesandyouwon’tbefrettedbytrifles.”

Thegreatermeaningofdigitaltransformationshiftstheperspectivetowardthe globalschemeofthings.Themainevaluatingfactorsbehindthelabdigitalization anddigitaltransformationanswerimportantquestions:Areweimprovingthequality,efficiency,andthepaceofinnovation?

Labdigitalizationisapeople-driveninitiativethataimstoaddresstheglobalchallengesandprovidesolutions,backedbyunquestionableintegrityoftraceableand reproduciblescientificdata.

Atthemoment,regardlessofthelaboratorytypeorsize,peoplearestruggling withthegrowingamountofgenerateddataandleveragingitsvalue.Itisextremely challengingtoorganizedataandkeepeverythingtraceableandreusablelongterm.

Toaddressthechallenge,modularityandflexibilityarebeingincorporatedon differentlevelsoflaboperations.Labsarebecominginvitingspacessuitablefor interdisciplinarypartnershipsinadigital,virtual,orpersonalenvironment.Data integrityinitiativesandsetupofnew,digitalsystemsprioritizeintegrationofalltech solutionsusedinthelabforoptimalperformance.Througheffectiveintegration oftools,improvedscientist-to-scientistinteractionsandintellectualcontributions, andqualitychangemanagement,labdigitalizationplacesthehumanelementat theveryforefrontoftheoverallprogresstowardthedigitalfuture.

Thiscanbeintimidatingtosomeandexhilaratingtoothers.

Thatiswhythisbookisdividedintomodules:Inspiration,KnowledgeBase,Practical,CaseStudies,ContinuousImprovement,andVisionoftheFuture.Eachmodulecoversdifferentaspectsoflabdigitalization.

Inspiration

Westartthisbookwithaninspiringoverviewoflabevolution,newtechnologies, andnewsciencebeingdone.Itwillgiveyouacompleteoverviewofthesubjectof

laboratoriesofthefutureand,hopefully,addtothevisionofyourowncareerin scienceandtechnology.

KnowledgeBase

KnowledgeBasesectionfocusesoncrucialtermstounderstand.Itwillgiveyoua solidbasisofknowledgethatyouwillbeabletoapplyfurtheronasyourlabgrows andevolves.

Practical

ThePracticalchaptersgiveyouexamplesandguidanceondefiningyourlab’sdigitalizationstrategy.

CaseStudies

Wepresentdifferentcasestudiesandexpertcommentsonthesubjectofgoingfrom papertodigital.Youwillbeabletoreadhowdifferentlaboratoriesandprofessionalsapproachedthesubjectandputitintopractice,andwhataretheirconclusions, advice,andlessonslearned.

ContinuousImprovement

Wehaveacloserlookatthestepsthatfollowafterthedigitalization.

VisionoftheFutureandChangingtheWayWeDoScience

Withcontinuousimprovementsinmind,weconcludethebookwithinsightful expertcommentsonthesubjectofthefutureofscience.Manyofthedescribed technologiesarealreadybecomingimportant,andhereweidentifythosethatmight shapethenext5–10yearsandchangethewaywedoscience.

Asyoureadthisbook,youwillgainholisticknowledgeondigitaltransformation ofthelaboratory.Tracking,analyzing,andleveragingthevalueofdatayouarecollecting,byimplementingtoolsthatcanempowerthepeopleinyourlab,arethemain pointsofthisjourney.

Usingtheknowledge,youwillbeabletostartdefiningwhatexactlyyouwantto achieve.Onceyouclarifyyourmaingoals,youwillbeabletogoallthewayback throughtheprocessesinyourlabandseewhichneedtobedigitalized.

Preface xix

Thatiswhenyouwillgettherealincentivetodoit.

Youwillunderstandwhetheryouaretryingtojustusetechnologyasaconveniencetosupportthesystemyoualreadyhave,orareyoureadytothinkaboutusing thebettertechnologytochangeandimprovethesystem.

Youwillrealizewhatkindofdecisionsyouneedtomakethroughoutthecycle. Selectingtherightdigitalsolutionsisquiteachallenge.Itisimportanttothink howthepotentialsolutionswillfitintoyourexistingarchitecture.Aninvestment oftime,energy,andbudgetisalwaysinvolved,especiallyifthesolutionsarenot integratedproperlyoryourteamisnotinsync.

Theknowledgeyouwillgainwillenableyoutomeasureandevaluatetheimpact ofdigitalization.Howwilltheuseofparticulartoolsimprovespecificpartsofyour processestoreachyourgoalswithinthegiventimeframes?

Keepingtherazor-sharpfocusanddeterminationisthemostpotentdriverofdigitalization.

Allsolutionswork,buttheexecutioniscrucial.Youwilllearnhowtotakean agileapproach,definethevalueforyourteam,startsmall,andscaleupefficiently andsuccessfully.

Thisbookisaresultofcollaborationbetweendifferentauthors–researchers, businessowners,consultants,managers,andprofessorswhowroteabouttheirvast experienceandprovidedvaluableperspectiveonthesubjectofdigitaltransformation.Becauseeverylabisdifferent,andthereareasmanyusecasesastherearelabs, ouraimwastointroduceyoutoadigitalmindsetthatwillenableyoutofindthe bestsolutionforyourlab.

Thisbookguidesyouthroughtheaspectsoftakingyourtimetounderstandthe basicsoftechnology,adaptthedigitalmindset,includeyourteamandaddresstheir concernsandchallenges,readhowotherlabsstartedtopavetheirdigitalway,and stayinspiredalongtheway.

Let’sdivein.

PartI

Inspiration

Westartthisbookwithaninspiringoverviewoflabevolution,newtechnologies, andnewsciencebeingdone.Itwillgiveyouacompleteoverviewofthesubjectof laboratoriesofthefutureand,hopefully,addtothevisionandpurposeofyourown careerinscienceandtechnology.

TheNextBigDevelopments–TheLaboftheFuture

RichardShuteandNickLynch

CurlewResearch,WoburnSands,UK

1.1Introduction

SteveJobsoncesaidthat“thebiggestinnovationsofthe21stcenturywillbeatthe intersectionofbiologyandtechnology”;inthis(r)evolution,thelabwillmostdefinitelyplayakeyrole.

WhenspeculatingonthefuturedigitaltransformationofthelifesciencesR&D, onemustconsiderhowthewholelabenvironmentandthesciencethatgoesonin thatlabwillinevitablyevolveandchange[1,2].ItisunlikelythatanR&Dlabin 2030,andcertainlyin2040,willlookandfeellikeacomparablelabfrom2020.So, whatarethelikelynewbigtechnologiesandprocessesandwaysofworkingthat willmakethatlabofthefuture(LotF)sodifferent?Thissectionendeavorstointroducesomeofthenewdevelopmentsintechnologyandinsciencethatwethinkwill changeandinfluencethelifesciencelabenvironmentovertheupcomingdecade.

1.2Discussion

Beforegoingintothenewtechnologyandscienceindetail,itisimportanttorecognizethatthislabevolutionwillbedrivennotjustbynewtechnologiesandnew science.Inourview,therearefouradditionalbroader,yetfundamentalandcomplementaryattributesthatinfluencehowalabenvironmentchangesovertime.They are:

1.Peopleandcultureconsiderations

2.Processdevelopmentsandoptimization

3.Datamanagementimprovements

4.Labenvironmentanddesign

Whenweaddthefifthmajordriverofchange–newtechnology(includingnew science)–itbecomesclearthatdigitaltransformationisacomplex,multivariate concept(Figure1.1).

DigitalTransformationoftheLaboratory:APracticalGuidetotheConnectedLab, FirstEdition. EditedbyKlemenZupancic,TeaPavlekandJanaErjavec. ©2021WILEY-VCHGmbH.Published2021byWILEY-VCHGmbH.

Figure1.1 Complex,multivariateconceptoflabtransformation.

Inthissection,wediscusshoweachofthesehigh-levelattributeswillinfluence thechanginglabandtheexpectationsoftheusers.Forallfiveareas,weinclude whatwethinkaresomeofthemostimportantaspects,whichwebelievewillhave themostimpactonthe“LotF.”

1.2.1People/Culture

TheLotFandthepeoplewhoworkinitwillundoubtedlybeoperatinginan R&Dworldwherethereisanevengreateremphasisonglobalworkingand cross-organizationcollaboration.Modernscienceisalsobecomingmoresocial [3],andthemostproductiveandsuccessfulresearcherswillbefamiliarwiththe substanceandthemethodsofeachother’sworksobreakingdownevenmorethe barrierstocollaboration.Thesecollaborativeapproacheswillfosterandencourage individuals’capacitytoadoptnewresearchmethodsastheybecomeavailable;we sawthiswiththefastuptakeofclusteredregularlyinterspacedshortpalindromic repeat(CRISPR)technology[4].“Openscience”[5]willgrowevermoreimportant todrivescientificdiscovery.Thiswillbeenabledthroughtheincreaseduseof newcryptographicDistributedLedgerTechnology(DLT)[6],whichwillmassively reducetheriskofIPbeingcompromised[7].TheLotFwillalsoenablemore open,productive,collaborativeworkingthroughvastlyimprovedcommunication technology(5Gmovingto6G)[8].Thepeopleworkingintheselabswillhavea muchmoreopenattitude,culture,andmindset,giventheinfluenceoftechnology suchassmartphonesontheirpersonallives.

People
Process
Digital transformation
Data
4. Lab environment
5. New tech and science

1.2Discussion 5

Roboticsandautomationwillbeubiquitous,butwithmoreautomatedassistance, thedensityofpeopleinthelabwilllikelydrop,allowingscientiststofocusonkey aspectsandcomplexpartsoftheexperiments.Asaconsequence,issuesaround safetyand“loneworking”willgrow,andafocusontheinteractionpointswhichscientistshavewithautomationwilldeveloptoensuretheyareproperlyprotected.For thefewremaininglabtechnicians,notonlywillsafeworkingbecomeofincreased importance,buttheneedfororganizationstodeliverabetter“userexperience”(UX) intheirlabswillbecomekeytohelpthembothattractthesmallernumbersofmore experttechniciansandalsoretainthem.Thelabtechnician’sUXwillbemassively boostedbymanyofthenewtechnologiesalreadystartingtoappearinthemore future-lookinglabs,e.g.voicerecognition,augmentedreality(AR),immersivelab experience,amoreintelligentlabenvironment,andothers(seelatersections).

1.2.2Process

Thelabprocesses,or“how”sciencegetsdoneintheLotF,willbedominatedby roboticsandautomation.Buttherewillbeanotherstrongdriverwhichwillforce labprocessesandmindsetstobedifferentin5–10yearstime:sustainability.Experimentswillhavetobedesignedtominimizetheexcessiveuseof“noxious”materials(e.g.chemicalandbiological)throughouttheprocessandinthecleanuponce theexperimentiscomplete.Similarly,theuseof“bad-for-the-planet”plastics(e.g. 96/384/1536-wellplates)willdiminish.Newprocessesandtechniqueswillhaveto beconceivedtocircumventwhatarestandardwaysofworkinginthelabof2020. Insupportofthesustainabilitydriver,miniaturizationoflabprocesseswillgrow hugelyinimportance,especiallyinresearch,diagnostic,andtestinglabs.Thecurrentso-calledlabonachipmovementhasmanyexamplesofprocessminiaturization [9].Laboratoriesandplantsthatarefocusedonmanufacturingwillcontinuetowork atscale,buttheongoingsearchformoreenvironmentallyconsciousmethodswill continue,includingclimate-friendlysolvents,reagents,andtheuseofcatalystswill growevermoreimportant[10].Therewillalsobeagreaterfocusonbetterplant design.Forexample,3Dprinting[11]couldallowforlocalizationofmanufacturing processesneartothepointofusage.

Inthepreviousparagraph,wereferto“research,diagnostic,andtestinglabs” andtomanufacturing“plant.”Webelievethereisafundamentaldifference betweenwhatwearecallinghypothesis-andprotocol-drivenlabs,andthisis animportantconsiderationwhenthinkingabouttheLotF.Theformerareseen inpureresearch/discoveryandacademia.Theexperimentsbeingundertakenin theselabsmaybethefirstoftheirkindandwillevolveasthehypothesisevolves. Suchlabswillembracehighthroughputandminiaturization.Protocol-drivenlabs, wherepureresearchisnotthemainfocus,includefacilitiessuchasmanufacturing, diagnostic,analytical,orgene-testinglabs.Thesetendtohavealowerthroughput, thoughtheirlevelsofproductivityaregrowingasautomationandhigherquality processesenableeverhigherthroughput.Intheselabs,reproducibilitycombined withrobustreliabilityiskey.Examplesinthislatterareaincludethegenomic screeningandtestinglabs[12,13],whichhavebeengrowingmassivelyinthe

rich, quick cycles

Figure1.2 Virtualandrealdesign-make-test-analyze(DMTA)concept.

pastfewyears.Fortheselabsthealreadyhighlevelsofautomationwillcontinue togrow.

Inthehypothesis-drivenlab[14]withthestrongdriverofsustainabilitycombinedwiththegrowthofeverhigherqualityartificialintelligence(AI)andinformaticsalgorithms,therewillbemoreinsilico,virtual“design-make-test-analyze” (vDMTA)andless,tangibleMakeandTest(seeFigure1.2).Fewer“real”materials willactuallybemadeandtested,andthosethatarewillbeproducedonamuch smallerscale.

Finally,aslabsgetmoresophisticated–withtheirhighlevelsofautomation, robotics,miniaturization,anddataproduction(butwithfewerstaff)–combined withtheneedforthosefacilitiestobebothsafeandsustainable,theconcept of“laboratoryasaservice”(LaaS)willgrow[15].TheLotFwillnotbeastatic, self-contained,andsinglescientificareafacility.Itwillbeablankcanvas,asitwere, inalargewarehouse-likefacilityorcargocontainer[16]whichcanbeloadedupon demandwiththenecessaryequipment,automation,androboticstodoacontracted pieceoflabwork.Thatpieceofworkmightbeachemicalsynthesisoracell-based pharmacologicalassayoneday,andanexvivosafetyscreeninthesameareathenext day.Thekeywillbeuseofamodulardesignsupportedbyfullyconnecteddevices.

1.2.3LabEnvironmentandDesign

Thelabenvironment,itsdesign,usability,andsustainabilityarementionedpreviouslyinthissectionandelsewhereinthebook,butitisfairtosaythatalllabswill

facethepressure[17,18]todesignsustainablespaces[19]thatcankeepupwithall theemergingtechnicaltrendsaswellastheusabilityanddesignfeaturesneededto supportanewgenerationofscientists.Thesedriverswillcombinetoinfluencehow theLotFevolvesandexperimentsareperformed.Researchinstitutionsarealready creatingmore“open”labsareastosupportinterdisciplinaryteamwork,collaborative working,andjointproblemsolving,ratherthantheprevious“siloed”departmental culture.ThiswillcontinueintheLotF.Thegrowthofinnovationclusters[20]and labcoworkingspaceswillrequiremoreconsiderationastohowsharedautomation andlabequipmentcanbeeffectivelyandsecurelyusedbygroups,whomaybeworkingfordifferentorganizationsandwhowillwanttoensuretheirdataandmethods arestoredandprotectedinthecorrectlocations.EffectiveschedulingwillbecriticalintheLotFtoenablehighproductivityandtoensurethatthehighvalueofthe automationassetsisrealized.

1.2.4DataManagementandthe“RealAsset”

Itistrueof2020,justasitwas50yearsagoandwillbein50yearstime,thatthe primaryoutputofR&D,inwhateverindustry,isdata.Theonlyphysicalitemsofany valueareperhapssomesmallamountsofafewsamples(andsometimesnoteven that)plus,historically,alotofpaper!Itisthereforenotsurprisingthatthememe “dataisthenewoil”[21]hascometosuchprominenceinrecenttimes.Whileit maybeviewedbymanyashackneyed,andbymanymoreasfundamentallyflawed [22],theideacarriesalotofcredenceaswemovetowardamoredata-drivenglobal economy.Oneofthemainflawsarisingfromtheoilanalogyisthelackoforganizationsbeingabletosuitablyrefinedataintotheappropriatenextpieceofthevalue chain,comparedtooil,whichhasaveryclearrefiningprocessandvaluechain.Furthermore,the“KeepitintheGround”[23,24]sustainabilitymomentummakesthe data-oilanalogyperhapsevenlessuseful.However,withintheLotF,andinamore open,collaborativeglobalR&Dworld,experimentaldata,bothrawandrefined,will growincriticality.Withoutdoubt,datawillremainaprimaryassetarisingfrom theLotF.

Atthispointthenitisworthconsideringhowdataanddatamanagementfitinto theprocessesthatdrivethetwofundamentallabtypes,whichwehavereferredto earlier,namely(i)thehypothesis-driven,moreresearch/discovery-drivenlaband (ii)theprotocol-driven,more“manufacturing”-likelab.

1.2.4.1DataintheHypothesis-driven,ResearchLab

Inapureresearch,hypothesis-drivenlab,whetheritisinlifescience,chemical science,orphysicalscience,thereisafundamental,cyclicalprocessoperating.Thisprocessunderpinsallofscientificdiscovery;werefertoitasthe “hypothesis-experiment-analyze-share”(“HEAS”)cycle(seeFigure1.3)or,alternatively,ifoneisinadiscoverychemistrylab,forexampleamedicinalchemistrylab inbiopharma,DMTA(seeFigure1.2).

Theresearchscientistsgeneratetheiridea/hypothesisanddesignanexperimentto testit.Theygatherthematerialstheyneedtorunthatexperiment,whichtheythen

Figure1.3 Hypothesis-experiment-analyze-share(HEAS)cycle.

performinthelab.Allthetimetheycaptureobservationsonwhatishappening. Attheendthey“workup”theirexperiment–continuingtocaptureobservations andrawdata.Theyanalyzetheir“raw”dataandgenerateresults(“refined”data); thesedeterminewhethertheexperimenthassupportedtheirhypothesisornot.They thencommunicatethoseresults,observations,andinsightsmorewidely.Ultimately, theymoveontothenext,follow-onhypothesis;then,itisoffroundthecyclethey goagainuntiltheyreachsomesortofendpointorfinalconclusion.Allthewhile theyaregeneratingdata:rawdataoffinstrumentsandcapturedvisualobservations andrefineddata,whicharemorereadilyinterpretableandcanmoreeasilyleadto insightsandconclusions.

1.2.4.2DataintheProtocol-drivenLab

Intheprotocol-drivenlab,whetheritisinamanufacturingorsampletesting domain,thereisagainafundamentalprocesswhichoperatestodrivethevalue chain.Unlikethe“HEAS”cyclethisismoreofalinearprocess.Itstartswitha requestandendsinacommunicableresultorashippableproduct.Thisprocess, whichwerefertoasthe“request-experiment-analyze-feedback”(REAF)process,is outlinedinFigure1.4.

Therearemanysimilarities,oftenclose,betweenthelinearREAFprocessandthe HEAScycleespeciallyintheExperiment/ObserveandAnalyze/Reportsteps,butthe REAFprocessdoesnotstartwithanideaorhypothesis.REAFrepresentsaservice, whichstartswithaformalrequest,forexampletorunaprotocoltomanufacturea goodortotestasample,andendswithaproductorasetofresults,whichcanbefed backtotheoriginalcustomerorrequester.AswenotedinSection1.2.4.1above,itis increasinglylikelythattheLotFwillbesetupwithaLaboratoryasaService(LaaS) mentality;REAFmaythereforebemuchmorebroadlyrepresentativeofhowlabsof thefuturemightoperate. Request and schedule Experiment and observe

Figure1.4

1.2Discussion 9

Itisimportanttoacknowledgethatthedataandinformation,whichdriveRequest andFeedback,arequitedifferentinREAFthaninthecorrespondingsectionsin HEAS.WiththefocusofthisbookbeingonExperiment/Observe,andtoadegree Analyze,wewillnotsayanythingmoreaboutRequestandFeedback(fromREAF) andHypothesisandShare(fromHEAS).Instead,theremainderofthissection focusesonwhattheExperimentandAnalyzedatamanagementaspectsoftheLotF willlooklike,whetherthatLotFisahypothesis-oraprotocol-drivenlab.Thisis madesimplerbythefactthatintheExperiment/ObserveandAnalyze/Reportsteps, thedatachallengesinthetwodifferentlabtypesare,toallintentsandpurposes, thesame.Intheremainderofthissectionwetreatthemassuch.

1.2.4.3NewDataManagementDevelopments

Sowhatnewdevelopmentsindatamanagementwillbeprevalentinboththe hypothesis-andtheprotocol-drivenlabsof2030?Intheprevioustwosections weassertedthattheselabswillbepopulatedbyfewerpeople;therewillbemore roboticsandautomation,andtheexperimentthroughputwillbemuchhigher, oftenonmoreminiaturizedequipment.Buildingontheseassertionsthen,perhaps themostimpactfuldevelopmentsinthedataspacewillbe:

a)Theallpervasivenessofinternetofthings(IoT)[25,26].Thiswilllead,inthe LotF,tothegrowthoftheinternetoflaboratorythings(IoLT)environments;this willalsobedrivenbyubiquitous5Gcommunicationscapability.

b)Thewidespreadadoptionofthefindable,accessible,interoperable,andreusable (FAIR)dataprinciples.ThesestatethatalldatashouldbeFAIR[27].

c)Thegrowinguseofimprovedexperimentaldataandautomationrepresentation standards,e.g.SiLA[28]andAllotrope[29].

d)Datasecurityanddataprivacy.ThesetwoareaswillcontinuetobecriticalconsiderationsfortheLotF.

e)Theubiquityof“Cloud.”TheLotFwillnotbeabletooperateeffectivelywithout accesstocloudcomputing.

f)Digitaltwinapproaches.Thesewillcomplementboththedrivetowardlabsoperatingmoreasaserviceandthedemandforremoteservicecustomerswantingto seeinto,andtodirectlycontrolfromafarwhatishappeninginthelab.Technologiessuchasaugmentedreality(AR)willalsohelptoenablethis(seeSections 1.2.5and1.2.6).

g)Quantumcomputing[30–33].Thismovesfromresearchtoproductionand soimpactsjustabouteverythingwedoinlife,notjustintheLotF.Arguably, quantumcomputingmighthaveabiggerimpactinthemorecomputationally intensivepartsofthehypothesis-andprotocol-drivenLotF,e.g.Idea/Hypothesis designandAnalyze/Insight,butitwillstilldisrupttheLotFmassively.Wesay moreonthisinSections1.2.5and1.2.6.

Thefirstthreeofthesedevelopmentsareallrelatedtothedrivetoimprovethe speedandqualityofthedata/digitallifecycleandtheoveralldatasupplychain. ThatdigitallifecyclealignscloselytotheHEASandREAFprocessesoutlinedin Figures1.3and1.4andcanbesummarizedasfollows(seeFigure1.5):

Figure1.5 Digitaldatalifecycle.

IoTtechnology[34]willallowmuchbetterconnectivitybetweentheequipment intheLotF.Thiswillenablebetter,quicker,andmoreprecisecontrolofthelabkit, aswellasmoreeffectivecapturingoftherawdataofftheequipment.Thisinturn willallowthenextstageinthelifecycle–“AnalyzeData”–tohappensoonerand withmore,betterqualitydata.Thisimprovedinterconnectednessinthelabwillbe madepossiblebythesame5Gcommunicationtechnologywhichwillbemaking thedevicesandproductsinthehomeof2025morenetworkedandmoreremotely controllable.

AsimprovedinstrumentinterconnectednessandIoLTenablemoredatatobe capturedbymoreinstrumentsmoreeffectively,theissueofhowyoumanagethe inevitabledatafloodtomakethedelugeusefulcomestothefore.Thebiggestinitiativein2020tomaximizethebenefitsoftheso-calledbigdata[35]revolvesaround theFAIRprinciples.Thesestatethat“forthosewishingtoenhancethereusability oftheirdataholdings,”thosedatashouldbeFAIR.IntheLotF,theFAIRprinciples willneedtobefullyembeddedinthelabcultureandoperatingmodel.Implementing FAIR[36]isverymuchachangeprocessratherthanjustintroducingnewtechnology.Iffullyimplemented,though,FAIRwillmakeitmassivelyeasierforthevast quantitiesofdigitalassetsgeneratedbyorganizationstobemademuchmoreuseful.Datascienceasadiscipline,anddatascientists(arolewhichcanbeconsidered currentlytoequatetothatof“informatician”),willgrowenormouslyinimportance andsize/number.Organizationsthatarealmostpurelydatadrivenwillthrive,with anylabworktheyfeeltheneedtodobeingoutsourcedviaLaaS[37]toflexible, cost-effectiveLotFsthatoperatepertheREAFprocess.

SupportingthegrowthofFAIRrequiresthedatathatisgeneratedintheseLaaS LotFstobeeasilytransferablebacktotherequester/customerinaformatwhichthe labcangenerateeasily,accurately,andreproducibly,andwhichthecustomercan importandinterpret,again,easily,accurately,andreproducibly.Thisfacileinterchangeof“interoperable”datawillbeenabledbythewidespreadadoptionofdata standardssuchasSiLAandAllotrope.Wedescribethesenewdatastandardsinmore detailinthefollowingsection.

Twoadditional,significantdataconsiderationsfortheLotFarethoseofdatasecurityanddataprivacy,justastheyarenow.ThemoreLotFservicesthatareoperated outsidethe“firewall”ofanorganization,andthemorethatfuturelabsaredrivenby data,themoreriskspotentiallyarisefromaccidentalormaliciousactivities.Making surethatthoserisksarekeptlow,throughcontinueddiligenceanddatasecurity,will ensurethattheLotFisabletodevelopandoperatetoitsfullcapability.Similarly,in labsthatworkwithhuman-derivedsamples(blood,tissues,etc.),theadventofregulationssuchastheGeneralDataProtectionRegulations(GDPR)[38,39],alongwith

1.2Discussion 11

thehistoricalstringencysurroundinginformedconsent[40]overwhatcanhappen tohumansamplesandthedatathatarisesfromtheirprocessing,willputevenmore pressureontheorganizationsthatgenerateandareaccountableforhumandata toensurethesedataareeffectivelysecured.ImprovedadherencetotheFAIRdata principles,especiallyFindabilityandAccessibility,willensurethatLotFsworking withhuman-derivedmaterialscanberesponsivetodataprivacyrequestsandare notcompromised.

Goinghandinhandwiththedataexplosionofthepastdecadehasbeentheevolutionofthenowubiquitous,keyoperationaltechnologyof“CloudComputing.”

Asexplainedbyoneoftheoriginatingorganizationsinthisarea,“cloudcomputing isthedeliveryofcomputingservices–includingservers,storage,databases,networking,software,analytics,andintelligence–overtheInternet(thecloud)tooffer fasterinnovation,flexibleresources,andeconomiesofscale.”[41]Inthecontext ofLotF,assumingthattheequipmentinthelabisfullynetworked,cloudcomputingmeansthatallthedatageneratedbythelabcanbequickly,fully,andsecurely capturedandstoredonremoteinfrastructure(servers).Thisbookisnottheplace todescribecloudcomputingindetail,butitshouldbesufficienttosaythatthe LotFwillnotbereliantonIThardwareclosetoitslocation(i.e.on-site)butwill behighlyreliantonspeedy,reliable,availablenetworksandefficient,cost-effective cloudcomputing.

Finally,thereisadataandmodelingtechnology,whichhasbeenpresentin industriesoutsidelifescienceformanyyears,whichcouldplayagrowingrole intheLotFwhichismoreautomatedandmoreremote.Thisisthetechnology termed“digitaltwin.”[42,43]Wesaymoreonthisexcitingnewtechnologyin Section1.2.5.1.

1.2.5NewTechnology

Inanyfuture-lookingarticlewecanonlymakesomebestguessesastothenew technologiesandsciencethatcouldbeimportantduringthenext5–10years.Inthis sectionwemakesomesuggestionsastowhatnewtechnologieswefeelwillimpact theLotF,andwhatnewsciencewillbehappeninginthosefuturelabs.Inthefirst partofthissection,wefocusonnewtechnologies.Inthesecondpart,wesuggest somescientificareaswhichwefeelwillgrowinimportanceandhencemightdrive theevolutionoftheLotFandthetechnologythatisadoptedinthatnewlabenvironment.

Newtechnologieswillundoubtedlyplayamajorroleindrivingthedevelopment ofthecriticalcomponentswithintheLotF,buttheirintroductionandusageneedto beappropriatetothetypeoflabbeingused.Theroleofthenewtechnologiesmust bealignedtothefuturechallengesandneedsofthelabenvironment.Theseneeds include,morespecifically:

● Flexibilityandagilityoftheexperimentcycles,balancingbetweenprediction(in silico)andphysical(invitro)experiments

● Improveddatacollectionandexperimentcapture(e.g.“databornFAIR”)

1TheNextBigDevelopments–TheLaboftheFuture

● Reproducibilityoftheexperimentprocesses

● Enhancementstothescientists’UXandcapabilitiesinthelab.

Toemphasizetheseaspects,wefocusonthreebroadareasinthissection:

1.Labautomationintegrationandinteroperability

2.QuantumcomputingandtheLotF

3.ImpactofAIandmachinelearning(ML).

1.2.5.1LabAutomationIntegrationandInteroperability

Labinstrumentintegrationandinteroperabilitytosupporthigherlevelsoflab automationhavebeenandwillcontinuetoevolvequickly,drivenbythepressure fromscientistsandlabmanagersand,abovealltohavebetterwaystomanageand controltheirequipment[44–46].Capabilitiesasdiverseaschemicalsynthesis[47] andnext-generationsequencing(NGS)[48]areseekingtobetterautomatetheir workflowstoimprovespeedandqualityandtoalignwiththegrowingdemands ofAIinsupportofgenerativeandexperimentaldesignaswellasdecision-making [49].Anadditionalstimulustowardincreasedautomation,integration,andinteroperabilityisthatofexperimentreproducibility.Thereproducibilitycrisisthatexistsin sciencetodayisdesperatelyinneedofresolution[50].Thisismanifestednotonlyin termsofbeingunabletoconfidentlyreplicateexternallypublishedexperiments,but alsoinnotbeingabletoreproduceinternalexperiments–thoseperformedwithin individualorganizations.Poorreproducibilityanduncertaintyoverexperimental datawillalsoreduceconfidenceintheoutputsfromAI;themantra“rubbishin, rubbishout”willthuscontinuetoholdtrue!Havingappropriateautomationand effectivedatamanagementcansupportthisvitalneedforrepeatability,forexample ofbiologicalprotocols[51].Thiswillbeespeciallyimportanttosupportandjustify thelabasaservicebusinessmodel,whichwehavementionedpreviously.Itisour beliefthattheincreasedreliabilityandenhanceddata-gatheringcapabilityoffered byincreasedautomationinitiativesintheLotFwillbeoneimportantwaytohelpto addressthechallengeofreproducibility.

Updatedautomationwillalwaysbecomingavailableasanupgrade/replacement fortheexistingequipmentandworkflows;ortoenhanceandaugmentcurrent automation;ortoscaleupmoremanualoremergingscienceworkflows.When consideringnewautomation,thechoicesforlabmanagersandscientistswill dependonwhetheritisacompletelynewlabenvironment(a“green-fieldsite”)or anexistingone(a“brown-fieldsite”).

Asmentionedpreviously,thegrowthofintegrationprotocolssuchasIoT[52]is expandingtheoptionsforequipmentandautomationtobeconnected[53].The visionforhowdifferentworkflowscanbeintegrated–fromsinglemeasurements (e.g.balancemeasurements),viamedium-throughputworkflows(e.g.plate-based screening),tohighdatavolumeprocessessuchashighcontentscreening(HCS) involvingimagesandvideo–hasthepotentialtobetotallyreimagined.IoTcould enabletheinterconnectivityofahugerangeoflabobjectsanddevices,suchasfreezers,temperaturecontrolunits,andfumehoods,whichpreviouslywouldhavebeen morestandalone,withminimalphysicalconnectivity.Allthesedevicescouldbe

activelyconnectedintoexpandeddatastreamsandworkflowswherethemeasurementstheytake,forexample,temperature,humidity,andairpressure,nowbecome amoreintegralpartoftheexperimentrecord.Thisenhancedsetofdatacollected duringexperimentsintheLotFwillbehugelyvaluableduringlateranalysistohelp spotmoresubtletrendsandpotentialanomalies.Furthermore,theserichdatasets couldplayanincreasingroleasAIisusedmoreandmorefordataanalysis;small fluctuationsinthelabenvironmentdohaveasignificantimpactonexperimental resultsandhencereproducibility.Aswellasthispassivesensormonitoring,thereis alsothepotentialforthesedevicestobeactivelycontrolledremotely;thisopensup optionsforfurtherautomationandinteractionbetweenstaticdevicesandlabrobots, whichhavebeenprogrammedtoperformtasksinvolvingthesedevices.Asalways,it willbenecessarytoselectappropriateautomationbasedonthelab’sneeds,thebenefitsthenewautomationandworkflowscanprovide,andhencetheoverallreturn oninvestment(ROI).

Whilethepotentialforthesenewsystemswithregardtoimprovedprocessefficiencyisclear,yetagain,though,thereisonevitalaspectwhichneedstobeconsideredcarefullyaspartofthewholeinvestment:thedata.TheseLotFautomation systemswillbecapableofgeneratingvastvolumesofdata.Itiscriticaltohavea clearplanofhowthatdatawillbeannotatedandwhereitwillbestored(tomake itfindableandaccessible),insuchawaytomakeitappropriateforuse(interoperable),andalignedtothedatalifecyclethatyourresearchrequires(reusable).A furthervitalconsiderationwillalsobewhetherthereareanyregulatorycompliance orvalidationrequirements.

Asstatedpreviously,akeyconsiderationwithIoTwillbethesecurityoftheindividualitemsofequipmentandtheoverallinterconnectedautomation[54,55].With suchalikelyexplosioninthenumberofnetworkeddevices[56],eachonecould bevulnerable.Consequently,labmanagementwillneedtoworkcloselywithcolleaguesinITNetworkandSecuritytomitigateanysecurityrisks.Whenbringing innewequipmentitwillbeevermoreimportanttovalidatethecredentialsofthe newequipmentandensureitcomplieswithrelevantinternalandexternalsecurity protocols.

Whiletheroleoflabscientistandmanagerwillclearlybemajorlyimpactedby thesenewsystems,alsosignificantlyaffectedwillbethephysicallabitself.Havingselectedwhichareasshouldhavemore,ormoreenhancedandintegrated,lab automation,itishighlylikelythatsignificantphysicalchangestothelabitselfwill havetobemade,eithertoaccommodatethenewsystemsthemselvesortosupport enhancednetworkingneeds.

Inparalleltothelabenvironmentundergoingsignificantchangeoverthe upcomingdecades,therewillalsobenewgenerationsofscientistsenteringthe workforce.TheirexpectationsofwhatmakestheLotFefficientandrewardingwill bedifferentfrompreviousgenerations.TheUX[57]forthesenewscientistsshould beakeyconsiderationwhenimplementingsomeofthechangesmentionedinthis book.Forexample,appsonmobilephonesortabletshavetransformedpeoples’ personallives,buttherehasbeenslowerdevelopmentandadoptionofappsfor thelab.Theenhancedusageofautomationwillverylikelyneedtobemanaged

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Download ebooks file Digital transformation of the laboratory: a practical guide to the connected la by Education Libraries - Issuu