X-ray fluorescence spectroscopy for laboratory applications michael haschke 2024 scribd download

Page 1


X-Ray Fluorescence Spectroscopy for Laboratory Applications Michael Haschke

Visit to download the full and correct content document: https://ebookmass.com/product/x-ray-fluorescence-spectroscopy-for-laboratory-applic ations-michael-haschke/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

X-Ray Fluorescence in Biological Sciences: Principles, Instrumentation, and Applications Vivek K. Singh

https://ebookmass.com/product/x-ray-fluorescence-in-biologicalsciences-principles-instrumentation-and-applications-vivek-ksingh/

Handbook of Mineral Spectroscopy: X-Ray Photoelectron Spectra: Volume 1: X-ray Photoelectron Spectra 1st Edition J. Theo Kloprogge

https://ebookmass.com/product/handbook-of-mineral-spectroscopy-xray-photoelectron-spectra-volume-1-x-ray-photoelectronspectra-1st-edition-j-theo-kloprogge/

A fiber-segmentation algorithm for composites imaged using X-ray microtomography_ Development and validation Peter J. Creveling & William W. Whitacre & Michael W. Czabaj

https://ebookmass.com/product/a-fiber-segmentation-algorithm-forcomposites-imaged-using-x-ray-microtomography_-development-andvalidation-peter-j-creveling-william-w-whitacre-michael-w-czabaj/

Mössbauer Spectroscopy: Applications in Chemistry and Materials Science Yann Garcia

https://ebookmass.com/product/mossbauer-spectroscopyapplications-in-chemistry-and-materials-science-yann-garcia/

Molecular and Laser Spectroscopy: Advances and Applications: Volume 2 1st Edition V.P. Gupta (Editor)

https://ebookmass.com/product/molecular-and-laser-spectroscopyadvances-and-applications-volume-2-1st-edition-v-p-gupta-editor/

Vibrational Spectroscopy Applications in Biomedical, Pharmaceutical and Food Sciences 1st Edition Andrei A. Bunaciu

https://ebookmass.com/product/vibrational-spectroscopyapplications-in-biomedical-pharmaceutical-and-food-sciences-1stedition-andrei-a-bunaciu/

LooseLeaf Bensonu2019s Microbiological Applications Laboratory Manualu2013Concise Version

https://ebookmass.com/product/looseleaf-bensons-microbiologicalapplications-laboratory-manual-concise-version/

Agricultural mechanics : fundamentals and applications 7th Edition Ray V. Herren

https://ebookmass.com/product/agricultural-mechanicsfundamentals-and-applications-7th-edition-ray-v-herren/

Bartending For Dummies, 6th Edition Ray Foley

https://ebookmass.com/product/bartending-for-dummies-6th-editionray-foley/

X-rayFluorescenceSpectroscopyforLaboratoryApplications

X-rayFluorescenceSpectroscopyfor LaboratoryApplications

MichaelHaschke

JörgFlock

MichaelHaller

Authors

Dr.MichaelHaschke GünterAllee11 15345Eggersdorf Germany

Dr.JörgFlock ThyssenKruppStahlAG Kaiser-Wilhelm-Str.100 47166Duisburg Germany

Dipl.-Min.MichaelHaller CrossRoadsScientificLLC. Middletown CT UnitedStates

Allbookspublishedby Wiley-VCH arecarefullyproduced.Nevertheless, authors,editors,andpublisherdonot warranttheinformationcontainedin thesebooks,includingthisbook,to befreeoferrors.Readersareadvised tokeepinmindthatstatements,data, illustrations,proceduraldetailsorother itemsmayinadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-Publication Data

Acataloguerecordforthisbookis availablefromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat <http://dnb.d-nb.de>

©2021Wiley-VCHVerlagGmbH& Co.KGaA,Boschstr.12,69469 Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).No partofthisbookmaybereproducedin anyform–byphotoprinting, microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc.used inthisbook,evenwhennotspecifically markedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34463-5

ePDFISBN: 978-3-527-81660-6

ePubISBN: 978-3-527-81662-0

oBookISBN: 978-3-527-81663-7

CoverDesign Formgeber,Mannheim, Germany

Typesetting SPiGlobal,Chennai,India PrintingandBinding

Printedonacid-freepaper 10987654321

Contents

Preface xvii

ListofAbbreviationsandSymbols xix

AbouttheAuthors xxiii

1Introduction 1

2PrinciplesofX-raySpectrometry 7

2.1AnalyticalPerformance 7

2.2X-rayRadiationandTheirInteraction 11

2.2.1PartsofanX-raySpectrum 11

2.2.2IntensityoftheCharacteristicRadiation 13

2.2.3NomenclatureofX-rayLines 15

2.2.4InteractionofX-rayswithMatter 15

2.2.4.1Absorption 16

2.2.4.2Scattering 17

2.2.5DetectionofX-raySpectra 20

2.3TheDevelopmentofX-raySpectrometry 21

2.4CarryingOutanAnalysis 26

2.4.1AnalysisMethod 26

2.4.2SequenceofanAnalysis 27

2.4.2.1QualityoftheSampleMaterial 27

2.4.2.2SamplePreparation 27

2.4.2.3AnalysisTask 28

2.4.2.4MeasurementandEvaluationoftheMeasurementData 28

2.4.2.5CreationofanAnalysisReport 29

3SamplePreparation 31

3.1ObjectivesofSamplePreparation 31

3.2PreparationTechniques 32

3.2.1PreparationTechniquesforSolidSamples 32

3.2.2InformationDepthandAnalyzedVolume 32

3.2.3InfiniteThickness 36

3.2.4Contaminations 37

3.2.5Homogeneity 38

3.3PreparationofCompactandHomogeneousMaterials 39

3.3.1Metals 39

3.3.2Glasses 40

3.4SmallPartsMaterials 41

3.4.1GrindingofSmallPartsMaterial 42

3.4.2PreparationbyPouringLoosePowderintoaSampleCup 43

3.4.3PreparationoftheMeasurementSamplebyPressingintoaPellet 44

3.4.4PreparationoftheSamplebyFusionBeads 48

3.4.4.1ImprovingtheQualityoftheAnalysis 48

3.4.4.2StepsfortheProductionofFusionBeads 49

3.4.4.3LossofIgnition 53

3.4.4.4QualityCriteriaforFusionBeads 53

3.4.4.5PreparationofSpecialMaterials 54

3.5LiquidSamples 55

3.5.1DirectMeasurementofLiquids 55

3.5.2SpecialProcessingProceduresforLiquidSamples 58

3.6BiologicalMaterials 58

3.7SmallParticles,Dust,andAerosols 59

4XRFInstrumentTypes 61

4.1GeneralDesignofanX-raySpectrometer 61

4.2ComparisonofWavelength-andEnergy-DispersiveX-Ray Spectrometers 63

4.2.1DataAcquisition 63

4.2.2Resolution 64

4.2.2.1ComparisonofWavelength-andEnergy-Dispersive Spectrometry 64

4.2.2.2ResolutionofWDSInstruments 66

4.2.2.3ResolutionofEDSInstruments 68

4.2.3DetectionEfficiency 70

4.2.4CountRateCapability 71

4.2.4.1OptimumThroughputinEDSpectrometers 71

4.2.4.2SaturationEffectsinWDSs 72

4.2.4.3OptimalSensitivityofEDSpectrometers 73

4.2.4.4EffectofthePulseThroughputontheMeasuringTime 74

4.2.5RadiationFlux 75

4.2.6SpectraArtifacts 76

4.2.6.1EscapePeaks 76

4.2.6.2Pile-UpPeak 77

4.2.6.3DiffractionPeaks 77

4.2.6.4ShelfandTail 79

4.2.7MechanicalDesignandOperatingCosts 79

4.2.8SettingParameters 80

4.3TypeofInstruments 80

4.3.1EDInstruments 81

4.3.1.1HandheldInstruments 82

4.3.1.2PortableInstruments 83

4.3.1.3TabletopInstruments 84

4.3.2Wavelength-DispersiveInstruments 85

4.3.2.1SequentialSpectrometers 85

4.3.2.2MultichannelSpectrometers 87

4.3.3SpecialTypeX-RaySpectrometers 87

4.3.3.1TotalReflectionInstruments 88

4.3.3.2ExcitationbyMonoenergeticRadiation 90

4.3.3.3ExcitationwithPolarizedRadiation 91

4.3.3.4InstrumentsforPosition-SensitiveAnalysis 93

4.3.3.5MacroX-RayFluorescenceSpectrometer 94

4.3.3.6MicroX-RayFluorescencewithConfocalGeometry 95

4.3.3.7High-ResolutionX-RaySpectrometers 96

4.3.3.8AngleResolvedSpectroscopy–GrazingIncidenceandGrazing Exit 96

4.4CommerciallyAvailableInstrumentTypes 98

5MeasurementandEvaluationofX-raySpectra 99

5.1InformationContentoftheSpectra 99

5.2ProceduralStepstoExecuteaMeasurement 101

5.3SelectingtheMeasurementConditions 102

5.3.1OptimizationCriteriafortheMeasurement 102

5.3.2TubeParameters 103

5.3.2.1TargetMaterial 103

5.3.2.2ExcitationConditions 104

5.3.2.3InfluencingtheEnergyDistributionofthePrimarySpectrum 105

5.3.3MeasurementMedium 107

5.3.4MeasurementTime 108

5.3.4.1MeasurementTimeandStatisticalError 108

5.3.4.2MeasurementStrategies 108

5.3.4.3RealandLiveTime 109

5.3.5X-rayLines 110

5.4DeterminationofPeakIntensity 112

5.4.1IntensityData 112

5.4.2TreatmentofPeakOverlaps 112

5.4.3SpectralBackground 114

5.5QuantificationModels 117

5.5.1GeneralRemarks 117

5.5.2ConventionalCalibrationModels 118

5.5.3FundamentalParameterModels 121

5.5.4MonteCarloQuantifications 124

5.5.5HighlyPreciseQuantificationbyReconstitution 124

5.5.6EvaluationofanAnalyticalMethod 126

5.5.6.1DegreeofDetermination 126

5.5.6.2WorkingRange,LimitsofDetection(LOD)andof Quantification 127

5.5.6.3FigureofMerit 129

5.5.7ComparisonoftheVariousQuantificationModels 129

5.5.8AvailableReferenceMaterials 131

5.5.9ObtainableAccuracies 132

5.6CharacterizationofLayeredMaterials 133

5.6.1GeneralFormoftheCalibrationCurve 133

5.6.2BasicConditionsforLayerAnalysis 135

5.6.3QuantificationModelsfortheAnalysisofLayers 138

5.7ChemometricMethodsforMaterialCharacterization 140

5.7.1SpectraMatchingandMaterialIdentification 141

5.7.2PhaseAnalysis 141

5.7.3RegressionMethods 143

5.8CreationofanApplication 143

5.8.1AnalysisofUnknownSampleQualities 143

5.8.2RepeatedAnalysesonKnownSamples 144

6AnalyticalErrors 149

6.1GeneralConsiderations 149

6.1.1PrecisionofaMeasurement 151

6.1.2Long-TermStabilityoftheMeasurements 153

6.1.3PrecisionandProcessCapability 154

6.1.4TruenessoftheResult 156

6.2TypesofErrors 156

6.2.1RandomlyDistributedErrors 157

6.2.2SystematicErrors 158

6.3AccountingforSystematicErrors 159

6.3.1TheConceptofMeasurementUncertainties 159

6.3.2ErrorPropagation 160

6.3.3DeterminationofMeasurementUncertainties 161

6.3.3.1Bottom-UpMethod 161

6.3.3.2Top-DownMethod 162

6.4RecordingofErrorInformation 164

7OtherElementAnalyticalMethods 167

7.1Overview 167

7.2AtomicAbsorptionSpectrometry(AAS) 168

7.3OpticalEmissionSpectrometry 169

7.3.1ExcitationwithaSparkDischarge(OES) 169

7.3.2ExcitationinanInductivelyCoupledPlasma(ICP-OES) 170

7.3.3Laser-InducedBreakdownSpectroscopy(LIBS) 171

7.4MassSpectrometry(MS) 172

7.5X-RaySpectrometrybyParticleExcitation(SEM-EDS,PIXE) 173

7.6ComparisonofMethods 175

8RadiationProtection 177

8.1BasicPrinciples 177

8.2EffectsofIonizingRadiationonHumanTissue 178

8.3NaturalRadiationExposure 179

8.4RadiationProtectionRegulations 181

8.4.1LegalRegulations 181

9AnalysisofHomogeneousSolidSamples 183

9.1IronAlloys 183

9.1.1AnalyticalProblemandSamplePreparation 183

9.1.2AnalysisofPigandCastIron 184

9.1.3AnalysisofLow-AlloySteel 185

9.1.4AnalysisofHigh-AlloySteel 187

9.2Ni–Fe–CoAlloys 188

9.3CopperAlloys 189

9.3.1AnalyticalTask 189

9.3.2AnalysisofCompactSamples 189

9.3.3AnalysisofDissolvedSamples 189

9.4AluminumAlloys 191

9.5SpecialMetals 192

9.5.1Refractories 192

9.5.1.1AnalyticalProblem 192

9.5.1.2SamplePreparationofHardMetals 192

9.5.1.3AnalysisofHardMetals 193

9.5.2TitaniumAlloys 194

9.5.3SolderAlloys 194

9.6PreciousMetals 195

9.6.1AnalysisofPreciousMetalJewelry 195

9.6.1.1AnalyticalTask 195

9.6.1.2SampleShapeandPreparation 196

9.6.1.3AnalyticalEquipment 197

9.6.1.4AccuracyoftheAnalysis 198

9.6.2AnalysisofPureElements 198

9.7GlassMaterial 199

9.7.1AnalyticalTask 199

9.7.2SamplePreparation 200

9.7.3MeasurementEquipment 202

9.7.4AchievableAccuracies 202

9.8Polymers 203

9.8.1AnalyticalTask 203

9.8.2SamplePreparation 204

9.8.3Instruments 205

9.8.4QuantificationProcedures 205

9.8.4.1Standard-BasedMethods 205

9.8.4.2ChemometricMethods 206

9.9AbrasionAnalysis 209

10AnalysisofPowderSamples 213

10.1GeologicalSamples 213

x Contents

10.1.1AnalyticalTask 213

10.1.2SamplePreparation 214

10.1.3MeasurementTechnique 215

10.1.4DetectionLimitsandTrueness 215

10.2Ores 216

10.2.1AnalyticalTask 216

10.2.2IronOres 216

10.2.3Mn,Co,Ni,Cu,Zn,andPbOres 217

10.2.4BauxiteandAlumina 218

10.2.5OresofPreciousMetalsandRareEarths 219

10.3SoilsandSewageSludges 221

10.3.1AnalyticalTask 221

10.3.2SamplePreparation 221

10.3.3MeasurementTechnologyandAnalyticalPerformance 222

10.4QuartzSand 223

10.5Cement 223

10.5.1AnalyticalTask 223

10.5.2SamplePreparation 224

10.5.3MeasurementTechnology 225

10.5.4AnalyticalPerformance 226

10.5.5DeterminationofFreeLimeinClinker 227

10.6CoalandCoke 227

10.6.1AnalyticalTask 227

10.6.2SamplePreparation 228

10.6.3MeasurementTechnologyandAnalyticalPerformance 229

10.7Ferroalloys 230

10.7.1AnalyticalTask 230

10.7.2SamplePreparation 230

10.7.3AnalysisTechnology 232

10.7.4AnalyticalPerformance 234

10.8Slags 235

10.8.1AnalyticalTask 235

10.8.2SamplePreparation 235

10.8.3MeasurementTechnologyandAnalyticalAccuracy 236

10.9CeramicsandRefractoryMaterials 237

10.9.1AnalyticalTask 237

10.9.2SamplePreparation 237

10.9.3MeasurementTechnologyandAnalyticalPerformance 238

10.10Dusts 239

10.10.1AnalyticalProblemandDustCollection 239

10.10.2Measurement 242

10.11Food 242

10.11.1AnalyticalTask 242

10.11.2MonitoringofAnimalFeed 243

10.11.3ControlofInfantFood 244

10.12Pharmaceuticals 245

10.12.1AnalyticalTask 245

10.12.2SamplePreparationandAnalysisMethod 245

10.13SecondaryFuels 246

10.13.1AnalyticalTask 246

10.13.2SamplePreparation 247

10.13.2.1SolidSecondaryRawMaterials 247

10.13.2.2LiquidSecondaryRawMaterials 249

10.13.3InstrumentationandMeasurementConditions 250

10.13.4MeasurementUncertaintiesintheAnalysisofSolidSecondaryRaw Materials 251

10.13.5MeasurementUncertaintiesfortheAnalysisofLiquidSecondaryRaw Materials 252

11AnalysisofLiquids 253

11.1MultielementAnalysisofLiquids 254

11.1.1AnalyticalTask 254

11.1.2SamplePreparation 254

11.1.3MeasurementTechnology 254

11.1.4Quantification 255

11.2FuelsandOils 255

11.2.1AnalysisofToxicElementsinFuels 256

11.2.1.1MeasurementTechnology 256

11.2.1.2AnalyticalPerformance 258

11.2.2AnalysisofAdditivesinLubricatingOils 258

11.2.3IdentificationofAbrasiveParticlesinUsedLubricants 260

11.3TraceAnalysisinLiquids 261

11.3.1AnalyticalTask 261

11.3.2PreparationbyDrying 261

11.3.3Quantification 262

11.4SpecialPreparationTechniquesforLiquidSamples 263

11.4.1DeterminationofLightElementsinLiquids 263

11.4.2EnrichmentThroughAbsorptionandComplexFormation 264

12TraceAnalysisUsingTotalReflectionX-Ray Fluorescence 267

12.1SpecialFeaturesofTXRF 267

12.2SamplePreparationforTXRF 269

12.3EvaluationoftheSpectra 271

12.3.1SpectrumPreparationandQuantification 271

12.3.2ConditionsforNeglectingtheMatrixInteraction 272

12.3.3LimitsofDetection 273

12.4TypicalApplicationsoftheTXRF 274

12.4.1AnalysisofAqueousSolutions 274

12.4.1.1AnalyticalProblemandPreparationPossibilities 274

12.4.1.2Example:AnalysisofaFreshWaterStandardSample 275

12.4.1.3Example:DetectionofMercuryinWater 277

12.4.2AnalysisoftheSmallestSampleQuantities 278

12.4.2.1Example:PigmentAnalysis 278

12.4.2.2Example:AerosolAnalysis 279

12.4.2.3Example:AnalysisofNanoparticles 279

12.4.3TraceElementAnalysisonHumanOrgans 280

12.4.3.1Example:AnalysisofBloodandBloodSerum 280

12.4.3.2Example:AnalysisofTraceElementsinBodyTissue 282

12.4.4TraceAnalysisofInorganicandOrganicChemicalProducts 283

12.4.5AnalysisofSemiconductorElectronics 284

12.4.5.1Ultra-TraceAnalysisonSiWaferswithVPD 284

12.4.5.2DepthProfileAnalysisbyEtching 285

13NonhomogeneousSamples 287

13.1MeasurementModes 287

13.2InstrumentRequirements 288

13.3DataEvaluation 290

14CoatingAnalysis 291

14.1AnalyticalTask 291

14.2SampleHandling 292

14.3MeasurementTechnology 293

14.4TheAnalysisExamplesofCoatedSamples 294

14.4.1Single-LayerSystems:EmissionMode 294

14.4.2Single-LayerSystems:AbsorptionMode 297

14.4.3Single-LayerSystems:RelativeMode 298

14.4.3.1AnalyticalProblem 298

14.4.3.2VariationoftheSpecifiedWorkingDistance 298

14.4.3.3SampleSizeandSpotSizeMismatch 299

14.4.3.4Non-detectableElementsintheLayer:NiPLayers 300

14.4.4CharacterizationofUltrathinLayers 302

14.4.5MultilayerSystems 304

14.4.5.1LayerSystems 304

14.4.5.2MeasurementTechnology 305

14.4.5.3Example:AnalysisofCIGSSolarCells 305

14.4.5.4Example:AnalysisofSolderStructures 306

14.4.6SampleswithUnknownCoatingSystems 307

14.4.6.1PreparationofCrossSections 308

14.4.6.2ExcitationatGrazingIncidencewithVaryingAngles 309

14.4.6.3MeasurementinConfocalGeometry 311

15SpotAnalyses 313

15.1ParticleAnalyses 313

15.1.1AnalyticalTask 313

15.1.2SamplePreparation 314

15.1.3AnalysisTechnology 315

15.1.4ApplicationExample:WearParticlesinUsedOil 315

15.1.5ApplicationExample:IdentificationofGlassParticlesby Chemometrics 316

15.2IdentificationofInclusions 318

15.3MaterialIdentificationwithHandheldInstruments 318

15.3.1AnalyticalTasks 318

15.3.2AnalysisTechnology 319

15.3.3SamplePreparationandTestConditions 320

15.3.4AnalyticalAccuracy 320

15.3.5ApplicationExamples 321

15.3.5.1Example:LeadinPaint 321

15.3.5.2Example:ScrapSorting 321

15.3.5.3Example:MaterialInspectionandSorting 322

15.3.5.4Example:PreciousMetalAnalysis 322

15.3.5.5Example:ProspectingandScreeninginGeology 323

15.3.5.6Example:InvestigationofWorksofArt 323

15.4DeterminationofToxicElementsinConsumerProducts:RoHS Monitoring 324

15.4.1AnalyticalTask 324

15.4.2AnalysisTechnology 325

15.4.3AnalysisAccuracy 327

15.5ToxicElementsinToys:ToysStandard 328

15.5.1AnalyticalTask 328

15.5.2SamplePreparation 328

15.5.3AnalysisTechnology 330

16AnalysisofElementDistributions 331

16.1GeneralRemarks 331

16.2MeasurementConditions 332

16.3Geology 333

16.3.1SamplesTypes 333

16.3.2SamplePreparationandPositioning 333

16.3.3MeasurementsonCompactRockSamples 334

16.3.3.1SumSpectrumandElementDistributions 334

16.3.3.2ObjectSpectra 335

16.3.3.3TreatmentofLineOverlaps 336

16.3.3.4MaximumPixelSpectrum 339

16.3.4ThinSectionsofGeologicalSamples 340

16.4Electronics 342

16.5ArcheometricInvestigations 344

16.5.1AnalyticalTasks 344

16.5.2SelectionofanAppropriateSpectrometer 346

16.5.3InvestigationsofCoins 347

16.5.4InvestigationsofPaintingPigments 349

16.6HomogeneityTests 350

16.6.1AnalyticalTask 350

16.6.2HomogeneityStudiesUsingDistributionAnalysis 351

16.6.3HomogeneityStudiesUsingMulti-pointMeasurements 352

17SpecialApplicationsoftheXRF 355

17.1High-ThroughputScreeningandCombinatorialAnalysis 355

17.1.1High-ThroughputScreening 355

17.1.2CombinatorialAnalysisforDrugDevelopment 357

17.2ChemometricSpectralEvaluation 358

17.3High-ResolutionSpectroscopyforSpeciationAnalysis 361

17.3.1AnalyticalTask 361

17.3.2InstrumentTechnology 361

17.3.3ApplicationExamples 362

17.3.3.1AnalysisofDifferentSulfurCompounds 362

17.3.3.2SpeciationofAluminumInclusionsinSteel 363

17.3.3.3DeterminationofSiO2 inSiC 365

18ProcessControlandAutomation 367

18.1GeneralObjectives 367

18.2Off-LineandAt-LineAnalysis 369

18.2.1SampleSupplyandAnalysis 369

18.2.2AutomatedSamplePreparation 371

18.3In-LineandOn-LineAnalysis 376

19QualityManagementandValidation 379

19.1Motivation 379

19.2Validation 380

19.2.1Parameters 384

19.2.2Uncertainty 385

AppendixATables 387

AppendixBImportantInformation 419

B.1CoordinatesofMainManufacturersofInstrumentsandPreparation Tools 419

B.2MainSuppliersofStandardMaterials 422

B.2.1GeologicalMaterialsandMetals 422

B.2.2StratifiedMaterials 423

B.2.3PolymerStandards 424

B.2.4HighPurityMaterials 424

B.2.5PreciousMetalAlloys 425

B.3ImportantWebsites 425

B.3.1InformationAboutX-RayAnalyticsandFundamental Parameters 425

B.3.2InformationAboutReferenceMaterials 426

B.3.3ScientificJournals 427

B.4LawsandActs,WhichAreImportantforX-RayFluorescence 427

B.4.1RadiationProtection 427

B.4.2RegulationsforEnvironmentalControl 428

B.4.3RegulationsforPerformingAnalysis 428

B.4.4UseofX-rayFluorescencefortheChemicalAnalysis 428

B.4.4.1GeneralRegulations 428

B.4.4.2AnalysisofMinerals 429

B.4.4.3AnalysisofOils,LiquidFuels,Grease 430

B.4.4.4AnalysisofSolidFuels 432

B.4.4.5CoatingAnalysis 433

B.4.4.6Metallurgy 433

B.4.4.7AnalysisofElectronicComponents 434

References 435

Index 453

Preface

ThediscoveryofX-raysbyWilhelmConradRöntgendatesbacktonearly 125years.Despitetheir“age,”theresearchanddiscoveriesthathavebeenmade inthepastandtodaymakeX-raysoneofthemostpowerfulanalyticaltools availabletoday.Thediscoveryofthispartoftheelectromagneticspectrumhas seenmanyapplications.First,usedformedicalpurposesbyRöntgenhimself, whofoundthatthenewlydiscoveredrayscanpenetrateandatthesametimecan beabsorbedbydifferenttypesofmatter.Therefore,itwasnowpossibletoimage thehumanbody.Later,MaxvonLaueshowedthattheyareahigher-frequency partoftheelectromagneticspectrumwherenaturallightisalsoapartof.Thisled tohisworkondiffractionofX-rays,whichtothisdayisusedtoinvestigatethe crystallineandamorphousstructureofsolids.Finally,Moseleyfoundthatevery elementemittedcharacteristicX-rayradiationthatcanbeusedtodetermine thequalitativeandquantitativeelementalcompositionofmaterialsofdifferent types.Thisistheapplicationthatismostinterestingforus–thespectroscopists.

X-rayfluorescencespectroscopyhasnowdevelopedintoananalyticaltechniquethat,duetoitsrobustnessandflexibility,canbeusedinalmostallscientific areas,inresearch,andaboveallinqualitycontrolinindustrialproduction.The techniquehasbecomesopowerfulbecauseofitsabilitytoanalyzemanydifferent materialtypes,havingawiderangeofelementsandconcentrations.Thesample preparationismostlysimpleorevennotrequired,thereforemakingitpossible tofullyautomatetheentireanalysisprocess.

Evenwhenonehasmanyyearsofexperiencewiththemethod,specificexpertiseisstillrequiredtoachievereliableresults,especiallysincetheapplicationsfor X-rayfluorescencespectrometryhavebeensignificantlyexpandedinrecentyears duetonewcomponentsbeingdevelopedandbecomingcommerciallyavailable forX-rayspectrometers.ExamplesofsuchareX-rayoptics,newtypesofdetectors,andtheavailabilityofpowerfulcomputingtechniqueandsoftwaresolutions.

Acombinationoftheoreticalknowledgeandpracticalknow-howaboutthe materialstobeexamined,thebestpracticesforsamplepreparation,andthe mostsuitablemeasuringinstrumentatoptimalmeasurementconditionsis requiredtomakethemostpreciseandtrueanalysisresults.Theintentionof thisbookistosummarizetheexperiencesoftheanalyticalcommunityworking withX-rayfluorescence.Formanyyearsthiscommunityhasconvenedatglobal annualusermeetingsandconferencesforX-rayfluorescencespectrometry, coveringalltypesofapplicationsofX-rayspectroscopy.Theworkpresented

atthesemeetingssharesnewdevelopmentsinthefieldofdevicetechnology andprovidesinformationontheanalyticalcapabilitiesofX-rayfluorescencefor knownapplications,forinstance,intheanalysisofmetallurgicalormineralogical samples.Interestingnewapplicationsarepresentedaswell.Theseexperiences arethebasisofthisbookinwhichwetriedtosummarizebutalsotopreserve thisknowledge.

ThebookisaddressedtocurrentandfutureusersofX-rayfluorescenceanalysis.ItstrivestoprovidesuggestionsandexamplesonhowtouseX-rayfluorescenceandwhatkindofresultscanbeexpected,aswellasadviceonsuitable preparationtechniquesandmeasurementconditions.Accordingly,inaddition tothemethod-specificbasics,thebookcontainsinformationabouttheessential preparationtechniquesandavarietyofmaterial-specificapplicationsthatcan serveasthebasisforyourowncurrentandfuturemeasurementconcepts.

Manyinspiringdiscussionsandjointprojectswithnumeroususersandinstrumentmanufacturershavebeenincludedinthisbook.TheauthorswanttoespeciallythankProf.A.Janßen,Ms.Sc.S.Hanningandmanyothercolleaguesnot mentionedherefortheirsupportofthiswork.Ourspecialacknowledgement goestoDr.A.vonBohlen,henotonlysupportedtheprojectbyalotofdiscussionsbutalsoprovidedourworkwithelaboratedinformationaboutconditions andapplicationsfortotalreflectionX-rayspectrometry.

MichaelHallerdedicateshisworkinthisbooktothelateDr.VolkerRöβiger. Friend,mentor,andtrueRenaissanceman,hisenthusiasmandkindnesswerean inspirationtoallwhohadtheprivilegetoknowhim.

Finally,thankstothepublisherWiley-VCHfortheirsupportandsmoothcompletionofthisproject.

WehopethatthisbookwillinspireandfascinateallreadersusingX-raysasan analyticaltool.

February2020

MichaelHaschke,JörgFlock,MichaelHaller Eggersdorf,SchwerteandMiddletown

ListofAbbreviationsandSymbols

AASatomicabsorptionspectrometry

AESatomicemissionspectrometry

BGbackground

c velocityoflight

C det detectorcapacitance

CRcountingrate

CRMcertifiedreferencematerial

dd-spacingofthescatteringlattice,thickness

d information informationdepth

Ddose

echargeofanelectron

E energy

E C energyoftheabsorptionedge

EDenergydispersive

EDSenergy-dispersivespectrometry

ENCelectronicnoisecontribution

EPMAelectronprobemicroanalysis

EXAFSextendedX-rayabsorptionfinestructure

f functionalrelation,degreesoffreedom

F Fanofactor

FOMfigureofmerit

FT-IRFouriertransforminfrared

FWHMfullwidthathalfmaximum

G gain

GEXEgrazingexitX-rayemission

GIXEgrazingincidentX-rayemission

h Planck’sconstant

HOPGhighlyorientedpyrolyzedgraphite

HTShighthroughputanalysis

i current

I intensity

I o primaryintensity

I d leakagecurrent

I scat scatteredintensity

ICPinductivelycoupledplasmaspectrometry

xx ListofAbbreviationsandSymbols

k factorofconfidence,proportionallycoefficient

keVkiloelectronvolt

LA-ICPlaserablationinductivelycoupledplasmaspectrometry

LIBSlaser-inducedbreakdownspectrometry

LN2 liquidnitrogen

LODlimitofdetection

LOIlossofignition

m atomicmass

m0 massofanelectron

μ-XRFmicro-X-rayfluorescenceanalysis

M matrixinteraction

MCMonteCarlo

MCAmultichannelanalyzer

MPSmaximumpixelspectrum

MSmassspectrometry

MXRFmacro-X-rayfluorescenceanalysis

n refractionindex,number(channels,pixels),orderofdiffraction

N numberofphotons

NAAneutronactivationanalysis

OESopticalemissionspectrometry

p probability

PCproportionalcounter

PCAprincipalcomponentanalysis

PCBprintedcircuitboard

PIXEproton-inducedX-rayemission

PMIpositivematerialidentification

Q massperarea

R intensityratio

R2 correlationcoefficient

RMreferencematerial

RoHSRestrictionofHazardousSubstances

SDDsilicondriftdetector

SIMSsecondaryionmassspectrometry

SMLsyntheticmultilayer

SRMstandardreferencematerial

t thicknessofalayer,measurementtime

T temperature

TXRFtotalreflectionX-rayfluorescencespectrometry

U voltage,uncertainty

v measuredvalue

VPDvaporphasedeposition

wmassfraction

WDwavelengthdispersive

WDSwavelength-dispersivespectrometry

XANESX-rayabsorptionnearedgestructure

XPSX-rayinducedphotoelectronspectrometry

XRFX-rayfluorescence

ListofAbbreviationsandSymbols xxi

Z atomicnumber

Δ difference

�� efficiency

�� energyforgenerationofachargecarrier

�� overlappingfactor

�� wavelength

μ massattenuationcoefficient

�� densityoftheabsorbingmaterial

�� scatterangle

�� standarddeviation,scatteringcoefficient

Θ angle

�� shapingtime,linearabsorptioncoefficient

�� incidence/take-offangle

�� fluorescenceyield

Ω capturedangle

AbouttheAuthors

Dr.MichaelHaschke hasworkedformorethan35years inseveralcompaniesinthefieldofproductmanagement forthedevelopmentofnewproductsandthemarket introductionofnewmethodsinX-rayfluorescence.These weremainlyinstrumentsinthefieldofenergy-dispersive spectroscopy.Duringthemarketintroductionitwasevery timenecessarytodealwithcompetitionalelementanalysismethodsbutalsowiththenewapplications.He,therefore,hasbothknowledgeinthefieldofX-rayfluorescence andanalysismethodandforthewiderangeofapplications forX-rayfluorescence.

Dr.JörgFlock wasformanyyearstheheadofthecentrallaboratoryofThyssenKruppSteelAGandtherefore familiarwithseveralanalyticalmethods,inparticularwith X-rayfluorescencespectroscopy.Hehasalotofpractical knowledgefortheanalysisofvarioussamplequalities.

MichaelHaller,M.S., hasbeenusingX-raysasananalyticaltoolforover30years,firstinX-raycrystallographyand thenlaterinthedevelopmentandapplicationofpolycapillaryX-rayoptics.Duringthemajorityofhiscareer,hehas developednewapplicationsforcoatingthicknessinstrumentsinindustrialprocesscontrol.In2018hebecame co-ownerofCrossRoadsScientific,acompanyspecializinginthedevelopmentofanalyticalX-raysoftware.

Introduction

X-rayspectrometryhasbeenknownasamethodforelementanalysesformore than70yearsandcanberegardedasaroutinemethodsincethe1960s.This meansthatthereisabroadrangeofinstrumentsavailable,andnumerousanalyticaltasksarecarriedoutroutinelybyX-rayfluorescence(XRF)analysis.For example,XRFisusedforthecharacterizationofmetallicorgeologicalmaterials orforanalysesofsolidorliquidfuelsdespitethefactthatotherelementalanalyticalmethodshavebeendevelopedandarereadilyavailablefortheseapplications. Amongthemareopticalemissionspectrometrywithexcitationbothbysparks andbyinductivelycoupledplasmasandmassspectrometry.Thehighimportance ofusingXRFisduetothefactthatonecanachieveveryhighprecisionoverawide concentrationrange.XRFalsorequireslittleeffortwithsamplepreparationand themethodcanbeautomated.

Especiallyinthelast15–20years,XRFhasexperiencedanewboommainly becausethetechnologyhasfurtherdeveloped,andnewfieldsofapplications couldbeopenedup.Theseinclude,amongothers,theanalysisoflayeredmaterialsandhigh-resolutionposition-sensitiveanalysis.Thiswasmadepossibleby theavailabilityofnewcomponentsforX-rayspectrometers.

Thedevelopmentofhigh-resolutionenergy-dispersivedetectorswith goodcountratecapabilitynowallowsprecisionmeasurementsalsowith energy-dispersivespectrometers.Thesimultaneousdetectionofawideenergy rangeoveralargesolidanglemadepossiblewiththesedetectorsallowsnot onlyshortmeasuringtimesbutalsospecialexcitationgeometries.Itistherefore nowpossibletoachievehighersensitivitiesinthedetectionoftraces;further, thefluorescenceradiationofsmallsurfaceareascanbedetectedwithsufficient intensity.

ThedevelopmentofvariousX-rayopticsallowsshapingoftheprimaryX-ray beamandthustheconcentrationofhighexcitationintensityonsmallsample surfaces;thisdevelopmentwasthekeytoopeningupnewapplicationsinthe fieldforaspatiallyresolvedanalysis.

Thesedevelopmentshavesignificantlyexpandedtherangeofapplicationsof XRFanalysis.

However,themostimportantinfluenceinthefurtherdevelopmentofXRFinto aroutinemethodwastheadvancesindataprocessingtechnology.Thesemadeit

possibletoautomateinstrumentcontrolaswellastheevaluationofmeasurement data.Notonlywasitpossibletoreducesubjectiveinfluencesbyamanualoperatorbutalsotheprocessesduringinstrumentcontrolandmeasurementdata acquisitioncouldlargelybeautomatedandmademoreeffective.Theevaluation ofthemeasurementdata,suchasthepeakareacalculationincaseofoverlapping peaks,orthecalculationproceduresforthequantificationcouldbeexpandedand significantlyrefinedbytheavailablecomputingpower.

TheseimprovementshavebeenparticularlyimportantbecauseX-raysstrongly interactwiththesamplematrix,whichrequirescomplexcorrectionprocedures. Nevertheless,incontrasttootheranalyticalmethods,thephysicsoftheseinteractionsisverywellunderstoodandcanbeexactlymodeledmathematically.Consequently,inprinciple,standard-lessanalysisispossible,whichagainrequiresa highcomputingeffort.

Asaresultofthesedevelopments,newmethodicalpossibilitiesforXRF emerged,combinedwithanexpansionoftheirfieldofapplications.Forthis reason,itseemstobemeaningfultocarryoutanup-to-datecompilationof theapplicationscurrentlybeingprocessedbyXRF,incombinationwitha discussionofboththenecessarysamplepreparationandinstrument-related effortsandtheachievableanalyticalperformance.Thereareseveralverygood booksavailable,whichhowever,duetotheirdateofpublication,havenotbeen abletotakeintoaccountthedevelopmentsofthelast15–20years(Erhardt1989; Hahn-Weinheimeretal.2012)ortheydonotadequatelyaddressfrequentlyused routineapplications,inparticularinindustrialanalyses(Beckhoffetal.2006; vanGriekenandMarkowicz2002).

ThegoalofthisbookistofocusonthepracticalaspectsofthevariousapplicationsofXRF.Thisleadstothediscussionoftherequirementsnecessaryforthe analysisoftheverydifferentsamplequalities,suchasthetypeofsamplepreparation,theavailablemeasurementtechniqueortherequiredcalibrationsamples, aswellasthetypeandqualityoftheresultstobeexpectedwiththeseefforts. Thisappearedtobeimportant,inparticular,becauseXRFisoftenusedinmany laboratories,butmethodicalstudiesarecarriedoutonlyinveryfewofthem.

Thisleadstotheapplicationaspectsoftennotbeingunderstoodverywell.Consequently,theanalyticalresultsareacceptedwithoutscrutinizingtheinfluenceof samplestate,preparationmethods,andmeasurementparameters.Thisbecomes especiallytruebecausecompleteresultsareoftenavailableastheoutcomeofan instrumentalanalysisandtheirqualitycannotbecorrectlycomprehended.

Inordertoassurethequalityoftheapplicationsandtheirresults,theanalyst mustcriticallyquestionallaspectsofthetestmethod.Forthispurpose,abasic understandingoftheinfluencesofsamplecondition,preparationmethods,measurementparameters,andevaluationmodelsusedonthequalityoftheanalytical resultisimperative.

Therefore,wearedeliberatelyfocusingonthedailylaboratoryworkwith commerciallyavailableinstruments.Ontheotherhand,theinterestingbutnot routineapplicationsofthemethodutilizingsynchrotronradiationexcitation arenotaddressed.Nevertheless,methodicaldevelopmentsobtainedona synchrotronareoftenincorporatedintolaboratoryanalysis,suchasmicro-X-ray fluorescence(μ-XRF)orapplicationswithgrazingbeamgeometry.However,

thisbooktreatsonlylaboratoryapplications.Ifanyofthesenewlydeveloped methodshavebeenimplementedintospeciallaboratoryinstrumentstheseare alsopresentedasexamples.

Despitethefocusonthevariousapplications,abriefintroductiontothefundamentalsofX-rayspectrometryandacomprehensivepresentationofthebasic stepsforacompleteanalysisarerequiredinordertobeabletorelateinthefollowingdiscussionoftheindividualapplications.

ThebookthereforestartswithadiscussionoftheanalyticalcapabilityofX-ray spectrometryinChapter2.Themostimportantrelationsthatdescribethegenerationofthecharacteristicradiationarepresented,andtheindividualstepsinthe executionofananalysisfollow,alongwithabriefcharacterizationoftheirinfluenceontheanalysisresult.Deeperdescriptionsofthephysicalbasesarecomprehensivelygiveninotherpublications(e.g.Erhardt1989;Hahn-Weinheimeretal. 2012;vanGriekenandMarkowicz2002;Beckhoffetal.2006).

InChapter3,thevarioussamplepreparationprocedurestypicalforX-rayspectrometryarepresentedandtheirinfluenceontheprecisionandtruenessofthe analysesisdiscussed.Eventhoughthesamplepreparationisgenerallyregarded asbeingverysimpleforXRF,itisimportanttocarryitoutcarefully,appropriate totheexpectationsoftheanalysisresult.

InChapter4,thedifferenttypesofX-rayspectrometersarediscussed. Ontheonehand,thegeneraldifferencesandapplicationcharacteristicsof wavelength-dispersiveandenergy-dispersiveinstrumentsareexamined;onthe otherhand,thedifferentinstrumenttypesaswellastheinstrumentscurrently availableonthemarketarepresented.

InChapter5,theessentialstepsforthemeasurementofaspectrumare reviewed,inparticular,theoptimumselectionofthemeasurementparameters andthestepsfortheevaluationofthemeasureddata.Thefirststepisthe determinationoftheintensitiesofthefluorescencepeaks,wheredifferent proceduresareusedforwavelength-andenergy-dispersivespectrometers.Then quantificationmodelsandfactorsconcerningtheconsiderationofmatrixinteraction,bothintheanalysisofhomogeneoussamplesandinthecharacterization oflayers,arepresented.Here,acomprehensiveanddetaileddescriptionofthe theoryofX-rayspectrometryisnotrequired,sinceaseriesofdetailedpapers areavailable(see,forexample,Hahn-Weinheimeretal.2012;Jenkinsetal.1981; LachanceandClaisse1994;Mantler2006)andonlyveryfewnewideashave beenaddedinthelastfewyears.Inthischapter,furtherpossibilitiesforthe evaluationofspectraarepresented,inwhichtheindividualspectralcomponents arenotconsideredseparately,butthespectrumasawholeisevaluatedbymeans ofchemometricmethods.

Chapter6isdevotedtothediscussionoftheclassification,determination,and evaluationoferrors.TheachievableanalyticalprecisionofXRFisdeterminedby theerrors.InadditiontothetraditionaltreatmentoferrorswiththeGaussian errormodel,theprincipleofmeasurementuncertaintyisalsodiscussed.This chapterisintendedtoqualifytheexpectationsofananalyticalresult.

InChapters7and8,abriefcomparisonismadewithotherelementanalysis methods,inparticularatomicabsorptionandemissionspectrometryaswellas massspectrometry.Thefundamentalsofradiationprotectionwhendealingwith

X-rayradiation,inparticularwhencarryingoutX-rayanalysisexperiments,are compiledaswell.

Basedonthesefundamentals,variousapplicationsofXRF,whichhavebeen usedalreadyoveralongtimeperiodorwereintroducedrecently,arepresented anddiscussed.Thepresentationhereiscarriedoutaccordingtothedifferent samplequalitiesoraccordingtotheanalyticalquestion.

TypicalXRFapplicationsarediscussedfirst.Chapter9discussestheanalysisofhomogeneoussolidsamples,suchasvariousmetallicmaterials,glasses, orplastics.Chapter10describestheinvestigationofpowderedsamples,such asgeologicalsamples,soil,buildingmaterials,slags,anddusts.

InChapter11,thedifferentpossibilitiesforanalyzingliquidsarepresented, eitherbydirectanalysisor,forexample,bydifferentenrichmentprocedures toanswerspecificanalyticalquestions.ApplicationswithtotalreflectionXRF (TXRF)aredealtwithinChapter12.Here,inadditiontoultra-traceanalysesof liquidstheanalysisofverysmallsamplequantitiesisthefocus.

Descriptionsoftheanalysisofnonhomogeneousmaterialscoverawiderange ofanalyticalquestions.Thisconcernsinhomogeneitiesnormaltothesamplesurface,i.e.thecharacterizationoflayeredmaterials(Chapter14)alongwiththeir differentapplications,aswellasinhomogeneitiesinthesampleplaneandthe analysisofirregularlyshapedsamples(Chapter15).Inthiscase,onlysmallsampleareasaretobeanalyzed,whichmeansapointanalysishastobecarriedout. Thisisimportantwhenidentifyingparticlesorinclusionsasalsowhenanalyzing inhomogeneousmaterials.

Handheldinstrumentsareincreasinglybeingusedforelementanalysis.Based onthisfact,theapplicationsthatuptonowhavebeentypicalforthisinstrument technologyarepresentedinSection15.4.Itwaspossibletoincreasetheefficiency ofthistypeofinstrumentssignificantlyinrecentyearsduetotheminiaturization ofallhardwareassemblies.Inthisway,theirrangeofmeasurementapplications couldbeexpandedcontinuously.Animportantfactorforthatexpansionisthe possibilityfor“on-site”analysis,i.e.materialsforanalysisarenolongerrequired tobetakentoalaboratory.However,thequalityoftheanalysesisnotashigh, mainlybecauseofaverysimplifiedorevencompletelymissingsamplepreparation,undefinedsamplegeometry,orcontaminationinthemeasuringenvironment.

Afurtherimportantfieldofapplicationofspatiallyresolvedanalysis,thedeterminationofelementdistributions,isdealtwithinChapter16.Thismethodallows notonlytheanalysisofsmallareasonstructuredmaterials,butalsotheinvestigationoftheirelementdistributionsandthereforetheirmoredetailedcharacterization.Presentationoftheexamplesforthedistributionanalysisiscarriedout accordingtothedifferentanalyticaltasks.Forexample,theanalysisofgeological samplesandofelectronicassembliesaswellashomogeneitytestsofreference samplesispresented.

Aspecificproblemistheanalysisofarcheologicalobjects,becausetheycannot bemodifiedbypreparationduetotheiruniqueness.Examplesforsuchanalytical tasksarediscussedinSection16.5.

InChapter17,specialapplicationsoftheXRFanalysisaredescribed. Thisimpliesthehigh-throughputanalysis(HTS)forthecharacterizationof

smallsamplequantities,chemometricspectralevaluationwiththeresulting possibilitiesformaterialcharacterization,aswellasspeciationanalysis.

Chapter18presentstherequirementsandconditionsfortheuseoftheXRF inprocessanalysis,withparticularattentiontotheautomationofsamplepreparation.Requirementsandpossibilitiesofautomatedanalysesaregiven,butthe associatedproblemsarepointedoutaswell.

Finally,inabriefdiscussioninChapter19theassuranceofthequalityofanalysesbymeansofacorrespondingqualitymanagementsystemintestlaboratories andalsotherequirementsforthevalidationoftestmethodsarementioned.

Alltheseapplicationsareintendedtodemonstratethewiderangeofpossible measurementapplicationsofXRFaswellastheanalyticalperformancethatcan beachieved.

Attheendofthebook,inAppendixAnumericaldatarequiredforX-rayspectrometryiscompiledinacomprehensivesetoftables,andinAppendixBimportantreferenceswithinformationoninstrumentmanufacturers,basicliterature forthefieldofXRFspectrometry,importantwebsites,aswellasmagazines,standards,andlawsthathelpreadersquicklyfindtherightinformationandcontacts forsolvingtheiranalyticaltaskscanbefound.

PrinciplesofX-raySpectrometry

2.1AnalyticalPerformance

X-rayanalysishasbeenestablishedasanimportantmethodforelementanalysis. AlreadysinceMoseley’sdiscoveryin1913thattheenergiesoftheX-raylines ofindividualelementsdifferfromeachotheranddependonthesquareofthe atomicnumberoftheemittingatoms,preconditionsforusingthismethodfor elementanalysesweregiven.However,ittookseveralyearsuntilthefirstusable equipmentforroutineanalyseswasavailable.Inthe1930sthefirstlaboratory instrumentswereavailable,buttheywerenotyetsuitedforroutineanalyses.

Tothispurpose,variousinstrumentalprerequisiteshadtobedeveloped,such asaneffectiveexcitationsourcewithsufficientintensityandhighstability,the supplyofdispersiveelements,i.e.crystalswithhighreflectivityandsufficient size,andthenalsosyntheticmultilayerswithlargerd-spacings,detectorswith sufficientcountingcapacity,instrumentsthatallowforsimpleandsafeoperation,inparticularforsamplepositioning,andlateralsoforradiationprotection, possibilitiesformeasurementinvacuum,aswellastheeffectiverecordingof themeasurementdataandtheirevaluation.Thefirstapplicationsfocusedonthe identificationoftheelementspresentinasample,i.e.apurelyqualitativeanalysis.Inthisway,someelementscouldevenbediscovered,suchashafniumin 1923(Coster,v.Hevesy),rheniumin1925(Tacke1925),andtechnetiumin1947 (PerrierandSegrè1947).

However,verysoonthemassfractionsofthedifferentelementsintheexaminedmaterialsbecameinteresting,mainlyforthequantitativeassessmentofthe investigatedmaterials.

Aftertheavailabilityofthefirstcommercialequipment,veryfastdevelopment anddistributionofX-rayspectrometrybegan.Thefollowingcharacteristicsof X-rayspectrometryhaveundoubtedlybeenofassistanceinthisprocess:

• X-rayspectrahavemuchlesslinesperelementthanopticalspectra.This meansthatthelinesinthespectrumareeasytoidentifyandduetothe correspondingsmallnumberoflineinterferencestherequirementsforthe spectrometerresolutionarenotveryhigh.

• Allimportantparametersforthespectrometrydependontheatomicnumber oftheconsideredelement,whichsignificantlysupportstheinterpretationand evaluationofthespectra.

X-rayFluorescenceSpectroscopyforLaboratoryApplications, FirstEdition. MichaelHaschke,JörgFlock,andMichaelHaller. ©2021WILEY-VCHGmbH.Published2021byWILEY-VCHGmbH.

2PrinciplesofX-raySpectrometry

• Theanalysiscanbecarriedoutonverydifferentsamplequalities.Bothcompactsolidsamplesandpowdersamplesasalsoliquidsandlayeredmaterials canbedirectlyexamined.

• Theanalysisisnondestructive,i.e.thematerialtobeexaminedisnotconsumed orchangedbytheanalysis.Therefore,thesampleisavailableforfurtheror repeatedexaminations.

• Alargeelementandconcentrationrangeiscovered.Allelementsexceptvery lightelementscanbeanalyzed.Thedetectableelementcontentsrangefroma fewmilligramsperkilogramtopureelements,i.e.atleast5ordersofmagnitude.Incasesofspecificexcitationgeometries,instrumentdesigns,orpreparationmethods,thedetectionlimitscanevenbeloweredtothesub-milligram perkilogramrange.

• ThedevelopmentofnovelcomponentsforX-rayanalysis,suchasX-ray opticsandenergy-dispersive(ED)detectors,initializedastrongdynamicin thedevelopmentofnewmethodicalpossibilities.Inrecentyears,therefore, aclearextensionoftheapplicationrangeofX-rayspectrometrycouldbe observed.

TheanalyticalperformanceofX-rayfluorescencespectrometry(XRF),however,ischaracterizedbyfurtherproperties,which,insomecases,havealimiting character.

• Theanalysiscanbecarriedoutwithveryhighprecisionbecausethestatistical errorcanbekeptverysmallduetothehighmeasurableintensities.Typical analyticalerrorsfortheanalysisofhomogeneoussamplesarebetween0.3and 0.5rel.wt%.Withcorrespondingmethods,theselimitscanbeevenfurther reduced.

• Theanalyticalaccuracycanbeinfluencedbythetypeofsamplepreparation, theselectionofmeasurementconditions,themeasurementsequences,andthe effortondataprocessing.

• Theabovementionedhighaccuraciescanbeachievedonlybycomparative measurementswithsamplesofexactlyknowncomposition,i.e.bycalibrations usingreferencesamplesorprimarysubstances(puresubstances).

• Thestrongmatrixdependenceofthemethodcanbeconsideredasalimiting factor.Thismeansthattheelementintensitieshaveanonlineardependenceon thesamplecomposition.Thismakesquantificationsmoredifficultandcomplex.

DuringthedevelopmentofX-rayspectrometry,ithasbeenfoundthatmost oftheinteractionsofboththeincidentradiationandthefluorescenceradiationwiththesamplearephysicallyverywellunderstoodandmathematically describable.

ThismeansthatX-rayspectrometryisaverywellunderstoodanalytical method,whichnowcanbeusedevenstandard-less,i.e.quantificationsare possiblewithouttheuseofreferencesamples,onlybasedonfundamental parameterssuchasabsorptioncrosssections,transitionprobabilities,fluorescenceyields,andothers.Thiswidelyreducestheeffortfortheanalyses

ofunknownsamples,butitcanalsoreducetheaccuracyofananalysis. Inparticular,exactknowledgeofthefundamentalparametersandofthe measuringgeometryisrequiredforhighaccuracy.Ontheotherhand,inthe caseofinaccurateknowledgeoftheseparameters,theanalysisaccuracyis limited.

• Typically,theanalyzedsamplevolumeisnotverylarge.Itisdeterminedbythe sizeoftheareaunderinvestigationandtheinformationdepth,i.e.thethickness ofthematerialthatcanbepenetratedbytheexcitedfluorescenceradiation andcontributesthereforetothemeasurementsignal.Forcorrectanalysis,this volumeshouldberepresentativeofthematerialtobecharacterized. Thesizeoftheexcitedareacanbeeasilyadjustedanddependssubstantially onthehomogeneityofthesample.Thedepthofpenetrationdependsonthe energyofthefluorescenceradiationoftheinvestigatedelementaswellasonits absorptioninthesample,i.e.fromthecompositionofthematrixofthesample.

• X-rayfluorescenceisknownasanondestructiveanalysismethodthatiscapableofanalyzingmaterialsinvariousaggregatestates,i.e.liquids,solidsamples, orpowders.Nevertheless,inmanycasesmodificationsofthematerialtobe examinedmaybenecessaryfortheanalysis.Thesepreparationproceduresmay benecessary,forexample, –toadjustthematerialtobeinvestigatedtotheinstrumentgeometry,for example,bydetachingpartsfromalargerpieceofthematerial,byfilling loosepowderintoasamplecup,orbypressingitintotablets; –togenerateasufficientrepresentativityoftheanalyzedsamplevolumefor theentiresamplematerial,forexample,byproducingaplanarsamplesurfaceorbycleaningthesurfacefromcontaminations;or –toavoidorreducetheinfluenceofinhomogeneitiesofthesamplematerial ontheanalysisresult,forexample,byhomogenizationthroughgrinding,by dilution,orbythemanufacturingoffusionbeads.

• However,theanalysescanmostlybecarriedoutwithoutanychangesin theaggregatestateofthesample,i.e.thedissolutionofsolidsamplesis notrequired.Therefore,theeffortforsamplepreparationcomparedto opticalmethodsisrelativelylowandnooronlyslightdilutioneffectsreduce thesensitivityoftracedetectionandthereforeavoidanalyticalerrorsby contaminations.

Nevertheless,itshouldbenotedthateveninthecaseofXRF,samplepreparationmustbecarriedoutverycarefullyinordertoachievethedesiredanalytical accuracy.

• Besidestheanalysisofhomogeneousvolumesamples,thecharacterization oflayeredsystemswithXRFisalsopossible.Undercertainconditions,both thicknessandcompositionoflayerscanbedetermined.Inthiscase,themass perunitareacanbedeterminedbymeasurement,whichthenhastobeconvertedintolayerthicknessesandmassfractionsbyusingthematerialdensity. Thedeterminationoflayerthicknessesisaverycommonanalyticalproblemin industrialprocesscontrolofmechanicalandelectroniccomponentsormany otherelectroplatedproducts.

2PrinciplesofX-raySpectrometry

• AnotherveryimportantpropertyofX-rayspectrometryisthepossibilityof automation,inparticular,theautomationofthemeasurementprocess,includingdataevaluation.Incasethereisnochangeinthesampletypeevensample preparationcanbeautomated.Thisresultsinafastanalysis,butaboveallit providesforananalysisindependentofsubjectiveinfluences.Samplepreparationandmeasuringoperationcanthenbecarriedoutunderequivalentconditions,whichreducestheuncertaintyrangeofthemeasurement.

Apartfromthiseffect,theongoingcostsforanalysesarereducedbymeansof automation.

• TheanalyticalproblemofX-rayspectrometrycanbeverydifferentandcanbe classifiedintovarious“degreesofdifficulty.”

Qualitativeanalysiscanbeconsideredasasimpletask.Inthiscase,itisonly necessarytodeterminewhethercertainelementsarepresentinthesampleor not.

Thenextstageinvolvesthemonitoringofconcentrationrangesforselected elements.Inthisinstance,itmustbedeterminedwhetherthemassfractions oftheelementsunderconsiderationinthesamplematerialarebeloworabove acertainlimit.Here,oftennodirectquantitativeanalysesarerequiredbutonly amonitoringoftheintensityleveloftheanalyte.Inthiscase,thematrixinfluencecanbeneglectedbecausesamplesofsimilarqualitiesareinvestigatedand theirmatricesdonotchangesignificantly.

Withoutdoubt,themostdemandinganalyticalproblemisthequantitative analysis.Here,theelementspresentinasamplehavetobeidentifiedat first–forsamplesofsamequalityasinthecaseofqualitycontrolinthe productionprocess,thisisnotnecessary–andthentheirmassfractionsor theirlayerparametershavetobedetermined.

• Therequirementsregardingaccuracyandsensitivityoftheanalysiscanbevery different,resultingintheselectionof –thesamplepreparationmethod(homogenizationofthesample,elimination ofinfluencesofthesurfaceroughnessorofmineralogicaleffects) –themeasuringconditions(excitationconditions,measuringtimes,measuringmedium)

–theevaluationmodeland,ifavailable,ofthereferencesamplestobeused forthecalibrationtotheaccuracyrequirements.

• Further,X-rayspectrometrycanalsodetermineelementdistributionsoflarge sampleareasbyusingspecificexcitationconditions.Forthispurpose,theincidentbeamhastobeconcentratedonasmallsamplearea.Thesamplethen needstobemovedunderthefixedbeamintothemeasuringposition.This offersthepossibilityfortheanalysisofnon-regularsamplesurfacesandadditionallyforthecharacterizationofinhomogeneousmaterials.

• Byusingspecificexcitationgeometriesandconditions,itispossibletoinfluencethesensitivityofthemethod.Forexample,inthecaseofagrazingincidenceoftheprimarybeam,thespectralbackgroundisgreatlyreducedand hencethesensitivityofthemeasurementissignificantlyincreased.

Asimilareffectcanbeobtainedbyusingmonoenergeticradiationfortheexcitation.Herealso,thespectralbackgroundisreducedandanimprovementin sensitivitycanbeachieved.

• AlargenumberofdifferentX-rayspectrometryinstrumentsareavailable,each ofwhichisdesignedforspecificanalyticaltasks.Amoredetaileddiscussionof theindividualinstrumenttypescanbefoundinSection4.3.

• TheradiationsourcesusedinlaboratoryanalysestodayareX-raytubes.In thepast,isotopesourceshavebeenusedaswell.Anotherradiationsource includessynchrotrons.Theirradiationproperties,i.e.thehighbeambrilliance, thepolarizationofthesynchrotronradiation,orthepossibilityofgeneratingmonoenergeticradiationbymeansofappropriateX-rayoptics,allowthe useofverydedicatedmeasuringgeometriesandmeasurementmethods.Asa result,newanalysismethodsareoftendevelopedattheseradiationsources, whichsubsequentlycanbetransferredintoroutinepractice.However,these specialanalysesmethodsarenotdiscussedwithinthisscopesincethevery highinstrumentaleffortandthelimitedavailabilityofmeasurementtimeat thesesourcesrestricttheirroutineuse.

AnothertypeofinterestingX-raysourceareplasmasinwhichatomsareionizedbyextremelyhightemperatures.TheseatomsthenemitX-radiationwhen transferredbacktothegroundstate.Itisusuallyradiationinthelowerenergy range.Becausetheplasmaisoftengeneratedbyalaserimpact,thesesources canbepulsedandconsequentlybeusedfortime-resolvedstudies.However, thesesourcesarenotyetsuitableforrealroutineuse.

2.2X-rayRadiationandTheirInteraction

2.2.1PartsofanX-raySpectrum

X-radiationiselectromagneticradiationintheenergyrangeofapproximately 0.1–100keVorwithwavelengthsintherangeofapproximately25to0.01nm. X-radiationisthereforecharacterizedeitherbyitsenergy E orbyitswavelength ��.Bothquantitiesaremutuallytransferablethroughthefollowingrelationship:

X-rayradiationcanbegeneratedbyseveralprocesses.Acontinuousbroadbandspectrumisemittedbythestepwisedecelerationofhighlyenergeticcharged particlesbutalsobyhighlyionizedplasmas(bremsstrahlung).Line-likespectra (characteristicradiation)aregeneratedwhentransitioningexcitedatomsback intothegroundstate,iftheenergydifferenceoftheenergiesinvolvediswithinthe rangedescribedabove.FortheexcitationofX-raysinthelaboratoryscale,acceleratedchargedparticles,i.e.electronsorprotons,aswellashigh-energyionizing radiation,i.e.X-raysthemselvesareused.Inthebeginning,radioactiveelements werealsousedasradiationsourcesinlaboratoryequipment.However,these sourcesarenowusednotveryoftenbecauseofthehighsafetyrequirements.

ThemostcommonwayofproducingX-rayradiationisthedecelerationof acceleratedelectrons.ThisisusedinX-raytubesandelectronmicroscopes.The decelerationoftheelectronsresultsinbothacontinuousspectrumandaline-like spectrum.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
X-ray fluorescence spectroscopy for laboratory applications michael haschke 2024 scribd download by Education Libraries - Issuu